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ABSTRACT

Generative models, particularly diffusion and flow-matching approaches, have
achieved remarkable success across diverse domains, including image synthesis
and robotic planning. However, a fundamental challenge persists: ensuring gener-
ated samples strictly satisfy problem-specific constraints — a crucial requirement
for physics-informed problems, safety-critical applications, watermark embedding,
etc. Existing approaches, such as mirror maps and reflection methods, either have
limited applicable constraint sets or introduce significant computational overhead.
In this paper, we develop gauge flow matching (GFM), a simple yet efficient frame-
work for constrained generative modeling. Our GFM approach introduces a novel
bijective gauge mapping to transform generation over arbitrary compact convex
sets into an equivalent process over the unit ball, which allows low-complexity
feasibility-ensuring operations such as reflection. The generated samples are then
mapped back to the original domain for output. We prove that our GFM frame-
work guarantees strict constraint satisfaction, with low generation complexity and
bounded distribution approximation errors. We further extend our GFM framework
to two popular non-convex settings, namely, star-convex and geodesic-convex sets.
Extensive experiments show that GFM outperforms existing methods in generation
speed and quality across multiple benchmarks.

1 INTRODUCTION

Generative models have emerged as powerful tools for learning complex data distributions, achieving
remarkable success in diverse applications ranging from image generation to scientific simulation.
Recent advances, particularly in diffusion models and flow-matching approaches, have further pushed
the boundaries of what’s possible in areas such as photorealistic image synthesis, molecular design,
and robotic trajectory planning (Ramesh et al.| 2022; |Betker et al., [2023; |Chi et al.| {2023} |Abramson
et al., 2024; [Zenm et al., [2025)).

However, many real-world applications necessitate generation under specific constraints. For instance,
protein synthesis requires adherence to structural constraints within amino acid chains. Image
generation may demand precise watermark placement or consistency with physical laws. Robotic
manipulation must respect joint limits and ensure obstacle avoidance. These constraints are not
merely optional considerations but fundamental requirements of their respective problem domains.
Generated samples must strictly satisfy these constraints to be both meaningful and practically useful
within their intended applications.

Existing approaches to constrained generative modeling face significant limitations (see[Table T)). They
either have limited applicable constraints (e.g., box and simplex) or lack a strict feasibility guarantee
for generated samples. To date, developing an efficient framework for constrained generation with
feasibility guarantees over general compact sets, convex or not, remains largely open. This work
proposes Gauge Flow Matching (GFM), addressing these challenges with the following contributions:

o> In Sec. [i] we propose a bi-Lipschitz bijective gauge mapping, generalized from the one in (Tabas &
Zhang| [2022a)), to transform generation over general compact convex sets to an equivalent process over
a unit ball, which allows low-complexity feasibility-ensuring operations such as reflection (Fishman
et al., [2023).
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Table 1: Existing study on constrained diffusion/flow-matching models over continuous domain.

. Constraint Initial Feasibility =~ Wasserstein ~ Low generation

Method (ref. in Sec. |2 )

sthiod (rel. in Sec setting C support setl!l  guarantee!?! bound complexity!®!
DM/FM | - R" - v O(NFE - n?)
RDM Convex C v - X
RSB Smooth + Bounded C v v X
RFM Convex C v v X
Metropolis sampling Manifold C X - X
MDM Ball/Simplex R™ v - 4
NAMM (Non)-Convex R"™ X - v
Barrier-based Convex C v - X
Projection-based Convex R™ v - X
Penalty-based General R™ X - v
Gauge Flow Matching | Convex B v v/ v/

! The support set of initial/prior distribution matters when preparing the initial samples for training and generation,
since sampling from the general convex set, even following a simple uniform distribution, is computationally
expensive (Kook & Vempala![2024).

2 Feasibility guarantee means the generated samples satisfy the target constraints strictly. The feasibility guarantees
in (Fishman et al.|[2024) hold with probability for a certain stepsize.

3 The low generation complexity of constrained generative models indicates the complexity is matched with regular
DM/FM models, dominated by neural network evaluation (O(n?)) and scaled linearly with the number of function
evaluations (NFE).

o> In Sec. [5} we prove that the GFM framework guarantees strict constraint satisfaction and bounded
distribution approximation error while incurring significantly lower computational complexity com-
pared to SOTA constrained generative models such as regular reflection or projection-based methods.

> In Sec. @ we further extend GFM to certain non-convex constraints, in particular star-convex and
geodesic-convex sets, while inheriting the computational merits in the convex setting.

> In Sec. [/| we provide extensive empirical studies to demonstrate our framework’s efficiency
in terms of feasibility, approximation capability, and inference complexity compared to SOTA
constrained generative models.

2 RELATED WORK

Ensuring feasibility is fundamental in both theoretical and practical domains. Significant research
efforts have been devoted to this area, including the development of constrained optimization al-
gorithms and methods to guarantee neural network (NN) output feasibility (See Appendix [A]for a
comprehensive review of these approaches).

For constrained generative modeling, feasibility strategies differ fundamentally between conventional
and modern generative models. While traditional VAEs and GANSs can directly incorporate existing
NN output feasibility methods from Appendix [A} diffusion and flow-based models present unique
challenges. These challenges arise from their generation mechanism, which relies on forward
integration with NN-approximated score functions or vector fields, rather than direct NN outputs.
Table [T| summarizes specialized approaches addressing these challenges, with discussions as follows:

Reflected Process: These approaches leverage reflection mechanisms to constrain generation trajecto-
ries within feasible regions. Different methods have been proposed for training score functions under
reflection terms: RDM® employs implicit score matching (Fishman et al., 2023), RDM? develops an
approximated denoising score matching approach (Lou & Ermon)|2023)), and RSB utilizes iterative
proportional fitting (Deng et al., 2024). RFM extends this framework to flow-based generation over
convex sets by incorporating reflected directions into ODEs (Xie et al.l 2024). While effective,
these reflection-based methods incur significant computational overhead during forward integration,
requiring boundary localization and complex reflection calculations. A recent Metropolis sampling
approach addresses the computational burden of reflection calculations through rejection sampling
(Fishman et al.l [2024), though it lacks strict feasibility guarantees. Further, for reflection-based
models, the support set of initial distribution needs to be the same as the target set C, which could
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cause significant additional complexity for both training and inference, since sampling from a general
(convex) set C is non-trivial (Kook & Vempala, 2024).

Bijective Map: These approaches utilize bijective mappings to transform constrained domains.
RDM*“ maps simplexes to unit cubes, enabling scalable denoising score matching (Lou & Ermon,
2023). MDM employs mirror maps to transform constrained data space into unconstrained dual
space (Liu et al., |2024b), though its applicability is limited to simple convex sets like balls and
simplexes. NAMM generalizes this approach using neural networks to approximate an invertible
map for general sets (Feng et al., [2024])), though it lacks theoretical guarantees for feasibility and
distribution approximation. Bijective mapping has also been applied in the continuous embedding of
discrete categorical data (Davis et al.,[2024). To date, such bijective mapping-based methods either
work for very limited sets or lack theoretical guarantees.

Guided Generation: These methods incorporate auxiliary terms to guide the generation process
toward constraint satisfaction. 2-Bridge leverages Doob’s h-transform to construct diffusion bridges
over constrained domains, incorporating time-dependent force terms (Liu & Wu, [2023)). Log-barrier
diffusion models maintain feasibility through barrier functions (Fishman et al.,2023). PDM enforces
constraints via iterative projection (Christopher et al.,|2024), which has also been successfully applied
for inverse problems (Chung et al.l 2022; Song et al., |2023)). The gradient of projection distance can
also serve as the guidance term for constraint satisfaction (Naderiparizi et al., [2025). Despite their
strict feasibility guarantees, solving projection is expensive, and there is a lack of analysis of the
distribution approximation error for projection-guided generation.

Training/Fine-tuning: Penalty function for constraint violation can be incorporated into diffusion
model training objectives to improve feasibility (Li et al., [ 2024). Lagrangian-based training with
dual variable updates has also been applied to handle additional constraints (Khalafi et al.| 2024).
Post-training fine-tuning with reward functions (e.g., penalties) offers another pathway to improve
constraint satisfaction (Fan & Leel 2023} Uehara et al., [2024; Domingo-Enrich et al., [2024; [Zhu et al.,
2025).

In summary, existing works either have limited applicable scenarios or lack performance guarantees.
In this work, we propose a novel gauge mapping-based approach for constrained generative modeling.
While sharing conceptual similarities with mirror map-based methods, our approach distinguishes
itself through the broader applicability, theoretical analysis, and computational efficiency.

3 PROBLEM STATEMENT

We consider flow matching-based generative modeling for a data distribution pq.¢, Over a general
compact convexﬂ set C C R™. The vanilla flow-matching model (Lipman et al., [2022; Liu et al.,
2022b) is trained by matching the designed conditional flow (e.g., linear flow) as:

min  £(vg) = Eay vt |[lvo(ze,t) — (21 — IO)HQ} : )

where x; = (1 — t)xo + tx1 with zg ~ pg, 1 ~ p1, and t ~ U((0,1)). The minimizer of the flow
matching loss in (I)) yields a vector field that transforms a simple initial distribution, e.g., Gaussian
po = N (0, I), into the target data distribution p; = pqasa (Liu et al., 2022b). In practice, the vector
field is parameterized by a neural network vy and optimized using samples from the target distribution

according to (). Sample generation is achieved through forward integration z; = zo+ fol vo(xs, t)dt,
initializing from a Gaussian sample x( and following the learned vector field vg.

Open issue: However, the generated samples often exhibit deviations from the constraint set C due
to a phenomenon known as error propagation (Li & van der Schaar} [2023)). This occurs when the
approximation errors of NN-based vector fields accumulate throughout the discretized integration
process, ultimately resulting in significant deviation of the generated samples from the constraint sets.

'Compact convex set includes linear-equality and convex-inequality constraints. In this work, we consider
the convex-inequality in the formulation without loss of generality. For linear-equality, it can be embedded
in an unconstrained subspace by selecting independent variables and reconstructing the dependent variables
via closed-from equality solving (Tordesillas et al., 2023 |Donti et al.| 2020; Liang et al., 2023} |Ding et al.,
2023), see Appendix [B]for details. For unbounded constraints, we may add additional box constraints to enforce
physically meaningful limits.
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Such phenomena have been observed in both flow-matching and diffusion-based models (Benton
et al.;,2023; [Li et al., |2023b)) and easily result in feasibility issues in the constrained generative tasks.
Existing approaches addressing feasibility issues suffer from either limited applicability or high

computational complexity (see[Table T).
4 GAUGE FLOW MATCHING OVER CONVEX SETS

To address these limitations of existing meth-

ods and enable efficient constrained generative

modeling, we introduce our GFM framework. It dxeJdt = v,
employs gauge mapping—an explicit bijective " Xo Xy
mapping between two convex sets—to trans- M
form complex constrained generative model- o1 | @

ing into an equivalent modeling over a simple

unit ball. The framework (i) builds the flow- dz,/dt = v,

matching model for transformed data distribu- %o GFM B B
tion over a unit ball through inverse gauge map-

ping; and (ii) generates samples over a unit ball ) )

via a closed-form reflection and transforms them Figure 1: Gauge flow matching framework.
back to the original space through forward gauge

mapping.

4.1 GENERALIZED GAUGE MAPPING BETWEEN CONVEX SETS

We first introduce a bijective mapping between two compact convex sets in Euclidean space, known
as gauge mapping (Tabas & Zhang, [2022a):
Definition 4.1 (Gauge mapping). Let y¢(z,2°) = inf{A > 0 | = € A — z°)} be the
Gauge/Minkowski function (Blanchini & Miani, [2008) given an interior point 2:° € int(C). The gauge
mapping ® : B — C can be defined between a unit p-norm ball and a compact convex set:

(I)(Z)_ ”ZH;U Z+.TEO, VZEB, (I)fl(m):’yc(x T, T )

" ve(z,2°) (x—2°),Vzel,

=22l

As shown in Fig. [2] the gauge mapping ®(-) es-

tablishes a continuous bijective correspondence T =)

(i.e., homeomorphism) between any compact P J—— R
convex set and a unit p-norm ball: C = ®(B) T m=o@ R,
and B = ®71(C). Intuitively, the gauge map- o2 i
ping transforms a unit ball into the convex set P\
by first translating the unit ball to the interior o ¥ =00 A

point (0 — x°), then scaling along every radial
direction from this interior point such that the

boundary of the ball becomes aligned with the B ©
boundary of the convex set (e.g., z1 — x1). As ) o )
a result, all level sets of B are mapped to level Figure 2: Gauge mapping illustration.

sets of C (e.g., z2 — x2). The inverse mapping

is similarly constructed by inverse scaling and translation back to the origin.

Remark 1. Gauge/Minkowski functions v have been extensively studied in the control and online
learning communities for Lyapunov function design and efficient online optimization (Blanchini,
1995; |Rakovi¢ & Lazar, 2014; [Mhammedi, |2022; Lu et al., [2023). While gauge mapping ® was
proposed in (Tabas & Zhang, [2022a)), specifically between a polytope and cube, we generalize it to
arbitrary pairs of compact convex sets and provide efficient computation methods. Specifically, in the
gauge mapping calculation, (i) gauge function ¢ (x, 2°) has closed-form expressions for common
convex sets (e.g., linear, quadratic, and convex cones) and can be efficiently computed via bisection
methods for general convex constraints; (ii) the interior point z° is obtained once for all by solving a
convex feasibility problem offline (see details in Appendix [B).

Further, we characterize the bi-Lipschitz property of gauge mapping, as will be demonstrated in Sec.
[l which is essential for establishing the regularity of transformed data distribution and controlling
the distribution approximation error in our GFM framework.
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Proposition 4.1 (Bi-Lipschitz Property of the Gauge Mapping). Let C C R" be a compact convex
set and let x° € int(C) be an interior point. Define the inner and outer radii with respect to x° as

ri:=sup{r > 0: B2(z°,r) CC}, ro:=inf{r>0:CC Ba(z°,r)},

such that Bo(2°,r;) C C C Ba(x°,10). Then the gauge mapping ® between C and 2-norm ball By
satisfies the following bounds:

Forward Lipschitz:  Lg < 27, + rg/ri, Inverse Lipschitz:  Lg—1 < 2/1; 3)

The bi-Lipschitz property of gauge mapping depends on interior point selection. When a near-
boundary interior point is selected (i.e., r; — 0), the bi-Lipschitz constant approaches infinity, which
severely distorts the data distribution and creates significant challenges for generative modeling.
In practice, we aim to identify a “central” interior point (where 7, is close to 7;) to minimize the
bi-Lipschitz constant. Such an interior point can be approximately determined through constraint
residual minimization (Tordesillas et al.,|2023)), which involves linear optimization over the target
convex set and can be solved in polynomial time. While we derive explicit Lipschitz bounds for
gauge mapping from a 2-norm ball to a convex set, these bi-Lipschitz bounds can be extended to
arbitrary pairs of compact convex sets. For a more detailed introduction to gauge mapping and its
properties, we refer readers to Appendix [B]

Algorithm 1 Training in GFM Algorithm 2 Generation in GFM
Input: Data samples: £1 ~ Pdata OVer compact convex Input: Prior samples zo ~ U (B), NN vector field vy,
set C, and gauge mapping between C and 5. and gauge mapping between C and 8.
1: Inverse transformation: z; = ®~*(z1) 1: ODE solver with reflection over B in Eq. (3)
2: Regular flow matching over B in Eq. (@) 2: Forward transformation: z; = ®(z1)
Output: Trained NN vector field vg. Output: Generated feasible samples .

4.2 TRAINING PHASE OF GFM

Given the gauge mapping ¢ between the convex set C and a unit ball B, a flow matching model is
trained on the transformed space as:

min  L(ve) = Eag.ert | Iv0(z1,1) = (21— 20)|I°] @

where the initial samples zy ~ qo are sampled as a simple prior distribution ¢¢ (e.g., uniform)
supported on a unit ball 3, the terminal samples z; ~ ¢; are transformed from the samples from the
original data distribution via inverse gauge mapping as z; = ®(x1), and z; = (1 — t)2o + tz1.
In essence, GFM models the transformed data distribution as gqata = <I>;#1 Pdata OVer a unit ball B,
where # is the push-forward operator. We then leverage the regular flow matching training approach
to train a neural network vector field vy following (@).

Remark 2 (Comparison to Mirror Maps). Mirror map-based generative models also employ a
bijective mapping to transform constrained distributions to the unconstrained dual space (Liu et al.,
2024b). However, it is only computationally tractable for simple convex sets (e.g., ball and simplex),
and it maps near-boundary samples to infinity in the dual spaces, challenging the transformed
generative modeling theoretically and practically.

In contrast, gauge mapping is computationally efficient for any compact convex set and maintains
bounded Lipschitz constants for both sides (Prop. {i.I). These properties are crucial for the regularity
of transformed data distribution and efficient flow-matching training, as will be analyzed in Sec. [5]

4.3 INFERENCE PHASE OF GFM

After training, we generate samples within the unit ball B following the NN vector field vy. To
constrain the generation trajectory within B, we apply an additional reflection term (Xie et al., [2024):

1
21 = 2o + / (’Ug (Zt, t)dt + st), (5)
0

where z( is sampled from a unit ball following a prior distribution (e.g., uniform), and L; is the
reflection term when z; hits the constraint boundary (Xie et al.|[2024). Finally, we recover the sample
to the original space following the forward gauge mapping as x1 = ®(z1).
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Remark 3 (Comparison to Regular Reflection). Reflection-based mechanisms are well-established
in previous works to keep the generated samples within the constraint set (Lou & Ermon, 2023}
Fishman et al., [2023; |Deng et al., 2024} Xie et al., [2024). However, they face several limitations:
(i) the reflection term is computationally expensive beyond simple sets (e.g., ball and simplex); (ii)
existing reflection generative models require a prior distribution within the target constraint set C,
which is challenging to sample from (even for uniform distribution) over general convex sets during
training or generation (Kook & Vempala, |2024). These computational issues prevent reflection
methods from being applied to more complex sets.

In contrast, after transforming the data distribution over a unit ball through inverse gauge mapping,
we can easily sample from a unit ball (e.g., uniformly), implement a closed-form reflection term with
O(n) algorithmic complexity, and batch computation for multiple samples, thus ensuring efficient
sample generation within the ball and strict feasibility after mapping to the original data space.

5 PERFORMANCE ANALYSIS OF GFM

Proposition 5.1 (Regularity of Transformed Data Distribution). Assume that the original data
distribution paat. satisfies regularity conditions (Assumption 1 in (Wan et al.| 2024))). The transformed
data distribution qqata = CD; Pdata DY a bi-Lipschitz homeomorphism (e.g., gauge mapping) also
satisfies those regularity conditions.

We first assume that the original data distribution pg,t, satisfies regularity conditions following (Wan
et al., 2024), ensuring well-posedness of standard flow matching over the data distribution. Verifying
the regularity of the transformed distribution gqata = @;%odata is essential for establishing the
existence and well-posedness of our gauge flow matching model. Under the bi-Lipschitz properties of
gauge mapping established in Prop. we can verify that these regularity conditions are preserved.

It is worth noting that theoretical analyses of flow matching models in the literature assume various
regularity conditions for data distributions (Benton et al., 2023} |Gao et al., [2024azb). We verify a
general condition from recent work (Wan et al., [2024)). Detailed proofs and further discussion on
other common regularity conditions are provided in Appendix D]

Proposition 5.2 (Wasserstein Bound of GFM). Ler the NN approximation error be 65 =
Ei 2, |lvo(2e,t) — u(ze,t)||?, where z; ~ p; and py is the probability density at time t driven by
the target vector field u. Assume that vg is Lg-Lipschitz for = € B and t € [0,1]. Denote the
induced probability distribution pj under vy with reflected generation, the Wasserstein-2 dis-
tance between the data distribution pyqiq and the approximated distribution pgT is bounded by

Wa (Pdata, P ) < Loel/*HLogy,

The Wasserstein error of GFM is bounded by the Lipschitz of gauge mapping multiplied by the
distribution error in the transformed space under reflected generation. To reduce the distribution
approximation error, we can regularize the neural network Lipschitz constant Ly or optimize the loss
function such that €y is minimized, following standard flow matching training pipelines (Liu et al.,
2022b)). Specific to our GFM framework, we can further optimize the Lipschitz constant of the gauge
mapping Lq. As discussed following Prop. .1} we can select a “central” interior point for the gauge
mapping by solving convex optimization problems, thereby reducing the bi-Lipschitz constants.

Proposition 5.3 (Inference Complexity for GFM). Consider a compact convex set C C R" defined
by constraints g;(x) < 0, for i = 1,2,...,m. The generation complexity of GFM (forward
integration and gauge mapping calculation) is O(NFE - n? +m - C), where C = max {C;} is for
<i<m

gauge function calculation and varies by constraint type:

> (i) For linear constraints g;(x) = a'x — b < 0, C; = O(n); (ii) For quadratic constraints
gi(r) = 2T Qr+a"x—b <0, C; = O(n?); (iii) For second-order cone constraints g;(x) = ||[ATx+
pllz— (aTz+b) <0, C; = O(nk); (iv) For matrix cone constraints g;(x) = S Fj+Fy =0,
C; = O(nk?® + k3); wherea € R", beR, Q € St Ae R™ % p e R* and F; e RFEXE

> For general convex function g;(x), C; = O(c; log egil) using bisection, where c; is the complexity
to evaluate g;(-) given a point and ey;s is the error tolerance in bisection.
The forward integration complexity of our model aligns with regular flow matching approaches,

requiring NFE (Number of Function Evaluations) multiplied by the evaluation complexity of vg. The
additional reflection over a unit ball incurs negligible overhead with O(n) complexity compared
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to the NN forward calculation (O(n?)). For gauge mapping computation, given that the interior
point is pre-computed offline, (i) for common convex sets, it can be solved efficiently (Fig. [6), and
(i1) in general case, the bisection algorithm achieves linear convergence with minimal per-iteration
complexity, merely requiring calculating the constraint function without solving any optimization
problem (Mhammedi}, [2022)).

6 GAUGE FLOW MATCHING BEYOND CONVEX SETS

We extend the gauge mapping principle to two important classes of non-convex constraint sets,
broadening GFM’s applicability to richer geometric settings.

> Star-convex sets are bounded regions where the entire boundary is visible from a designated interior
point (e.g., £1 /o-norm ball). These sets arise in robotic planning and chance-constrained optimization
(Charnes & Cooper, 1959} |[Hansen et al., 2020; |Liu et al.,[2022a). The key insight is that compact
star-convex sets preserve the essential properties needed for gauge function construction—both the
gauge function and bijective mapping to the unit ball extend naturally from convex case (Licht, [2024)).

> Geodesic-convex sets are regions on Riemannian manifolds where geodesics connecting any two
points are unique and remain entirely within the set. These constraints widely arise in geometric
learning applications (Chen & Lipmanl 2023 Miller et al.| 2024} Zaghen et al., 2025). The key
insight is that geodesic-convexity ensures the exponential map at any interior point provides a local
diffeomorphism (Leel [2006)), allowing gauge mapping construction in the tangent space.

We include formal definitions in Appendix [C|and provide empirical studies in Sec. [7}

7 EMPIRICAL STUDY

We conduct extensive simulations across illustrative examples, robotics benchmarks, and high-
dimensional constrained sampling tasks to demonstrate the effectiveness of our GFM framework.
Detailed experimental settings and data descriptions are provided in Appendix

Baselines: We compare against the following constrained generative models, selected for their
applicability to diverse constraint types: (i) FM: Vanilla flow matching from Gaussian to target
distribution with linear conditional flow (Lipman et al., 2022} [Liu et al., [2022b); (ii) DM: Vanilla
diffusion model with variance preserving diffusion process (Ho et al.,2020; |Song et al.,2020); (iii)
Reflection: Reflection term is applied when generated samples hit the constraint boundary (Xie
et al.,[2024); (iv) Metropolis: Metropolis sampling for approximating reflection-based generation
(Fishman et al.| 2024); (v) Projection: Orthogonal projection are applied when generated samples
violate constraints (Christopher et al., 2024); (vi) GFM: Our framework in Sec.

Metrics: We evaluate those baselines based on (i) constraint satisfaction (i.e., feasibility) ratio (%)
of 10,000 generated samples, (ii) distribution approximation error, which is measured by Maximum
Mean Discrepancy (MMD) between data samples and generated samples (Fishman et al., [2023)),
(iii) average per-epoch training time, including prior sampling, data transformation (in GFM only),
and NN training, and(iv) average inference time for generating samples, including prior sampling,
forward integration, and data transformation (in GFM only).

7.1 SYNTHETIC EXAMPLES: CONVEX, STAR-CONVEX, AND GEODESIC-CONVEX SET

We first evaluate GFM’s performance in convex, star-convex, and geodesic-convex domains. As
shown in Figures [3]-[5] we observe: vanilla diffusion/flow-matching models fail to guarantee sample
feasibility, especially when probability density concentrates near boundaries. Existing reflection,
projection, and Metropolis methods face limitations with complex constraints due to: (i) expensive
prior distribution sampling, increasing both training and inference time; (ii) constraint-specific
implementation requirements incurring longer inference time and limited constraint settings.

Our GFM framework transforms generative modeling over diverse convex sets into a simpler process
over a unit ball, enabling efficient prior sampling and batch-executable reflection calculations with
computational efficiency comparable to vanilla FM. After generation within the unit ball, samples are
mapped back to the target constraint set via low-complexity gauge mappings, ensuring strict feasibility.
Further, due to the bi-Lipschitz property (Prop. [.T)) of the gauge mapping, the approximation error
of GFM remains comparable to vanilla FM. This property ensures that the distortion introduced by
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our transformation is bounded and controlled, preserving the fidelity of the generated samples while
guaranteeing their feasibility within the target constraint set.

Feasibility MMD Training Inference
(%)  (x107%)  (s) (s)
— sl — DDPM 95.0 4.79 0.151 0.51
(a) FM (b) DDPM  (c) Refection FM 95.9 8.57 0.153 0.02
Refection 100 25.9 6.525 14.2
Metropolis 100 130 6.525 6.17
Projection 100 93.5 6.525 7.10
GFM 100 3.50 0.171 0.07
(d) Metropolis (e) Projection ) GFM ! Reflection, Metropolis, and projection models share the same velocity

field, and thus have the same training time per epoch.

Figure 3: Performance over joint linear and quadratic convex sets

Feasibility MMD Training Inference
(%) (x107%)  (s) )
E . allis 3 DDPM 91.1 6.03 0.225 0.86
: FM 93.4 4.92 0.236 0.45
DDPM b) FM Reflect

@ ®) (¢) Reflection  Reflection | 100 796 9948 7083
Metropolis 100 24.6 9.948 21.31

Projection 100 7.89 9.948 376.27
GFM 100 5.01 0.236 0.95

! Sampling from a prior distribution over a non-convex domain is time-
(d) Metropolis (e) Projection #® GFM consuming for reflection and Metropolis methods.

2 Projection onto non-convex sets incurs significant computational cost.

Figure 4: Performance over star-convex sets

. Feasibility MMD Training Inference
‘\/ % (%) (x107%) (s )
DDPM 93.4 2.84 0.239 0.71
(a) DDPM (b) FM FM 96.1 1.20 0.259 0.05
Metropolis 100 483 3.571 201.09
GFM 100 1.29 0.230 0.11

‘\/ é; ! Sampling from prior distributions over constrained manifolds is com-

putationally expensive, resulting in long Metropolis inference times.
2 High rejection rates further increase Metropolis inference time.
(c) Metropolis  (d) GFM 3 Reflection and projection methods for constrained manifolds are not
implemented due to computational issues.

Figure 5: Performance over geodesic-convex sets

7.2 CONSTRAINED CONFIGURATIONAL MODELING OF ROBOTIC ARMS

We apply GFM to robotic arm control tasks following (Fishman et al.| 2023} [2024). This involves
learning distributions over joint locations and manipulability ellipsoids represented by symmetric
positive-definite matrices with trace constraints. Figure 9] (Appendix [E.5) shows generated velocity
manipulation ellipsoids and trajectories. GFM successfully models this distribution while maintaining
constraint satisfaction.

7.3 SOLUTION GENERATION FOR (RELAXED) COMBINATORIAL PROBLEMS

We further evaluate our approach on high-dimensional (n =10, 000) solution generation for relaxed
combinatorial problems (Kook & Vempala, 2024). The target distribution follows a log-concave
density and is constrained by a positive semidefinite cone and a set of linear inequalities. This
target distribution encapsulates several important classes of semidefinite relaxations for classical
combinatorial optimization problems (e.g, max-cut and minimum-volume covering problem). We
prepare the dataset following this distribution described in (Kook & Vempalal [2024)) and train our
GFM model. As shown in Table[5] our method achieves 100% feasibility rate while vanilla models
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Table 5: Solution sampling for relaxed combinatorial problems.

Method ‘ DDPM FM GFM ‘ DDPM FM GFM ‘ DDPM FM GFM
| n =10 x 10 n =50 x 50 n = 100 x 100
Feasibility (%) 47.2 0 100 0 0 100 0 0 100
MMD (x1072) | 5.35 9.71 9.70 43.4 43.4 43.5 85.8 85.8 85.8
Training (s) 0.265 0.262 0.258 | 0.276 0.276 0.279 | 0.276 0.281 0.313
Inference (s) 1.04 0.66 1.12 2.02 1.65 11.9 6.06 5.08 419

fail to satisfy the constraints. GFM also maintains generation quality comparable to standard flow-
matching models. Regarding inference time, the gauge mapping has an explicit-form computation,
with computational cost primarily stemming from matrix decomposition operations for 10, 000
samples in a batch. This overhead can be further reduced through the application of advanced linear
algebra packages (Van de Getijn, [1997). We do not implement reflection methods since sampling
the prior distribution in such a high-dimensional constraint set is computationally expensive (e.g.,
if we apply Ball walk, it will incur O(n® log n) mixing complexity (Kook & Vempala, 2024)). For
the projection methods, it will solve 10° projection problems at most (10, 000 samples and 100
integration steps), which is unaffordable on our computing device.

7.4 SCALABILITY TESTS AND ABLATION STUDY

Scalability of gauge mapping: We evaluate
GFM’s scalability in high-dimensional settings
by measuring the computational cost of gauge
function calculations. For closed-form gauge
calculation on four common convex sets (Fig.
[6), our approach maintains efficiency across di- /»’-
mensions up to 3, 000, demonstrating practical 0t ¢
applicability for high-dimensional tasks. For 7&*“
bisection-based gauge calculation on polyno- 10°4

mial constraints (sum-of-squares formulation,

Table [9), a degree-4 polynomial with 50 vari- e - -
ables containing 1, 758, 276 monomial terms e m e oo o
can efficiently compute gauge functions for
1,000 samples in 0. 492 seconds. Details are

provided in Appendix

Impacts of the interior point (IP) selection: Following Prop. the IP selection determines the
bi-Lipschitz property of gauge mapping and consequently affects generation quality. We compare
central versus near-boundary IPs to demonstrate this claim, with results in Table [T0}

Linear —4— Quadratic SOC —+— LMI

10" 1 A

74

Gauge Computation (s)

Constraint Dimension No. of Constraints

Figure 6: Gauge function computation.

Impacts of generation strategies: While we adopt reflection to keep samples within the unit ball
(Sec. |.3), alternatives like projection can also be efficiently implemented. Table [I0] shows that
projection is faster but leads to a larger MMD, which motivates theoretical analysis in future works.

8 CONCLUDING AND LIMITATIONS

We introduced Gauge Flow Matching (GFM), a framework that transforms generative modeling over
arbitrary compact convex sets into an equivalent process over the unit ball through a novel gauge
mapping. This approach guarantees strict constraint satisfaction with low computational complexity
and bounded distribution approximation errors, and can be extended to important non-convex settings.
Our experiments demonstrate that GFM outperforms existing methods in both speed and sample
quality across multiple benchmarks. Despite these advances, several limitations remain. (i) Extending
the current framework to more general non-convex sets presents significant theoretical challenges. (ii)
While our primary focus is on continuous domains, extending GFM to discrete generation through
relaxation or embedding techniques would be a promising direction Davis et al.[(2024)). (iii) Adapting
GFM to constrained one-step generation models could further improve generation efficiency beyond
the current multi-step approach (Song et al.| 2023} [Frans et al., |2024; |Geng et al., 2025).
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LLM USAGE

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.

A RELATED WORK ON NN FEASIBILITY

Research on ensuring neural network feasibility can be categorized into several approaches:

Basic Constraint Handling: Specialized activation functions (Sigmoid/Softmax) address basic
constraints such as box or simplex (Pan et al., 2022; |Donti et al.,|2020). Penalty of output constraint
violations can be incorporated into loss functions to improve NN feasibility (Cheng et al., 2019; Pan
et al.| [2020; Nellikkath & Chatzivasileiadis, [2021).

Strict Satisfaction Methods: For exact equality constraint satisfaction, prediction-then-reconstruct
or completion techniques can be applied (Donti et al.| |2020; |Pan et al.,[2022} |Liang et al., [2023)). For
more general constraint enforcement, orthogonal/L2 projection is often employed. However, solving
the projection problem either by iterative solver or equivalent optimization layers (Amos & Kolter,
2017} |Agrawal et al.| 2019;|Chen et al.| 2021} Wang et al.| |2023) is computationally intensive in real-
time. More efficient biseciton-based projection can also be applied at the cost of a minor optimality
loss (Liang et al., 2024} |Liang & Chenl [2025). Sampling Approach: To guarantee feasibility, an
inner approximation of the original constraint set can be constructed. For linear constraints, vertex
networks employ a convex combination of sampled vertexes and rays to ensure policy feasibility
(Frerix et al.} 2020; Zheng et al.,[2021)). For general compact but fixed constraint sets, probabilistic
transformer utilizes feasible samples to ensure feasibility (Kratsios et al.,[2021)). However, scalability
remains a challenge due to the exponential growth in required samples with increasing problem
dimensionality.

Gauge function. These works utilize gauge functions (Blanchini & Miani, 2008) to constrain the NN.
A closed-form bijection, known as gauge mapping, between a hypercube and a polytope is used to
bound the NN output within the polytope (Tabas & Zhang| 2022agb; [Li et al.|, 2023a)). For fixed convex
constraints, a series of works apply gauge functions to find feasible boundary solutions (Tordesillas
et al., |2023; [Konstantinov & Utkin, 2023} L1 & Mohammadi, 2023} Tanneau & Van Hentenryck,
2024).

These approaches are typically designed for the end-to-end neural network structure, which can not
be directly applied to the diffusion or flow-matching based generative model due to the forward
integration calculation.

B GAUGE MAPPING OVER GENERAL CONVEX SETS

A general compact convex set encompasses both linear equality and convex inequality constraints.
where A € R™*™ b € R", and ¢1(z), . . ., gm(z) are convex functions.

This section presents a systematic approach to handling such sets by first eliminating linear equality
constraints, followed by computing gauge mappings for the remaining inequality constraints.

B.1 HANDLING LINEAR EQUALITY CONSTRAINTS

Without loss of generality, assuming rank(A) = r, we partition the decision variable x into 21 €
R™ " and 25 € R". Accordingly, we partition matrix A into A = [A1, A, where A; € Rrx(n=7)
and Ay € R"*". The equality constraint Ax = b can then be written as:

Ajx1 + Ao =D (7)
By choosing the partition such that A5 has full rank r, we can express x5 explicitly in terms of z1:
2y = ¢(1) = Ay (b— Ayzy) (3)
This transformation reduces the original set to one with only inequality constraints:
C* ={z1 e R"" | g([z1, ¢(z1)]) < O} ©

Therefore, we only consider the inequality constraints in the main body of this work.
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B.2 GAUGE MAPPING FOR INEQUALITY CONSTRAINTS

Without loss of generality, we consider C = {z | g1(z) <0,...,gm(z) <0}.
We define the following metrics for a compact convex set.

Definition B.1 (Point-to-boundary distance and its inverse (Tordesillas et al.,[2023)). Let C C R™ be
a compact convex set and z° € int(C) an interior point. For any unit vector v € S"~! = {u € R" |
|lul| = 1}, we define the interior-point-to-boundary distance function dc : int(C) x S"~! — R
along direction v as

de(z°,v) =sup{\ > 0| z° 4+ lv € C}. (10)
The inverse distance function ¢ : int(C) x S*~ — R is defined as r¢ (2°,v) 1= 1/dc(x°,v).

For a compact convex set, the minimum and maximum interior point-to-boundary distances are
bounded and are defined as:

* the minimum point-to-boundary distance: r; = argsup,q{B2(z°,7) C C}.

* the maximum point-to-boundary distance: r, = arginf,>o{C C By(z°,7)}.

o thus, we have By (2°, 1) C C C Ba(x°,70)

B.2.1 GAUGE FUNCTION AND PROPERTIES

We then introduce the gauge function:

Definition B.2 (Gauge/Minkowski function (Blanchini & Mianil [2008))). Let C C R™ be a compact
convex set with a non-empty interior. The Gauge/Minkowski function v¢ : R” x int(C) — Ry is
defined as

Ye(z,2°) =inf{A > 0|z € \(C — 2°)}, (11)
where z° € int(C) is an interior point of C.

The Gauge function generalizes the concept of a norm. For a set C that is symmetric about the origin,
the gauge function ¢ (z, 0) defines a norm. In particular, when C = B, = {z € R" | ||z||, < 1} is
the unit ball of the p-norm, we have v, (,0) = ||z||,. More generally, the gauge function satisfies
the following properties for all z,y € R™ and o > 0:

Lemma 1 (Properties of gauge function). The gauge function ~yc(x, x°) with respect to a compact
convex set C and an interior point x° € int(C) satisfies the following properties:

* Non-negativity: ve(x,z°) >0

* Positive homogeneity: vc(ax, z°) = avye(z, z°) for a > 0.

Subadditivity: ve(x +y,2°) < ye(w, 2°) + e (y, °).
e Convexity: induced by positive homogeneity and subadditivity.

* Differentiability: under convexity, the gauge function is twice differentiable almost everywhere by
Alexandrov’s theorem (Rockafellar| |1999).

» Equivalent formulations based on (inverse) distance function:

o

ve(,2°%) = we (2% x/||l2) - o] = ————"7—= (12)

o

ve(@/llx]l, 2%) = ke(x®, x/l|lz]]) = (13)

* Upper/lower bounds: the gauge function is bounded as: vc(x,x°) € [||z||/70, ||| /7i]

llve (,2°) =ve (y,2°) | <L
lz—yl =

 Lipschitz: the gauge function has Lipschitz constant as
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Proof. The non-negativity, positive homogeneity, and subadditivity are provided in (Blanchini &
Miani, 2008). Convexity and differentiability are naturally implied by those properties. The equivalent
formulation is derived from their definitions.

The upper and lower bounds are derived as:

Ye(z,2°) = de(@®, 2/|[z]) € [lzll/ro, ll2l/7i] (14)

The Lipschitz constant of the gauge function is derived as:

Ye(z, 2°) < yelr —y,2°) + e (y, z°) (15)
’yc(l’amo) - ’yc(ywxo) S VC(LE - yvxo) S Hl‘ - yH/rl (]6)

where the inequality is derived by the positive homogeneity. Similarly, we have:
Ye(y, %) —ve(@,2%) <y —x,2°) < |l —yl|/ri (17)
Combining two inequalities, we have the Lipschitz as:

Ive(z,2°) —ve(y, z°)
lz —yll

|< (18)
-

1

B.2.2 GAUGE MAPPING AND PROPERTIES

Based on the gauge function, we can construct a bijective mapping between any pair of compact
convex sets as:

Definition B.3 (Gauge Mapping). Let Z, X C R" be compact convex sets with interior points
2° € int(Z) and z° € int(X), respectively.

The gauge mapping ® : Z — A’ is defined as:

FYZ(Z*ZOVZO) ) o
O(z)= =" L(z—-2°)+2°, 2€ Z 19
()= ZE2T ) (19

The inverse mapping ® ! : X — Z is given by:

~ yx(x —x°,2°)

¢ (@) = vz(x — x°,2°)

(r—2°)+2°, zeX (20)

In essence, the gauge mapping scales the boundary of a convex set from an interior point to another
convex set and translates it to its interior point. When Z is a unit p-norm ball, the gauge mapping is
simplified in Def. [4.1] as:

(I)(Z)_ ||Z||P Z+.’EO, VZGB, q)—l(x):’yc(x_w y L )

= (o) (x —z°), Yz €C, 21

[Eing [
Further, the gauge mapping between B2 and C can be simplified as:

T —x°
(I)(Z) ch(xo,Z/HZH) 'Z+xov Vz € Ba ‘I)_l(x) = dc(xo x_l.o/”x_xo”)7 Vz el (22)

Proposition B.1 (Properties of gauge mapping). The gauge mapping between any pair of compact
convex sets satisfies the following properties:

e it is invertible.
* it is continuous everywhere and twice differentiable almost everywhere in both directions.

* it is a bi-Lipschitz homeomorphism.
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Proof. First, the invertibility can be easily verified by:

(D1 :@Mx—xo +2° 23)
@) = o o) 42 (

Yx (z—z°,2°)

Y2\ z—=e 20)

= (PYZ( ’ ; (x —2°)+2° 24)

)

Yx (z—x°,x°
P)/X(’)/Z(’I' x°,2°

(z—z°,2°)
e

TRl (@ - a0),a7) V2@ a0, )

=(@x—z°)+2°=zx (26)

(x —z°) +2° (25)

where Eq. is derived by the positive homogeneity of the gauge function.

Second, the continuity and differentiability are derived from the properties of the gauge function and
elemental compositions in the gauge mapping.

Third, the homeomorphism is derived from the continuity in both directions and the invertibility.
Proof of Bi-Lipschitz Properties of Gauge Mapping in Prop.

To derive the bi-Lipschitz properties, we first consider the gauge mapping between B, and C and
derive its Lipschitz constants shown in Prop. [4.1] as follows,

[P

_— x°, Vz € By 27
Ye(z,2°)

O(z) =

Differentiating ®(z) with respect to z (using the product and quotient rules) yields
00 _ el . =T el
9z ye(za0) ez a0zl velz 2°)

Taking the operator norm and applying the triangle inequality gives

5 Z(szyc(z,xo))—r. (28)

H H HzHg 1212 1213
Ye(z,2°)  e(z,2°)  vel(z,2°)?
7,2
<71o+7To+ 70’

i

HVZ c(z,2°)

(29)

where in the last inequality we have used the facts that (i) for z € Bz one has ||z||2 < 1, (ii) the
gauge function satisfies y¢(z, z°) € [||z||/70, ||zl /7], and (iii) ||V .ve (2, 2°)]| is bounded by 1/r;.
In summary, we obtain

’I“2

o] < 2

which proves that the forward Lipschitz constant of ® satisfies
r2
Forward Lipschitz: Lg < 2r, + —=. (3D
Next, consider the inverse gauge mapping from C to the 2-norm ball as
o (z) = 7@(96—7:160736) (x —2°), Vz el (32)
(B IP

Differentiating with respect to x gives

(z—2°)(z—2°)"
3@‘1 X — I’O T I - Hw—wOHZ
=V — 07 ° _— _ 07 SAT 2 . 33
oz el —e “"”><|x—mo|2> Trele =2t 2 e, 53
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Taking norms and again using the triangle inequality leads to

z—a2° \'
Vae(r —x°,2°) ()

[l — 2|2

7— (937:7(:0)(967:1(:0)—r

le—=°T3

. (34)

op—1 0 o
H +ve(z —z°,z°)

Or HS

[l — 2|2

Using the bound ¢ (z — x°,2°) € [||z — z°|| /7o, || — x°]||/r;] and the projection term has norm at
most 1/||z — x°]|2), we have

faLi 1 1 2
Ox T T
Thus, the inverse Lipschitz constant is bounded by
2
Inverse Lipschitz: Lg-1 < —. (36)
L

This completes the proof of Prop. [A.1]

To extend the Bi-Lipschitz properties to any pair of compact convex sets, e.g., Z and X', we decompose
the gauge mapping as

X =0(2)=21(By) = &1 (P;(2)) (37)
where Z = @1(82) and X = @2(62).

Leveraging the inequality of Lipschitz for mapping compositions as Ly o5, < Ly Ly,, we can
conclude that the gauge mapping between any pair of convex sets is bi-Lipschitz.

O

B.2.3 COMPUTATION METHODS

IP computation

In practice, we seek such a “central” interior point by solving the following residual minimization
problem through convex optimization in the offline phase (Tordesillas et al., | 2023):

min 7 (38)
st.gia®)<n i=1,-,m (39)

We note that solving this convex optimization problem with a linear objective incurs only polynomial
time complexity. As this computation is performed offline prior to model training, it adds negligible
overhead to the overall computational cost.

Gauge function computation

Computation of gauge mapping essentially involves calculating the gauge function or (inverse)
distance function. Following the established closed-form distance function calculation for several
common convex sets in (Tordesillas et al.l 2023)), we give a summary in[Table 6] It provides closed-
form expressions for the inverse distance function across various constraint types. Most matrix
calculations can be computed and stored offline before being applied for online inference.

When the inverse distance function lacks an explicit expression, we employ an efficient bisection
algorithm detailed in This algorithm supports batch processing, enabling efficient
parallel computation for multiple inputs simultaneously.
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Table 6: Closed-form Expressions for Inverse Distance Functions (Tordesillas et al., 2023))

Constraints ‘Formulation Inverse Distance Function
Intersections ‘{gl ) <0, ,gm(z) <0} Kg(x®,v) = max {Kg; (z°,0)}
_'L

Linear gr(z) =a :r—b<0 Ky, (2°,0) = {3 aaT“TO I
Quadratic go(®)=2"Qr+a'x—b<0 Ko (x°,v) = {1/r00t(Aq, Bq,Cq)}*
Second Order Cone|gs(z) = |ATz 4+ pll2 — (a" 2 +b) <0 kys(x°,v) = {1/root(As, Bs,Cs)}+
Matrix Cone gu(z)=>"" @i - Fi+Fo =0 Kgyy (°,v) = max{eig(LT (=S)L)}T

! Notation: z,a € R", b € R, Q € ST, A € R"**, p e R*, Fy, - , F, € RFXF,

2Ag=v"Qu, Bgq=22°"Qu4a'v, Cog=2°"Qz°+a'2°—b.
s=(ATv)T(ATv)—(a"v)?, Bs =2(AT2°+p) T (AT v)—2(a" 2°+b)(a v), Cs = (AT a°+p) T (AT 2+
p) — (aTz° +b)%.
H=F+>X" 20F H'=L"L,S="_vF;.
()T = max(-,0).

_ 71.2i«/m2 dxyxsy

root(xy, 2, x3) = PET

w

v e

o

denotes the quadratic equation solution

)

eig(X) = A1, - -+, A\p, denotes the eigenvalues satisfying det(X — AI) = 0. Note that only the maximum eigenvalue is needed.
Thus, power iteration methods can be applied to compute it efficiently.
Note that all v-independent terms can be computed only once and stored for use.

%

Algorithm 3 Bisection Algorithm for Point-to-Boundary Distance

Input: A compact convex set C, an interior point z° € int(C), and a unit vector v.
1: Initialize: oy = 0 and o, = 1
2: while |a; — a| > edo
3:  ifz° 4+« - v € C then

4: increase lower bound: o < «y,

5: double upper bound: «,, < 2 -y,
6: else

7: bisection: a,,, = (a + @) /2

8: if x° 4+ a,, - v € C then

9: increase lower bound: «; <+ «,,
10: else
11: decrease upper bound: o, < a,,
12: end if

13:  endif

14: end while
Output: dc(2°,v) = ayy,

C GAUGE MAPPING FOR NON-CONVEX CONSTRAINTS

In this section, we extend the conventional gauge mapping over convex sets in Euclidean space to
certain non-convex settings, including star-convex sets and geodesic-convex sets.

C.1 STAR-CONVEX SET

Definition C.1 (Star-convex Set). A set S C R" is said to be star-convex with respect to an interior
point 2° € int(S) if for every z € S, the line segment connecting z° and x lies entirely within S,
ie.,z° +6(x —2°) € Sforall § € [0,1].

The gauge mapping framework can be extended beyond convex sets to certain non-convex domains,
particularly star-convex sets. This extension significantly broadens the applicability of our GFM
approach to more complex geometric constraints encountered in practical applications. A star-convex
set S is characterized by the existence of an interior point 2° such that any line segment connecting
2° to any point in the set remains entirely within the set. While star-convex sets lack the full convexity
property, they retain a critical radial structure that allows gauge mappings to be constructed in a
similar manner.
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Figure 7: Gauge mapping construction for star-convex set.

For a star-convex set S with interior point x°, we can define the gauge function as:
vs(z,2°) =inf{A > 0|z € A(S —z°)} (40)

This formulation captures the minimum scaling factor needed to reach point = when scaling along
the ray from z°. The corresponding gauge mapping ® : B — S between a unit p-norm ball and the
star-convex set follows the same construction as in Definition[4d.1] As illustrated in Figure[7] the gauge
mapping preserves the radial structure of the star-convex set while establishing a homeomorphism
with the unit ball. This property is particularly valuable for handling constraints with non-convex
geometries that still maintain visibility from an interior point, such as £,,-norm balls with p < 1 or
certain non-convex polytopes arising in practical applications.

The computation of gauge functions for star-convex sets follows similar principles as for convex sets,
though additional care may be needed:

* For analytically defined star-convex sets (e.g., £,-norm balls with p < 1), closed-form expressions
for the gauge function can often be derived as Def.

* For star-convex sets defined by the union of convex components or by non-convex inequalities,
bisection methods remain applicable for computing the gauge function, though they may require
specialized boundary evaluation techniques (Liang & Chenl 2025).

* Selection of the interior point z° becomes more critical for star-convex sets, as it determines the
visibility region and thus the quality of the mapping. When multiple interior points are viable,
selecting one that maximizes the minimum distance to the boundary often yields better numerical
properties.

C.2 GEODESIC-CONVEX SET

When the underlying space is a Riemannian manifold rather than a Euclidean space, the notion of
straight lines is replaced by geodesics. In this context, one speaks of geodesic convexity.

Definition C.2 (Geodesic-Convex Set). Let (M, ¢g) be a Riemannian manifold, and let i/ C M be a
subset. U is geodesically convex if, for every pair of points z, y € U, there exists a unique minimizing
geodesic ) : [0, 1] — M with respect to g that satisfies n(0) = x, n(1) =y, n(t) € U, ¥t € [0,1].

To extend the gauge mapping on a geodesic-convex set over a manifold, we replace the linear structure
with the exponential map. Since &/ C M is geodesic-convex, the exponential map at any interior
point is a diffeomorphism onto its image (Lee, |2006). Given this property, any point x € U with
x # x° can be uniquely represented in geodesic polar coordinates as x = exp,o (T v, ), where
x° € U is an interior point of U, v, € S"~! C Tyo M is a unit vector over the tangent space Tio M,
and r, = dg(x, x°) is the geodesic distance from z° to z.

Similarly, we can establish the geodesic gauge mapping that transforms a unit ball from the tangent
space to the geodesic-convex set on the manifold. As illustrated in Figure[8] this mapping establishes
a correspondence between the unit ball in the tangent space and the geodesic-convex set on the
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Figure 8: Gauge mapping construction for geodesic-convex set.

manifold. The construction respects the intrinsic geometry of the manifold while preserving the radial
structure that is characteristic of gauge mappings.

Definition C.3 (Geodesic Gauge Mapping). Without loss of generality, let B = {2 € T,o M |
||z]]2 < 1} denote the unit ball in the tangent space at 2°. The geodesic gauge mapping ® : B — U
and its inverse are defined as

D(2) = expyo(du(x®, z/||2||) - 2), VzeB 41)
O Nx) = ry/dy(2°,vy) - Vg, VI = expuo(ravy) €U (42)

where the point-to-boundary geodesic distance dy;(x°, v,.) along v, is defined as dy(v,) = sup{\ >
0] expgo(A-vz) €UT.

Note that the point-to-boundary geodesic distance may not admit a closed-form expression; we can
apply the bisection methods similar to Alg. [3]to locate the boundary points starting from an interior
point.

This extension enables our GFM framework to handle constraints on manifolds, expanding its
application to domains such as inverse problems with manifold constraints and atmospheric modeling
over spherical geometries.

C.3 MORE GENERAL NON-CONVEX SET

When applying our methods to more general non-convex sets, a natural choice is the class of non-
convex sets that are homeomorphic to a unit ball. However, such ball-homeomorphic sets do not
generally admit a closed-form homeomorphism. One promising approach is to apply an invertible
neural network to learn the target homeomorphism, which offers both feasibility and approximation
guarantees (Liang et al.| 2023} 2024). For more general non-convex constraints, low-complexity
constrained generation schemes remain largely unexplored, particularly for NP-hard problems where
even identifying an interior point poses significant computational challenges, such as non-convex
quadratic equations or mixed-integer formulations. The exploration of more general and theoretically
guaranteed approaches constitutes a promising direction for future research.
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D THEORETICAL ANALYSIS OF GFM

D.1 ASSUMPTION AND PRELIMINARY

We made the following assumptions for the error analysis, which are common for error analysis for
the flow/diffusion-based generative models (Kwon et al.| 2022 [Benton et al., 2023}, [Xie et al.| 2024).

Assumption 1 (Regularity of Distribution (Wan et al., 2024)). We assume the data distribution p
satisfies the following regularity conditions:

« It has finite 2-moment, i.e., [, [|z[*p(dz) < oc;
* Its support, 2 = supp(p), has a positive reach;

It has a non-vanishing density, i.e., there exist constants ¥ > 0 and ¢ > 0 such that for any
radius R > 0, there exists a constant C'r > 0 where for any small radius 0 < r < c and any
x € Br(0) N Q, we have p(B,.(x)) > Crrk.

The finite 2-moment requirement is standard in the literature for analyzing generative models. The
positive reach condition is satisfied in our setting since we consider a convex support set {2 = C. The
last requirement ensures the density does not vanish within the support, which prevents pathological
cases where probability mass concentrates on lower-dimensional manifolds.

There are also other (more restrictive) regularity conditions for the data distribution in the literature,
including the covariance condition (Benton et al.l 2023) and x-semi-log-concave/convex (Gao et al.|
20244), and convex support set (Gao et al.,[2024b)). It remains largely open for the minimal necessary
conditions to establish the well-posedness of flow matching models.

Assumption 2 (Neural Network Approximation Properties). Given a distribution p with support €2,
let u(z, t) be the designed target vector field and vy be the neural network approximated vector field
in the flow-matching model.

* vy is Ly-Lipschitz forz € Qand ¢ € [0,1];

* The {5 approximation error is bounded as €2 = E,, ;||vo(z¢,t) — u(wy,t)||%, where p; is the
probability density driven by the target vector field u.

The Lipschitz constant of a trained neural network is bounded within a compact set in our setting
2 = C. The training loss in Eq. is equivalent to the vector field approximation error up to a
constant (Lipman et al.,|2022). Therefore, we can minimize the approximation error through proper
training of the loss function.
Lemma 2 (Error Bound for Flow Matching (Benton et al., [2023))). For the vanilla flow matching
model: r1 = To+ fol vg(x, t) dt, with induced probability distribution pg at t = 1. The Wasserstein-2
distance between the data distribution pya:. () and the approximated distribution pg(x) is bounded
by

Wi (Pdata(2), po(2)) < e™7co (43)
Lemma 3 (Error Bound for Reflected Flow Matching (Xie et al., 2024))). For the reflected flow
matching model over the convex domain C: x1 = a:o+f01 vo(x,t)+R(xy) dt, with induced probability
distribution py at t = 1. The Wassserstein-2 distance between the data distribution Ddata(2) and the
approximated distribution py(x) is bounded by

W (Paata (), pj()) < e'/*FE0eg (44)
D.2 PROOF OF REGULARITY OF GFM IN Prop. 3.1]
Proof. Given the original data distribution p over compact convex set {2, = C satisfying the regularity

conditions; We verify the three regularity conditions one by one for the transformed data distribution
q= (b;l p over a unit ball 0, = B, where ® is a bi-Lipschitz homeomorphism (e.g., gauge mapping).

* Finite second moment: since ¢ has bounded support, it immediately implies a finite second
moment.
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* Positive reach: The support of ¢ is a unit ball {2, = B, which has infinite positive reach. We
remark that even if the original support {2, does not have a positive reach (e.g., star-shaped set),
after transformation, the €}, is always a unit ball and satisfies this regularity condition on the
reach.

¢ Non-vanishing density: Given the bi-Lipschitz property, we have:
L1||Z1 - ZQH S ||(I)(2’1) — (I)(ZQ)H S L2||Zl — ZQH, Vzl,zg S B (45)
where Ly = 1/Lg-1 and Ly = Lg are the (inverse) Lipschitz constants.

For any z € Q, N Br(0) and any small radius r < L%, where c is from the non-vanishing density
property of p, we have:

4(Br(2)) = p(2(Br(2))) (46)
> p(Br,(®(2))) 47)
since ®(B,(z)) 2 Br,»(®(z)) by the bi-Lipschitz property.

Since ® is bi-Lipschitz, for any R > 0, there exists ' > 0 such that ®(Br(0) N Q,) C
Br/(0) N §,. By the non-vanishing density property of p, there exists a constant C'r: > 0 such

that p(Bp,-(®(2))) > Cr (Llr)k.
Therefore, we have
q(B(2)) > Cr/ Lir* (48)

This establishes the non-vanishing density property for g.

O
D.3 PROOF OF ERROR BOUND OF GFM IN PRrRoOP. [3.2]
Proof.
W2(paatar ) = inf | / o1 — 22]2)dn) (49)
y=(pdata,py )
= it ([ [oG) - eGP (50)
v=I1(qdata,q5")
< L2 inf / 21 — z9|?)d (51)
< q’w:qumqy){ 21 — 22|%)dv}
< LIW3(qdata, 95) (52)
< L2elt2lec? (53)
O

where Eq. (50) is by the equivalence of the distributions under a homeomorphic push-forward
mapping: Pdata = P#qdata and p.. = ®xql  ; Eq. (BI) is by the Lipschitz property of gauge
mapping ¢ shown in Prop. Eq. is the error bound of the regular reflected generation over
the unit ball under Lemma[3l

Remark. The Lipschitz constant of gauge mappings between compact sets remains bounded inher-
ently. This property stands in contrast to mirror mapping-based generative models (Liu et al., 2024b)),
which map open convex sets to R™. In the latter case, the Lipschitz constant can grow unbounded
as points near the boundary are mapped to infinity, significantly complicating approximation error
analysis. Our Gauge Flow Matching circumvents this limitation, providing theoretical guarantees
on the Wasserstein-2 distance between the learned and data distributions. To optimize the model’s
performance, we can further reduce the Lipschitz constant of the gauge mapping by identifying an
interior point z° that serves as the “center” of the constraint set.
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D.4 PROOF OF GENERATION COMPLEXITY OF GFM IN PROP. [5.3]

Proof. Closed-form computation: Based on the algorithmic complexity of naturally derived
under different constraint functions.

Bisection-based computation: Based on [algorithm 3| the algorithmic complexity for the bisection
algorithm needs the feasibility check € C, which essentially involves calculating the constraint
function g;(z) fori = 1,...,m. The number of bisection steps needed to achieve a target error is
derived as O(diam(C) - log(1/epis))-

O

E EXPERIMENTAL SETTINGS AND RESULTS

In this section, we describe the experimental setup used to generate the results reported in Section
Our proposed model is implemented in PyTorch (Paszke et al.,|2019), with all models trained using
Adam optimizer (Kingma & Bal 2014) with hyperparameters 51 = 0.99, 52 = 0.999, and a learning
rate of 10~3. For sample generation, we solve the forward ODE using the method proposed by (Chen
et al., 2018)), and we follow the approach in (Xie et al.,|2024)) to solve the reflected ODE in Equation

E.1 CONSTRAINED GENERATIVE MODELS BASELINES

We compare our approach against the following state-of-the-art constrained generative models,
selected for their ability to handle various constraint types:

e FM: Vanilla flow matching that transforms a Gaussian distribution to the target distribution using
linear conditional flow (Lipman et al., 2022} [Liu et al.| 2022b).

e DM: Vanilla diffusion model with variance-preserving diffusion process (Ho et al., 2020; Song
et al.,[2020).

* Reflection: A method that applies reflection terms when generated samples encounter constraint
boundaries (Xie et al., [2024).

* Metropolis: Metropolis Sampling approach for approximating reflection-based generation (Fish{
man et al., [2024]).

* Projection: An approach utilizing orthogonal projection when generated samples violate con-
straints (Christopher et al., [2024).

* GFM: Our proposed framework as detailed in Section

We remark that all models share the same training settings (dataset, optimizers, hyperparameters) and
generation settings (ODE methods, step size). For Reflection, Metropolis, and Projection models, the
same velocity models are used. Therefore, they share the same training time as reported in the Table.
The additional constraint-handling mechanisms (e.g., reflection and projection) are implemented
based on references. We also remark that the FM and DDPM models are trained to generate samples
in the tangent space of a prescribed point, which is the same across all methods.

E.2 REFLECTION COMPUTATION

‘We follow the notations in (Xie et al.| (2024} and Lou & Ermon!(2023). Let L; be the reflection term
that reflect the outward velocity at the boundary OC. Given an initial point x;,;, the reflected ordinary
differential equation is

d.’L't = v(xt, t)dt + st7 (54)
Lo = Tinit- (55)

Intuitively, the reflection term L, in equation (54) pushes the trajectory back to the domain C once
the trajectory hits the boundary. Under mild conditions, the solution to the reflected ODE exists and
is unique (Xie et al.,|[2024).
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Empirically, the reflected ODE can be solved by numerical solvers, for example, using the Euler
method. The Euler method iteratively compute the trajectory points by

It-‘,—zst = Tt + 5t . ’U(It, t), (56)

where ¢ € [0, 1) is an intermediate time and ¢ > 0 is a small time step. Euler step with reflection
can be computed as

T4t — Tt =+ 5t . ’U(l‘t, t) — 2(1 — St)(’U(l‘t, t))T’n;@C'nac:| (57)

where 5, = min {1,inf{s > 0 | ; + s0t - v(x,t) ¢ C}} is the distance from ; to the nearest
boundary OC along direction v(z¢, t), and ng¢ is the outward normal vector at ¢+ s0t-v(z¢,t) € IC.
Algorithm 4] summarizes the Euler method with reflection and table [7] lists reflections for several
COmMMON Convex sets.

Algorithm 4 Euler method with reflection

Input: A velocity field v(x,t), a domain C, an initial point z € C, number of steps N, a function
that gives outward normal vector ng¢(x), and a function that computes the distance to boundary
sac (@, vy).

I: Letdt=1/N,zg =z

2: fori =0,1,2,...,N — 1do

3 lett=1i/N,v; =v(z;t)

4: update ;41 = x; + ot - v;

5: if Tit+1 g C then

6: compute distance to boundary s; = min{1, sgc(x;, 6t - v;)}
7: compute boundary point x} = x; + 0t - v;

8: compute normal vector n; = nac(x})

9: compute reflection term L; = —25t(1 — s;)vin;n;

10: update x;4+1 = ;41 + L;

11:  endif

12: end for

Output: x

Table 7: Closed-form Expressions for Distance and Normal Vector Functions

Constraints\ Formulation  Distance Function Normal Vector
Unit Ball lz|l2 <1 s(z,v) = {root(vFv, 20Tz, 2Tz — 1)} T n(z) = z/|z|
Unit Cube lz]loo <1 s(z,v) = min;=1,2,... .n{(1 — sign(vi)z1)/vi} n(2) = €argmaxi—y. o, p |2l
Linear aTz <b s(z,v) = (b—aTx)/aTv n(z) = a/llall
Quadratic |27 Qz + a¥x < b s(zx,v) = {root(Ag, Bg,Co)}™ n(z) = —2Qx —a
! Notation: #,a € R™,b € R, Q € ST, A € R"*F p € R*, Fy, - , F,, € RF*¥,
2 e, =(1,0,0,...,0),e2 = (0,1,0,0,...,0),...,e,-1 = (0,0,...,0,1,0),e, = (0,0,...,0,1).

3 Ag=v"Qu, Bg=22°"Qu+a'v, Cog=2°"Qaz° +a'x®—b.

()T = max(-,0).
—m211/13741113

5 root(z1, z2, x3) = %o denotes the quadratic equation solution

E.3 EVALUATION METRICS

Feasibility ratio computation Suppose that x1,z2,...,xy are generated samples, g;(z),i =
1,2,...,m are constraints of interest. One sample z is feasible if
gi(x) <0,i=1,2,...,m. (58)

The feasibility ratio of the batch samples is defined as

#{zi|i=1,2,...,N,gp(z;) <0,k =1,2,...,m}
N .

feasibility{x1, xa,..., 2N} = (59
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Practically, we employ a small tolerance € to allow numerical errors, and the feasibility ratio is
computed as

#{zi|i=1,2,...,N,gp(z;) <e,k=1,2,...,m}
N .

feasibility{x1, z2,...,28} = (60)

In our experiments, we chose the tolerance as 106,

E.4 CONSTRAINT FORMULATIONS IN ILLUSTRATIVE EXAMPLES
We first give the specific formulations of those constraints:

¢ Convex Set:
{x eR? | Az < b, ||z —c|]2 < 2.5, 2TQz + pTz 4+ d < 0} 61)
where A, b, ¢, Q, p, d are randomly sampled.
 Star-convex Set:

{z € R? | [|z]| < Ton(z) :=1+ asin(narctan(zz/z1))} (62)

where a € (0,1) and n € Z determine the size and number of stars, respectively.

¢ Geodesic-convex Set:
{reS?| Az < b} (63)

where S? is the sphere in 3-dimensional Euclidean space and is constrained by a set of linear
inequalities.

The data are sampled from a mixed Gaussian distribution, whose location parameter and covariance
are generated randomly.

Model settings: We model the velocity field with 2 hidden layers with exponential linear unit
(ELU) activation functions. We train the models for 10000 epochs with a batch size of 256, and prior
distribution as the uniform distribution over the constrained/ball domain. Samples are generated by the
Euler algorithm in 1,000 steps. For the reflected/projected methods, additional reflection/projection is
performed after each step.

E.5 RoBOTIC CONTROL BENCHMARK

We follow the procedure reported by (Jaquier et al., 2021) to learn the trajectories of the manipulability
ellipse. In planar letter drawing problems, the manipulability ellipses are modeled by SPD matrices
M ={X € S*? | X » 0, tr(X) < C}. In our formulation, we transform it into the equivalent
linear matrix inequality formulation:

M:{xER3|x1(é 8>+x2((1) (1))—1-333(8 (1))&0, tr(M) =xz1 + 23 < C} (64)

We additionally learn to sample the 2-dimensional trajectories. Therefore, our models are parameter-
ized to generate samples in R? x M

Model settings: We model the time-variant velocity field with 3 hidden layers with 256 units each
and ELU activation functions. We train the models for 10,000 epochs with a batch size of 256, and
prior distribution as the uniform distribution over the constrained/ball domain.

Table 8: Results for robotic manipulability ellipse generation task.
Methods ‘ FM DDPM GFM

Feasibility (%) | 99.92 99.94 100
MMD (x1072) | 5.3977 5.5807 9.8566
Training (s) 3.433 3.641 3.550
Inference (s) 0.502 0.863 0.832
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Figure 9: Visual comparison of 1000 samples between data distribution, DDPM model, Flow
Matching model, and our GFM model on robotic manipulability ellipse generation task.

Remark: The feasibility ratios reported in table [§| are also high for methods that do not force
feasibility, e.g., vanilla flow-matching and diffusion models. The possible reason for that phenomenon
is that the training data highly concentrate in the interior of the domain, and only a few data points
close to the boundary. Therefore, a few generated samples are infeasible.

E.6 SOLUTION GENERATION FOR RELAXED COMBINATORIAL PROBLEMS

We further evaluate our approach on high-dimensional solution generation for relaxed combinatorial
problems (Kook & Vempala, [2024). The distribution we consider is particularly interesting as it
recovers, as special cases, the sampling problems associated with Max-Cut SDP relaxations and
minimum volume ellipsoid problems, defined as:

X ~exp (—((4, X) + | X — B|% + | X — C||r — log det X)) (65)
st. X =0,(D;, X) > c;, Vi€ [m) (66)

The constraints ensure that X is a positive semidefinite n X n matrix satisfying m linear inequalities.
Each term in the energy function captures different structural aspects of the optimization land-
scape, including linear objectives, quadratic penalties, proximity constraints, and determinant-based
regularization.

By developing generative models for this class of problems, we aim to provide tools that not only
sample feasible solutions but also help explore the solution space in ways that could reveal insights
about the underlying combinatorial structure. This capability is particularly valuable for understanding
the landscape of near-optimal solutions and for generating diverse candidate solutions that might be
refined by downstream processes.

Data preparation: We sample from the target distribution using the Hit-and-Run(Bélisle et al.}
1993)) algorithm. The Hit-and-Run sampling algorithm is a Markov Chain Monte Carlo (MCMC)
method that generates random samples from a high-dimensional distribution by iteratively selecting a
random direction and moving to a new point along that direction according to the target distribution.
To generate training samples, we use Hit-and-Run sampler with 1000 burn-in, and sample new points
using 1-dimensional Metropolis sampling with 100 burn-in.

Model settings: We model the time-variant velocity field with 3 hidden layers with n?/2 hidden
units with residual connections and bottleneck structure (Liu et al.,[2024a) We train the models for
1000 epochs with a batch size of 256, and prior distribution as the uniform distribution over the
constrained/ball domain.

E.7 SCALABILITY TESTS

To evaluate scalability, we conducted experiments with randomly generated inequality constraints
while varying the problem dimension (n € [10, 3000]) with a fixed dimension k£ = 500 and m = 8
constraints across all cases, following Table[6] For each computation, we evaluate the gauge functions
for a batch size 256. In addition to dimension scalability, we also studied the scalability on batch size
and number on constraints. We fixed the problem dimension to 500 and timed the gauge function
computation for batch size ranging from 10 to 100, 000, and number of constraints ranging from 8
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to 512. Correspondingly, the number of constraints is set to 8 and the batch size is set to 512. The
results are illustrated in fig. [0

To demonstrate the efficiency of bisection algorithm (see algorithm [3), we further tested gauge
computation on convex high-dimensional polynomials generated by sum-of-squares algorithm.

A sum-of-squares polynomial of n variables and degree d is defined as

T
p(x1, T, ..., Ty) = (monod(arl, T2, ... ,xn)) Q monogy (1, T2,...,Ty), (67)

where monogy (1, T2, . . ., Ty) is a vector of all monomials up to degree d, a monomial of degree k
is defined as z{* x5 - - - 25", ¢1,¢2...,¢n, ENU{0}, ¢1 +ca+ -+ + ¢, =k, and Q is a positive

semi-definite matrix.

We conducted the bisection calculation of gauge function on a MacBook Pro 2023, and the results
are summarized in table

Table 9: Gauge function computation time of high-dimensional polynomials using bisection

No. of polynomials No. of variables Degree No. of monomials Time (s)

10 10 4 4,356 0.025
10 50 4 1,758,276 0.492
10 100 4 26,532,801 5.592

E.8 ABLATION STUDY
We consider the following ablation study to examine key components of GFM, including

» Impacts of the interior point selection: Central interior point vs Near-boundary interior point

* Impacts of different generation strategies: Reflection-based sampling vs Projection-based
sampling

* Impacts of the initial set: {5-norm ball vs {.-norm cube

We follow a similar setting in Sec.

Table 10: Performances on joint convex set under different settings.
L, L
Central  Boundary | Central Boundary

MMD (x10~2) | 0.34354 43.504 0.35528 43.594
Reflection Training (s) 0.223 0.224 0.216 0.232
Inference (s) 0.910 0.864 0.869 0.888

MMD (x1072) | 3.1421 37.827 3.3453 38.138

Projection Training (s) 0.223 0.224 0.216 0.232
Inference (s) 0.487 0.507 0.479 0.509
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Figure 10: Visual comparison in the transformed space over ball/cube: We compare gauge mappings
with central versus near-boundary interior points, and evaluate samples generated using projection
versus reflection-based strategies. Results demonstrate that gauge mapping with central interior
points reduces distortion of transformed data samples, facilitating more effective GFM model training.
Reflection-based approaches yield superior generation quality compared to projection methods.
Different initial sets show no significant impact on generation quality.
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