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Abstract

This paper introduces consistency models in the problem of sequential decision-
making. Previous work applying diffusion models to planning within a model-based
reinforcement learning framework often struggles with high computational cost dur-
ing the inference process, due to its reliance on iterative reverse diffusion processes.
Consistency models, known for their computational efficiency, have already shown
promise in reinforcement learning within the actor-critic algorithm. Therefore, we
combine guided consistency distillation with a continuous-time diffusion model in
the framework of Decision Diffuser. Our approach, named Consistency Planning,
combines the robust planning capabilities of diffusion models with the speed of con-
sistency models. We validate our method on gym tasks in the D4RL framework,
demonstrating that compared with its diffusion model counterparts, our method
achieves more than 12-fold increase in speed without any loss in performance.

1 Introduction

In recent years, significant strides have been made in high-resolution image generation through
the advancement of diffusion-based generative models. Similarly, in offline reinforcement learning
(RL) settings, deriving effective policies from pre-existing offline datasets can be simplified to the
task of developing a probabilistic model for trajectory prediction, an area where diffusion-based
generative models have proven to be highly successful. Existing models such as Diffuser (Janner
et al., 2022) and Decision Diffuser (Ajay et al., 2022) underscore the efficacy of applying diffusion
models to planning within model-based RL frameworks. In Diffuser, a diffusion model is trained
on the trajectories in offline datasets, and then a separate classifier model is trained to predict the
cumulative rewards of trajectory samples. During the inference process, the diffusion model with
classifier guidance is employed to sample trajectories with high returns. Likewise, Decision Diffuser
introduces a conditional diffusion model with state sequences as input, utilizing the return as a
conditioning variable for classifier-free guidance during sampling. Moreover, incorporating only the
state sequence—excluding the action sequence—Decision Diffuser trains an extra inverse dynamic
model to infer actions.

Parallel to these developments, diffusion models have been adapted to model-free reinforcement
learning scenarios, as illustrated by Diffusion-QL (Wang et al., 2022) and further enhanced in the
efficient diffusion policy (EDP) (Kang et al., 2024). Diffusion-QL, utilizing a denoising diffusion
probabilistic model (DDPM) (Ho et al., 2020), frames the diffusion model as a policy representation,
conditioned on states with actions as outputs. It integrates Q-learning guidance into the reverse
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diffusion process to seek optimal actions. Despite its advancements, Diffusion-QL faces limitations in
computational efficiency and its exclusive application within TD3-type algorithms (Fujimoto & Gu,
2021). EDP addresses these issues by introducing an action approximation trick during training,
applying the DPM-solver, and approximating policy likelihood via the evidence lower bound in
DDPM to overcome the limitations of Diffusion-QL.

Although the integration of diffusion models within both model-based and model-free frameworks in
the offline RL setting has been extensively explored and enhanced, a significant challenge remains in
their application, particularly in real-time decision-making contexts. This challenge stems from the
diffusion models’ reliance on iterative sampling processes, which can be computationally intensive
and slow, thus restricting their use in scenarios that require rapid inference. For instance, in robot
arm control (Chi et al., 2023), standard diffusion-based control can only make decisions at around
10Hz. However, this is insufficient for tasks requiring agile motion planning at 20Hz (Smith et al.,
2023), 30Hz (Peng et al., 2020), or even higher.

Recent endeavors by Song et al. (2023) have introduced consistency models, a novel class of generative
models that significantly enhance computational efficiency without sacrificing the expressiveness and
flexibility that make diffusion models appealing for reinforcement learning.

In the model-free RL domain, consistency models have demonstrated promising results as policy
representations, particularly in offline and offline-to-online RL settings (Ding & Jin, 2023). These
developments underscore the consistency models’ capability to effectively navigate the challenges
of learning from fixed datasets, indicating their potential to achieve performance comparable to
diffusion-based approaches, with higher computational efficiency.

However, in offline RL settings, model-free methods using Q-network face the challenges due to
overestimated Q-values for out-of-distribution actions (Kumar et al., 2020; Levine et al., 2020). In
the context of online RL, the problem is self-corrected as the policy interacts with the environment;
an action perceived as favorable might receive a low reward, thus adjusting the policy. However, in
offline RL, such corrections are not readily achievable, leading the learned Q-function to often guide
the diffusion model towards potentially sub-optimal actions. Therefore, given the computational effi-
ciency of consistency models and the proven effectiveness of diffusion models in trajectory prediction,
this paper aims to explore how consistency models can augment model-based RL with classifier-free
guidance in offline setting, bypassing the necessity of learning a Q-function by conditioning the
consistency models on returns.

The goal of this paper is to bridge this gap by proposing a novel approach that merges the compu-
tational efficiency of consistency models with the planning capabilities inherent in Decision Diffuser.
By integrating consistency models into the trajectory optimization process, we aim to leverage their
computational advantages to enhance the speed of planning. Our experiments, conducted in offline
RL settings, embed a conditional consistency model in the Decision Diffuser algorithm, evaluating
with consistency distillation methods. Specifically, the Consistency Model employs guided consis-
tency distillation from a score-based diffusion model (Karras et al., 2022; Ho & Salimans, 2022; Luo
et al., 2023) pretrained on offline trajectories datasets.

In summary, our contribution is proposing Consistency Planning, a novel offline RL algorithm that
extends the applicability of consistency models to model-based RL. We evaluate Consistency Plan-
ning on D4RL benchmark tasks (Fu et al., 2020) for offline RL, demonstrating that this method can
achieve performance comparable to its diffusion model counterparts across the majority of tasks,
with a notably faster sampling process.

2 Related Work

2.1 Diffusion Models

Diffusion models have emerged as a powerful approach for generating high-quality image and text
data, as demonstrated by previous studies (Saharia et al., 2022; Nichol & Dhariwal, 2021). The data
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sampling process is formulated as an iterative denoising procedure, introduced by Sohl-Dickstein
et al. (2015) and further developed by Ho et al. (2020). Parameterizing the gradients of the data
distribution serves as an alternative interpretation of this denoising procedure, aiming to optimize the
score matching objective, as elucidated by Hyvärinen & Dayan (2005). This positions the approach
within the domain of Energy-Based Models, as evidenced by the contributions of Du & Mordatch
(2019), Nijkamp et al. (2019), and Grathwohl et al. (2020).

Prior work (Nichol & Dhariwal, 2021) has implemented a classifier to enable the generation of
images based on conditional information (e.g., text), which is called classifier guidance. However,
more recent studies (Ho & Salimans, 2022), propose classifier-free guidance, which relies on the
gradients from an implicit classifier, derived from the score function differences between conditional
and unconditional models. This approach has proven to enhance the quality of conditional samples
over classifier guidance methods. These advancements predominantly focus on text and image
generation.

2.2 Diffusion Models in Reinforcement Learning

Diffusion models offer a versatile approach for data augmentation in reinforcement learning. Syn-
thER (Lu et al., 2024) employs unguided diffusion models to enhance both offline and online RL
datasets, subsequently utilized by model-free off-policy algorithms. Although this approach boosts
performance, SynthER’s reliance on unguided diffusion to approximate the behavior distribution
faces challenges due to distributional shift. Similarly, MTDiff (He et al., 2024) implements unguided
data generation in multitask environments.

Additionally, diffusion models have been adapted for training world models. For instance, Alonso
et al. (2023) use diffusion to train world models, achieving precise predictions of future observations.
However, this method does not model entire trajectories, leading to compounded errors and lack
of policy guidance. In a related effort, Rigter et al. (2023) integrate policy guidance to enhance
a diffusion world model in online RL. Jackson et al. (2024) concentrate on offline RL, providing a
theoretical framework and rationale for the trajectory distribution shaped by policy guidance.

Diffusion models (Ho et al., 2020; Song et al., 2020) have also been adapted for policy representation
in RL, capturing the multi-modal distributions in offline datasets. Specifically, Diffusion-QL (Wang
et al., 2022), applies the diffusion model within the framework of both Q-learning and Behavior
Cloning (BC) for policy representation. However, the main limitation of Diffusion-QL is that it
demonstrates computational inefficiency due to the necessity of processing both forward and back-
ward through the entire Markov chain during training. To alleviate these issues, Kang et al. (2024)
introduces action approximation, eliminating the need to execute the denoising process during the
training process.

Diffusion models have been employed in recent studies for human behavior imitation learning (Pearce
et al., 2023) and trajectory generation in offline RL. Trajectories that include states and actions are
generated by Diffuser (Janner et al., 2022), using an unconditional diffusion model, guided by a
reward function trained on noisy state-action pairs. Decision Diffuser (Ajay et al., 2022) models
the trajectories with the dataset using a unified, conditional generative model, avoiding separate
training a classifier for reward functions.

3 Preliminary

3.1 Reinforcement Learning Problem Setting

The sequential decision-making problem is defined as a Markov decision process (MDP): M =
{S, A, P, R, γ, d0}, where S and A are the state space and the action space respectively, P : S×A→ S
represents the transition function, R : S × A × S → R denotes the reward function, γ ∈ [0, 1) is
the discount factor, d0 is the initial state distribution. The goal of RL is to learn policy πθ (a|s) to
maximize the expected sum of discounted rewards E [

∑∞
t=0γtr (st, at)].
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3.2 Consistency Models

Diffusion models operate by introducing Gaussian perturbations to transform data into noise, fol-
lowed by generating data samples through a series of sequential denoising steps. Song et al. (2020)
introduce a stochastic differential equation (SDE) framework that ensures the maintenance of the
desired distribution as sample x evolves over time. The consistency models proposed by Song et al.
(2023) recover the original data sample by solving a corresponding probability flow ordinary differ-
ential equation (ODE): dxt

dt = −t∇ logt pt(x), where pt(x) = pdata(x)⊗N (0, t2I), pdata(x) represents
the original data distribution, t ∈ [0, T ] is the time period. The data generation process in this
framework reverses along the trajectory {x̂t}t∈[ϵ,T ] of the ODE, starting from random initial sam-
ples x̂T ∼ N

(
0, T 2I

)
where ϵ is a minimal constant close to 0 to address numerical issues at the

boundary.

To accelerate the sampling process in diffusion models, the consistency model significantly reduces
the number of steps required for sampling compared to the original diffusion model, without substan-
tially compromising the model’s performance. This is achieved by approximating a parameterized
consistency function, fθ : (xt, t) → xϵ, which maps a noisy sample xt at step t back to the original
sample xϵ.

This approach differs from the diffusion model, which utilizes a step-by-step denoising function
pθ (xt−1 | xt), for the reverse diffusion process. Slightly different from the original consistency model,
this paper focuses on a conditional distribution, so the consistency function is modified to fθ(xt, t, c),
where c denotes the condition variable.

4 Planning with Consistency Model

Diffusion Model Training. This paper explores the integration of consistency models, which are
trained by distillation from a pre-trained diffusion model, into the planning architecture of Decision
Diffuser. The original consistency models draw from the principles of score-based diffusion models
(Song et al., 2020; Karras et al., 2022), making direct distillation from the discrete-time model used
in Decision Diffuser ineffective.

As outlined by Ajay et al. (2022), the diffusion process encompasses only the state transitions as
described by

xti+1(τ) := (sk, sk+1, . . . , sk+H−1)ti+1 . (1)

In this notation, k indicates the timestep of a state within a trajectory τ , H represents the planning
horizon, and ti+1 is the timestep in the diffusion sequence. Consequently, xti+1(τ) is defined as a
noisy sequence of states, represented as a two-dimensional array where each column corresponds to
a different timestep of the trajectory.

To derive actions from the states generated by the diffusion model, we employ an inverse dynamics
model (Agrawal et al., 2016; Pathak et al., 2018), denoted as hφ, trained using the same dataset as
the diffusion model. The combined training of the diffusion model (denoted by Dϕ) and the inverse
dynamics model is conducted using the following loss:

L(ϕ, φ) :=Eσ∼ptrain,τ∼D,n∼N (0,σ2I),β∼Bern(p)

[
∥Dϕ(xσ(τ), (1− β)c(τ) + β∅, σ)− x0(τ)∥2

2

]
+ E(s,a,s′ )∼D

[∥∥∥a− hφ(s, s
′
)
∥∥∥2

2

]
,

(2)

where ptrain is a log-normal distribution using the design choice from Karras et al. (2022), β is
sampled from a Bernoulli distribution with probability p. Namely, the condition information c(τ) is
ignored with probability p, which is manifested by the condition information being an empty set ∅.
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We employ returns R(τ) under trajectories as the conditioning information c(τ), normalized such
that R(τ) ∈ [0, 1]. We map it into a latent variable c ∈ Rh using a multi-layer perceptron. In
cases where R(τ) = ∅, the components of c are set to zero. During the inference time, sampling
trajectories with high returns corresponds to conditioning on R(τ) = 1.

Guided Consistency Distillation. Incorporating classifier-free guidance is essential for synthesiz-
ing high-return trajectories. Considering the computational demands and potential for error accu-
mulation associated with two-stage distillation methods (Meng et al., 2023), we opt for a one-stage
guided distillation approach as proposed by Luo et al. (2023).

Algorithm 1 Consistency Distillation with guidance
1: Input: dataset D, intial consistency model parameter θ, learning rate η, ODE solver Φ (·, ·, ·; ϕ),

distance metric d (·, ·), EMA rate µ, noise schedule ti, guidance schedule [ωmin, ωmax].
2: θ− ← θ
3: repeat
4: Sample (x, c) ∼ D, n ∼ U [1, N − 1] and ω ∼ [ωmin, ωmax]
5: Sample xtn+1 ∼ N (x; t2

n+1I)
6: x̂ϕ,ω

tn
← xtn+1 +

[
(ω + 1)Φ(xtn+1 , c, tn+1; ϕ)− ωΦ(xtn+1 , ∅, tn+1; ϕ)

]
7: L(θ, θ−; ϕ)← d

(
fθ(xtn+1 , ω, c, tn+1), fθ−(x̂ϕ,ω

tn
, ω, c, tn)

)
8: θ ← θ − η∇θL(θ, θ−; ϕ)
9: θ− ← stopgrad(µθ− + (1− µ)θ)

10: until convergence

The consistency function fθ : (xt, ω, c, t) → x0 is parameterized to transform state xt at time t
directly into the original state x0. We parameterize fθ in the same way as Song et al. (2023), except
that we consider the influences of guidance scale ω and conditioning variable c:

fθ(x, ω, c, t) = cskip(t)x + cout(t)Fθ(x, ω, c, t), (3)

where Fθ is a free-form neural network with an output that matches the dimensionality of x,
cskip(ϵ) = 1 and cout(ϵ) = 0 so that fθ satisfies boundary condition fθ(x, ω, c, ϵ) ≡ x. During the dis-
tillation process, the guidance scale ω and n are sampled uniformly from the intervals [ωmin, ωmax]
and {1, · · · , N − 1}, respectively. The trajectory and returns tuple (x, c) are sampled from the
dataset. Then, x̂ϕ,ω

tn
is estimated by employing an ODE solver Φ:

x̂ϕ,ω
tn
− xtn+1 ≈

[
(ω + 1)Φ(xtn+1 , c, tn+1; ϕ)− ωΦ(xtn+1 , ∅, tn+1; ϕ)

]
. (4)

Finally, we minimize the consistency distillation loss (Song et al., 2023; Luo et al., 2023) used for
guided distillation:

L(θ, θ−; ϕ) = Ex,c,ω,n

[
d

(
fθ(xtn+1 , ω, c, tn+1), fθ−(x̂ϕ,ω

tn
, ω, c, tn)

)]
, (5)

where d is squared ℓ2 distance d(x, y) = ∥(x− y)∥2
2.

The pseudo-code for guided consistency distillation adapted for trajectory generation is shown in
Algorithm 1.

Consistency Model Inference. During the inference process, we first observe a state s in the
environment and sample an initial trajectory xT . Then, our consistency model, which conditioned
on returns c, guidance scale ω and history of last C states observed, iteratively predicts the denoised
trajectories from the noisy inputs x̂tn(τ) ← x(τ) +

√
t2
n − ϵ2z along the probability flow ODE
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Algorithm 2 Planning with Consistency Model
1: Input: consistency model fθ, inverse dynamics hφ, guidance scale ω, history length C, condition

c.
2: Initialize h← Queue(length = C), t← 0.
3: while not done do
4: Observe state s; h.insert(s);
5: Initialize x(τ)← fθ(xT , ω, c, T ), xT ∼ N (0, T 2I)
6: for n = 1 to N − 1 do
7: x(τ)[:, length(h)]← h
8: x̂tn(τ)← x(τ) +

√
t2
n − ϵ2z, z ∼ N (0, I)

9: x(τ)← fθ(x̂tn(τ), ω, c, tn)
10: end for
11: Extract (sk, sk+1) from x(τ)
12: Execute ak = hφ(sk, sk+1)
13: end while

trajectory at step n ∈ [N ], with Gaussian noise z ∼ N (0, I). For single-step version of Consistency
Inference, {tn | n = 0, 1} = {ϵ, T}. Finally, we extract states (sk, sk+1) from denoised trajectory and
get the action ak via our inverse dynamics models hφ. The algorithm of Consistency Planning is
provided in Algorithm 2 and visualized in Figure 1. For the architecture and implementation details,
please refer to Appendix.

Figure 1: Consistency Planning. Given the current state sk, conditioning variable and guidance
scale ω, Consistency Planning generate a sequence of future states with planning horizon H. Then
the inverse dynamics model is used to extract and execute the action ak from sk and sk+1

5 Experiment

To evaluate the capabilities of the proposed consistency model in trajectory planning, we conduct
experiments on Gym tasks (halfcheetah, hopper and walker2d) in D4RL benchmarks under offline
RL settings.

We compare the performance of our method with those of both behavior-cloning methods, i.e.,
Consistency-BC (C-BC) (Ding & Jin, 2023), Diffusion-BC (D-BC) (Wang et al., 2022), actor-critic
methods, i.e., Consistency-AC (C-AC) (Ding & Jin, 2023), Diffusion-QL (D-QL) (Wang et al., 2022)
algorithms, and model-based methods, i.e., Diffuser (Janner et al., 2022), Decision-Diffuser (DD)
(Ajay et al., 2022) in Table 1. For evaluation, results for our method correspond to the average over
150 planning seeds. By default, our consistency model applies the number of denoising steps N =
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2 with saturated performance on most tasks, while the diffusion policy uses N = 5 (Wang et al.,
2022), Diffuser and Decision Diffuser uses N = 20 and N = 40, respectively (Janner et al., 2022;
Ajay et al., 2022).

Table 1 shows that although our method achieves a slightly lower average score (82.2) than Diffusion-
QL (87.9) and Consistency-AC (85.1), as a model-based planning model, it outperforms its diffusion
counterparts, i.e., Diffuser (75.3) and Decision Diffuser (81.8), with the reduction of denoising steps
in the inference stages.

Dataset BC Diffuser DD D-BC C-BC D-QL C-AC Ours

Halfcheetah-me 55.2 79.8 90.6 90.8 32.7 96.8 84.3 94.0± 1.3
Hopper-me 52.5 107.2 111.8 107.6 90.6 111.1 100.4 107.5± 1.8
Walker2d-me 107.5 108.4 108.8 108.9 110.4 110.1 110.4 109.8± 0.5

Halfcheetah-m 42.6 44.2 49.1 45.4 31.0 51.1 69.1 46.8± 1.2
Hopper-m 52.9 58.5 79.3 65.3 71.7 90.5 80.7 87.8± 1.6
Walker-m 75.3 79.7 82.5 81.2 83.1 87.0 83.1 80.5± 0.8

Halfcheetah-mr 36.6 42.2 39.3 41.7 34.4 47.8 58.7 40.6± 0.9
Hopper-mr 18.1 96.8 100 67.9 99.7 101.3 99.7 97.8± 0.8
Walker2d-mr 26.0 61.2 75 77.5 73.3 95.5 79.5 75.3± 1.1

Average 51.9 75.3 81.8 76.3 69.7 87.9 85.1 82.2

Table 1: The average scores of vanilla BC (with Gaussian), Diffuser, Decision Diffuser, Diffusion-BC,
Consistency-BC, Diffusion-QL, Consistency-AC and our method on D4RL Gym tasks are shown,
with standard deviation reported for Consistency Planning. All results are quoted from Ding & Jin
(2023) and Ajay et al. (2022).
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Figure 2: Comparison of average norm score vs. N for Decision Diffuser and Consistency Planning
on the task hopper-medium-expert-v2

To assess the computational efficiency of Consistency Planning and its diffusion model counter-
parts, Decision Diffuser, we conduct experiments to measure inference time (ms per sample) in the
hopper-medium-expert-v2 environment in our server. The results in Figure 2 show that N = 2
for Consistency-Planning, and N = 20 for Decision Diffuser, are the values where each algorithm
achieves its saturated performance. The mean and standard deviation of results are calculated over
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five random seeds. We claim our model have achieved more than 12-fold increase in speed without
any loss in performance, with more detailed information concerned the inference time v.s. N shown
in Appendix.

6 Conclusion

By combining the score-based diffusion model proposed by Karras et al. (2022), one-stage guided
distillation (Luo et al., 2023), and conditional model-based generative model for sequential decision
making (Ajay et al., 2022), the consistency model in this paper achieves comparable performance
in gym tasks with its diffusion model counterparts, Diffuser and Decision Diffuser, and obtains a
significant speedup during inference in offline settings. Future work should include: 1) combining
improved techniques in training consistency models (Song & Dhariwal, 2023), such as designing a
changing weighting function and noise schedule more suitable for reinforcement learning scenarios;
2) combining the consistency inference process with changing guidance schedule (Ma et al., 2023)
to improve the quality of trajectory sampling.
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Appendix

The results in Table 2 show the relationship between the computational time, denoised steps N
and corresponding performance of Consistency Planning and Decision Diffuser on the task hopper-
medium-expert-v2. Each cell contains the mean and standard deviation over 5 random seeds. As
demonstrated in Table 2, we achieved more than 12-fold increase in speed without any loss in
performance with N=2 for Consisitency Planning and N=20 for Decision Diffuser.

Method N Inference Time (ms per sample) Avg. Norm Score

Decision Diffuser

40 837.6± 8.4 110.0± 0.4
20 427.7± 3.9 110.1± 0.5
10 216.8± 1.2 104.0± 18.9
5 107.3± 0.5 71.5± 20.2
2 44.5± 0.3 12.6± 0.5
1 23.1± 0.4 11.1± 0.5

Consistency Planning

40 752.1± 2.0 112.2± 1.5
20 331.9± 1.9 110.4± 0.3
10 167.3± 0.9 110.8± 1.0
5 80.58± 0.7 111.3± 0.4
2 33.2± 0.3 108.7± 0.9
1 16.8± 0.2 24.1± 0.7

Table 2: Comparison of computational time for Decision Diffuser and Consistency Planning on the
task hopper-medium-expert-v2 (Ajay et al., 2022).

In the next section, we describe various architectural and hyperparameter details:

• We represent the consistency model and diffusion model using the structure of Song et al.
(2023), the inverse dynamics hφ using the structure of Ajay et al. (2022).

• We train diffusion model using the same learning rate in Karras et al. (2022) and batch size
of 512 for 2e5 train steps.
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• We choose the probability p of removing the conditioning information to be 0.25.

• We use N = 2 for consistency inference.

• We use a planning horizon H of 32, context length C of 8 in all the D4RL gym tasks.

• We use a guidance scale ωmax = 1, ωmin = 0 in guided consistency distillation.


