

GAUGE FLOW MATCHING: EFFICIENT CONSTRAINED GENERATIVE MODELING OVER GENERAL CONVEX SET AND BEYOND

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 Generative models, particularly diffusion and flow-matching approaches, have
 014 achieved remarkable success across diverse domains, including image synthesis
 015 and robotic planning. However, a fundamental challenge persists: ensuring generated
 016 samples strictly satisfy problem-specific constraints — a crucial requirement
 017 for physics-informed problems, safety-critical applications, watermark embedding,
 018 etc. Existing approaches, such as mirror maps and reflection methods, either have
 019 limited applicable constraint sets or introduce significant computational overhead.
 020 In this paper, we develop gauge flow matching (GFM), a simple yet efficient frame-
 021 work for constrained generative modeling. Our GFM approach introduces a novel
 022 bijective gauge mapping to transform generation over arbitrary compact convex
 023 sets into an equivalent process over the unit ball, which allows low-complexity
 024 feasibility-ensuring operations such as reflection. The generated samples are then
 025 mapped back to the original domain for output. We prove that our GFM frame-
 026 work guarantees strict constraint satisfaction, with low generation complexity and
 027 bounded distribution approximation errors. We further extend our GFM framework
 028 to two popular non-convex settings, namely, star-convex and geodesic-convex sets.
 029 Extensive experiments show that GFM outperforms existing methods in generation
 030 speed and quality across multiple benchmarks.

1 INTRODUCTION

031 Generative models have emerged as powerful tools for learning complex data distributions, achieving
 032 remarkable success in diverse applications ranging from image generation to scientific simulation.
 033 Recent advances, particularly in diffusion models and flow-matching approaches, have further pushed
 034 the boundaries of what's possible in areas such as photorealistic image synthesis, molecular design,
 035 and robotic trajectory planning (Ramesh et al., 2022; Betker et al., 2023; Chi et al., 2023; Abramson
 036 et al., 2024; Zeni et al., 2025).

037 However, many real-world applications necessitate generation under specific constraints. For instance,
 038 protein synthesis requires adherence to structural constraints within amino acid chains. Image
 039 generation may demand precise watermark placement or consistency with physical laws. Robotic
 040 manipulation must respect joint limits and ensure obstacle avoidance. These constraints are not
 041 merely optional considerations but fundamental requirements of their respective problem domains.
 042 Generated samples must strictly satisfy these constraints to be both meaningful and practically useful
 043 within their intended applications.

044 Existing approaches to constrained generative modeling face significant limitations (see Table 1). They either have limited applicable constraints (e.g., box and simplex) or lack a strict
 045 feasibility guarantee for generated samples. To date, developing an efficient framework for
 046 constrained generation with feasibility guarantees over general compact sets, convex or not, re-
 047 mains largely open. This work proposes Gauge
 048 Flow Matching (GFM), addressing these chal-
 049 lenges with the following contributions:

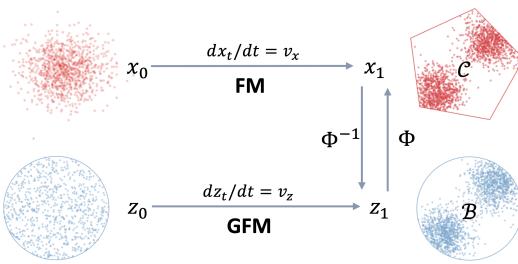


Figure 1: Gauge flow matching framework.

054 \triangleright In Sec. 4, we propose a *bi-Lipschitz* bijective gauge mapping, generalized from the one in (Tabas &
 055 Zhang, 2022a), to transform generation over general *compact convex* sets to an equivalent process over
 056 a unit ball, which allows low-complexity feasibility-ensuring operations such as reflection (Fishman
 057 et al., 2023).

058 \triangleright In Sec. 5, we prove that the GFM framework guarantees strict constraint satisfaction and bounded
 059 distribution approximation error while incurring significantly lower computational complexity com-
 060 pared to SOTA constrained generative models such as regular reflection or projection-based methods.

061 \triangleright In Sec. 6, we further extend GFM to certain non-convex constraints, in particular *star-convex* and
 062 *geodesic-convex* sets, while inheriting the computational merits in the convex setting.

063 \triangleright In Sec. 7, we provide extensive empirical studies to demonstrate our framework’s efficiency
 064 in terms of feasibility, approximation capability, and inference complexity compared to SOTA
 065 constrained generative models.

068 2 RELATED WORK

071 Ensuring feasibility is fundamental in both theoretical and practical domains. Significant research
 072 efforts have been devoted to this area, including the development of constrained optimization al-
 073 gorithms and methods to guarantee neural network (NN) output feasibility (See Appendix A for a
 074 comprehensive review of these approaches).

075 For constrained generative modeling, feasibility strategies differ fundamentally between conventional
 076 and modern generative models. While traditional VAEs and GANs can directly incorporate existing
 077 NN output feasibility methods from Appendix A, diffusion and flow-based models present unique
 078 challenges. These challenges arise from their generation mechanism, which relies on forward
 079 integration with NN-approximated score functions or vector fields, rather than direct NN outputs.
 080 Table 1 summarizes specialized approaches addressing these challenges, with discussions as follows:

081 **Reflected Process:** These approaches leverage reflection mechanisms to constrain generation trajec-
 082 tories within feasible regions. Different methods have been proposed for training score functions under
 083 reflection terms: RDM^a employs implicit score matching (Fishman et al., 2023), RDM^b develops an
 084 approximated denoising score matching approach (Lou & Ermon, 2023), and RSB utilizes iterative
 085 proportional fitting (Deng et al., 2024). RFM extends this framework to flow-based generation over
 086 convex sets by incorporating reflected directions into ODEs (Xie et al., 2024). While effective,
 087 these reflection-based methods incur significant computational overhead during forward integration,
 088 requiring boundary localization and complex reflection calculations. A recent Metropolis sampling
 089 approach addresses the computational burden of reflection calculations through rejection sampling
 090 (Fishman et al., 2024), though it lacks strict feasibility guarantees. Further, for reflection-based
 091 models, the support set of initial distribution needs to be the same as the target set \mathcal{C} , which could
 092 cause significant additional complexity for both training and inference, since sampling from a general
 093 (convex) set \mathcal{C} is non-trivial (Kook & Vempala, 2024).

094 **Bijective Map:** These approaches utilize bijective mappings to transform constrained domains.
 095 RDM^a maps simplexes to unit cubes, enabling scalable denoising score matching (Lou & Ermon,
 096 2023). MDM employs mirror maps to transform constrained data space into unconstrained dual
 097 space (Liu et al., 2024b), though its applicability is limited to simple convex sets like balls and
 098 simplexes. NAMM generalizes this approach using neural networks to approximate an invertible
 099 map for general sets (Feng et al., 2024), though it lacks theoretical guarantees for feasibility and
 100 distribution approximation. Bijective mapping has also been applied in the continuous embedding of
 101 discrete categorical data (Davis et al., 2024). To date, such bijective mapping-based methods either
 102 work for very limited sets or lack theoretical guarantees.

103 **Guided Generation:** These methods incorporate auxiliary terms to guide the generation process
 104 toward constraint satisfaction. Ω -Bridge leverages Doob’s h-transform to construct diffusion bridges
 105 over constrained domains, incorporating time-dependent force terms (Liu & Wu, 2023). Log-barrier
 106 diffusion models maintain feasibility through barrier functions (Fishman et al., 2023). PDM enforces
 107 constraints via iterative projection (Christopher et al., 2024), which has also been successfully applied
 108 for inverse problems (Chung et al., 2022; Song et al., 2023). The gradient of projection distance can
 109 also serve as the guidance term for constraint satisfaction (Naderiparizi et al., 2025). Despite their

108

109 Table 1: Existing study on constrained diffusion/flow-matching models over **continuous** domain.

Method (ref. in Sec. 2)	Constraint setting \mathcal{C}	Initial support set ^[1]	Feasibility guarantee ^[2]	Wasserstein bound	Low generation complexity ^[3]
DM/FM	-	\mathbb{R}^n	-	✓	$\mathcal{O}(\text{NFE} \cdot n^2)$
RDM	Convex	\mathcal{C}	✓	-	✗
RSB	Smooth + Bounded	\mathcal{C}	✓	✓	✗
RFM	Convex	\mathcal{C}	✓	✓	✗
Metropolis sampling	Manifold	\mathcal{C}	✗	-	✗
MDM	Ball/Simplex	\mathbb{R}^n	✓	-	✓
NAMM	(Non)-Convex	\mathbb{R}^n	✗	-	✓
Barrier-based	Convex	\mathcal{C}	✓	-	✗
Projection-based	Convex	\mathbb{R}^n	✓	-	✗
Penalty-based	General	\mathbb{R}^n	✗	-	✓
Gauge Flow Matching	Convex	\mathcal{B}	✓	✓	✓

¹ The support set of initial/prior distribution matters when preparing the initial samples for training and generation, since sampling from the general convex set, even following a simple uniform distribution, is computationally expensive (Kook & Vempala, 2024).

² Feasibility guarantee means the generated samples satisfy the target constraints strictly. The feasibility guarantees in (Fishman et al., 2024) hold with probability for a certain stepsize.

³ The low generation complexity of constrained generative models indicates the complexity is matched with regular DM/FM models, dominated by neural network evaluation ($\mathcal{O}(n^2)$) and scaled linearly with the number of function evaluations (NFE).

129

130 strict feasibility guarantees, solving projection is expensive, and there is a lack of analysis of the
131 distribution approximation error for projection-guided generation.

132

Training/Fine-tuning: Penalty function for constraint violation can be incorporated into diffusion
133 model training objectives to improve feasibility (Li et al., 2024). Lagrangian-based training with
134 dual variable updates has also been applied to handle additional constraints (Khalafi et al., 2024).
135 Post-training fine-tuning with reward functions (e.g., penalties) offers another pathway to improve
136 constraint satisfaction (Fan & Lee, 2023; Uehara et al., 2024; Domingo-Enrich et al., 2024; Zhu et al.,
137 2025).

138

In summary, existing works either have limited applicable scenarios or lack performance guarantees.
139 In this work, we propose a novel gauge mapping-based approach for constrained generative modeling.
140 While sharing conceptual similarities with mirror map-based methods, our approach distinguishes
141 itself through the broader applicability, theoretical analysis, and computational efficiency.

142

143

3 PROBLEM STATEMENT

145

We consider flow matching-based generative modeling for a data distribution p_{data} over a general
146 compact *convex*¹ set $\mathcal{C} \subset \mathbb{R}^n$. The vanilla flow-matching model (Lipman et al., 2022; Liu et al.,
147 2022b) is trained by matching the designed conditional flow (e.g., linear flow) as:

148

$$\min \quad \mathcal{L}(v_\theta) = \mathbb{E}_{x_0, x_1, t} \left[\|v_\theta(x_t, t) - (x_1 - x_0)\|^2 \right], \quad (1)$$

149

150 where $x_t = (1-t)x_0 + tx_1$ with $x_0 \sim p_0$, $x_1 \sim p_1$, and $t \sim \mathcal{U}((0, 1))$. The minimizer of the flow
151 matching loss in (1) yields a vector field that transforms a simple initial distribution, e.g., Gaussian
152 $p_0 = \mathcal{N}(0, I)$, into the target data distribution $p_1 = p_{\text{data}}$ (Liu et al., 2022b). In practice, the vector
153 field is parameterized by a neural network v_θ and optimized using samples from the target distribution
154 according to (1). Sample generation is achieved through forward integration $x_1 = x_0 + \int_0^1 v_\theta(x_t, t) dt$,
155 initializing from a Gaussian sample x_0 and following the learned vector field v_θ .

156

157

¹Compact convex set includes *linear-equality* and *convex-inequality* constraints. In this work, we consider the *convex-inequality* in the formulation without loss of generality. For *linear-equality*, it can be embedded in an unconstrained subspace by selecting independent variables and reconstructing the dependent variables via closed-form equality solving (Tordesillas et al., 2023; Donti et al., 2020; Liang et al., 2023; Ding et al., 2023), see Appendix B for details. For unbounded constraints, we may add additional box constraints to enforce physically meaningful limits.

162 **Open issue:** However, the generated samples often exhibit deviations from the constraint set \mathcal{C} due
 163 to a phenomenon known as *error propagation* (Li & van der Schaar, 2023). This occurs when the
 164 approximation errors of NN-based vector fields accumulate throughout the discretized integration
 165 process, ultimately resulting in significant deviation of the generated samples from the constraint sets.
 166 Such phenomena have been observed in both flow-matching and diffusion-based models (Benton
 167 et al., 2023; Li et al., 2023b) and easily result in feasibility issues in the constrained generative tasks.
 168 Existing approaches addressing feasibility issues suffer from either limited applicability or high
 169 computational complexity (see Table 1).

4 GAUGE FLOW MATCHING OVER CONVEX SETS

173 To address these limitations of existing methods and enable efficient constrained generative modeling,
 174 we introduce our GFM framework. It employs gauge mapping—an explicit bijective mapping
 175 between two convex sets—to transform complex constrained generative modeling into an equivalent
 176 modeling over a simple unit ball. The framework **(i)** builds the flow-matching model for transformed
 177 data distribution over a unit ball through inverse gauge mapping; and **(ii)** generates samples over a
 178 unit ball via a closed-form reflection and transforms them back to the original space through forward
 179 gauge mapping.

4.1 GENERALIZED GAUGE MAPPING BETWEEN CONVEX SETS

182 We first introduce a bijective mapping between two compact convex sets in Euclidean space, known
 183 as gauge mapping (Tabas & Zhang, 2022a):
 184

185 **Definition 4.1** (Gauge mapping). Let $\gamma_{\mathcal{C}}(x, x^{\circ}) = \inf\{\lambda \geq 0 \mid x \in \lambda(\mathcal{C} - x^{\circ})\}$ be the
 186 *Gauge/Minkowski function* (Blanchini & Miani, 2008) given an interior point $x^{\circ} \in \text{int}(\mathcal{C})$. The *gauge
 187 mapping* $\Phi : \mathcal{B} \rightarrow \mathcal{C}$ can be defined between a unit p -norm ball and a compact convex set:

$$\Phi(z) = \frac{\|z\|_p}{\gamma_{\mathcal{C}}(z, x^{\circ})} z + x^{\circ}, \quad \forall z \in \mathcal{B}, \quad \Phi^{-1}(x) = \frac{\gamma_{\mathcal{C}}(x - x^{\circ}, x^{\circ})}{\|x - x^{\circ}\|_p} (x - x^{\circ}), \quad \forall x \in \mathcal{C}, \quad (2)$$

191 As shown in Fig. 2, the gauge mapping $\Phi(\cdot)$ es-
 192 tablishes a continuous bijective correspondence
 193 (i.e., *homeomorphism*) between any compact
 194 convex set and a unit p -norm ball: $\mathcal{C} = \Phi(\mathcal{B})$
 195 and $\mathcal{B} = \Phi^{-1}(\mathcal{C})$. Intuitively, the gauge map-
 196 ping transforms a unit ball into the convex set
 197 by first *translating* the unit ball to the interior
 198 point ($0 \rightarrow x^{\circ}$), then *scaling* along every radial
 199 direction from this interior point such that the
 200 boundary of the ball becomes aligned with the
 201 boundary of the convex set (e.g., $z_1 \rightarrow x_1$). As
 202 a result, all level sets of \mathcal{B} are mapped to level
 203 sets of \mathcal{C} (e.g., $z_2 \rightarrow x_2$). The inverse mapping
 204 is similarly constructed by inverse scaling and translation back to the origin.

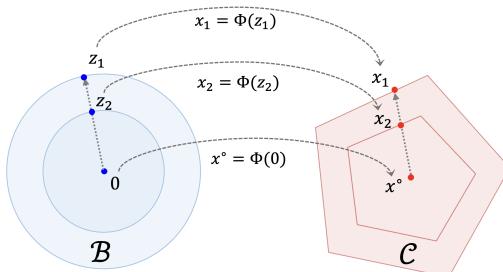


Figure 2: Gauge mapping illustration.

205 **Remark 1** ([Literature of Gauge function/map](#)). Gauge/Minkowski functions $\gamma_{\mathcal{C}}$ have been exten-
 206 sively studied in the control and online learning communities for Lyapunov function design and
 207 efficient online optimization (Blanchini, 1995; Raković & Lazar, 2014; Mhammedi, 2022; Lu et al.,
 208 2023). While gauge mapping Φ was proposed in (Tabas & Zhang, 2022a), specifically between a
 209 polytope and a cube, we [generalize](#) it to arbitrary pairs of compact convex sets and provide efficient
 210 computation methods. Specifically, in the gauge mapping calculation, (i) gauge function $\gamma_{\mathcal{C}}(x, x^{\circ})$
 211 has *closed-form* expressions for common convex sets (e.g., linear, quadratic, and convex cones) and
 212 can be efficiently computed via *bisection* methods for general convex constraints; (ii) the interior point
 213 x° is obtained *once for all* by solving a convex feasibility problem offline (see details in Appendix B).

214 Further, we characterize the *bi-Lipschitz* property of gauge mapping, as will be demonstrated in Sec.
 215 5, which is essential for establishing the regularity of transformed data distribution and controlling
 the distribution approximation error in our GFM framework.

216 **Proposition 4.1** (Bi-Lipschitz Property of the Gauge Mapping). *Let $\mathcal{C} \subset \mathbb{R}^n$ be a compact convex*
 217 *set and let $x^\circ \in \text{int}(\mathcal{C})$ be an interior point. Define the inner and outer radii with respect to x° as*
 218

$$219 \quad r_i := \sup\{r \geq 0 : \mathcal{B}_2(x^\circ, r) \subseteq \mathcal{C}\}, \quad r_o := \inf\{r \geq 0 : \mathcal{C} \subseteq \mathcal{B}_2(x^\circ, r)\},$$

220 *such that $\mathcal{B}_2(x^\circ, r_i) \subseteq \mathcal{C} \subseteq \mathcal{B}_2(x^\circ, r_o)$. Then the gauge mapping Φ between \mathcal{C} and 2-norm ball \mathcal{B}_2*
 221 *satisfies the following bounds:*

$$222 \quad \text{Forward Lipschitz: } L_\Phi \leq 2r_o + r_o^2/r_i, \quad \text{Inverse Lipschitz: } L_{\Phi^{-1}} \leq 2/r_i \quad (3)$$

224 The bi-Lipschitz property of gauge mapping depends on interior point selection. When a near-
 225 boundary interior point is selected (i.e., $r_i \rightarrow 0$), the bi-Lipschitz constant approaches infinity, which
 226 severely distorts the data distribution and creates significant challenges for generative modeling.
 227 In practice, we aim to identify a “central” interior point (where r_o is close to r_i) to minimize the
 228 bi-Lipschitz constant. Such an interior point can be approximately determined through constraint
 229 residual minimization (Tordesillas et al., 2023), which involves linear optimization over the target
 230 convex set and can be solved in polynomial time. While we derive explicit Lipschitz bounds for
 231 gauge mapping from a 2-norm ball to a convex set, these bi-Lipschitz bounds can be extended to
 232 arbitrary pairs of compact convex sets. For a more detailed introduction to gauge mapping and its
 233 properties, we refer readers to Appendix B.

234 **Algorithm 1** Training in GFM

235 **Input:** Data samples: $x_1 \sim p_{\text{data}}$ over compact convex
 236 set \mathcal{C} , and gauge mapping between \mathcal{C} and \mathcal{B} .

237 1: **Inverse transformation:** $z_1 = \Phi^{-1}(x_1)$
 238 2: Regular flow matching over \mathcal{B} in Eq. (4)

239 **Output:** Trained NN vector field v_θ .

234 **Algorithm 2** Generation in GFM

235 **Input:** Prior samples $z_0 \sim \mathcal{U}(\mathcal{B})$, NN vector field v_θ ,
 236 and gauge mapping between \mathcal{C} and \mathcal{B} .

237 1: ODE solver with **reflection** over \mathcal{B} in Eq. (5)
 238 2: **Forward transformation:** $x_1 = \Phi(z_1)$

239 **Output:** Generated feasible samples x_1 .

241 **4.2 TRAINING PHASE OF GFM**

242 Given the gauge mapping Φ between the convex set \mathcal{C} and a unit ball \mathcal{B} , a flow matching model is
 243 trained on the transformed space as:

$$244 \quad \min \mathcal{L}(v_\theta) = \mathbb{E}_{z_0, z_1, t} \left[\|v_\theta(z_t, t) - (z_1 - z_0)\|^2 \right], \quad (4)$$

245 where the initial samples $z_0 \sim q_0$ are sampled as a simple prior distribution q_0 (e.g., uniform)
 246 supported on a unit ball \mathcal{B} , the terminal samples $z_1 \sim q_1$ are transformed from the samples from the
 247 original data distribution via inverse gauge mapping as $z_1 = \Phi^{-1}(x_1)$, and $z_t = (1-t)z_0 + tz_1$.
 248 In essence, GFM models the transformed data distribution as $q_{\text{data}} = \Phi_{\#}^{-1} p_{\text{data}}$ over a unit ball \mathcal{B} ,
 249 where $\#$ is the push-forward operator. We then leverage the regular flow matching training approach
 250 to train a neural network vector field v_θ following (4).

251 **Remark 2** (Comparison to Mirror Maps). Mirror map-based generative models also employ a
 252 bijective mapping to transform constrained distributions to the unconstrained dual space (Liu et al.,
 253 2024b). However, it is only computationally tractable for simple convex sets (e.g., ball and simplex),
 254 and it maps near-boundary samples to *infinity* in the dual spaces, challenging the transformed
 255 generative modeling theoretically and practically.

256 In contrast, gauge mapping is computationally efficient for any compact convex set and maintains
 257 bounded Lipschitz constants for both sides (Prop. 4.1). These properties are crucial for the regularity
 258 of transformed data distribution and efficient flow-matching training, as will be analyzed in Sec. 5.

261 **4.3 INFERENCE PHASE OF GFM**

263 After training, we generate samples within the unit ball \mathcal{B} following the NN vector field v_θ . To
 264 constrain the generation trajectory within \mathcal{B} , we apply an additional reflection term (Xie et al., 2024):

$$265 \quad z_1 = z_0 + \int_0^1 (v_\theta(z_t, t) dt + d\mathbf{L}_t), \quad (5)$$

266 where z_0 is sampled from a unit ball following a prior distribution (e.g., uniform), and \mathbf{L}_t is the
 267 reflection term when z_t hits the constraint boundary (Xie et al., 2024). Finally, we recover the sample
 268 to the original space following the forward gauge mapping as $x_1 = \Phi(z_1)$.

270 **Remark 3** (Comparison to Regular Reflection). Reflection-based mechanisms are well-established
 271 in previous works to keep the generated samples within the constraint set (Lou & Ermon, 2023;
 272 Fishman et al., 2023; Deng et al., 2024; Xie et al., 2024). However, they face several limitations:
 273 **(i)** the reflection term is computationally expensive beyond simple sets (e.g., ball and simplex); **(ii)**
 274 existing reflection generative models require a prior distribution within the target constraint set \mathcal{C} ,
 275 which is challenging to sample from (even for uniform distribution) over general convex sets during
 276 training or generation (Kook & Vempala, 2024). These computational issues prevent reflection
 277 methods from being applied to more complex sets.

278 In contrast, after transforming the data distribution over a unit ball through inverse gauge mapping,
 279 we can easily sample from a unit ball (e.g., uniformly), implement a closed-form reflection term with
 280 $\mathcal{O}(n)$ algorithmic complexity, and batch computation for multiple samples, thus ensuring efficient
 281 sample generation within the ball and strict feasibility after mapping to the original data space.

283 5 PERFORMANCE ANALYSIS OF GFM

284 **Proposition 5.1** (Regularity of Transformed Data Distribution). *Assume that the original data
 285 distribution p_{data} satisfies regularity conditions (Assumption 1 in (Wan et al., 2024)). The transformed
 286 data distribution $q_{\text{data}} = \Phi_{\#}^{-1} p_{\text{data}}$ by a bi-Lipschitz homeomorphism (e.g., gauge mapping) also
 287 satisfies those regularity conditions.*

288 We first assume that the original data distribution p_{data} satisfies regularity conditions following (Wan
 289 et al., 2024), ensuring well-posedness of standard flow matching over the data distribution. Verifying
 290 the regularity of the transformed distribution $q_{\text{data}} = \Phi_{\#}^{-1} p_{\text{data}}$ is essential for establishing the
 291 existence and well-posedness of our gauge flow matching model. Under the bi-Lipschitz properties of
 292 gauge mapping established in Prop. 4.1, we can verify that these regularity conditions are preserved.
 293

294 It is worth noting that theoretical analyses of flow matching models in the literature assume various
 295 regularity conditions for data distributions (Benton et al., 2023; Gao et al., 2024a;b). We verify a
 296 general condition from recent work (Wan et al., 2024). Detailed proofs and further discussion on
 297 other common regularity conditions are provided in Appendix D.

298 **Proposition 5.2** (Wasserstein Bound of GFM). *Let the NN approximation error be $\epsilon_{\theta}^2 =$
 299 $\mathbb{E}_{t, z_t} \|v_{\theta}(z_t, t) - u(z_t, t)\|^2$, where $z_t \sim p_t$ and p_t is the probability density at time t driven by
 300 the target vector field u . Assume that v_{θ} is L_{θ} -Lipschitz for $z \in \mathcal{B}$ and $t \in [0, 1]$. Denote the
 301 induced probability distribution p_{θ}^{gr} under v_{θ} with reflected generation, the Wasserstein-2 dis-
 302 tance between the data distribution p_{data} and the approximated distribution p_{θ}^{gr} is bounded by
 303 $\mathcal{W}_2(p_{\text{data}}, p_{\theta}^{gr}) \leq L_{\Phi} e^{1/2 + L_{\theta}} \epsilon_{\theta}$.*

304 The Wasserstein error of GFM is bounded by the Lipschitz of gauge mapping multiplied by the
 305 distribution error in the transformed space under reflected generation. To reduce the distribution
 306 approximation error, we can regularize the neural network Lipschitz constant L_{θ} or optimize the loss
 307 function such that ϵ_{θ} is minimized, following standard flow matching training pipelines (Liu et al.,
 308 2022b). Specific to our GFM framework, we can further optimize the Lipschitz constant of the gauge
 309 mapping L_{Φ} . As discussed following Prop. 4.1, we can select a “central” interior point for the gauge
 310 mapping by solving convex optimization problems, thereby reducing the bi-Lipschitz constants.

311 **Proposition 5.3** (Inference Complexity for GFM). *Consider a compact convex set $\mathcal{C} \subset \mathbb{R}^n$ defined by
 312 constraints $g_i(x) \leq 0$, for $i = 1, 2, \dots, m$. The generation complexity of GFM (forward integration
 313 and gauge mapping calculation) is $\mathcal{O}(NFE \cdot n^2 + m \cdot C)$, where $C = \max_{1 \leq i \leq m} \{C_i\}$ is for gauge
 314 function calculation and varies by constraint type:*

315 \triangleright (i) For linear constraints $g_i(x) = a^{\top} x - b \leq 0$, $C_i = \mathcal{O}(n)$; (ii) For quadratic constraints
 316 $g_i(x) = x^{\top} Q x + a^{\top} x - b \leq 0$, $C_i = \mathcal{O}(n^2)$; (iii) For second-order cone constraints $g_i(x) = \|A^{\top} x +
 317 p\|_2 - (a^{\top} x + b) \leq 0$, $C_i = \mathcal{O}(nk)$; (iv) For matrix cone constraints $g_i(x) = \sum_{j=1}^n x_j \cdot F_j + F_0 \succeq 0$,
 318 $C_i = \mathcal{O}(nk^2 + k^3)$; where $a \in \mathbb{R}^n$, $b \in \mathbb{R}$, $Q \in \mathbb{S}_{++}^{n \times n}$, $A \in \mathbb{R}^{n \times k}$, $p \in \mathbb{R}^k$, and $F_j \in \mathbb{R}^{k \times k}$.

319 \triangleright For general convex function $g_i(x)$, $C_i = \mathcal{O}(c_i \log \epsilon_{\text{bis}}^{-1})$ using bisection, where c_i is the complexity
 320 to evaluate $g_i(\cdot)$ given a point and ϵ_{bis} is the error tolerance in bisection.

322 The forward integration complexity of our model aligns with regular flow matching approaches,
 323 requiring NFE (Number of Function Evaluations) multiplied by the evaluation complexity of v_{θ} . The
 324 additional reflection over a unit ball incurs negligible overhead with $\mathcal{O}(n)$ complexity compared

324 to the NN forward calculation ($\mathcal{O}(n^2)$). For gauge mapping computation, given that the interior
 325 point is pre-computed offline, (i) for common convex sets, it can be solved efficiently (Fig. 8), and
 326 (ii) in general case, the bisection algorithm achieves linear convergence with minimal per-iteration
 327 complexity, merely requiring calculating the constraint function without solving any optimization
 328 problem (Mhammedi, 2022).

330 6 GAUGE FLOW MATCHING BEYOND CONVEX SETS

331 We extend the gauge mapping principle to two important classes of non-convex constraint sets,
 332 broadening GFM’s applicability to richer geometric settings. We include formal definitions in
 333 Appendix C and provide empirical studies in Sec. 7.

334 \triangleright **Star-convex** sets are bounded regions where the entire boundary is visible from a designated interior
 335 point (e.g., $\ell_{0.5}$ -norm ball). These sets arise in robotic planning and chance-constrained optimization
 336 (Charnes & Cooper, 1959; Hansen et al., 2020; Liu et al., 2022a). The key insight is that compact
 337 star-convex sets preserve the essential properties needed for gauge function construction—both the
 338 gauge function and bijective mapping to the unit ball extend naturally from convex case (Licht, 2024).

339 \triangleright **Geodesic-convex** sets are regions on Riemannian manifolds where geodesics connecting any two
 340 points are unique and remain entirely within the set. These constraints widely arise in geometric
 341 learning applications (Chen & Lipman, 2023; Miller et al., 2024; Zagheni et al., 2025). The key
 342 insight is that geodesic-convexity ensures the exponential map at any interior point provides a local
 343 diffeomorphism (Lee, 2006), allowing gauge mapping construction in the tangent space.

345 7 EMPIRICAL STUDY

346 We conduct extensive simulations across illustrative examples, robotics benchmarks, and high-
 347 dimensional constrained sampling tasks to demonstrate the effectiveness of our GFM framework.
 348 Detailed experimental settings and data descriptions are provided in Appendix E.

349 **Baselines:** We compare against the following constrained generative models, selected for their
 350 applicability to diverse constraint types: (i) **FM**: Vanilla flow matching from Gaussian to target
 351 distribution with linear conditional flow (Lipman et al., 2022; Liu et al., 2022b); (ii) **DM**: Vanilla
 352 diffusion model with variance preserving diffusion process (Ho et al., 2020; Song et al., 2020); (iii)

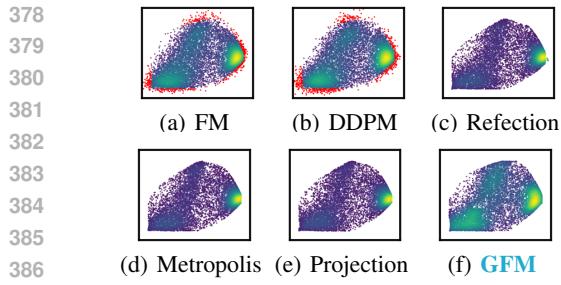
353 **Reflection:** Reflection term is applied when generated samples hit the constraint boundary (Xie
 354 et al., 2024); (iv) **Metropolis**: Metropolis sampling for approximating reflection-based generation
 355 (Fishman et al., 2024); (v) **Projection**: Orthogonal projection are applied when generated samples
 356 violate constraints (Christopher et al., 2024); (vi) **GFM**: Our framework in Sec. 4.

357 **Metrics:** We evaluate those baselines based on (i) constraint satisfaction (i.e., feasibility) ratio (%)
 358 of 10,000 generated samples, (ii) distribution approximation error, which is measured by Maximum
 359 Mean Discrepancy (MMD) between data samples and generated samples (Fishman et al., 2023), (iii)
 360 average per-epoch training time, including prior sampling, data transformation (in GFM only), and
 361 NN training, and (iv) inference time for generating 1,000 batched samples (unless otherwise specified,
 362 including prior sampling, forward integration, and data transformation (in GFM only).

364 7.1 SYNTHETIC EXAMPLES: CONVEX, STAR-CONVEX, AND GEODESIC-CONVEX SET

365 We first evaluate GFM’s performance in *convex*, *star-convex*, and *geodesic-convex* domains. As
 366 shown in Figures 3 - 5, we observe: vanilla diffusion/flow-matching models fail to guarantee sample
 367 feasibility, especially when probability density concentrates near boundaries. Existing reflection,
 368 projection, and Metropolis methods face limitations with complex constraints due to: (i) expensive
 369 prior distribution sampling, *increasing both training and inference time*; (ii) constraint-specific
 370 implementation requirements incurring *longer inference time* and *limited constraint settings*.

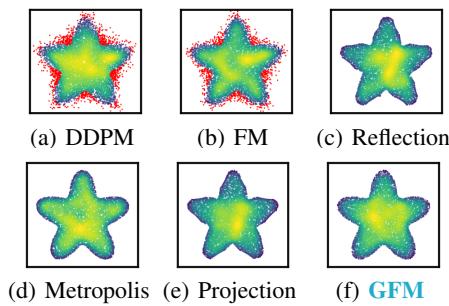
371 Our GFM framework transforms generative modeling over diverse convex sets into a simpler process
 372 over a unit ball, enabling efficient prior sampling and batch-executable reflection calculations with
 373 computational efficiency comparable to vanilla FM. After generation within the unit ball, samples are
 374 mapped back to the target constraint set via low-complexity gauge mappings, ensuring strict feasibility.
 375 Further, due to the bi-Lipschitz property (Prop. 4.1) of the gauge mapping, the approximation error
 376 of GFM remains comparable to vanilla FM. This property ensures that the distortion introduced by
 377 our transformation is bounded and controlled, preserving the fidelity of the generated samples while
 guaranteeing their feasibility within the target constraint set.



	Feasibility (%)	MMD \downarrow ($\times 10^{-3}$)	Training (s)	Inference (s)
DDPM	95.0	4.79	0.17	0.59
FM	95.9	8.57	0.18	0.29
Refection	100	25.9	6.40	14.0
Metropolis	100	130	6.40	6.12
Projection	100	93.5	6.40	7.12
GFM	100	3.50	0.18	0.63

¹ Reflection, Metropolis, and Projection models share the same NN-velocity model, and thus have the same training time per epoch.

Figure 3: Performance over joint linear and quadratic convex sets

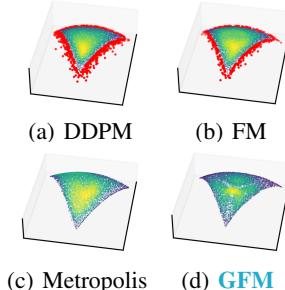


	Feasibility (%)	MMD \downarrow ($\times 10^{-3}$)	Training (s)	Inference (s)
DDPM	91.1	6.03	0.20	0.70
FM	93.4	4.92	0.22	0.39
Reflection	100	7.96	5.58	12.4
Metropolis	100	24.6	5.58	8.72
Projection	100	7.89	5.58	347
GFM	100	5.01	0.22	0.74

¹ Sampling from a prior distribution over a non-convex domain is time-consuming for reflection and Metropolis methods.

² Projection onto non-convex sets incurs significant computational cost.

Figure 4: Performance over star-convex sets



	Feasibility (%)	MMD \downarrow ($\times 10^{-3}$)	Training (s)	Inference (s)
DDPM	93.4	2.84	0.22	0.73
FM	96.1	1.20	0.21	0.35
Metropolis	100	48.3	3.57	213
GFM	100	1.29	0.23	1.44

¹ Sampling from prior distributions over constrained manifolds is computationally expensive, resulting in long Metropolis inference times.

² High rejection rates further increase Metropolis inference time.

³ Reflection and projection methods for constrained manifolds are not implemented due to computational issues.

Figure 5: Performance over geodesic-convex sets

7.2 CONSTRAINED CONFIGURATIONAL MODELING OF ROBOTIC ARMS

We apply GFM to robotic arm control tasks following (Fishman et al., 2023; 2024). This involves learning distributions over joint locations and manipulability ellipsoids represented by symmetric positive-definite matrices with trace constraints. Figure 11 (Appendix E.6) shows generated velocity manipulation ellipsoids and trajectories. GFM successfully models this distribution while maintaining constraint satisfaction.

7.3 CONSTRAINED TIME SERIES GENERATION FOR TRAFFIC DATA

Time series prediction is crucial for engineering applications, yet real-world data often suffers from imbalance and scarcity due to sensor failures or privacy concerns. Synthetic data provides a promising solution for augmenting limited datasets (Narasimhan et al., 2024). We evaluate GFM on generating realistic traffic sequences from PEMS-BAY (Li et al., 2018) subject to physical (e.g., capacity bounds) and statistical (e.g., average volume) constraints that define a convex second-order cone, ensuring physically plausible and statistically consistent sequences. See details in Appendix E.8.

Table 6 shows that GFM achieves **100%** constraint satisfaction versus 88.5% for vanilla flow matching, demonstrating the necessity of constraint-aware generation. Projection baselines also achieve 100% feasibility but increase inference time from 0.31s to 49.7s (160 \times slower), while GFM requires only 0.43s. Critically, GFM preserves superior distribution quality with a KS statistic of 0.35 (p-value 0.42) compared to projection methods. Figure 6 confirms GFM captures characteristic traffic

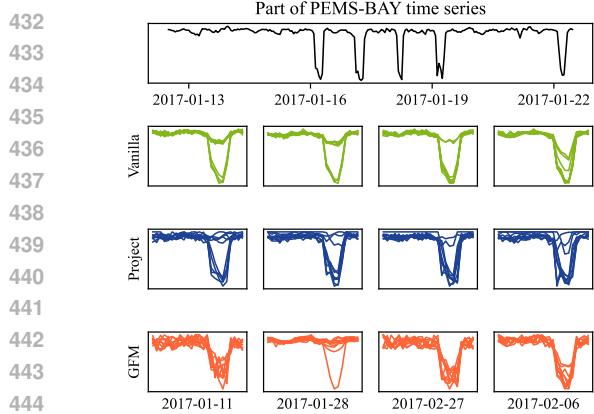


Figure 6: Performance over constrained conditional time series generations.

patterns—periodic fluctuations and sharp drops—while strictly satisfying constraints, achieving optimal balance between feasibility, fidelity, and efficiency for practical traffic data augmentation.

7.4 CONSTRAINED IMAGE GENERATION WITH EMBEDDED WATERMARKS

Watermarking generative models is critical for provenance tracking and copyright protection in AI-generated content. Following (Liu et al., 2024b), we partition pixels $\mathbf{x} \in [0, 1]^d$ into unconstrained public pixels \mathbf{x}_1 and watermark pixels $\mathbf{x}_2 \in \mathcal{C}$, where \mathcal{C} is a random polytope for watermarking. Baselines are fine-tuned from a publicly available checkpoint of flow matching models (Tong et al., 2024), which share the same U-Net architecture (34M), fine-tuning hyperparameters (200 epochs), and sampling settings (100-step Euler method) on CIFAR-10. See details in Appendix E.9.

Table 7 shows that GFM maintains **100%** constraint satisfaction, achieves better FID than other constrained generative models (projection or reflection), while having similar training/inference complexity to vanilla methods. This demonstrates that GFM enables efficient, high-quality watermark embedding without compromising visual fidelity or constraint guarantees.

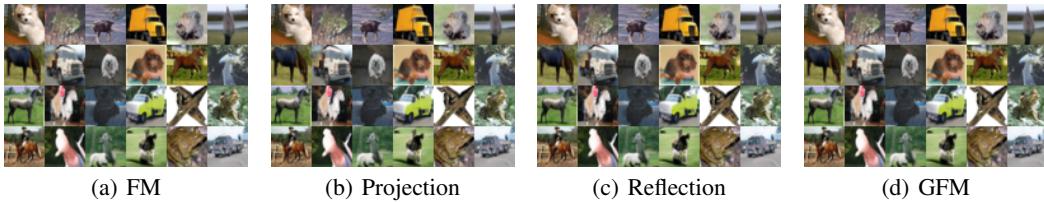


Figure 7: Constrained Image Generation with Embedded Watermarks

7.5 SOLUTION GENERATION FOR (RELAXED) COMBINATORIAL PROBLEMS

We further evaluate our approach on high-dimensional ($n = 10,000$) solution generation for relaxed combinatorial problems (Kook & Vempala, 2024). The target distribution follows a log-concave density and is constrained by a positive semidefinite cone and a set of linear inequalities. This target distribution encapsulates several important classes of semidefinite relaxations for classical combinatorial optimization problems (e.g, max-cut and minimum-volume covering problem). We prepare the dataset following this distribution described in (Kook & Vempala, 2024) and train our GFM model. As shown in Table 7, our method achieves **100%** feasibility rate while vanilla models fail to satisfy the constraints. GFM also maintains generation quality comparable to standard flow-matching models.

486 Table 7: Solution sampling for relaxed combinatorial problems.
487

Method	DDPM	FM	GFM	DDPM	FM	GFM	DDPM	FM	GFM
	$n = 10 \times 10$			$n = 50 \times 50$			$n = 100 \times 100$		
Feasibility (%)	47.2	0	100	0	0	100	0	0	100
MMD ($\times 10^{-2}$)	5.35	9.71	9.70	43.4	43.4	43.5	85.8	85.8	85.8
Training (s)	0.27	0.28	0.28	0.28	0.28	0.28	0.67	0.91	0.91
Inference (s)	1.08	0.65	1.12	2.02	1.62	10.29	6.03	5.16	12.75

494 Regarding inference time, the gauge mapping has an explicit-form computation, with computational
495 cost primarily stemming from matrix decomposition operations (via `torch.linalg.eigvalsh`) for 1,000
496 samples in a batch. This overhead can be further reduced through the application of advanced linear
497 algebra packages (Van de Geijn, 1997). We do not implement reflection methods since sampling
498 the prior distribution in such a high-dimensional constraint set is computationally expensive (e.g.,
499 if we apply Ball walk, it will incur $\mathcal{O}(n^8 \log n)$ mixing complexity (Kook & Vempala, 2024)). For
500 the projection methods, it will solve 10^5 projection problems over the PSD cone at most (1,000
501 samples and 100 integration steps), which is unaffordable on our computing device.

502 7.6 SCALABILITY TESTS AND ABLATION STUDY

503 **Scalability of gauge mapping:** We evaluate
504 GFM’s scalability in high-dimensional settings
505 by measuring the computational cost of gauge
506 function calculations. For closed-form gauge
507 calculation on four common convex sets (Fig.
508 8), our approach maintains efficiency across
509 dimensions up to 3,000, demonstrating practical
510 applicability for high-dimensional tasks. For
511 bisection-based gauge calculation on poly-
512 nomial constraints (sum-of-squares formulation,
513 Table 12), a degree-4 polynomial with 50 vari-
514 ables containing 1,758,276 monomial terms
515 can efficiently compute gauge functions for
516 1,000 samples in 0.492 seconds. Details are
517 provided in Appendix E.10.

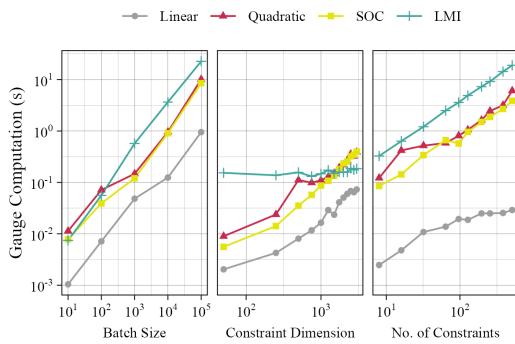
518 **Impacts of the interior point (IP) selection:** Following Prop. 4.1, the IP selection determines the
519 bi-Lipschitz property of gauge mapping and consequently affects generation quality. We compare
520 *central* versus *near-boundary* IPs to demonstrate this claim, with results in Table 13.

521 **Comparison to Mirror Map:** We compare the Mirror Map and Gauge Map in terms of generative
522 modeling over the simplex in 2 and 50 dimensions, with results presented in Appendix E.5.

523 **Impacts of generation strategies:** While we adopt *reflection* to keep samples within the unit ball
524 (Sec. 4.3), alternatives like *projection* can also be efficiently implemented. Table 13 shows that
525 projection is faster but leads to a larger MMD, which motivates theoretical analysis in future works.

526 8 CONCLUDING AND LIMITATIONS

527 We introduced Gauge Flow Matching (GFM), a framework that transforms generative modeling over
528 arbitrary compact convex sets into an equivalent process over the unit ball through a *generalized* gauge
529 mapping. This approach guarantees strict constraint satisfaction with low computational complexity
530 and bounded distribution approximation errors, and can be extended to important non-convex settings.
531 Our experiments demonstrate that GFM outperforms existing methods in both speed and sample
532 quality across multiple benchmarks. Despite these advances, several limitations warrant future
533 investigation. (i) Extending the framework to more general non-convex sets presents an important
534 direction, which could be realized through decomposition of the non-convex set into disjoint convex
535 or star-convex subsets, followed by conditional generative modeling over those subsets. (ii) While our
536 primary focus is on continuous domains, extending GFM to discrete generation through relaxation
537 or embedding techniques represents a promising avenue for future work (Davis et al., 2024). (iii)
538 Adapting GFM to constrained one-step generation models could further improve generation efficiency
539 beyond the current multi-step approach (Song et al., 2023; Frans et al., 2024).



540 Figure 8: Gauge function computation.

540 REFERENCES
541

542 Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
543 Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure
544 prediction of biomolecular interactions with alphafold 3. *Nature*, 630(8016):493–500, 2024.

545 Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and J Zico Kolter.
546 Differentiable convex optimization layers. *Advances in neural information processing systems*, 32,
547 2019.

548 Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks.
549 In *International Conference on Machine Learning*, pp. 136–145. PMLR, 2017.

550 Claude JP Bélisle, H Edwin Romeijn, and Robert L Smith. Hit-and-run algorithms for generating
551 multivariate distributions. *Mathematics of Operations Research*, 18(2):255–266, 1993.

552 Joe Benton, George Deligiannidis, and Arnaud Doucet. Error bounds for flow matching methods.
553 *arXiv preprint arXiv:2305.16860*, 2023.

554 James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang
555 Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions. *Computer
556 Science*. <https://cdn.openai.com/papers/dall-e-3.pdf>, 2(3):8, 2023.

557 Franco Blanchini. Nonquadratic lyapunov functions for robust control. *Automatica*, 31(3):451–461,
558 1995.

559 Franco Blanchini and Stefano Miani. *Set-theoretic methods in control*, volume 78. Springer, 2008.

560 Abraham Charnes and William W Cooper. Chance-constrained programming. *Management science*,
561 6(1):73–79, 1959.

562 Bingqing Chen, Priya L Donti, Kyri Baker, J Zico Kolter, and Mario Bergés. Enforcing policy
563 feasibility constraints through differentiable projection for energy optimization. In *Proceedings of
564 the Twelfth ACM International Conference on Future Energy Systems*, pp. 199–210, 2021.

565 Ricky TQ Chen and Yaron Lipman. Flow matching on general geometries. *arXiv preprint
566 arXiv:2302.03660*, 2023.

567 Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
568 differential equations. *Advances in neural information processing systems*, 31, 2018.

569 Richard Cheng, Gábor Orosz, Richard M Murray, and Joel W Burdick. End-to-end safe reinforcement
570 learning through barrier functions for safety-critical continuous control tasks. In *Proceedings of
571 the AAAI Conference on Artificial Intelligence*, volume 33, pp. 3387–3395, 2019.

572 Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
573 and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. *The
574 International Journal of Robotics Research*, pp. 02783649241273668, 2023.

575 Jacob K Christopher, Stephen Baek, and Ferdinando Fioretto. Constrained synthesis with projected
576 diffusion models. In *The Thirty-eighth Annual Conference on Neural Information Processing
577 Systems*, 2024.

578 Hyungjin Chung, Byeongsu Sim, Dohoon Ryu, and Jong Chul Ye. Improving diffusion models for
579 inverse problems using manifold constraints. *Advances in Neural Information Processing Systems*,
580 35:25683–25696, 2022.

582 Oscar Davis, Samuel Kessler, Mircea Petrache, Ismail Ilkan Ceylan, Michael Bronstein, and
583 Avishek Joey Bose. Fisher flow matching for generative modeling over discrete data. *arXiv
584 preprint arXiv:2405.14664*, 2024.

585 Wei Deng, Yu Chen, Nicole Tianjiao Yang, Hengrong Du, Qi Feng, and Ricky TQ Chen. Reflected
586 schrödinger bridge for constrained generative modeling. *arXiv preprint arXiv:2401.03228*, 2024.

594 Shutong Ding, Jingya Wang, Yali Du, and Ye Shi. Reduced policy optimization for continuous
 595 control with hard constraints. In *Thirty-seventh Conference on Neural Information Processing*
 596 *Systems*, 2023.

597

598 Carles Domingo-Enrich, Michal Drozdzal, Brian Karrer, and Ricky TQ Chen. Adjoint matching:
 599 Fine-tuning flow and diffusion generative models with memoryless stochastic optimal control.
 600 *arXiv preprint arXiv:2409.08861*, 2024.

601 Priya L Donti, David Rolnick, and J Zico Kolter. Dc3: A learning method for optimization with hard
 602 constraints. In *International Conference on Learning Representations*, 2020.

603

604 Ying Fan and Kangwook Lee. Optimizing ddpm sampling with shortcut fine-tuning. *arXiv preprint*
 605 *arXiv:2301.13362*, 2023.

606 Berthy T Feng, Ricardo Baptista, and Katherine L Bouman. Neural approximate mirror maps for
 607 constrained diffusion models. *arXiv preprint arXiv:2406.12816*, 2024.

608

609 Nic Fishman, Leo Klarner, Valentin De Bortoli, Emile Mathieu, and Michael Hutchinson. Diffusion
 610 models for constrained domains. *arXiv preprint arXiv:2304.05364*, 2023.

611 Nic Fishman, Leo Klarner, Emile Mathieu, Michael Hutchinson, and Valentin De Bortoli. Metropolis
 612 sampling for constrained diffusion models. *Advances in Neural Information Processing Systems*,
 613 36, 2024.

614

615 Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut
 616 models. *arXiv preprint arXiv:2410.12557*, 2024.

617 Thomas Frerix, Matthias Nießner, and Daniel Cremers. Homogeneous linear inequality constraints
 618 for neural network activations. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 619 *and Pattern Recognition Workshops*, pp. 748–749, 2020.

620

621 Yuan Gao, Jian Huang, and Yuling Jiao. Gaussian interpolation flows. *Journal of Machine Learning*
 622 *Research*, 25(253):1–52, 2024a.

623

624 Yuan Gao, Jian Huang, Yuling Jiao, and Shurong Zheng. Convergence of continuous normalizing
 625 flows for learning probability distributions. *arXiv preprint arXiv:2404.00551*, 2024b.

626

627 Guillermo Hansen, Irmina Herburt, Horst Martini, and Maria Moszyńska. Starshaped sets. *Aequa-*
 628 *tiones mathematicae*, 94:1001–1092, 2020.

629

630 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 631 *Neural Information Processing Systems*, 33:6840–6851, 2020.

632

633 Noémie Jaquier, Leonel Rozo, Darwin G Caldwell, and Sylvain Calinon. Geometry-aware manipula-
 634 bility learning, tracking, and transfer. *The International Journal of Robotics Research*, 40(2-3):
 635 624–650, 2021.

636

637 Shervin Khalafi, Dongsheng Ding, and Alejandro Ribeiro. Constrained diffusion models via dual
 638 training. *arXiv preprint arXiv:2408.15094*, 2024.

639

640 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint*
 641 *arXiv:1412.6980*, 2014.

642

643 Andrei V Konstantinov and Lev V Utkin. A new computationally simple approach for implementing
 644 neural networks with output hard constraints. In *Doklady Mathematics*, volume 108, pp. S233–
 645 S241. Springer, 2023.

646

647 Yunbum Kook and Santosh S Vempala. Gaussian cooling and dikan walks: The interior-point method
 648 for logconcave sampling. In *The Thirty Seventh Annual Conference on Learning Theory*, pp.
 649 3137–3240. PMLR, 2024.

Anastasis Kratsios, Behnoosh Zamanlooy, Tianlin Liu, and Ivan Dokmanić. Universal approxima-
 650 tion under constraints is possible with transformers. In *International Conference on Learning*
 651 *Representations*, 2021.

648 Dohyun Kwon, Ying Fan, and Kangwook Lee. Score-based generative modeling secretly minimizes
 649 the wasserstein distance. *arXiv preprint arXiv:2212.06359*, 2022.
 650

651 John M Lee. *Riemannian manifolds: an introduction to curvature*, volume 176. Springer Science &
 652 Business Media, 2006.

653 Anjian Li, Zihan Ding, Adji Bousso Dieng, and Ryne Beeson. Efficient and guaranteed-safe non-
 654 convex trajectory optimization with constrained diffusion model. *arXiv preprint arXiv:2403.05571*,
 655 2024.

656 Meiyi Li and Javad Mohammadi. Toward rapid, optimal, and feasible power dispatch through
 657 generalized neural mapping. *arXiv preprint arXiv:2311.04838*, 2023.

658 Meiyi Li, Soheil Kolouri, and Javad Mohammadi. Learning to solve optimization problems with hard
 659 linear constraints. *IEEE Access*, 2023a.

660 Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural network:
 661 Data-driven traffic forecasting. In *International Conference on Learning Representations (ICLR*
 662 '18), 2018.

663 Yangming Li and Mihaela van der Schaar. On error propagation of diffusion models. *arXiv preprint*
 664 *arXiv:2308.05021*, 2023.

665 Yangming Li, Zhaozhi Qian, and Mihaela van der Schaar. Do diffusion models suffer error prop-
 666 agation? theoretical analysis and consistency regularization. *arXiv preprint arXiv:2308.05021*,
 667 2023b.

668 Enming Liang and Minghua Chen. Efficient bisection projection to ensure neural-network solution
 669 feasibility for optimization over general set. In *International Conference on Machine Learning*.
 670 PMLR, 2025.

671 Enming Liang, Minghua Chen, and Steven H. Low. Low complexity homeomorphic projection to
 672 ensure neural-network solution feasibility for optimization over (non-)convex set. In *International*
 673 *Conference on Machine Learning*. PMLR, 2023.

674 Enming Liang, Minghua Chen, and Steven H. Low. Homeomorphic projection to ensure neural-
 675 network solution feasibility for constrained optimization. *Journal of Machine Learning Research*,
 676 2024.

677 Martin Werner Licht. On the geometry of star domains and the spectra of hodge-laplace operators
 678 under domain approximation. *arXiv preprint arXiv:2411.01655*, 2024.

679 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 680 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.

681 Chenghao Liu, Enming Liang, and Minghua Chen. Characterizing resnet's universal approximation
 682 capability. In *Forty-first International Conference on Machine Learning*, 2024a.

683 Guan-Horng Liu, Tianrong Chen, Evangelos Theodorou, and Molei Tao. Mirror diffusion models for
 684 constrained and watermarked generation. *Advances in Neural Information Processing Systems*, 36,
 685 2024b.

686 Tianyu Liu, Qianhao Wang, Xingguang Zhong, Zhepei Wang, Chao Xu, Fu Zhang, and Fei Gao.
 687 Star-convex constrained optimization for visibility planning with application to aerial inspection.
 688 In *2022 International Conference on Robotics and Automation (ICRA)*, pp. 7861–7867. IEEE,
 689 2022a.

690 Xingchao Liu and Lemeng Wu. Learning diffusion bridges on constrained domains. In *international*
 691 *conference on learning representations (ICLR)*, 2023.

692 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
 693 transfer data with rectified flow. *arXiv preprint arXiv:2209.03003*, 2022b.

694 Aaron Lou and Stefano Ermon. Reflected diffusion models. In *International Conference on Machine*
 695 *Learning*, pp. 22675–22701. PMLR, 2023.

702 Zhou Lu, Nataly Brukhim, Paula Gradu, and Elad Hazan. Projection-free adaptive regret with
 703 membership oracles. In *International Conference on Algorithmic Learning Theory*, pp. 1055–1073.
 704 PMLR, 2023.

705 Zakaria Mhammedi. Efficient projection-free online convex optimization with membership oracle. In
 706 *Conference on Learning Theory*, pp. 5314–5390. PMLR, 2022.

708 Benjamin Kurt Miller, Ricky TQ Chen, Anuroop Sriram, and Brandon M Wood. Flowmm: Generating
 709 materials with riemannian flow matching. *arXiv preprint arXiv:2406.04713*, 2024.

711 Saeid Naderiparizi, Xiaoxuan Liang, Berend Zwartsenberg, and Frank Wood. Constrained generative
 712 modeling with manually bridged diffusion models. In *Proceedings of the AAAI Conference on
 713 Artificial Intelligence*, volume 39, pp. 19607–19615, 2025.

714 Sai Shankar Narasimhan, Shubhankar Agarwal, Litu Rout, Sanjay Shakkottai, and Sandeep P
 715 Chinchali. Constrained posterior sampling: Time series generation with hard constraints. *arXiv
 716 preprint arXiv:2410.12652*, 2024.

718 Rahul Nellikkath and Spyros Chatzivasileiadis. Physics-informed neural networks for minimising
 719 worst-case violations in dc optimal power flow. In *2021 IEEE International Conference on
 720 Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)*, pp.
 721 419–424. IEEE, 2021.

722 Xiang Pan, Tianyu Zhao, Minghua Chen, and Shengyu Zhang. Deepopf: A deep neural network
 723 approach for security-constrained dc optimal power flow. *IEEE Transactions on Power Systems*,
 724 36(3):1725–1735, 2020.

725 Xiang Pan, Minghua Chen, Tianyu Zhao, and Steven H Low. Deepopf: A feasibility-optimized deep
 726 neural network approach for ac optimal power flow problems. *IEEE Systems Journal*, pp. 42–47,
 727 2022.

729 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 730 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
 731 high-performance deep learning library. *Advances in neural information processing systems*, 32,
 732 2019.

733 Saša V Raković and Mircea Lazar. The minkowski–lyapunov equation for linear dynamics: Theoreti-
 734 cal foundations. *Automatica*, 50(8):2015–2024, 2014.

736 Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
 737 conditional image generation with clip latents. *arXiv preprint arXiv:2204.06125*, 1(2):3, 2022.

738 R Tyrrell Rockafellar. Second-order convex analysis. *J. Nonlinear Convex Anal.*, 1(1-16):84, 1999.

740 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv
 741 preprint arXiv:2010.02502*, 2020.

743 Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. *arXiv preprint
 744 arXiv:2303.01469*, 2023.

745 Daniel Tabas and Baosen Zhang. Computationally efficient safe reinforcement learning for power
 746 systems. In *2022 American Control Conference (ACC)*, pp. 3303–3310. IEEE, 2022a.

748 Daniel Tabas and Baosen Zhang. Safe and efficient model predictive control using neural networks:
 749 An interior point approach. In *2022 IEEE 61st Conference on Decision and Control (CDC)*, pp.
 750 1142–1147. IEEE, 2022b.

751 Mathieu Tanneau and Pascal Van Hentenryck. Dual lagrangian learning for conic optimization. *arXiv
 752 preprint arXiv:2402.03086*, 2024.

754 Alexander Tong, Kilian Fatras, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-
 755 Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models
 with minibatch optimal transport. *Transactions on Machine Learning Research*, pp. 1–34, 2024.

756 Jesus Tordesillas, Jonathan P How, and Marco Hutter. Rayen: Imposition of hard convex constraints
 757 on neural networks. *arXiv preprint arXiv:2307.08336*, 2023.

758

759 Masatoshi Uehara, Yulai Zhao, Kevin Black, Ehsan Hajiramezanali, Gabriele Scalia, Nathaniel Lee
 760 Diamant, Alex M Tseng, Tommaso Biancalani, and Sergey Levine. Fine-tuning of continuous-time
 761 diffusion models as entropy-regularized control. *arXiv preprint arXiv:2402.15194*, 2024.

762 Robert A Van de Geijn. *Using PLAPACK—parallel Linear Algebra Package*. MIT press, 1997.

763

764 Zhengchao Wan, Qingsong Wang, Gal Mishne, and Yusu Wang. Elucidating flow matching ode
 765 dynamics with respect to data geometries. *arXiv e-prints*, pp. arXiv–2412, 2024.

766 Runzhong Wang, Yunhao Zhang, Ziao Guo, Tianyi Chen, Xiaokang Yang, and Junchi Yan. Linsatnet:
 767 the positive linear satisfiability neural networks. In *International Conference on Machine Learning*,
 768 pp. 36605–36625. PMLR, 2023.

769

770 Tianyu Xie, Yu Zhu, Longlin Yu, Tong Yang, Ziheng Cheng, Shiyue Zhang, Xiangyu Zhang, and
 771 Cheng Zhang. Reflected flow matching. *arXiv preprint arXiv:2405.16577*, 2024.

772

773 Jinsung Yoon, Daniel Jarrett, and Mihaela van der Schaar. Time-series generative adversarial networks.
 774 In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.),
 775 *Advances in Neural Information Processing Systems*, volume 32. Curran Associates, Inc., 2019.

776

777 Olga Zaghen, Floor Eijkelboom, Alison Pouplin, and Erik J Bekkers. Towards variational flow
 778 matching on general geometries. *arXiv preprint arXiv:2502.12981*, 2025.

779

780 Claudio Zeni, Robert Pinsler, Daniel Züigner, Andrew Fowler, Matthew Horton, Xiang Fu, Zilong
 781 Wang, Aliaksandra Shysheya, Jonathan Crabbé, Shoko Ueda, et al. A generative model for
 782 inorganic materials design. *Nature*, pp. 1–3, 2025.

783

784 Liyuan Zheng, Yuanyuan Shi, Lillian J Ratliff, and Baosen Zhang. Safe reinforcement learning of
 785 control-affine systems with vertex networks. In *Learning for Dynamics and Control*, pp. 336–347.
 786 PMLR, 2021.

787

788 Kaizhen Zhu, Mokai Pan, Yuexin Ma, Yanwei Fu, Jingyi Yu, Jingya Wang, and Ye Shi. Unidb: A
 789 unified diffusion bridge framework via stochastic optimal control. *arXiv preprint arXiv:2502.05749*,
 790 2025.

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 **Contents**

811

812	A Related Work on NN Feasibility	17
813		
814	B Gauge Mapping over General Convex Sets	17
815	B.1 Handling Linear Equality Constraints	17
816	B.2 Gauge Mapping for Inequality Constraints	18
817	B.2.1 Gauge Function and Properties	18
818	B.2.2 Gauge Mapping and Properties	19
819	B.2.3 Computation Methods	21
820	C Gauge Mapping for Non-convex Constraints	22
821	C.1 Star-convex Set	22
822	C.2 Geodesic-convex Set	23
823	C.3 More General Non-convex Set	24
824		
825	D Theoretical Analysis of GFM	25
826	D.1 Assumption and Preliminary	25
827	D.2 Proof of Regularity of GFM in Prop. 5.1	25
828	D.3 Proof of Error Bound of GFM in Prop. 5.2	26
829	D.4 Proof of Generation Complexity of GFM in Prop. 5.3	27
830	E Experimental Settings	27
831	E.1 Constrained Generative Models Baselines	27
832	E.2 Reflection computation	28
833	E.3 Performance Evaluation Metrics	29
834	E.4 Constraint Formulations in Illustrative Examples	29
835	E.5 <i>Mirror Map vs Gauge Map on Simplex Domain</i>	29
836	E.6 Configuration Generation in Robotic Control Benchmark	30
837	E.7 Solution Generation for Relaxed Combinatorial Problems	31
838	E.8 <i>Constrained Conditional Time Series Generation</i>	32
839	E.9 <i>Watermarked Image Generation Tasks</i>	33
840	E.10 Setting of Scalability Tests of Gauge Mapping	34
841	E.11 Ablation Study	34
842		
843		
844		
845		
846		
847		
848		
849		
850		
851		
852		
853		
854		
855		
856		
857		
858		
859		
860		
861		
862		
863		

864 LLM USAGE
865866 Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
867868 869 A RELATED WORK ON NN FEASIBILITY
870871 Research on ensuring neural network feasibility can be categorized into several approaches:
872873 **Basic Constraint Handling:** Specialized activation functions (Sigmoid/Softmax) address basic
874 constraints such as box or simplex (Pan et al., 2022; Donti et al., 2020). Penalty of output constraint
875 violations can be incorporated into loss functions to improve NN feasibility (Cheng et al., 2019; Pan
876 et al., 2020; Nellikkath & Chatzivasileiadis, 2021).877 **Strict Satisfaction Methods:** For exact equality constraint satisfaction, prediction-then-reconstruct
878 or completion techniques can be applied (Donti et al., 2020; Pan et al., 2022; Liang et al., 2023).
879 For more general constraint enforcement, orthogonal/L2 projection is often employed. However,
880 solving the projection problem either by iterative solver or equivalent optimization layers (Amos &
881 Kolter, 2017; Agrawal et al., 2019; Chen et al., 2021; Wang et al., 2023) is computationally intensive
882 in real-time. More efficient biseciton-based projection can also be applied at the cost of a minor
883 optimality loss (Liang et al., 2024; Liang & Chen, 2025).884 **Sampling Approach:** To guarantee feasibility, an inner approximation of the original constraint
885 set can be constructed. For linear constraints, vertex networks employ a convex combination of
886 sampled vertexes and rays to ensure policy feasibility (Frerix et al., 2020; Zheng et al., 2021). For
887 general compact but fixed constraint sets, probabilistic transformer utilizes feasible samples to ensure
888 feasibility (Kratsios et al., 2021). However, scalability remains a challenge due to the exponential
889 growth in required samples with increasing problem dimensionality.890 **Gauge function.** These works utilize gauge functions (Blanchini & Miani, 2008) to constrain the NN.
891 A closed-form bijection, known as gauge mapping, between a hypercube and a polytope is used to
892 bound the NN output within the polytope (Tabas & Zhang, 2022a;b; Li et al., 2023a). For fixed convex
893 constraints, a series of works apply gauge functions to find feasible boundary solutions (Tordesillas
894 et al., 2023; Konstantinov & Utkin, 2023; Li & Mohammadi, 2023; Tanneau & Van Hentenryck,
895 2024).896 These approaches are typically designed for the end-to-end neural network structure, which can not
897 be directly applied to the diffusion or flow-matching based generative model due to the forward
898 integration calculation.899 B GAUGE MAPPING OVER GENERAL CONVEX SETS
900901 A general compact convex set encompasses both linear equality and convex inequality constraints.
902

903
$$\mathcal{C} = \{x \in \mathbb{R}^n \mid Ax = b, g_1(x) \leq 0, \dots, g_m(x) \leq 0\}, \quad (6)$$

904 where $A \in \mathbb{R}^{r \times n}$, $b \in \mathbb{R}^r$, and $g_1(x), \dots, g_m(x)$ are convex functions.
905906 This section presents a systematic approach to handling such sets by first eliminating linear equality
907 constraints, followed by computing gauge mappings for the remaining inequality constraints.
908909 B.1 HANDLING LINEAR EQUALITY CONSTRAINTS
910911 Without loss of generality, assuming $\text{rank}(A) = r$, we partition the decision variable x into $x_1 \in \mathbb{R}^{n-r}$ and
912 $x_2 \in \mathbb{R}^r$. Accordingly, we partition matrix A into $A = [A_1, A_2]$, where $A_1 \in \mathbb{R}^{r \times (n-r)}$
913 and $A_2 \in \mathbb{R}^{r \times r}$. The equality constraint $Ax = b$ can then be written as:

914
$$A_1 x_1 + A_2 x_2 = b \quad (7)$$

915

916 By choosing the partition such that A_2 has full rank r , we can express x_2 explicitly in terms of x_1 :
917

918
$$x_2 = \phi(x_1) = A_2^{-1}(b - A_1 x_1) \quad (8)$$

918 This transformation reduces the original set to one with only inequality constraints:
 919

$$920 \quad \mathcal{C}^s = \{x_1 \in \mathbb{R}^{n-r} \mid g([x_1, \phi(x_1)]) \leq 0\} \quad (9)$$

921 Therefore, we only consider the inequality constraints in the main body of this work.
 922

923 B.2 GAUGE MAPPING FOR INEQUALITY CONSTRAINTS

925 Without loss of generality, we consider $\mathcal{C} = \{x \mid g_1(x) \leq 0, \dots, g_m(x) \leq 0\}$.
 926

927 We define the following metrics for a compact convex set.

928 **Definition B.1** (Point-to-boundary distance and its inverse (Tordesillas et al., 2023)). Let $\mathcal{C} \subset \mathbb{R}^n$ be
 929 a compact convex set and $x^\circ \in \text{int}(\mathcal{C})$ an interior point. For any unit vector $v \in \mathbb{S}^{n-1} = \{u \in \mathbb{R}^n \mid
 930 \|u\| = 1\}$, we define the interior-point-to-boundary distance function $d_{\mathcal{C}} : \text{int}(\mathcal{C}) \times \mathbb{S}^{n-1} \rightarrow \mathbb{R}_+$
 931 along direction v as

$$932 \quad d_{\mathcal{C}}(x^\circ, v) = \sup\{\lambda \geq 0 \mid x^\circ + \lambda v \in \mathcal{C}\}. \quad (10)$$

933 The inverse distance function $\kappa_{\mathcal{C}} : \text{int}(\mathcal{C}) \times \mathbb{S}^{n-1} \rightarrow \mathbb{R}_+$ is defined as $\kappa_{\mathcal{C}}(x^\circ, v) := 1/d_{\mathcal{C}}(x^\circ, v)$.
 934

935 For a compact convex set, the minimum and maximum interior point-to-boundary distances are
 936 bounded and are defined as:

- 938 • the minimum point-to-boundary distance: $r_i = \arg \sup_{r \geq 0} \{\mathcal{B}_2(x^\circ, r) \subseteq \mathcal{C}\}$.
- 939 • the maximum point-to-boundary distance: $r_o = \arg \inf_{r \geq 0} \{\mathcal{C} \subseteq \mathcal{B}_2(x^\circ, r)\}$.
- 940 • thus, we have $\mathcal{B}_2(x^\circ, r_i) \subseteq \mathcal{C} \subseteq \mathcal{B}_2(x^\circ, r_o)$

942 B.2.1 GAUGE FUNCTION AND PROPERTIES

944 We then introduce the gauge function:

945 **Definition B.2** (Gauge/Minkowski function (Blanchini & Miani, 2008)). Let $\mathcal{C} \subset \mathbb{R}^n$ be a compact
 946 convex set with a non-empty interior. The Gauge/Minkowski function $\gamma_{\mathcal{C}} : \mathbb{R}^n \times \text{int}(\mathcal{C}) \rightarrow \mathbb{R}_+$ is
 947 defined as

$$948 \quad \gamma_{\mathcal{C}}(x, x^\circ) = \inf\{\lambda \geq 0 \mid x \in \lambda(\mathcal{C} - x^\circ)\}, \quad (11)$$

950 where $x^\circ \in \text{int}(\mathcal{C})$ is an interior point of \mathcal{C} .

951 The Gauge function generalizes the concept of a norm. For a set \mathcal{C} that is symmetric about the origin,
 952 the gauge function $\gamma_{\mathcal{C}}(x, 0)$ defines a norm. In particular, when $\mathcal{C} = \mathcal{B}_p = \{x \in \mathbb{R}^n \mid \|x\|_p \leq 1\}$ is
 953 the unit ball of the p -norm, we have $\gamma_{\mathcal{B}_p}(x, 0) = \|x\|_p$. More generally, the gauge function satisfies
 954 the following properties for all $x, y \in \mathbb{R}^n$ and $\alpha \geq 0$:

955 **Lemma 1** (Properties of gauge function). *The gauge function $\gamma_{\mathcal{C}}(x, x^\circ)$ with respect to a compact
 956 convex set \mathcal{C} and an interior point $x^\circ \in \text{int}(\mathcal{C})$ satisfies the following properties:*

- 958 • *Non-negativity*: $\gamma_{\mathcal{C}}(x, x^\circ) \geq 0$
- 959 • *Positive homogeneity*: $\gamma_{\mathcal{C}}(\alpha x, x^\circ) = \alpha \gamma_{\mathcal{C}}(x, x^\circ)$ for $\alpha \geq 0$.
- 960 • *Subadditivity*: $\gamma_{\mathcal{C}}(x + y, x^\circ) \leq \gamma_{\mathcal{C}}(x, x^\circ) + \gamma_{\mathcal{C}}(y, x^\circ)$.
- 961 • *Convexity*: induced by positive homogeneity and subadditivity.
- 962 • *Differentiability*: under convexity, the gauge function is twice differentiable almost everywhere by
 963 Alexandrov's theorem (Rockafellar, 1999).
- 964 • *Equivalent formulations based on (inverse) distance function*:

$$965 \quad \gamma_{\mathcal{C}}(x, x^\circ) = \kappa_{\mathcal{C}}(x^\circ, x/\|x\|) \cdot \|x\| = \frac{\|x\|}{d_{\mathcal{C}}(x^\circ, x/\|x\|)} \quad (12)$$

$$971 \quad \gamma_{\mathcal{C}}(x/\|x\|, x^\circ) = \kappa_{\mathcal{C}}(x^\circ, x/\|x\|) = \frac{1}{d_{\mathcal{C}}(x^\circ, x/\|x\|)} \quad (13)$$

972 • *Upper/lower bounds: the gauge function is bounded as: $\gamma_{\mathcal{C}}(x, x^\circ) \in [\|x\|/r_o, \|x\|/r_i]$*

973

974 • *Lipschitz: the gauge function has Lipschitz constant as $\frac{\|\gamma_{\mathcal{C}}(x, x^\circ) - \gamma_{\mathcal{C}}(y, x^\circ)\|}{\|x - y\|} \leq \frac{1}{r_i}$*

975

976 *Proof.* The non-negativity, positive homogeneity, and subadditivity are provided in (Blanchini & Miani, 2008). Convexity and differentiability are naturally implied by those properties. The equivalent formulation is derived from their definitions.

977

978 The upper and lower bounds are derived as:

979

980

$$\gamma_{\mathcal{C}}(x, x^\circ) = \frac{x}{d_{\mathcal{C}}(x^\circ, x/\|x\|)} \in [\|x\|/r_o, \|x\|/r_i] \quad (14)$$

981

982 The Lipschitz constant of the gauge function is derived as:

983

984

$$\gamma_{\mathcal{C}}(x, x^\circ) \leq \gamma_{\mathcal{C}}(x - y, x^\circ) + \gamma_{\mathcal{C}}(y, x^\circ) \quad (15)$$

985

986

$$\gamma_{\mathcal{C}}(x, x^\circ) - \gamma_{\mathcal{C}}(y, x^\circ) \leq \gamma_{\mathcal{C}}(x - y, x^\circ) \leq \|x - y\|/r_i \quad (16)$$

987 where the inequality (15) is derived by the positive homogeneity. Similarly, we have:

988

989

$$\gamma_{\mathcal{C}}(y, x^\circ) - \gamma_{\mathcal{C}}(x, x^\circ) \leq \gamma_{\mathcal{C}}(y - x, x^\circ) \leq \|x - y\|/r_i \quad (17)$$

990

991 Combining two inequalities, we have the Lipschitz as:

992

993

994

$$\frac{\|\gamma_{\mathcal{C}}(x, x^\circ) - \gamma_{\mathcal{C}}(y, x^\circ)\|}{\|x - y\|} \leq \frac{1}{r_i} \quad (18)$$

995 \square

996

B.2.2 GAUGE MAPPING AND PROPERTIES

997

998 Based on the gauge function, we can construct a bijective mapping between any pair of compact

999 convex sets as:

1000 **Definition B.3** (Gauge Mapping). Let $\mathcal{Z}, \mathcal{X} \subset \mathbb{R}^n$ be compact convex sets with interior points

1001 $z^\circ \in \text{int}(\mathcal{Z})$ and $x^\circ \in \text{int}(\mathcal{X})$, respectively.

1002

1003 The gauge mapping $\Phi : \mathcal{Z} \rightarrow \mathcal{X}$ is defined as:

1004

1005

1006

$$\Phi(z) = \frac{\gamma_{\mathcal{Z}}(z - z^\circ, z^\circ)}{\gamma_{\mathcal{X}}(z - z^\circ, x^\circ)}(z - z^\circ) + x^\circ, z \in \mathcal{Z} \quad (19)$$

1007 The inverse mapping $\Phi^{-1} : \mathcal{X} \rightarrow \mathcal{Z}$ is given by:

1008

1009

1010

$$\Phi^{-1}(x) = \frac{\gamma_{\mathcal{X}}(x - x^\circ, x^\circ)}{\gamma_{\mathcal{Z}}(x - x^\circ, z^\circ)}(x - x^\circ) + z^\circ, x \in \mathcal{X} \quad (20)$$

1011

1012 In essence, the gauge mapping scales the boundary of a convex set from an interior point to another

1013 convex set and translates it to its interior point. When \mathcal{Z} is a unit p -norm ball, the gauge mapping is

1014 simplified in Def. 4.1 as:

1015

1016

$$\Phi(z) = \frac{\|z\|_p}{\gamma_{\mathcal{C}}(z, x^\circ)}z + x^\circ, \forall z \in \mathcal{B}, \quad \Phi^{-1}(x) = \frac{\gamma_{\mathcal{C}}(x - x^\circ, x^\circ)}{\|x - x^\circ\|_p}(x - x^\circ), \forall x \in \mathcal{C}, \quad (21)$$

1017

1018 Further, the gauge mapping between \mathcal{B}_2 and \mathcal{C} can be simplified as:

1019

1020

$$\Phi(z) = d_{\mathcal{C}}(x^\circ, z/\|z\|) \cdot z + x^\circ, \forall z \in \mathcal{B}, \quad \Phi^{-1}(x) = \frac{x - x^\circ}{d_{\mathcal{C}}(x^\circ, x - x^\circ/\|x - x^\circ\|)}, \forall x \in \mathcal{C} \quad (22)$$

1021 **Proposition B.1** (Properties of gauge mapping). *The gauge mapping between any pair of compact*

1022 *convex sets satisfies the following properties:*

1023

- *it is invertible.*
- *it is continuous everywhere and twice differentiable almost everywhere in both directions.*

1026 • it is a bi-Lipschitz homeomorphism.
 1027

1028 *Proof.* First, the invertibility can be easily verified by:
 1029

$$\Phi(\Phi^{-1}(x)) = \Phi\left(\frac{\gamma_{\mathcal{X}}(x - x^{\circ}, x^{\circ})}{\gamma_{\mathcal{Z}}(x - x^{\circ}, z^{\circ})}(x - x^{\circ}) + z^{\circ}\right) \quad (23)$$

$$= \frac{\gamma_{\mathcal{Z}}\left(\frac{\gamma_{\mathcal{X}}(x - x^{\circ}, x^{\circ})}{\gamma_{\mathcal{Z}}(x - x^{\circ}, z^{\circ})}(x - x^{\circ}), z^{\circ}\right)}{\gamma_{\mathcal{X}}\left(\frac{\gamma_{\mathcal{X}}(x - x^{\circ}, x^{\circ})}{\gamma_{\mathcal{Z}}(x - x^{\circ}, z^{\circ})}(x - x^{\circ}), x^{\circ}\right)} \gamma_{\mathcal{Z}}(x - x^{\circ}, z^{\circ})(x - x^{\circ}) + x^{\circ} \quad (24)$$

$$= \frac{\gamma_{\mathcal{X}}(x - x^{\circ}, x^{\circ})}{\gamma_{\mathcal{Z}}(x - x^{\circ}, z^{\circ})} \gamma_{\mathcal{Z}}((x - x^{\circ}), z^{\circ}) \frac{\gamma_{\mathcal{X}}(x - x^{\circ}, x^{\circ})}{\gamma_{\mathcal{Z}}(x - x^{\circ}, z^{\circ})}(x - x^{\circ}) + x^{\circ} \quad (25)$$

$$= (x - x^{\circ}) + x^{\circ} = x \quad (26)$$

1039 where Eq. (25) is derived by the positive homogeneity of the gauge function.
 1040

1041 Second, the continuity and differentiability are derived from the properties of the gauge function and
 1042 elemental compositions in the gauge mapping.
 1043

1044 Third, the homeomorphism is derived from the continuity in both directions and the invertibility.
 1045

Proof of Bi-Lipschitz Properties of Gauge Mapping in Prop. 4.1

1046 To derive the bi-Lipschitz properties, we first consider the gauge mapping between \mathcal{B}_2 and \mathcal{C} and
 1047 derive its Lipschitz constants shown in Prop. 4.1 as follows,
 1048

$$\Phi(z) = \frac{\|z\|_2}{\gamma_{\mathcal{C}}(z, x^{\circ})} z + x^{\circ}, \quad \forall z \in \mathcal{B}_2 \quad (27)$$

1049 Differentiating $\Phi(z)$ with respect to z (using the product and quotient rules) yields
 1050

$$\frac{\partial \Phi}{\partial z} = \frac{\|z\|_2}{\gamma_{\mathcal{C}}(z, x^{\circ})} I + \frac{zz^{\top}}{\gamma_{\mathcal{C}}(z, x^{\circ})\|z\|_2} - \frac{\|z\|_2}{\gamma_{\mathcal{C}}(z, x^{\circ})^2} z \left(\nabla_z \gamma_{\mathcal{C}}(z, x^{\circ}) \right)^{\top}. \quad (28)$$

1051 Taking the operator norm and applying the triangle inequality gives
 1052

$$\begin{aligned} \left\| \frac{\partial \Phi}{\partial z} \right\| &\leq \frac{\|z\|_2}{\gamma_{\mathcal{C}}(z, x^{\circ})} + \frac{\|z\|_2}{\gamma_{\mathcal{C}}(z, x^{\circ})} + \frac{\|z\|_2^2}{\gamma_{\mathcal{C}}(z, x^{\circ})^2} \left\| \nabla_z \gamma_{\mathcal{C}}(z, x^{\circ}) \right\| \\ &\leq r_o + r_o + \frac{r_o^2}{r_i}, \end{aligned} \quad (29)$$

1053 where in the last inequality we have used the facts that (i) for $z \in \mathcal{B}_2$ one has $\|z\|_2 \leq 1$, (ii) the
 1054 gauge function satisfies $\gamma_{\mathcal{C}}(z, x^{\circ}) \in [\|z\|/r_o, \|z\|/r_i]$, and (iii) $\|\nabla_z \gamma_{\mathcal{C}}(z, x^{\circ})\|$ is bounded by $1/r_i$.
 1055 In summary, we obtain
 1056

$$\left\| \frac{\partial \Phi}{\partial z} \right\| \leq 2r_o + \frac{r_o^2}{r_i}, \quad (30)$$

1057 which proves that the forward Lipschitz constant of Φ satisfies
 1058

$$\text{Forward Lipschitz: } L_{\Phi} \leq 2r_o + \frac{r_o^2}{r_i}. \quad (31)$$

1059 Next, consider the inverse gauge mapping from \mathcal{C} to the 2-norm ball as
 1060

$$\Phi^{-1}(x) = \frac{\gamma_{\mathcal{C}}(x - x^{\circ}, x^{\circ})}{\|x - x^{\circ}\|_2} (x - x^{\circ}), \quad \forall x \in \mathcal{C} \quad (32)$$

1061 Differentiating with respect to x gives
 1062

$$\frac{\partial \Phi^{-1}}{\partial x} = \nabla \gamma_{\mathcal{C}}(x - x^{\circ}, x^{\circ}) \left(\frac{x - x^{\circ}}{\|x - x^{\circ}\|_2} \right)^{\top} + \gamma_{\mathcal{C}}(x - x^{\circ}, x^{\circ}) \cdot \frac{I - \frac{(x - x^{\circ})(x - x^{\circ})^{\top}}{\|x - x^{\circ}\|_2^2}}{\|x - x^{\circ}\|_2}. \quad (33)$$

1080 Taking norms and again using the triangle inequality leads to
 1081

$$1082 \left\| \frac{\partial \Phi^{-1}}{\partial x} \right\| \leq \left\| \nabla \gamma_{\mathcal{C}}(x - x^{\circ}, x^{\circ}) \left(\frac{x - x^{\circ}}{\|x - x^{\circ}\|_2} \right)^{\top} \right\| + \gamma_{\mathcal{C}}(x - x^{\circ}, x^{\circ}) \left\| \frac{I - \frac{(x - x^{\circ})(x - x^{\circ})^{\top}}{\|x - x^{\circ}\|_2^2}}{\|x - x^{\circ}\|_2} \right\|. \quad (34)$$

1085 Using the bound $\gamma_{\mathcal{C}}(x - x^{\circ}, x^{\circ}) \in [\|x - x^{\circ}\|/r_o, \|x - x^{\circ}\|/r_i]$ and the projection term has norm at
 1086 most $1/\|x - x^{\circ}\|_2$, we have
 1087

$$1088 \left\| \frac{\partial \Phi^{-1}}{\partial x} \right\| \leq \frac{1}{r_i} + \frac{1}{r_i} = \frac{2}{r_i}. \quad (35)$$

1090 Thus, the inverse Lipschitz constant is bounded by
 1091

$$1092 \text{Inverse Lipschitz: } L_{\Phi^{-1}} \leq \frac{2}{r_i}. \quad (36)$$

1094 This completes the proof of Prop. 4.1.
 1095

1096 To extend the Bi-Lipschitz properties to any pair of compact convex sets, e.g., \mathcal{Z} and \mathcal{X} , we decompose
 1097 the gauge mapping as
 1098

$$1099 \mathcal{X} = \Phi(\mathcal{Z}) = \Phi_1(\mathcal{B}_2) = \Phi_1(\Phi_2^{-1}(\mathcal{Z})) \quad (37)$$

1100 where $\mathcal{Z} = \Phi_1(\mathcal{B}_2)$ and $\mathcal{X} = \Phi_2(\mathcal{B}_2)$.
 1101

1102 Leveraging the inequality of Lipschitz for mapping compositions as $L_{f_1 \circ f_2} \leq L_{f_1} L_{f_2}$, we can
 1103 conclude that the gauge mapping between any pair of convex sets is bi-Lipschitz.
 1104 \square
 1105

1106 B.2.3 COMPUTATION METHODS

1107 IP computation

1109 In practice, we seek such a “central” interior point by solving the following residual minimization
 1110 problem through convex optimization in the offline phase (Tordesillas et al., 2023):
 1111

$$\min_{x^{\circ}} \eta \quad (38)$$

$$1113 \text{s.t. } g_i(x^{\circ}) \leq \eta \quad i = 1, \dots, m \quad (39)$$

1114 We note that solving this convex optimization problem with a linear objective incurs only polynomial
 1115 time complexity. As this computation is performed offline prior to model training, it adds negligible
 1116 overhead to the overall computational cost.
 1117

1118 Gauge function computation

1119 Computation of gauge mapping essentially involves calculating the gauge function or (inverse)
 1120 distance function. Following the established closed-form distance function calculation for several
 1121 common convex sets in (Tordesillas et al., 2023), we give a summary in Table 8. It provides closed-
 1122 form expressions for the inverse distance function across various constraint types. Most matrix
 1123 calculations can be computed and stored offline before being applied for online inference.
 1124

1125 When the inverse distance function lacks an explicit expression, we employ an efficient bisection
 1126 algorithm detailed in algorithm 3. This algorithm supports batch processing, enabling efficient
 1127 parallel computation for multiple inputs simultaneously.
 1128

1129
 1130
 1131
 1132
 1133

1134

1135

Table 8: Closed-form Expressions for Inverse Distance Functions (Tordesillas et al., 2023)

Constraints	Formulation	Inverse Distance Function
Intersections	$\{g_1(x) \leq 0, \dots, g_m(x) \leq 0\}$	$\kappa_g(x^\circ, v) = \max_{1 \leq i \leq m} \{\kappa_{g_i}(x^\circ, v)\}$
Linear	$g_L(x) = a^\top x - b \leq 0$	$\kappa_{g_L}(x^\circ, v) = \{\frac{a^\top v}{b - a^\top x^\circ}\}^+$
Quadratic	$g_Q(x) = x^\top Qx + a^\top x - b \leq 0$	$\kappa_{g_Q}(x^\circ, v) = \{1/\text{root}(A_Q, B_Q, C_Q)\}^+$
Second Order Cone	$g_S(x) = \ A^\top x + p\ _2 - (a^\top x + b) \leq 0$	$\kappa_{g_S}(x^\circ, v) = \{1/\text{root}(A_S, B_S, C_S)\}^+$
Matrix Cone	$g_M(x) = \sum_{i=1}^n x_i \cdot F_i + F_0 \succeq 0$	$\kappa_{g_M}(x^\circ, v) = \max\{\text{eig}(L^\top(-S)L)\}^+$

¹ Notation: $x, a \in \mathbb{R}^n, b \in \mathbb{R}, Q \in \mathbb{S}_+^n, A \in \mathbb{R}^{n \times k}, p \in \mathbb{R}^k, F_0, \dots, F_n \in \mathbb{R}^{k \times k}$.

² $A_Q = v^\top Qv, B_Q = 2x^\top Qv + a^\top v, C_Q = x^\top Qx^\circ + a^\top x^\circ - b$.

³ $A_S = (A^\top v)^\top (A^\top v) - (a^\top v)^2, B_S = 2(A^\top x^\circ + p)^\top (A^\top v) - 2(a^\top x^\circ + b)(a^\top v), C_S = (A^\top x^\circ + p)^\top (A^\top x^\circ + p) - (a^\top x^\circ + b)^2$.

⁴ $H = F_0 + \sum_{i=1}^n x_i^\circ F_i, H^{-1} = L^\top L, S = \sum_{i=1}^n v_i F_i$.

⁵ $(\cdot)^+ = \max(\cdot, 0)$.

⁶ $\text{root}(x_1, x_2, x_3) = \frac{-x_2 \pm \sqrt{x_2^2 - 4x_1 x_3}}{2x_1}$ denotes the quadratic equation solution

⁷ $\text{eig}(X) = \lambda_1, \dots, \lambda_n$ denotes the eigenvalues satisfying $\det(X - \lambda I) = 0$. Note that only the maximum eigenvalue is needed. Thus, power iteration methods can be applied to compute it efficiently.

⁸ Note that all v -independent terms can be computed only once and stored for use.

1151

1152

Algorithm 3 Bisection Algorithm for Point-to-Boundary Distance

Input: A compact convex set \mathcal{C} , an interior point $x^\circ \in \text{int}(\mathcal{C})$, and a unit vector v .

```

1: Initialize:  $\alpha_l = 0$  and  $\alpha_u = 1$ 
2: while  $|\alpha_l - \alpha_u| \geq \epsilon$  do
3:   if  $x^\circ + \alpha_u \cdot v \in \mathcal{C}$  then
4:     increase lower bound:  $\alpha_l \leftarrow \alpha_u$ 
5:     double upper bound:  $\alpha_u \leftarrow 2 \cdot \alpha_m$ 
6:   else
7:     bisection:  $\alpha_m = (\alpha_l + \alpha_u)/2$ 
8:     if  $x^\circ + \alpha_m \cdot v \in \mathcal{C}$  then
9:       increase lower bound:  $\alpha_l \leftarrow \alpha_m$ 
10:    else
11:      decrease upper bound:  $\alpha_u \leftarrow \alpha_m$ 
12:    end if
13:  end if
14: end while

```

Output: $d_{\mathcal{C}}(x^\circ, v) \approx \alpha_m$

1169

1170

C GAUGE MAPPING FOR NON-CONVEX CONSTRAINTS

1171

1172

In this section, we extend the conventional gauge mapping over convex sets in Euclidean space to certain non-convex settings, including star-convex sets and geodesic-convex sets.

1173

1174

C.1 STAR-CONVEX SET

1175

1176

Definition C.1 (Star-convex Set). A set $\mathcal{S} \subset \mathbb{R}^n$ is said to be *star-convex* with respect to an interior point $x^\circ \in \text{int}(\mathcal{S})$ if for every $x \in \mathcal{S}$, the line segment connecting x° and x lies entirely within \mathcal{S} , i.e., $x^\circ + \theta(x - x^\circ) \in \mathcal{S}$ for all $\theta \in [0, 1]$.

1181

1182

The gauge mapping framework can be extended beyond convex sets to certain non-convex domains, particularly star-convex sets. This extension significantly broadens the applicability of our GFM approach to more complex geometric constraints encountered in practical applications. A star-convex set \mathcal{S} is characterized by the existence of an interior point x° such that any line segment connecting x° to any point in the set remains entirely within the set. While star-convex sets lack the full convexity property, they retain a critical radial structure that allows gauge mappings to be constructed in a similar manner.

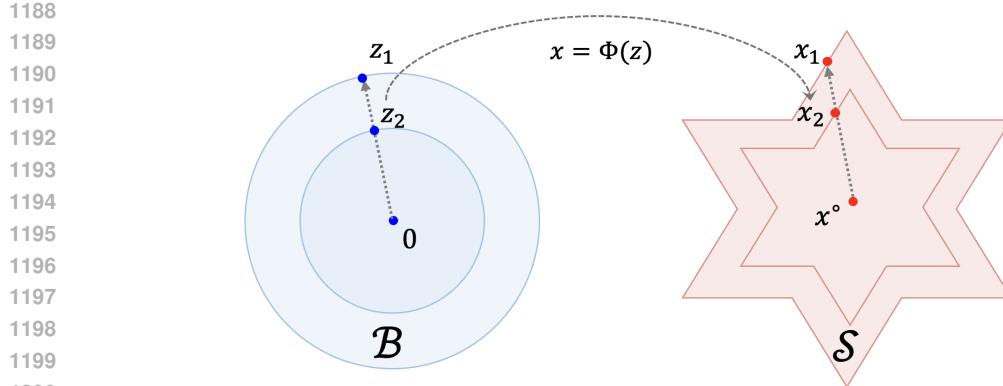


Figure 9: Gauge mapping construction for star-convex set.

For a star-convex set \mathcal{S} with interior point x° , we can define the gauge function as:

$$\gamma_{\mathcal{S}}(x, x^\circ) = \inf\{\lambda \geq 0 \mid x \in \lambda(\mathcal{S} - x^\circ)\} \quad (40)$$

This formulation captures the minimum scaling factor needed to reach point x when scaling along the ray from x° . The corresponding gauge mapping $\Phi : \mathcal{B} \rightarrow \mathcal{S}$ between a unit p -norm ball and the star-convex set follows the same construction as in Definition 4.1. As illustrated in Figure 9, the gauge mapping preserves the radial structure of the star-convex set while establishing a homeomorphism with the unit ball. This property is particularly valuable for handling constraints with non-convex geometries that still maintain visibility from an interior point, such as ℓ_p -norm balls with $p < 1$ or certain non-convex polytopes arising in practical applications.

The computation of gauge functions for star-convex sets follows similar principles as for convex sets, though additional care may be needed:

- For analytically defined star-convex sets (e.g., ℓ_p -norm balls with $p < 1$), closed-form expressions for the gauge function can often be derived as Def. 4.1.
- For star-convex sets defined by the union of convex components or by non-convex inequalities, bisection methods remain applicable for computing the gauge function, though they may require specialized boundary evaluation techniques (Liang & Chen, 2025).
- Selection of the interior point x° becomes more critical for star-convex sets, as it determines the visibility region and thus the quality of the mapping. When multiple interior points are viable, selecting one that maximizes the minimum distance to the boundary often yields better numerical properties.

C.2 GEODESIC-CONVEX SET

When the underlying space is a Riemannian manifold rather than a Euclidean space, the notion of straight lines is replaced by geodesics. In this context, one speaks of geodesic convexity.

Definition C.2 (Geodesic-Convex Set). Let (M, g) be a Riemannian manifold, and let $\mathcal{U} \subset M$ be a subset. \mathcal{U} is *geodesically convex* if, for every pair of points $x, y \in \mathcal{U}$, there exists a unique minimizing geodesic $\eta : [0, 1] \rightarrow M$ with respect to g that satisfies $\eta(0) = x, \eta(1) = y, \eta(t) \in \mathcal{U}, \forall t \in [0, 1]$.

To extend the gauge mapping on a geodesic-convex set over a manifold, we replace the linear structure with the exponential map. Since $\mathcal{U} \subset M$ is geodesic-convex, the exponential map at any interior point is a diffeomorphism onto its image (Lee, 2006). Given this property, any point $x \in \mathcal{U}$ with $x \neq x^\circ$ can be uniquely represented in *geodesic polar coordinates* as $x = \exp_{x^\circ}(r_x v_x)$, where $x^\circ \in \mathcal{U}$ is an interior point of \mathcal{U} , $v_x \in \mathbb{S}^{n-1} \subset T_{x^\circ} M$ is a unit vector over the tangent space $T_{x^\circ} M$, and $r_x = d_g(x, x^\circ)$ is the geodesic distance from x° to x .

Similarly, we can establish the *geodesic gauge mapping* that transforms a unit ball from the tangent space to the geodesic-convex set on the manifold. As illustrated in Figure 10, this mapping establishes a correspondence between the unit ball in the tangent space and the geodesic-convex set on the

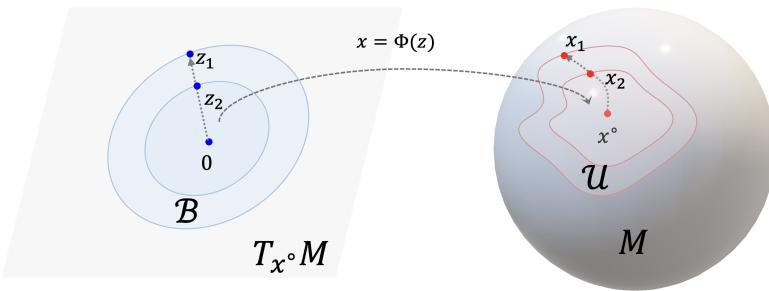


Figure 10: Gauge mapping construction for geodesic-convex set.

manifold. The construction respects the intrinsic geometry of the manifold while preserving the radial structure that is characteristic of gauge mappings.

Definition C.3 (Geodesic Gauge Mapping). Without loss of generality, let $\mathcal{B} \triangleq \{z \in T_{x^o}M \mid \|z\|_2 \leq 1\}$ denote the unit ball in the tangent space at x^o . The *geodesic gauge mapping* $\Phi : \mathcal{B} \rightarrow \mathcal{U}$ and its inverse are defined as

$$\Phi(z) = \exp_{x^o}(d_{\mathcal{U}}(x^o, z/\|z\|) \cdot z), \quad \forall z \in \mathcal{B} \quad (41)$$

$$\Phi^{-1}(x) = r_x/d_{\mathcal{U}}(x^o, v_x) \cdot v_x, \quad \forall x = \exp_{x^o}(r_x v_x) \in \mathcal{U} \quad (42)$$

where the point-to-boundary geodesic distance $d_{\mathcal{U}}(x^o, v_x)$ along v_x is defined as $d_{\mathcal{U}}(v_x) \triangleq \sup\{\lambda \geq 0 \mid \exp_{x^o}(\lambda \cdot v_x) \in \mathcal{U}\}$.

Note that the point-to-boundary geodesic distance may not admit a closed-form expression; we can apply the bisection methods similar to Alg. 3 to locate the boundary points starting from an interior point.

This extension enables our GFM framework to handle constraints on manifolds, expanding its application to domains such as inverse problems with manifold constraints and atmospheric modeling over spherical geometries.

C.3 MORE GENERAL NON-CONVEX SET

When applying our methods to more general non-convex sets, a natural choice is the class of non-convex sets that are homeomorphic to a unit ball. However, such *ball-homeomorphic* sets do not generally admit a closed-form homeomorphism. One promising approach is to apply an invertible neural network to learn the target homeomorphism, which offers both feasibility and approximation guarantees (Liang et al., 2023; 2024). For more general non-convex constraints, low-complexity constrained generation schemes remain largely unexplored, particularly for NP-hard problems where even identifying an interior point poses significant computational challenges, such as non-convex quadratic equations or mixed-integer formulations. The exploration of more general and theoretically guaranteed approaches constitutes a promising direction for future research.

1296 **D THEORETICAL ANALYSIS OF GFM**
12971298 **D.1 ASSUMPTION AND PRELIMINARY**
12991300 We made the following assumptions for the error analysis, which are common for error analysis for
1301 the flow/diffusion-based generative models (Kwon et al., 2022; Benton et al., 2023; Xie et al., 2024).
13021303 **Assumption 1** (Regularity of Distribution (Wan et al., 2024)). We assume the data distribution p
1304 satisfies the following regularity conditions:
1305

- It has finite 2-moment, i.e., $\int_{\mathbb{R}^n} \|x\|^2 p(dx) < \infty$;
- Its support, $\Omega = \text{supp}(p)$, has a positive reach;
- It has a non-vanishing density, i.e., there exist constants $k \geq 0$ and $c > 0$ such that for any
1309 radius $R > 0$, there exists a constant $C_R > 0$ where for any small radius $0 \leq r < c$ and any
1310 $x \in B_R(0) \cap \Omega$, we have $p(B_r(x)) \geq C_R r^k$.

1311 The finite 2-moment requirement is standard in the literature for analyzing generative models. The
1312 positive reach condition is satisfied in our setting since we consider a convex support set $\Omega = \mathcal{C}$. The
1313 last requirement ensures the density does not vanish within the support, which prevents pathological
1314 cases where probability mass concentrates on lower-dimensional manifolds.
13151316 There are also other (more restrictive) regularity conditions for the data distribution in the literature,
1317 including the covariance condition (Benton et al., 2023) and κ -semi-log-concave/convex (Gao et al.,
1318 2024a), and convex support set (Gao et al., 2024b). It remains largely open for the minimal necessary
1319 conditions to establish the well-posedness of flow matching models.1320 **Assumption 2** (Neural Network Approximation Properties). Given a distribution p with support Ω ,
1321 let $u(x, t)$ be the designed target vector field and v_θ be the neural network approximated vector field
1322 in the flow-matching model.

- v_θ is L_θ -Lipschitz for $x \in \Omega$ and $t \in [0, 1]$;
- The ℓ_2 approximation error is bounded as $\epsilon_\theta^2 = \mathbb{E}_{x_t, t} \|v_\theta(x_t, t) - u(x_t, t)\|^2$, where p_t is the
1325 probability density driven by the target vector field u .

1327 The Lipschitz constant of a trained neural network is bounded within a compact set in our setting
1328 $\Omega = \mathcal{C}$. The training loss in Eq. (1) is equivalent to the vector field approximation error up to a
1329 constant (Lipman et al., 2022). Therefore, we can minimize the approximation error through proper
1330 training of the loss function.1331 **Lemma 2** (Error Bound for Flow Matching (Benton et al., 2023)). *For the vanilla flow matching
1332 model: $x_1 = x_0 + \int_0^1 v_\theta(x, t) dt$, with induced probability distribution p_θ at $t = 1$. The Wasserstein-2
1333 distance between the data distribution $p_{\text{data}}(x)$ and the approximated distribution $p_\theta(x)$ is bounded
1334 by*

1335
$$\mathcal{W}_2(p_{\text{data}}(x), p_\theta(x)) \leq e^{L_\theta} \epsilon_\theta \quad (43)$$

1336 **Lemma 3** (Error Bound for Reflected Flow Matching (Xie et al., 2024)). *For the reflected flow
1337 matching model over the convex domain \mathcal{C} : $x_1 = x_0 + \int_0^1 v_\theta(x, t) + R(x_t) dt$, with induced probability
1338 distribution p_θ^r at $t = 1$. The Wasserstein-2 distance between the data distribution $p_{\text{data}}(x)$ and the
1339 approximated distribution $p_\theta^r(x)$ is bounded by*

1340
$$\mathcal{W}_2(p_{\text{data}}(x), p_\theta^r(x)) \leq e^{1/2 + L_\theta} \epsilon_\theta \quad (44)$$

1343 **D.2 PROOF OF REGULARITY OF GFM IN PROP. 5.1**
13441345 *Proof.* Given the original data distribution p over compact convex set $\Omega_p = \mathcal{C}$ satisfying the regularity
1346 conditions; We verify the three regularity conditions one by one for the transformed data distribution
1347 $q = \Phi_\#^{-1} p$ over a unit ball $\Omega_q = \mathcal{B}$, where Φ is a bi-Lipschitz homeomorphism (e.g., gauge mapping).

- **Finite second moment:** since q has bounded support, it immediately implies a finite second
1349 moment.

1350 • **Positive reach:** The support of q is a unit ball $\Omega_q = \mathcal{B}$, which has infinite positive reach. We
 1351 remark that even if the original support Ω_p does not have a positive reach (e.g., star-shaped set),
 1352 after transformation, the Ω_q is always a unit ball and satisfies this regularity condition on the
 1353 reach.

1354 • **Non-vanishing density:** Given the bi-Lipschitz property, we have:

1356
$$L_1 \|z_1 - z_2\| \leq \|\Phi(z_1) - \Phi(z_2)\| \leq L_2 \|z_1 - z_2\|, \quad \forall z_1, z_2 \in \mathcal{B} \quad (45)$$

1358 where $L_1 = 1/L_{\Phi^{-1}}$ and $L_2 = L_\Phi$ are the (inverse) Lipschitz constants.

1359 For any $z \in \Omega_q \cap B_R(0)$ and any small radius $r < \frac{c}{L_2}$, where c is from the non-vanishing density
 1360 property of p , we have:

1362
$$q(B_r(z)) = p(\Phi(B_r(z))) \quad (46)$$

1363
$$\geq p(B_{L_1 r}(\Phi(z))) \quad (47)$$

1364 since $\Phi(B_r(z)) \supseteq B_{L_1 r}(\Phi(z))$ by the bi-Lipschitz property.

1366 Since Φ is bi-Lipschitz, for any $R > 0$, there exists $R' > 0$ such that $\Phi(B_R(0) \cap \Omega_q) \subseteq$
 1367 $B_{R'}(0) \cap \Omega_p$. By the non-vanishing density property of p , there exists a constant $C_{R'} > 0$ such
 1368 that $p(B_{L_1 r}(\Phi(z))) \geq C_{R'}(L_1 r)^k$.

1369 Therefore, we have

1371
$$q(B_r(z)) \geq C_{R'} L_1^k r^k \quad (48)$$

1373 This establishes the non-vanishing density property for q .

1374 \square

1375 **D.3 PROOF OF ERROR BOUND OF GFM IN PROP. 5.2**

1376 *Proof.*

1377
$$\mathcal{W}_2^2(p_{data}, p_\theta^{gr}) = \inf_{\gamma=\Pi(p_{data}, p_\theta^{gr})} \left\{ \int \|x_1 - x_2\|^2 d\gamma \right\} \quad (49)$$

1378
$$= \inf_{\gamma=\Pi(q_{data}, q_\theta^{gr})} \left\{ \int \|\Phi(z_1) - \Phi(z_2)\|^2 d\gamma \right\} \quad (50)$$

1379
$$\leq L_\Phi^2 \inf_{\gamma=\Pi(q_{data}, q_\theta^{gr})} \left\{ \int \|z_1 - z_2\|^2 d\gamma \right\} \quad (51)$$

1380
$$\leq L_\Phi^2 \mathcal{W}_2^2(q_{data}, q_\theta^r) \quad (52)$$

1381
$$\leq L_\Phi^2 e^{1+2L_\theta} \epsilon_\theta^2 \quad (53)$$

1382 \square

1383 where Eq. (50) is by the equivalence of the distributions under a homeomorphic push-forward
 1384 mapping: $p_{data} = \Phi_\# q_{data}$ and $p_{data}^{gr} = \Phi_\# q_{data}^{gr}$; Eq. (51) is by the Lipschitz property of gauge
 1385 mapping Φ shown in Prop. 4.1; Eq. (53) is the error bound of the regular reflected generation over
 1386 the unit ball under Lemma 3.

1387 **Remark.** The Lipschitz constant of gauge mappings between compact sets remains bounded inherently.
 1388 This property stands in contrast to mirror mapping-based generative models (Liu et al., 2024b),
 1389 which map open convex sets to \mathbb{R}^n . In the latter case, the Lipschitz constant can grow unbounded
 1390 as points near the boundary are mapped to infinity, significantly complicating approximation error
 1391 analysis. Our Gauge Flow Matching circumvents this limitation, providing theoretical guarantees
 1392 on the Wasserstein-2 distance between the learned and data distributions. To optimize the model's
 1393 performance, we can further reduce the Lipschitz constant of the gauge mapping by identifying an
 1394 interior point x° that serves as the "center" of the constraint set.

1404 D.4 PROOF OF GENERATION COMPLEXITY OF GFM IN PROP. 5.3
14051406 *Proof.* Closed-form computation: Based on Table 8, the algorithmic complexity of naturally derived
1407 under different constraint functions.1408 Bisection-based computation: Based on algorithm 3, the algorithmic complexity for the bisection
1409 algorithm needs the feasibility check $x \in \mathcal{C}$, which essentially involves calculating the constraint
1410 function $g_i(x)$ for $i = 1, \dots, m$. The number of bisection steps needed to achieve a target error is
1411 derived as $\mathcal{O}(\text{diam}(\mathcal{C}) \cdot \log(1/\epsilon_{\text{bis}}))$.
1412

□

1413
1414 E EXPERIMENTAL SETTINGS
14151416 In this section, we describe the experimental setup used to generate the results reported in Section 7.
1417 Our proposed model is implemented in PyTorch (Paszke et al., 2019), with all models trained using
1418 Adam optimizer (Kingma & Ba, 2014) with hyperparameters $\beta_1 = 0.99$, $\beta_2 = 0.999$, and a learning
1419 rate of 10^{-3} . For sample generation, we solve the forward ODE using the method proposed by (Chen
1420 et al., 2018), and we follow the approach in (Xie et al., 2024) to solve the reflected ODE in Equation
1421 (5).
14221423
1424 E.1 CONSTRAINED GENERATIVE MODELS BASELINES
14251426 We compare our approach against the following state-of-the-art constrained generative models,
1427 selected for their ability to handle various constraint types:
14281429

- **FM:** Vanilla flow matching that transforms a Gaussian distribution to the target distribution using
1430 linear conditional flow (Lipman et al., 2022; Liu et al., 2022b).
- **DM:** Vanilla diffusion model with variance-preserving diffusion process (Ho et al., 2020; Song
1432 et al., 2020).
- **Reflection:** A method that applies reflection terms when generated samples encounter constraint
1434 boundaries (Xie et al., 2024).
- **Metropolis:** Metropolis Sampling approach for approximating reflection-based generation (Fish-
1436 man et al., 2024).
- **Projection:** An approach utilizing orthogonal projection when generated samples violate con-
1439 straints (Christopher et al., 2024).
- **GFM:** Our proposed framework as detailed in Section 4.

14411442 We remark that all models share the same training settings (dataset, optimizers, hyperparameters) and
1443 generation settings (ODE methods, step size). For Reflection, Metropolis, and Projection models, the
1444 same velocity models are used. Therefore, they share the same training time as reported in the Table.
1445 5.1446 The additional constraint-handling mechanisms (e.g., reflection and projection) are implemented
1447 based on references. We emphasize that closed-form projection operators generally do not exist
1448 for the complex constraints in our experiments, such as intersections of polytopes and ellipsoids,
1449 and Semidefinite cone constraints. Therefore, we employ state-of-the-art optimization solvers: (i)
1450 MOSEK for convex projection and (ii) IPOPT for non-convex cases. While these are highly optimized
1451 solvers, iteratively solving a constrained optimization problem at each sampling step for each sample
1452 (whenever the ODE trajectory violates constraints) remains computationally expensive. This cost is
1453 particularly significant for high-dimensional problems or tight constraint sets where violations occur
1454 frequently throughout the sampling process.
14551456 We also remark that, in the geodesic-convex set generation tasks, the FM and DDPM models are
1457 trained to generate samples in the tangent space of a prescribed point, which is the same across all
1458 methods.

1458	Algorithm 4 Euler method with reflection
1459	Input: A velocity field $v(x_t, t)$, a domain \mathcal{C} , an initial point $x \in \mathcal{C}$, number of steps N , a function
1460	that gives outward normal vector $\mathbf{n}_{\partial\mathcal{C}}(x)$, and a function that computes the distance to boundary
1461	$s_{\partial\mathcal{C}}(x_t, v_t)$.
1462	1: Let $\delta t = 1/N$, $x_0 = x$
1463	2: for $i = 0, 1, 2, \dots, N - 1$ do
1464	3: let $t = i/N$, $v_i = v(x_i, t)$
1465	4: update $x_{i+1} = x_i + \delta t \cdot v_i$
1466	5: if $x_{i+1} \notin \mathcal{C}$ then
1467	6: compute distance to boundary $s_i = \min\{1, s_{\partial\mathcal{C}}(x_i, \delta t \cdot v_i)\}$
1468	7: compute boundary point $x'_i = x_i + s_i \delta t \cdot v_i$
1469	8: compute normal vector $\mathbf{n}_i = \mathbf{n}_{\partial\mathcal{C}}(x'_i)$
1470	9: compute reflection term $L_i = -2\delta t(1 - s_i)v_i^T \mathbf{n}_i \mathbf{n}_i$
1471	10: update $x_{i+1} = x_{i+1} + L_i$
1472	11: end if
1473	12: end for
1474	Output: x_N

1475
1476 Table 9: Closed-form Expressions for Distance and Normal Vector Functions

1477 Constraints	1478 Formulation	1479 Distance Function	1480 Normal Vector
1479 Unit Ball	$\ x\ _2 \leq 1$	$s(x, v) = \{\text{root}(v^T v, 2v^T x, x^T x - 1)\}^+$	$\mathbf{n}(x) = x/\ x\ $
1480 Unit Cube	$\ x\ _\infty \leq 1$	$s(x, v) = \min_{i=1,2,\dots,n}\{(1 - \text{sign}(v_i)x_1)/v_i\}$	$\mathbf{n}(x) = \mathbf{e}_{\arg \max_{i=1,2,\dots,n} x_i }$
1481 Linear	$a^T x \leq b$	$s(x, v) = (b - a^T x)/a^T v$	$\mathbf{n}(x) = a/\ a\ $
1482 Quadratic	$x^T Qx + a^T x \leq b$	$s(x, v) = \{\text{root}(A_Q, B_Q, C_Q)\}^+$	$\mathbf{n}(x) = -2Qx - a$

1483 ¹ Notation: $x, a \in \mathbb{R}^n, b \in \mathbb{R}, Q \in \mathbb{S}_+^n, A \in \mathbb{R}^{n \times k}, p \in \mathbb{R}^k, F_0, \dots, F_n \in \mathbb{R}^{k \times k}$.

1484 ² $\mathbf{e}_1 = (1, 0, 0, \dots, 0), \mathbf{e}_2 = (0, 1, 0, 0, \dots, 0), \dots, \mathbf{e}_{n-1} = (0, 0, \dots, 0, 1, 0), \mathbf{e}_n = (0, 0, \dots, 0, 1)$.

1485 ³ $A_Q = v^T Q v, B_Q = 2x^{\circ T} Q v + a^{\circ T} v, C_Q = x^{\circ T} Q x^{\circ} + a^{\circ T} x^{\circ} - b$.

1486 ⁴ $(\cdot)^+ = \max(\cdot, 0)$.

1487 ⁵ $\text{root}(x_1, x_2, x_3) = \frac{-x_2 \pm \sqrt{x_2^2 - 4x_1x_3}}{2x_1}$ denotes the quadratic equation solution

1488

1489 E.2 REFLECTION COMPUTATION

1490

1491 We follow the notations in (Xie et al., 2024) and (Lou & Ermon, 2023). Let \mathbf{L}_t be the reflection term
1492 that reflect the outward velocity at the boundary $\partial\mathcal{C}$. Given an initial point x_{init} , the reflected ordinary
1493 differential equation is

$$1494 dx_t = v(x_t, t)dt + d\mathbf{L}_t, \quad (54)$$

$$1495 x_0 = x_{\text{init}}. \quad (55)$$

1496

1497 Intuitively, the reflection term \mathbf{L}_t in equation (54) pushes the trajectory back to the domain \mathcal{C} once
1498 the trajectory hits the boundary. Under mild conditions, the solution to the reflected ODE exists and
1499 is unique (Xie et al., 2024).

1500 Empirically, the reflected ODE can be solved by numerical solvers, for example, using the Euler
1501 method. The Euler method iteratively compute the trajectory points by

$$1503 x_{t+\delta t} = x_t + \delta t \cdot v(x_t, t), \quad (56)$$

1504 where $t \in [0, 1)$ is an intermediate time and $\delta t > 0$ is a small time step. Euler step with reflection
1505 can be computed as

$$1506 x_{t+\delta t} = x_t + \delta t \cdot \left[v(x_t, t) - 2(1 - s_t)(v(x_t, t))^T \mathbf{n}_{\partial\mathcal{C}} \mathbf{n}_{\partial\mathcal{C}} \right] \quad (57)$$

1507 where $s_t = \min \{1, \inf \{s > 0 \mid x_t + s\delta t \cdot v(x_t, t) \notin \mathcal{C}\}\}$ is the distance from x_t to the nearest
1508 boundary $\partial\mathcal{C}$ along direction $v(x_t, t)$, and $\mathbf{n}_{\partial\mathcal{C}}$ is the outward normal vector at $x_t + s\delta t \cdot v(x_t, t) \in \partial\mathcal{C}$.
1509 Algorithm 4 summarizes the Euler method with reflection and table 9 lists reflections for several
1510 common convex sets.

1511

1512 E.3 PERFORMANCE EVALUATION METRICS
15131514 **Feasibility ratio computation** Suppose that x_1, x_2, \dots, x_N are generated samples, $g_i(x), i = 1, 2, \dots, m$ are constraints of interest. One sample x is feasible if
1515

1516
$$g_i(x) \leq 0, i = 1, 2, \dots, m. \quad (58)$$

1517

1518 The feasibility ratio of the batch samples is defined as
1519

1520
$$\text{feasibility}\{x_1, x_2, \dots, x_N\} = \frac{\#\{x_i \mid i = 1, 2, \dots, N, g_k(x_i) \leq 0, k = 1, 2, \dots, m\}}{N}. \quad (59)$$

1521

1522 In our experiments, we set the tolerance as 10^{-6} .
15231524 E.4 CONSTRAINT FORMULATIONS IN ILLUSTRATIVE EXAMPLES
15251526 We first give the specific formulations of those constraints:
1527• Convex Set:
1528

1529
$$\{x \in \mathbb{R}^2 \mid Ax \leq b, \|x - c\|_2 \leq 2.5, x^T Qx + p^T x + d \leq 0\} \quad (60)$$

1530

1531 where A, b, c, Q, p, d are randomly sampled.
1532• Star-convex Set:
1533

1534
$$\{x \in \mathbb{R}^2 \mid \|x\| \leq \Gamma_{\alpha, n}(x) := 1 + \alpha \sin(n \arctan(x_2/x_1))\} \quad (61)$$

1535

1536 where $\alpha \in (0, 1)$ and $n \in \mathbb{Z}_+$ determine the size and number of stars, respectively.
1537• Geodesic-convex Set:
1538

1539
$$\{x \in \mathbb{S}^2 \mid Ax \leq b\} \quad (62)$$

1540

1541 where \mathbb{S}^2 is the sphere in 3-dimensional Euclidean space and is constrained by a set of linear
1542 inequalities.
15431544 The data are sampled from a mixed Gaussian distribution, whose location parameter and covariance
1545 are generated randomly.
15461547 **Model settings:** We model the velocity field with 2 hidden layers with exponential linear unit
1548 (ELU) activation functions. We train the models for 10000 epochs with a batch size of 256, and prior
1549 distribution as the uniform distribution over the constrained/ball domain. Samples are generated by the
1550 Euler algorithm in 1,000 steps. For the reflected/projected methods, additional reflection/projection is
1551 performed after each step.
15521553 E.5 MIRROR MAP vs GAUGE MAP ON SIMPLEX DOMAIN
15541555 We compare our GFM model against several baseline methods: Vanilla Flow Matching, DDPM, and
1556 Mirror Diffusion. We consider the standard simplex in d dimensions:
1557

1558
$$S_d = \{x \in \mathbb{R}^d \mid x_i \geq 0, \sum_{i=1}^d x_i \leq 1\}. \quad (63)$$

1559

1560 **Data preparation:** We generate training data from a mixture of multivariate normal distributions,
1561 with each component centered near a distinct geometric feature of the simplex. The mixture includes
1562 d vertex-centered modes, one origin-centered mode, and one face-centered mode. The location
1563 parameters are defined as:
1564

1565
$$\begin{aligned} \mu_i &= (\underbrace{0.1/d, \dots, 0.1/d}_i, 0.9, \underbrace{0.1/d, \dots, 0.1/d}_{d-i-1}), \quad i = 1, 2, \dots, d, \\ \mu_o &= (0.1/d, \dots, 0.1/d), \\ \mu_f &= (0.9/d, \dots, 0.9/d). \end{aligned}$$

1566

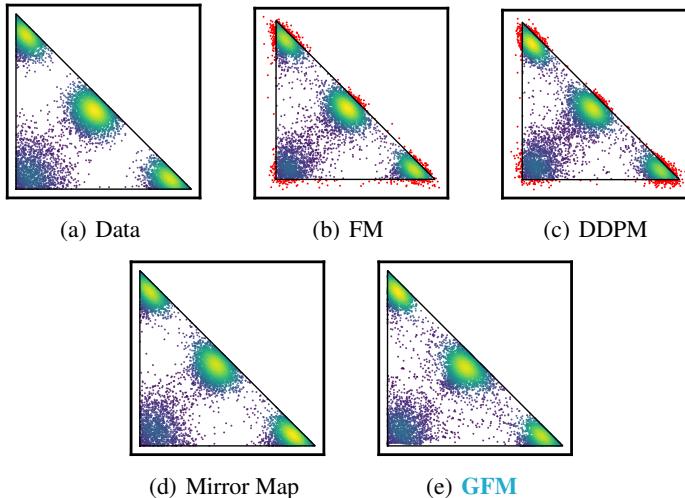
1566 Here, μ_i places most of its mass at the i -th vertex, μ_o is centered near the origin, and μ_f distributes
 1567 mass in the simplex face. We generate a total of 10,000 training samples from this mixture.
 1568

1569 **Model settings:** For illustrative 2-dimensional cases, we modeled the time-variant velocity field
 1570 using 3 layers with 256 units each and ELU activation functions. For 50-dimensional cases, we
 1571 modeled the time-variant velocity field with 4 hidden layers of 512 hidden units, incorporating
 1572 residual connections and a bottleneck structure (Liu et al., 2024a).

1573 As shown in Table 10, in the synthetic simplex domain example, our GFM method achieves compa-
 1574 rable performance to the vanilla flow matching baseline and other constrained generation baselines
 1575 in low-dimensional settings ($d = 2$), while achieving significantly faster inference speed. In high-
 1576 dimensional settings ($d = 50$), GFM attains the best fidelity to the data distribution while maintaining
 1577 faster inference speed. It is worth noting that the Mirror Map model (Liu et al., 2024b) exhibits fast
 1578 performance in both training and inference phases. This is because a low-complexity, closed-form
 1579 mirror map exists for this simple simplex domain. However, the mirror map approach fails for more
 1580 complex constraints, such as the PSD cone constraint.
 1581

1582 Table 10: Results for synthetic generation tasks over the simplex domain.

	Method	FM	DDPM	Mirror Map	GFM
$d = 2$	Feasibility (%)	94.5	93.8	100	100
	MMD ($\times 10^{-3}$)	6.26	14.02	8.34	6.53
	Training (s)	0.09	0.09	0.13	0.13
	Inference (s)	0.40	0.94	0.46	0.97
$d = 50$	Feasibility (%)	11.7	4.35	100	100
	MMD ($\times 10^{-2}$)	9.08	1.82	6.00	2.56
	Training (s)	0.14	0.13	0.14	0.15
	Inference (s)	0.93	1.20	0.93	1.38



1612 E.6 CONFIGURATION GENERATION IN ROBOTIC CONTROL BENCHMARK

1613
 1614 We follow the procedure reported by (Jaquier et al., 2021) to learn the trajectories of the manipulability
 1615 ellipse. In planar letter drawing problems, the manipulability ellipses are modeled by SPD matrices
 1616 $M = \{X \in \mathbb{S}^{2 \times 2} \mid X \succeq 0, \text{tr}(X) \leq C\}$. In our formulation, we transform it into the equivalent
 1617 linear matrix inequality formulation:

$$1618 \quad M = \{x \in \mathbb{R}^3 \mid x_1 \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + x_2 \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + x_3 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \succeq 0, \quad \text{tr}(M) = x_1 + x_3 \leq C\} \quad (64)$$

1620

1621

Table 11: Results for robotic manipulability ellipse generation task.

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

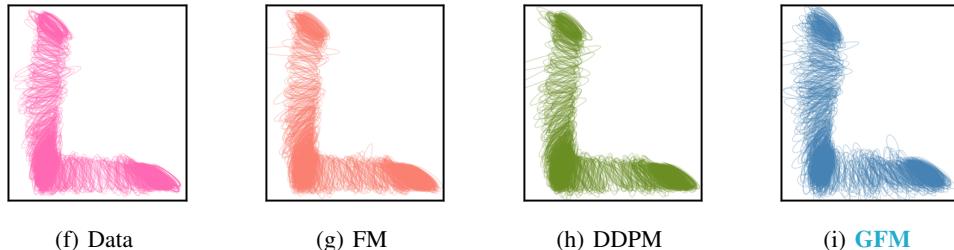


Figure 11: Visual comparison of 1000 samples between data distribution, DDPM model, Flow Matching model, and our GFM model on robotic manipulability ellipse generation task.

We additionally learn to sample the 2-dimensional trajectories. Therefore, our models are parameterized to generate samples in $\mathbb{R}^2 \times M$

Model settings: We model the time-variant velocity field with 3 hidden layers with 256 units each and ELU activation functions. We train the models for 10,000 epochs with a batch size of 256, and prior distribution as the uniform distribution over the constrained/ball domain.

Remark: The feasibility ratios reported in Table 11 are also high for methods that do not force feasibility, e.g., vanilla flow-matching and diffusion models. The possible reason for that phenomenon is that the training data is highly concentrated in the interior of the domain, and only a few data points are close to the boundary. Therefore, a few generated samples are infeasible.

E.7 SOLUTION GENERATION FOR RELAXED COMBINATORIAL PROBLEMS

We further evaluate our approach on high-dimensional solution generation for relaxed combinatorial problems (Kook & Vempala, 2024). The distribution we consider is particularly interesting as it recovers, as special cases, the sampling problems associated with Max-Cut SDP relaxations and minimum volume ellipsoid problems, defined as:

$$X \sim \exp(-(\langle A, X \rangle + \|X - B\|_F^2 + \|X - C\|_F - \log \det X)) \quad (65)$$

$$\text{s.t. } X \succeq 0, \langle D_i, X \rangle \geq c_i, \quad \forall i \in [m]. \quad (66)$$

The constraints ensure that X is a positive semidefinite $n \times n$ matrix satisfying m linear inequalities. Each term in the energy function captures different structural aspects of the optimization landscape, including linear objectives, quadratic penalties, proximity constraints, and determinant-based regularization.

By developing generative models for this class of problems, we aim to provide tools that not only sample feasible solutions but also help explore the solution space in ways that could reveal insights about the underlying combinatorial structure. This capability is particularly valuable for understanding the landscape of near-optimal solutions and for generating diverse candidate solutions that might be refined by downstream processes.

Data preparation: We sample from the target distribution using the Hit-and-Run (Bélisle et al., 1993) algorithm. The Hit-and-Run sampling algorithm is a Markov Chain Monte Carlo (MCMC) method that generates random samples from a high-dimensional distribution by iteratively selecting a random direction and moving to a new point along that direction according to the target distribution. To generate training samples, we use the Hit-and-Run sampler with 1000 burn-in, and sample new points using 1-dimensional Metropolis sampling with 100 burn-in.

1674
 1675 **Model settings:** We model the time-variant velocity field with 3 hidden layers with $n^2/2$ hidden
 1676 units with residual connections and bottleneck structure (Liu et al., 2024a). We train the models
 1677 for 1000 epochs with a batch size of 256, and prior distribution as the uniform distribution over the
 1678 constrained/ball domain.

1678

1679

1680

E.8 CONSTRAINED CONDITIONAL TIME SERIES GENERATION

1681

1682

1683 We follow the experimental setup of (Narasimhan et al., 2024) to generate time-series data subject to
 1684 physical and statistical constraints:

1685

1686

$$x_{\min} \leq x_t \leq x_{\max}, \quad \mu_{\min} \leq \text{ave}(x_{1:T}) \leq \mu_{\max}, \quad \text{var}(x_{1:T}) \leq \sigma_{\max}^2. \quad (67)$$

1687

1688

1689

1690

1691 These constraint bounds are derived from empirical statistics of the historical dataset. The time series
 1692 is generated via conditional forecasting, using past observations as model input.

1693

1694

1695

Data preparation: We use the PEMS-BAY traffic dataset (Yoon et al., 2019; Li et al., 2018),
 partitioned by days. The models learn to generate time series for one day conditioned on data from
 the previous day. Days with incomplete data are excluded from the dataset.

1696

1697

1698

Model settings: We model the conditional time-variant velocity field using a 4-layer neural network
 with 64 hidden units per layer, incorporating residual connections and a bottleneck structure (Liu
 et al., 2024a). All models are trained for 4,000 epochs with a batch size of 180. For the prior
 distribution, we use a standard Gaussian for vanilla Flow Matching and projection-based methods,
 and a uniform distribution over the ball domain for GFM.

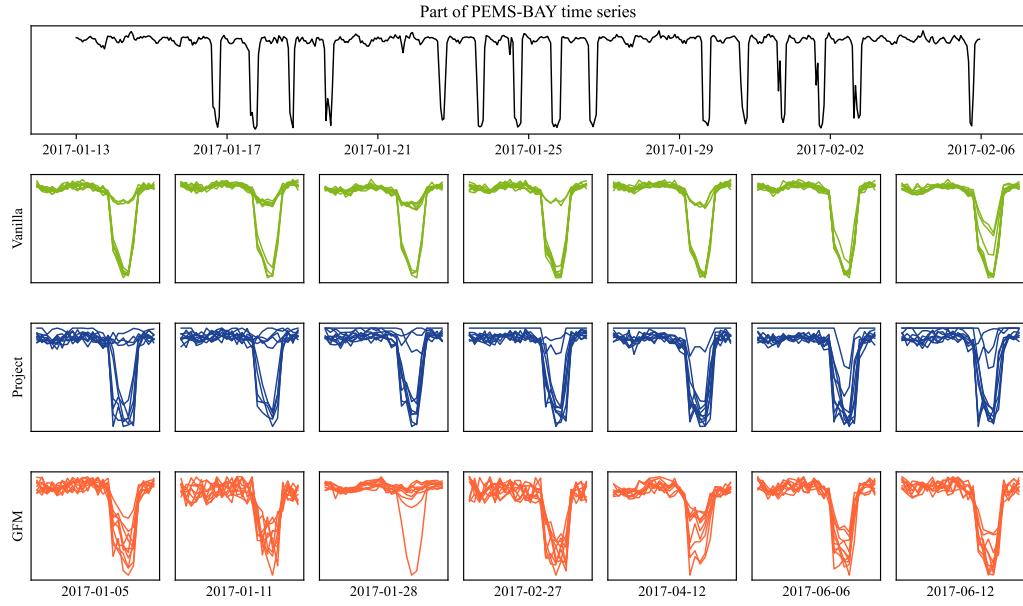
1699

1700

1701

1702

1703



1723

1724

1725

1726

Figure 12: Visual comparison of 24 time series strides between data distribution, Vanilla Flow Matching model, Projection Flow Matching model, and our GFM model on constrained traffic time series generation task.

1727

1728
1729 E.9 WATERMARKED IMAGE GENERATION TASKS
1730
1731
1732

(a) FM

(b) Projection

(c) Reflection

(d) GFM

1780
1781 Figure 13: CIFAR-10 samples with embedded watermarks generated by various methods using
100-step Euler sampling.

We evaluate GFM on constrained image generation with embedded watermarks using CIFAR-10, which consists of 32×32 RGB images. Following the watermarking methods in (Liu et al., 2024b), we partition pixels $\mathbf{x} \in [0, 1]^d$ into unconstrained public pixels \mathbf{x}_1 and watermark pixels $\mathbf{x}_2 \in \mathcal{C}$, where \mathcal{C} is a randomly sampled polytope for watermarking.

Model settings: All baselines are fine-tuned from a publicly available checkpoint of flow matching models (Tong et al., 2024), which share the same U-Net architecture (34M parameters). All models use identical fine-tuning hyperparameters (200 epochs) and sampling settings (100-step Euler method) on CIFAR-10 for fair comparison.

Data preparation: We select 32 pixels as watermarks constrained via a random polytope $\mathcal{C} = \{\mathbf{x}_2 : \mathbf{A}\mathbf{x}_2 \leq \mathbf{b}\}$ with $\mathbf{b} > 0$. The watermarked training dataset is created by projecting the selected pixels in the original CIFAR-10 dataset onto the polytope \mathcal{C} , while other public pixels remain unchanged.

E.10 SETTING OF SCALABILITY TESTS OF GAUGE MAPPING

To evaluate the scalability of gauge mapping, we conducted experiments with randomly generated inequality constraints. We tested scalability across three dimensions: problem dimension, batch size, and number of constraints.

We established a baseline configuration with 500-dimensional variables ($n = 500$), constraint dimension $k = 500$, $m = 8$ constraints, and batch size 256. For each scalability test, we varied one parameter while keeping the others fixed at their baseline values:

- **Problem dimension scalability:** We varied $n \in [10, 3000]$ while fixing $k = 500$, $m = 8$, and batch size 256. The specific dimensions tested follow Table 8.
- **Batch size scalability:** We varied the batch size from 10 to 100,000 while fixing $n = 500$, $k = 500$, and $m = 8$.
- **Constraint scalability:** We varied the number of constraints $m \in [8, 512]$ while fixing $n = 500$, $k = 500$, and batch size 256.

For each configuration, we measured the computation time of the gauge function evaluation. The results are illustrated in Fig. 8.

To demonstrate the efficiency of the bisection algorithm (Algorithm 3), we tested gauge computation on convex high-dimensional polynomials generated using the sum-of-squares (SOS) method.

A sum-of-squares polynomial of n variables and degree d is defined as

$$p(x_1, x_2, \dots, x_n) = (\text{mono}_d(x_1, x_2, \dots, x_n))^T Q, \text{mono}_d(x_1, x_2, \dots, x_n), \quad (68)$$

where $\text{mono}_d(x_1, x_2, \dots, x_n)$ is a vector of all monomials up to degree d , and Q is a positive semi-definite matrix. Each monomial of degree k takes the form $x_1^{c_1} x_2^{c_2} \cdots x_n^{c_n}$ where $c_1, c_2, \dots, c_n \in \mathbb{N} \cup 0$ and $c_1 + c_2 + \cdots + c_n = k$.

We performed the bisection-based gauge function, and the results are summarized in Table 12.

Table 12: Gauge function computation time of high-dimensional polynomials using bisection

No. of polynomials	No. of variables	Degree	No. of monomials	Time (s)
10	10	4	4,356	0.025
10	50	4	1,758,276	0.492
10	100	4	26,532,801	5.592

E.11 ABLATION STUDY

We consider the following ablation study to examine key components of GFM, including

- **Impacts of the interior point selection:** Central interior point vs Near-boundary interior point

- **Impacts of different generation strategies:** Reflection-based sampling *vs* Projection-based sampling
- **Impacts of the initial set:** ℓ_2 -norm ball *vs* ℓ_∞ -norm cube

We follow a similar setting in Sec. 7.1.

Table 13: Performances on joint convex set under different settings.

		L_2		L_∞	
		Central	Boundary	Central	Boundary
Reflection	MMD ($\times 10^{-2}$)	0.34	43.50	0.35	43.59
	Training (s)	0.22	0.22	0.21	0.23
	Inference (s)	0.91	0.86	0.86	0.88
Projection	MMD ($\times 10^{-2}$)	3.14	37.82	3.34	38.13
	Training (s)	0.22	0.22	0.21	0.23
	Inference (s)	0.48	0.50	0.47	0.50

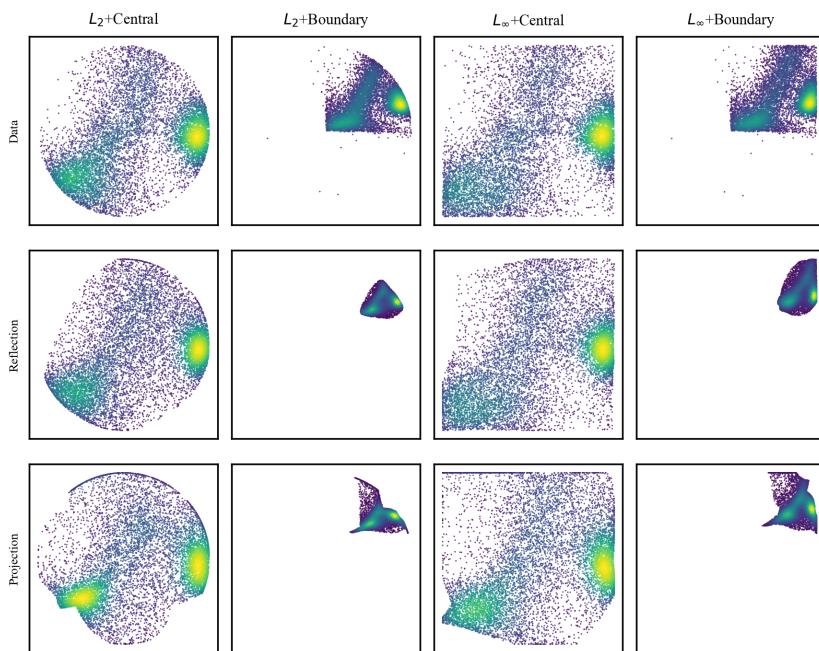


Figure 14: Visual comparison in the transformed space over L_2 -norm **ball** and L_∞ -norm **cube**: We compare gauge mappings using **central** versus **near-boundary** interior points, and evaluate samples generated via projection versus reflection-based strategies. Results show that gauge mapping with central interior points reduces distortion in the transformed space, facilitating more effective GFM training. Reflection-based sampling achieves superior generation quality compared to projection methods, while the choice of initial set shows negligible impact on generation quality.