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Abstract

Large language models (LLMs) suffer from001
temporal misalignment issues especially across002
long span of time. The issue stems from know-003
ing that LLMs are trained on vast amounts004
of data with sparse temporal information over005
long periods, such as thousands of years, re-006
sulting in insufficient learning or catastrophic007
forgetting by the LLMs. This paper proposes a008
methodology named "Ticktack" for addressing009
the LLM’s long-time span misalignment in a010
yearly setting. Specifically, we first propose to011
utilize the sexagenary year expression instead012
of the Gregorian year expression employed by013
LLMs, achieving a more uniform distribution014
in yearly granularity. Then, we employ polar015
coordinates to model the sexagenary cycle of016
60 terms and the year order within each term,017
with additional temporal encoding to ensure018
LLMs understand them. Finally, we present a019
temporal representational alignment approach020
for post-training LLMs that effectively distin-021
guishes time points with relevant knowledge,022
hence improving performance on time-related023
tasks, particularly over a long period. We also024
create a long time span benchmark for evalua-025
tion. Experimental results prove the effective-026
ness of our proposal.027

1 Introduction028

Language models have always suffered from tem-029

poral misalignment issues stemming from the tem-030

poral discrepancies between the training and testing031

data, resulting in variability in reference time dur-032

ing downstream tasks (Lazaridou et al., 2021; Luu033

et al., 2022; Jaidka et al., 2018; Tan et al., 2023).034

The issues persist with recently released large lan-035

guage models (LLMs) such as LLama (Touvron036

et al., 2023a) and GPT-4 (Achiam et al., 2023),037

which are trained on enormous datasets and exhibit038

significant performance decreases over time, espe-039

cially when the time periods are long (Zhao et al.,040

2024; Nylund et al., 2023; Luu et al., 2022).041

The long-span temporal misalignment issues in 042

LLMs primarily arise from the extensive training 043

data covering thousands of years (e.g., from BCE to 044

post-2000 AD). The enormous training data gener- 045

ally lacks explicit temporal grounding, resulting in 046

relatively limited and sparse knowledge of specific 047

time periods (Drinkall et al., 2024). We investigate 048

the distribution of years in the wiki dataset 1 and 049

Baidu Baike2, as illustrated in Figure 1. It indicates 050

that data is rare in ancient ages, such as BCE, but 051

concentrated in the internet era (1990s–present). 052

Note that the year refers to the temporal reference 053

of the data’s content. Other studies (Yang et al., 054

2023) show similar findings. The sparse and long- 055

tail distribution of training data over time results 056

in insufficient learning or catastrophic forgetting in 057

LLMs, leading to even poor performance during 058

low-resource years (McCoy et al., 2023; Razeghi 059

et al., 2022). 060
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Figure 1: The distribution of temporal information in
both Wikipedia (English) and Baidu Baike (Chinese),
with statistics conducted at intervals of 200 years from
BCE to after 2000.

Existing approaches (Mitchell et al., 2021; Meng 061

et al., 2022) to resolving time misalignment issues 062

emphasize updating models with new knowledge, 063

1https://huggingface.co/datasets/wikimedia/
wikipedia

2https://baike.baidu.com/
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yet they do not assess the internal temporal knowl-064

edge of LLMs over long periods. The most relevant065

work for us is Wei et al. (2025), which divides the066

time span from Pre-Qin to Modern into three dis-067

tinct periods. This classification is too coarse for068

reasoning in LLMs.069

This paper proposes a plug-and-play methodol-070

ogy named "Ticktack" for addressing the LLM’s071

long-time span misalignment in a yearly setting.072

To begin, we propose solving the sparse and long-073

tail distribution of training data throughout time074

by employing a novel sexagenary year expression075

instead of the Gregorian year expression used by076

LLMs. The idea is founded on the observations077

of Tan et al. (2023) that the Gregorian year expres-078

sion employed by LLMs resulted in an excessively079

wide range for the year embedding within the rep-080

resentation space of LLMs. Sexagenary time ex-081

pression could achieve a more uniform distribution082

in yearly granularity. Figure 4 in Section 4.1 pro-083

vides a comprehensive analysis. Subsequently,084

we apply polar coordinates to represent the sex-085

agenary cycle of 60 terms and the chronological086

sequence inside each term, integrating additional087

temporal encoding to facilitate comprehension by088

LLMs. Finally, we present a temporal representa-089

tional alignment approach for post-training LLMs090

that effectively distinguishes time points with rel-091

evant knowledge, thereby improving performance092

on time-related tasks, particularly over a long pe-093

riod.094

Due to the lack of long time span benchmarks,095

we develop TempLS, a question-answering dataset096

covering the period from 75,000 BCE to 2025 AD,097

to facilitate the analysis of Ticktack’s efficiency.098

We conduct experiments over several representative099

open-source LLMs ranging from 3 billion to 13100

billion parameters. Experimental results on both101

open-source time-related benchmarks and TempLS102

prove the effectiveness of our proposal.103

2 Related work104

Temporal expressions and embeddings in lan-105

guage models. Traditional works (Yang et al.,106

2023) use a normalized value for time expression107

using tools such as SUTIME (Chang and Manning,108

2012). With the development of pre-trained lan-109

guage models, researchers try to explore better time110

expression. In order to have a more comprehen-111

sive understanding of temporal expressions, Tan112

et al. (2023) divifgfdes 1900 to 2040 into seven113

20-year time periods. Zhang and Choi (2023) lever- 114

ages duration statistics on each dataset’s develop- 115

ment, such as seconds and minutes. However, all 116

these time expressions within the scope of the Gre- 117

gorian calendar system still suffer from the com- 118

plicated representation space. Wei et al. (2025) 119

segments the Chinese lexicon history into three 120

periods: Ancient, Middle Ancient, and Near An- 121

cient, and uses a one-hot embedding to represent 122

them. This classification is too coarse for reasoning 123

in LLMs. Recent LLMs, such as GPT-4 (Achiam 124

et al., 2023), tokenize numeric information indepen- 125

dently from a perspective of tokenization. However, 126

this approach lost the distinct meaning of terms like 127

"2014" as a specific year. 128

Temporal alignment of language models. 129

Early efforts (Borkakoty and Espinosa-Anke, 2024; 130

Dhingra et al., 2022) focus on designing novel 131

datasets to probe LMs for temporal-related un- 132

derstanding, while more recent works (Wang and 133

Zhao, 2023; Jang et al., 2022; Margatina et al., 134

2023) introduce new benchmarks to evaluate the 135

temporal alignment capabilities. To create tempo- 136

rally adapted language models, conventional meth- 137

ods rely on continual learning on time-specific 138

data (Agarwal and Nenkova, 2022; Loureiro et al., 139

2022). Lately, some knowledge modification tech- 140

niques are proposed to align temporal knowledge 141

(Zhu et al., 2020; De Cao et al., 2021; Dai et al., 142

2022). Other works (Zhao et al., 2024; Longpre 143

et al., 2024; Gurnee and Tegmark, 2023) study 144

the LMs’ temporal misalignment caused by the 145

chaotic pretraining corpus (Longpre et al., 2024) 146

and LMs can represent temporal knowledge learned 147

from pretraining in their internal states (Gurnee and 148

Tegmark, 2023). These findings open up the possi- 149

bility of aligning models to a specific time. 150
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Figure 2: The correspondence between the sexagenary
year (blue) and Gregorian year (black). For instance,
both 1864 and 1924 correspond to the "Jiazi" year.
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Figure 3: An overview of Ticktack (a) illustrates the novel way to express the years, leveraging the polar coordinate
representation of the sexagenary cycle. (b) adopts sine and cosine functions to encode temporal information based
on the sexagenary cycle. (c) describes the temporal alignment process to further transform the original weight space
of the LLMs into a temporal re-organized and distinguished weight space.

3 Methodology151

3.1 Preliminary: conversion between152

sexagenary year and Gregorian year153

We initially provide the concept of the sexagenary154

cycle chronology and its correlation with the Gre-155

gorian calendar year, which is primarily utilized by156

LLMs during data preprocessing. The sexagenary157

cycle generates a sixty-year cycle utilized in the158

calendars of China and several other Far Eastern159

nations, derived from the combination of two funda-160

mental cycles of ten and twelve3. Figure 2 depicts161

the sexagenary cycle chronology, which divides162

years into 60 categories, ranging from "Jiazi" to163

"Guihai." The associated Gregorian calendar years164

are grouped under their sexagenary category. For165

instance, the years 1864 AD and 1924 AD both166

correspond to the "Jiazi" year in the sexagenary167

cycle chronology.168

By employing the sexagenary cycle chronology169

to represent the years, thousands of years of long-170

term data are reconstructed and aggregated into171

a 60-year cycle. As a result, the time representa-172

tion achieves a more uniform distribution than the173

broader distribution space in the Gregorian year174

system, allowing for even better connections with175

relevant events. More detailed analyses are listed176

in Figure 4 of Section 4.1.177

3.2 Overview of Ticktack178

Ticktack is a plug-and-play methodology for LLMs179

that translates and aligns the year representation180

from the Gregorian calendar system with the sex-181

agenary cycle chronology, hence enhancing the182

performance of LLMs on temporal tasks over long183

3https://en.wikipedia.org/wiki/Sexagenary_
cycle

spans. Figure 3 illustrates the pipelines of Ticktack. 184

It consists of three modules: (a) a polar coordinate 185

representation of the sexagenary years; (b) tempo- 186

ral encoding; and (c) temporal alignment of weight 187

space. 188

Firstly, to make the LLMs understand the newly 189

introduced sexagenary year expression, we utilize 190

the polar coordinate to represent the sexagenary 191

cycle of 60 terms and the Gregorian years order 192

within each of the 60 categories. Then, we design 193

a temporal encoding method to inject the newly 194

introduced sexagenary year information into its 195

associated input data embedding. Finally, we de- 196

fined a temporal alignment objective to post-train 197

the LLMs using the time-encoded input data. In 198

this way, the pre-trained weight space of the LLMs 199

is transformed into a temporal re-organized and 200

distinguished weight space, enhancing the compre- 201

hension of long-span temporal information with 202

relevant knowledge. In the next subsections, we 203

will present the specifics for each module. 204

3.3 Polar coordinate representation of the 205

sexagenary year 206

By using polar coordinates to represent the sexage- 207

nary year, we aim to trace the continuity of time 208

information over a cycle period and bridge the rep- 209

resentation similarity between years with a 60-year 210

interval based on sexagenary cycle chronology. 211

Given an input sequence si of length l, the input 212

embedding of si generated by LLM is denoted as 213

hi ∈ Rl×d, where d represents the hidden dimen- 214

sion. We define tAD
i to indicate the Gregorian year 215

tokens in the input sequence si (e.g. "tAD
i = 1965" 216

in "France successfully launched its first artificial 217

Earth satellite in 1965."). The Gregorian year tAD
i 218

could be transformed to the sexagenary year tcyclei , 219

3
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according to the following Eq. (1):220

tcyclei :


(60− |tAD

i | − 2)mod 60, tAD
i < 0

(60− |tAD
i − 3|)mod 60, 0 < tAD

i < 4

(tAD
i − 3)mod 60, tAD

i ≥ 4
(1)221

To make the LLM understand the sexagenary222

year, we utilize the polar coordinate to represent223

tcyclei . As illustrated in Eq. (2), we use θcycle to224

identify the 60 terms or categories in a sexagenary225

cycle. rcycleAD is used to differentiate years within226

one category of a sexagenary cycle. That is to227

say, an ensemble of years within one category of a228

sexagenary cycle share the same angle but have dif-229

ferent distances from the pole in polar coordinates.230

αAD and βAD are hyperparameters to determine231

the rcycleAD .232

rcycleAD = αAD + βADθcycle

θcycle =
360◦

60
tcyclei = 6◦tcyclei

(2)233

As seen in Figure 3(a), 1965 AD and 2025 AD234

both belong to the "Yi Si" of the sexagenary year235

and hence share the same θcycle value. To distin-236

guish them under "Yi Si," by adjusting the values237

of αAD and βAD, 2025 AD has a larger rY iSi
2025 com-238

pared to 1965 AD rY iSi
1965 , making it farther away239

from the pole.240

To better encode the temporal information later,241

we further convert the polar coordinate representa-242

tion to the Cartesian coordinate system, as in Eq.243

(3).244

xi = rcycleAD cos(θcycle), yi = rcycleAD sin(θcycle)

(3)245

Where xi ∈ Rd and yi ∈ Rd. xi and yi are the246

final representations used to encode the temporal247

information.248

3.4 Temporal encoding249

We adopt the sine and cosine functions to integrate250

the sexagenary year temporal information for the251

Transformer’s (Waswani et al., 2017) position en-252

coding. To be specific, we define the temporal253

encoding TE(xi) and TE(yi) for the xi and yi254

respectively, formulated as below:255

TE(xi) :


TE(x2ji ) = sin(

xi

10000
2j
d

)

TE(x2j+1
i ) = cos(

xi

10000
2j
d

)

TE(yi) :


TE(y2ji ) = sin(

yi

10000
2j
d

)

TE(y2j+1
i ) = cos(

yi

10000
2j
d

)

(4) 256

The temporal encodings TE(xi) and TE(yi) 257

are added to the original input embedding hi, form- 258

ing a new temporal enhanced input embedding 259

h
′
i ∈ Rl×d that includes sexagenary cycle chrono- 260

logical information, defined as below: 261

h
′
i = hi + TE(xi) + TE(yi) (5) 262

As shown in Exp2 and Exp3 in Figure 3(b), de- 263

spite their high similarity in the semantic repre- 264

sentation of input embeddings, there exist distinct 265

differences due to variations in time information. 266

With the temporal encoding of sexagenary year, it 267

is more prone to capturing this difference. 268

3.5 Temporal alignment of LLMs’ weight 269

space 270

Using the sexagenary cycle chronology to represent 271

temporal information encoded in the input hidden 272

embeddings, we propose a temporal alignment ob- 273

jective to further post-train the LLMs, transforming 274

the LLMs’ pre-trained weight space to a temporally 275

enhanced new one and allowing the LLMs’ repre- 276

sentation to establish a linkage between learned 277

knowledge and the related time period. 278

Given a set of n hidden embeddings H = 279

{h′
1, h

′
2, ..., h

′
n} generated from the n input se- 280

quences, each hidden embedding h
′
i is constructed 281

using the temporal encoding module’s Eq. (5). 282

Through post-training on time-related texts, we aim 283

to further transform the existing weight space θG of 284

the trained LLM M with general tasks into a time 285

alignment weight space θT , thereby enhancing the 286

connection between the temporal information and 287

learned knowledge. The definition of the transfor- 288

mation between weight spaces is as follows: 289

Ltemporal : M(h
′
i; θ

G) → M(hti; θ
T ) (6) 290

Where hti ∈ Ht = {ht1, ht2, ..., htn} represents 291

the temporally aligned embeddings. θG and θT are 292

the LLMs’ pre-trained weight space and the one 293
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transformed after the temporal alignment objective294

function Ltemporal.295

To define the temporal alignment function296

Ltemporal, we apply Elastic Weight Consolidation297

(EWC) theory (Kirkpatrick et al., 2017), which is298

proposed to find a solution to a new task in the299

vicinity of an older one. In our scenario, EWC300

protects the general capabilities of the LLMs (sim-301

plified as Task G) by constraining the parameters302

θT of time-related tasks (simplified as Task T ) uti-303

lizing a quadratic penalty to stay in a region of low304

error for the prior general task G centered around305

its parameters θG. According to EWC’s theory,306

Ltemporal is defined as below:307

Ltemporal = LT (θ
T ) + λL[(θG) → (θT )] (7)308

LT (θ
T ) is the loss for the task T only. Task T309

necessitates enhancement in the LLMs by trans-310

forming the weight space θG → θT , while preserv-311

ing the prior general knowledge of the LLMs. λ312

sets how important the old task is compared to the313

new one.314

To improve the LLMs’ links between already315

memorized general knowledge and encoded sex-316

agenary cycle temporal information, task T uses317

the similarity algorithm to reassemble the hidden318

weight space based on the 60 categories in a sex-319

agenary cycle. The setup is founded on Nylund320

et al. (2023)’s findings that "years or months that321

are closer together in time yield their embeddings322

that are also closer together in weight space."323

Specifically, there are a total of {1, 2..,K}(K =324

60) sexagenary year classes, and each hti is as-325

signed to one of these class k based on tcyclei .326

For the embeddings Hk
t in the class k, Hk

t =327

{ht1, ht2, ..., htm}(m < n,Hk
t ⊆ Ht), our goal is328

to minimize the distance between embeddings in329

the intra-class while maximizing the separation be-330

tween embeddings in the inter-classes, thus the331

objective of task T is defined as:332

LT = δLintra + (1− δ)Linter

Lintra = 1−
∑

ht
i∈Hk

t

∑
ht
j∈Hk

t

cos_sim(hti, h
t
j)

Linter =
∑

ht
i∈Hk

t

∑
ht
j /∈Hk

t

cos_sim(hti, h
t
j)

(8)333

Based on Eq. (7), the target for transformation334

between weight spaces is to minimize the objective335

below:336

Ltemporal = LT +
λ

2
F(θT − θG)2 (9)337

Where F is considered as the Fisher information 338

matrix (Fisher, 1922), for it is thus easy to calculate 339

even for large models. 340

The ultimate loss Lfinal comprises the gener- 341

ating objective of the LLMs (predicting the next 342

token) LNTP and the temporal alignment objective 343

Ltemporal, defined as below: 344

Lfinal = LNTP + σLtemporal (10) 345

Where σ controls the influence of the sexagenary 346

cycle. 347

<-2k

0.8%

-2k~-1k

7.6%-1k~0

13.0%

0-500 11.1%

500-1000

14.1%

1000-1500

12.3%

1500-200030.0%

After 2000

11.0%

<-2k
-2k~-1k
-1k~0
0-500
500-1000
1000-1500
1500-2000
After 2000

Jia 
0.10

%Yi
 0
.1
0%

Bi
ng
 0
.1
0%Ding 0.09%Wu 0.10%

Ji 0.0
9%

Ge
ng
 0
.1
2%

Xi
n 

0.
11

%

Ren 0.10%

Gui 0.10%

Jiazi
Jiaxu
Jiash

en
Jia

wu
Jia

che
nJi

ay
inYi

ch
ouYi

ha
iYi

yo
uYi
we
i

Yi
siYi
ma
o

Bi
ng
yi
n

Bi
ng
zi

Bi
ng
xu

Bingshen

Bingwu

Bingchen

Dingmao

Dingchou

Dinghai

Dingyou

Dingwei
Dingsi

WuchenWuyin
Wuzi

Wuxu
Wushen
Wuwu
Jisi

Jimao

Jichou

Jihai

Jiyo
u

Jiw
ei

Gen
gwu

Ge
ng
ch
en

Ge
ng
yi
n

Ge
ng
zi

Ge
ng
xu

Ge
ng
sh
en

Xi
nw
ei

Xi
ns
i

Xi
nm
ao

Xinchou

Xinhai
Xinyou
Renshen

Renwu
Renchen

Renyin

Renzi

Renxu

Guiyou

Guiwei

Guisi

Guimao

Guimao

Guihai

Figure 4: The distribution of the years in our constructed
TempLS dataset. The above figure summarizes the dis-
tribution of Gregorian years. The figure below displays
the distribution of sexagenary years, which is apparently
more uniform.

4 Experiments 348

4.1 Datasets and downstream tasks 349

To evaluate the LLMs’ ability to understand tem- 350

poral information, we utilize two typical tempo- 351

ral question-answering (QA) downstream tasks: 352

TempLAMA (Dhingra et al., 2022) and TempUN 353

(Beniwal et al., 2024). TempLAMA is a time- 354

sensitive QA dataset constructed based on Wiki- 355

data. TempUN is a large temporal multiple-choice 356

QA dataset constructed by curating temporal infor- 357

mation from the "Our World in Data" website. 358
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Table 1: Zero-shot and few-shot (5-shot) results of LLMs measured on TempLAMA, TempUN, and TempLS. Best
performance is marked as bold. (w/ PT): post-train base model with the predict-next prediction objective. (w/
Ticktack) is the temporal enhanced model with our proposal.

Tasks TempLS TempLAMA TempUN

Zero-shot Few-shot Zero-shot Few-shot Zero-shot Few-shot
Model Acc. Acc. ROUGE F1 ROUGE F1 Acc. Acc.

Qwen2.5-3B
Base 62.37 67.81 17.13 7.45 17.14 7.45 59.25 58.88

w/ PT 67.30 68.29 53.76 33.36 53.73 33.43 44.82 28.05
w/ Ticktack 67.63 67.62 54.65 36.43 54.66 36.44 64.96 59.92

Qwen2.5-7B
Base 73.66 72.89 14.12 6.66 14.12 6.66 57.20 75.60

w/ PT 78.12 78.17 50.97 27.19 50.97 27.19 67.79 58.22
w/ Ticktack 82.82 83.29 54.82 27.41 54.82 28.85 74.29 74.37

LLaMA2-7B
Base 21.54 48.52 10.14 4.50 10.14 4.50 15.65 13.31

w/ PT 37.61 51.22 37.09 18.44 37.09 18.44 16.33 11.84
w/ Ticktack 58.45 59.18 45.42 23.90 45.42 23.90 25.18 25.14

TimeLLaMA-7B
Base 24.46 43.59 0.00 0.00 0.00 0.00 14.24 22.44

w/ PT 43.54 47.61 34.95 22.61 35.82 23.06 18.84 18.89

LLaMA2-13B
Base 32.63 33.97 13.99 6.22 13.99 6.22 20.88 26.07

w/ PT 24.08 43.21 55.55 27.67 55.55 27.67 12.73 22.40
w/ Ticktack 65.28 70.18 62.63 32.96 62.63 32.96 25.36 25.36

TimeLLaMA-13B
Base 52.55 53.71 0.00 0.00 0.00 0.00 24.78 24.37

w/ PT 53.00 54.24 43.77 24.40 43.77 24.40 23.85 14.53

To evaluate Ticktack’s performance on the long-359

span time challenge, we create TempLS, as ex-360

isting benchmarks predominantly focus on the in-361

ternet age, to the best of our knowledge. Tem-362

pLS is a long-span Chinese time-related multiple-363

choice QA dataset, including 137,090 question-364

answer pairs extracted by following the below steps.365

Firstly, time-related texts covering a time span from366

75,000 BCE to 2025 AD are filtered from the Baidu367

Baike. Then the filtered texts are summarized368

and converted into a QA format using Qwen57B4.369

The specific distribution with the years within the370

dataset is depicted in Figure 4. It is apparent that371

with sexagenary year representation, the QA pairs372

have a more uniform distribution.373

Appendix A.1 provides detailed information and374

samples of the aforementioned datasets.375

4.2 Experimental setups376

Baselines models. To demonstrate the general-377

ity of our method, we select several represen-378

tative open-source LLMs as base models, in-379

cluding Qwen2.5-3B4, Qwen2.5-7B4(Yang et al.,380

2024), LLaMA2-7B5, LLaMA2-13B5(Touvron381

4https://github.com/QwenLM/Qwen2.5
5https://ai.meta.com/resources/

models-and-libraries/llama/

et al., 2023b). 382

We post-train the above models with our pro- 383

posed Ticktack for the temporal alignments of base 384

LLMs, denoted as (w/ Ticktack), and then evaluate 385

their performance on the three temporal QA tasks 386

mentioned above. For TempLS, we split the post- 387

training dataset into 132,830 training samples and 388

4,260 testing samples; TempLAMA and TempUN 389

follow their existing splits. 390

To comparison, we post-train all base LLMs 391

with the typical next token prediction objective, 392

referred to as (w/ PT), using the exact same post- 393

training dataset as the Ticktack post-training. We 394

also compare with the open-source LLM series 395

TimeLlama-7b and TimeLlama-13b(Yuan et al., 396

2024), which are optimized for temporal reasoning 397

utilizing LlaMA2. 398

Implementation details. We employ the pa- 399

rameter expansion technique, known as LoRA (Hu 400

et al., 2021), for the post-training strategy of Tick- 401

tack. We are freezing the pre-trained parameters 402

of the LLMs while incorporating trainable rank- 403

decomposition matrices into each layer. αAD and 404

βAD in Eq. (3) are set to [0.5-1.0] and [0.5-1.0] for 405

changes of them within this range similarly affect 406

the value of the Cartesian coordinate according to 407

our experiments. σ in Eq. (8) is set to 0.5. δ in 408
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Figure 5: Accuracy of Zero-Shot and Few-shot evalua-
tions on the TempLS for the time-span from years BCE
to after 2000.

Eq. (10) is affected by the batch size and set to 1409

in current experiments. The parameter study can410

be found in the Appendix A.5. The hyperparame-411

ters employed for all base models are as follows:412

a batch size of 8, gradient accumulation steps of413

2, 10 epochs, and a learning rate of 10−4. Dur-414

ing the validation of downstream tasks, we utilize415

zero-shot and 5-shot settings to evaluate the best416

performance of the models. Our setup consists of417

a four-core CPU and eight NVIDIA Tesla A100418

GPUs.419

4.3 Results and analysis420

Performance on downstream tasks. Table 1421

presents the zero-shot and few-shot experimental422

results for the three temporal downstream tasks.423

Notably, each model trained using our proposed424

Ticktack significantly outperforms its baseline and425

post-trained counterparts across various perfor-426

mance metrics. In comparison to post-training427

alone (w/ PT), the model trained with Ticktack428

(w/ Ticktack) exhibits remarkable enhancements429

across nearly all measures in the three downstream430

tasks. Ticktack demonstrates an average accuracy431

increase of 34.43% on TempLS in comparison with432

the base LLaMA2-13B. In contrast to the compar-433

ative temporal enhanced baselines TimeLLaMA-434

7B and TimeLLaMA-13B, our method for both435

7B and 13B scales achieves better results on most436

evaluation metrics. Furthermore, due to its in-437

adaptability with the format of the TempLAMA 438

task (TempLAMA is the only task whose an- 439

swer is not choice, detailed in Table 3 of Ap- 440

pendixA), the evaluation results of TimeLLaMa 441

models on this task are 0. After post-training, 442

the performance of TimeLLaMa models could 443

improve on TempLAMA. Particularly, Ticktack 444

demonstrates a more significant enhancement on 445

long-span datasets TempLS compared to most of 446

the baseline models. 447

(a)
base model

(b)
+ Tik Tack

Figure 6: The distribution of Qwen-3B’s outputs of
10,000 sentence vectors. (a) The pre-trained embed-
dings are dispersed throughout the vector space, which
is hard to distinguish. (b) After post-training by Tick-
tack, the temporal enhanced embeddings exhibit cluster-
ing characteristics according to years.

Performance on low resource years. To an- 448

alyze temporal reasoning ability in low-resource 449

years, we separated the TempLS dataset into 500- 450

year intervals, in addition to BCE and after 2000 451

periods, as shown in Figure 4. We hypothesize that 452

the years of the BCE period have a comparatively 453

low frequency of occurrence due to the long dura- 454

tion of seventy thousand five hundred years. As 455

illustrated in Figure 5, Ticktack achieves more sig- 456

nificant enhancement in the low-resource years of 457

BCE, intuitively displayed through the yellow line. 458

Visualization of sexagenary year representa- 459

tions. We use T-SNE (Van der Maaten and Hin- 460

ton, 2008) to visualize the multi-dimensional em- 461

beddings of Qwen-3B’s outputs before and after 462

temporal alignment with Ticktack, as illustrated 463

7
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(a) Base model
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(b) Temporal encoding
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(c) Ticktack temporal aligned

Figure 7: Similarity between different years’ representations, where years are chosen from 2010 to 2025. As the
color of the cell approaches orange, it indicates a lower similarity between these two years’ representations. (a) The
embeddings of Gregorian years are generated by the base Qwen 3B. (b) Sexagenary year time encoding TE(xi)
and TE(yi) proposed in Eq. (4), without post training. (c) Using the Ticktack post-trained Qwen-3b w/Ticktack to
generate the representations of Gregorian years.

in Figure 6. We sample 10,000 sentence vectors464

across ten-year periods from TempLAMA ("Geng465

Yin to Ji Hai"). It is distinctly evident that Ticktack-466

enhanced embeddings in Figure 6(b) exhibit clus-467

tering characteristics according to years. The pre-468

trained embeddings in Figure 6(a), on the other469

hand, are dispersed throughout the vector space,470

which may make the model more susceptible to471

temporal reasoning errors.472

More experiments and analyses can be found in473

the Appendix A.3 and A.4.474

Table 2: Zero-shot and few-shot results of LLMs mea-
sured on TempLS, by adding temporal encoding mod-
ule.

Tasks TempLS

Zero-shot Few-shot
Model Acc. Acc.

Qwen2.5-3B
Base 62.37 67.81

w/ encoding 66.55(+4.18) 66.13(-1.68)

Qwen2.5-7B
Base 73.66 72.89

w/ encoding 73.89(+0.23) 79.94(+7.05)

LLaMA2-7B
Base 21.54 48.52

w/ encoding 30.58(+9.04) 50.98(+2.46)

LLaMA2-13B
Base 32.63 20.88

w/ encoding 30.68(-1.95) 35.31(+14.43)

4.4 Ablation study475

Similarity between different years representa-476

tions. Figure 7 depicts the distinguishability of477

the representation of years (2010-2025), generated478

by LLMs. Figure 7(a) shows the representation479

similarity of Gregorian years from the Qwen 3B480

base, which has similar characteristics, making it481

difficult for the model to distinguish. Alternatively,482

our proposed sexagenary year expression with po-483

lar coordinate time encoding introduces enriched 484

temporal information into the LLM, resulting in a 485

clear distinction as depicted in Figure 7 (b). After 486

post-training with Ticktack, the temporally aligned 487

LLM improves its sensitivity to temporal informa- 488

tion, as seen in Figure 7 (c). In comparison to 489

the original base model, time embeddings become 490

more discriminable, making LLMs more likely to 491

recognize, contributing to increased performance 492

on time-sensitive tasks. 493

The impact of temporal encoding module. To 494

investigate the effect of the sexagenary year ex- 495

pression and encoding, we post train the LLMs 496

by adopting temporal encoding of the polar coor- 497

dinate represented sexagenary year (w/ encoding) 498

with predict next token target that does not use tem- 499

poral alignment. As shown in Table 2, only the 500

sexagenary year’s temporal encoding facilitates the 501

enhancement of time-sensitive reasoning capabili- 502

ties. 503

5 Conclusion 504

In this study, we focus on addressing the temporal 505

misalignment issues that often affect LLMs when 506

dealing with long-span temporal information. We 507

first introduce the sexagenary-cycle time expres- 508

sion leveraging the polar coordinate to provide a 509

more uniform and consistent temporal embedding 510

expression. Furthermore, a temporal alignment 511

method is proposed to enhance the LLMs’ align- 512

ment of learned knowledge to the related time pe- 513

riod. Experimental results have validated the effec- 514

tiveness of our method, demonstrating its ability 515

to enhance the performance of LLMs in handling 516

time-related tasks with long temporal spans. 517
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6 Limitations518

While we use the sexagenary cycle time expres-519

sion to align long-term temporal data, we only con-520

sider the year granularity. We will explore using521

the sexagenary cycle to represent many granulari-522

ties of time, such as month and day, in the future.523

In addition, since there are few long-span time-524

related benchmarks, we developed the TempLS525

dataset, which we collected from Baidu Baike, to526

measure LLMs’ understanding of temporal infor-527

mation. The relatively small number of samples528

may limit the generalizability and robustness of529

the evaluation results. It would be interesting to530

develop novel benchmarks derived from a range531

of sources to increase the comprehensiveness and532

reliability of temporal information understanding533

assessments.534
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A Appendix919

A.1 Datasets920

TempLAMA (Dhingra et al., 2022): a time-921

sensitive question-answering dataset constructed922

based on the Wikidata temporal KB, is proposed923

to evaluate the model’s performance for time- 924

dependent questions from 2010 to 2020. The gener- 925

ated answers of LLMs are evaluated by token-level 926

mirco-F1 and ROUGE-1 scores. 927

TempUN (Beniwal et al., 2024): a large tempo- 928

ral QA dataset constructed by curating temporal 929

information from "Our World in Data" website. 930

TempUN is used to explore the model’s ability to 931

grasp factual knowledge, containing data for global 932

issues like poverty, disease, hunger, climate change, 933

war, existential risks, and inequality from 10,000 934

BCE to 2100 AD. The format of this task is a multi- 935

ple choice question answering, with accuracy serv- 936

ing as the evaluation metric. 937

Samples of the three datasets are illustrated in 938

Table 3. 939

A.2 Visualization of sexagenary cycle time 940

expression 941

We also utilize T-SNE to project the multi- 942

dimensional embeddings of LLaMA2-13B and 943

Deepseek-7B’s outputs before and after temporal 944

adaptation with Ticktack into a two-dimensional 945

space for visualization. 946

(a)
base model

(b)
+ Tik Tack

Figure 8: The distribution of LLaMA2-13B’s outputs of
10,000 sentence vectors, before and after post training
by Ticktack.

As shown in Figure 8 and 9, the expressions 947

of all models also exhibit characteristics of aggre- 948

gation based on the sexagenary cycle after post- 949

training used Ticktack. However, compared to 950

Qwen-3B displayed in Figure 6, the intra-class 951
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Table 3: Samples from TempLS, TempLAMA and TempUN.

Dataset Sample

TempLS
Question:

In 3100 BC, ____ established the First Dynasty of Ancient Egypt.
A: Menes, B: Ramses, C: Tutankhamun, D: Cleopatra

Answer: A

TempLAMA
Question: In 2017, Alexander Hamilton is owned by _X_.

Answer: Crystal Bridges Museum of American Art

TempUN
Question:

Which option is correct for the question:
In 2022, Private Civil Liberties Index in Iran was:
Options: A: 0.49, B: 0.38, C: 0.63, D: 0.34

Answer: D

distance in LLaMA2-13B is more concentrated,952

while the distance between inter-classes is more953

dispersed. This may be due to the different training954

data adopted by different LLMs.955

(a)
base model

(b)
+ Tik Tack

Figure 9: The distribution of Deepseek-7B’s outputs of
10,000 sentence vectors, before and after post training
by Ticktack.

A.3 Multilingual Experiment956

In addition to Chinese and English, we also957

conducted basic mulitiligual (Japanese and958

French) evaluations comparing three model959

variants - the base, w/PT, and w/TickTack960

models - across different language pairs main-961

taining consistent experimental settings. The962

Japanese test dataset was obtained by trans-963

Table 4: Zero-shot and few-shot results of Qwen2.5-7B
measured on Japanese TempUN Dataset.

Model Zero-shot Few-shot

Qwen2.5-7B
base 51.79 73.37

w/PT 66.95 67.56
w/Ticktack 64.84 66.39

Table 5: Zero-shot and few-shot results of LLaMA
measured on French TEMPREASON Dataset.

Model Zero-shot Few-shot

LLaMA2-7B
base 23.97 51.73

w/PT 27.27 43.29
w/Ticktack 44.43 48.76

LLaMA3-8B
base 51.83 57.84

w/PT 51.19 55.24
w/Ticktack 69.16 69.16

lating TempUN, and the French test dataset 964

was from https://huggingface.co/datasets/ab- 965

iitd/mTEMPREASON/tree/main. As shown in 966

table 4 and table 5, w/ PT and w/ TikTack achieved 967

reasonably competitive results on Japanese while 968

showing significant improvements on French, 969

proving TickTack’s effectiveness in multilingual 970

tasks. 971

A.4 The experimental results based on 972

LLaMA3 973

To validate the adaptability of our method on LLM, 974

we compared the performance on LLaMA3-8B 975

(Grattafiori et al., 2024), as shown in Table 6, fur- 976

ther demonstrating the effectiveness of our method 977

in enhancing time intensive knowledge inference. 978
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Table 6: Zero-shot and few-shot (5-shot) results of LLaMA3-8B measured on TempLAMA, TempUN, and TempLS.
Best performance is marked as bold.

Tasks TempLS TempLAMA TempUN

Zero-shot Few-shot Zero-shot Few-shot Zero-shot Few-shot
Model Acc. Acc. ROUGE F1 ROUGE F1 Acc. Acc.

LLaMA3-8B
Base 57.96 62.42 15.97 6.43 15.97 6.43 57.96 62.42

w/ PT 65.56 64.34 60.83 26.42 60.83 26.42 58.73 62.93
w/ Ticktack 68.32 68.71 59.57 37.84 59.57 37.84 65.29 65.24

Table 7: Parameter study of αAD and βAD.

Hyper-paramters Value Euclidean distance

(αAD, βAD)

(0.5,0.5)
distx(2025− > 2024) = 2.3151, disty(2025− > 2024) = 2.0244
distx(2025− > 1965) = 1.4738, disty(2025− > 1965) = 0.5874

(0.8,0.6)
distx(2025− > 2024) = 1.6713, disty(2025− > 2024) = 1.9204
distx(2025− > 1965) = 0.8154, disty(2025− > 1965) = 0.7003

(1,1)
distx(2025− > 2024) = 2.4221, disty(2025− > 2024) = 0.6197
distx(2025− > 1965) = 2.1998, disty(2025− > 1965) = 1.1240

Table 8: Parameter study of λ, σ and δ.

λ σ δ Final Training Loss
1 1 0.5 1.1177
1 1 0.3 1.121

0.5 1 0.3 1.1146
0.5 1 0.3 1.1318

A.5 Experimental parameter study979

Table 7 and table 8 show the parameter study on980

the effect of each parameter utilized in our experi-981

ments.982
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