
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LAGENCODER: A NON-PARAMETRIC METHOD FOR
REPRESENTATION LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Non-parametric encoders offer advantages in interpretability and generalizability.
However, they often perform significantly worse than deep neural networks on
many challenging recognition tasks, and it remains unclear how to effectively ap-
ply these techniques to such tasks. In this work, we view all AI recognition tasks
as function approximation problems and introduce LagEncoder, a non-parametric,
training-free feature extraction method based on finite element basis functions.
Our encoder features a universal architecture that can be applied to various types
of raw data and recognition tasks. We found that LagEncoder effectively over-
comes the limitations of neural networks in regression problems, particularly
when fitting multi-frequency functions. The LagEncoder-based model converges
quickly and requires low training costs, as only the head is trained. Additionally,
LagEncoder provides a parameter-efficient fine-tuning approach. Our experiments
on the ImageNet-1K and WikiText dataset demonstrate that pre-trained models
using LagEncoder achieve performance improvements within just one training
epoch. Furthermore, it does not require adjustments to the original training recipe,
extra training data, and the model’s total parameters remain nearly unchanged.
Our evaluation of the scaling law for model performance indicates that using the
LagEncoder is more cost-effective than increasing the model size.

1 INTRODUCTION

Neural networks have played a pivotal role in the evolution of artificial intelligence, particularly
excelling in challenge recognition tasks, where their performance has, in some cases, surpassed
human-level capabilities. Furthermore, advances in transfer learning have demonstrated that neural
network encoders exhibit notable domain adaptation properties, allowing them to generalize across
disparate tasks and data distributions. For instance, an encoder pre-trained for an image classifica-
tion task can be effectively transferred to an object detection task, even when the underlying data
distributions differ, while still maintaining robust feature extraction capabilities.

However, traditional machine learning models often demonstrate better domain adaptation. They
provided such feature extractors that require no training and are independent of specific recogni-
tion tasks (Pearson, 1901; Sparck Jones, 1972). For example, the kernel functions used in Support
Vector Machines (SVM) are unrelated to data labels, resulting in non-trainable feature extractors
that inherently provide complete domain adaptation. While traditional models typically offer higher
interpretability, they often perform significantly worse than neural networks in specific, highly chal-
lenging recognition tasks. It is worth noting that many neural network architectures are based on
mathematical methods that do not depend on labeled data. For instance, the linear layer and the
attention layer rely on inner products for feature extraction, where the vector basis in linear algebra
is fixed. Similarly, convolution layers perform feature extraction through convolution, in the Fourier
transform, the kernel function is predefined and independent of the target.

We view all recognition tasks as function approximation problems and focus on constructing an en-
coder with complete domain adaptation for challenging tasks. Through our extensive experiments,
we found that, as Fourier transforms, neural networks often struggle to fit multi-frequency functions
effectively (see Section 3.1.1). Specifically, when fitting functions with sharp transitions or local-
ized features, a large number of Fourier terms may be required, which can reduce computational
efficiency and potentially lead to overfitting. Similarly, neural networks often need to be much

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

x

y

1

ψ1 ψ2

basis function overlap

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 x

y

0

1

ψ1 ψ2

p0 p1 p2 p3 p4 · · · p8 p9

basis function overlap

pi

ψi

pj

ψjbasis function overlap

Figure 1: Left - The F (x) (solid blue line) is approximated with f(x;θ) (dashed red line), which
is a linear combination of linear basis functions (ψi is represented by the solid black lines). All
ten spline basis functions are distributed on a uniform grid, resulting in poor fitting for the orange
high-frequency region. Middle - All ten Lagrange basis functions are distributed on a multi-scale
grid, resulting in a good fitting over the whole region. Right - Tent-shaped linear basis functions that
have a value of 1 at the corresponding node and zero on all other nodes. Two base functions that
share two elements have a basis function overlap.

deeper, resulting in a significant increase in model size, to fit such functions properly. In numerical
simulation problems, Finite Element Method (FEM) can be used to fit more complex functions and
is widely applied in fields such as engineering and mathematical modeling. Because FEM’s local
basis functions can easily handle multi-scale problems, allowing it to represent features at varying
scales, from coarse to fine resolution (see Fig. 1, middle), making it a powerful tool for extracting
multi-scale features. In this work, we employed the Lagrange basis function from the FEM as a
feature extractor, which we call LagEncoder.

Compared to other encoders, LagEncoder is parameter-free and provides a universal architecture
applicable across various recognition domains, such as regression, image classification, image super-
resolution, and language modeling. Moreover, LagEncoder serves as an efficient parameter-efficient
fine-tuning (PEFT) approach (see Fig. 3 (c)). Our experiments demonstrate that pre-trained models
with LagEncoder achieve performance improvements within a single training epoch (e.g., ResNet-
50 with an additional 1M parameters achieves a +0.2% gain in validation accuracy in just 40 minutes
of fine-tuning on four GPUs). Our evaluation of the scaling law for model performance reveals that
LagEncoder is more cost-effective than simply scaling the model. Unlike data augmentation and
other PEFT methods, LagEncoder is neither task- nor architecture-specific, requiring no adjustments
to the raw training recipe or extra training data to enhance performance.

2 METHOD

In general, neural networks provide a mapping from input to predicted output. The classical linear
interpolation method includes an error bound formula that demonstrates an explicit relationship
between the number of parameters and the mean absolute error. In the context of language models,
this relationship is now commonly known as the scaling law (Kaplan et al., 2020). We now consider
using this interpolation method to approximate the latent function F (x):

f(x;θ) =
∑
i

θi · ψi(x), |f(x;θ)− F (x)| ≤ max
ξ∈Ω
∥∇f(ξ)∥ · h. (1)

where θ represents the model parameters, ψi(x) is a basis function, and f(x;θ) is the predicted
output given input x. Here, h = maxi maxj 1dist(p(i),p(j))=1 ·∥p(i)−p(j)∥ represents the maximum
length of mesh edges (see Section 2.1) and Ω is the domain over which the approximation occurs.

Directly replacing neural networks with traditional interpolation methods is not appropriate. Fig. 1
(left) illustrates the approach of KAN (Liu et al., 2024), which approximates the latent function us-
ing a linear combination of spline basis functions. However, when the basis functions are distributed
on a uniform grid, the model performs poorly in high-frequency regions. KAN uses Feynman equa-
tions as a benchmark; while these equations are complex in expression, they represent very smooth
curves. Conversely, when attempting to fit multi-frequency functions, such as y = sin(1/x), neural
networks are likely to outperform KAN due to their flexibility.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 2: Left - Mesh with eight nodes and seven triangles. Right - Contours of eight Lagrange basis
functions, linear variation of ψi associated with node p(i) across all triangles.

Mathematically, the FEM offers a standard solution to multi-frequency and high-dimensional chal-
lenges. As shown in Fig. 1 (middle), FEM adaptively allocates more parameters to high-frequency
regions and fewer to flat regions, enhancing performance in capturing complex multi-frequency be-
havior. Fig. 1 (middle) illustrates ten basis Lagrange functions for a one-dimensional input space,
while the right side shows two basis Lagrange functions for a two-dimensional input space. These
tent-shaped linear basis functions take a value of 1 at their corresponding node and 0 at all others.
In Section 2.2, we construct the Lagrange basis functions ψi(x) using FEM. In Section 2.4, we
propose two domain decomposition methods to effectively estimate the basis function distribution
by analyzing the dataset.

2.1 MESH

In the context of FEM, elements often serve as the fundamental building blocks of the triangulation
mesh, taking the form of simplices created by connecting nodes. For instance, in 1D FEM, simplices
are intervals (see Fig. 1, left); in 2D FEM, triangles with three nodes are commonly used (see Fig.
1, right), while 3D FEM often employs tetrahedra with four nodes. This concept is visually depicted
in Fig. 2 (left), where the mesh consists of eight nodes and seven triangles. This type of mesh is
established by specifying the coordinates of discrete nodes and the vertex indices of simplices. Let
d represent the dimensions, {p(i)}n−1

i=0 denote the grid nodes, and introduce a matrix P to store the
node coordinates:

Pi,j = p
(i)
j .

Additionally, utilize a matrix T to store the indices of nodes constituting the simplices within the
triangulation. Specifically, access the j-th sorted vertex of the i-th simplex in this mesh as PTi,j ,:.
Fig. 2 (left) illustrate a matrix T takes the following form:

T =

[
6 0 3 2 7 3 4
7 6 7 3 4 4 3
5 5 1 1 5 7 2

]T

.

This matrix serves to describe all seven simplices within the mesh, such as the first simplex
△p(6)p(7)p(5) and the last simplex△p(4)p(3)p(2).

The first-order Lagrange basis studied in this article, denoted as {ψ0(x), · · · , ψn−1(x)} ⊂ P1(Rd),
are piecewise linear polynomials associated with nodes {p(0), · · · ,p(n−1)}. These functions are
defined such that ψi(p

(j)) = 1i=j. Fig. 2 (right) illustrates this: ψi(x) corresponds to node p(i),
exhibiting linear variation across all elements. Its support encompasses the union of all neighbor-
ing elements of node p(i) (refer to Appendix B for a 3-dimensional visualization). For example,
supp(ψ3) = △p(3)p(4)p(7) ∪△p(3)p(7)p(1) ∪△p(3)p(1)p(2) ∪△p(3)p(2)p(4).

2.2 LAGENCODER

Now, we formulate the Lagrange basis from its original definition to establish the foundational
architecture of LagEncoder. It is important to highlight that the traditional Lagrange basis involves
unbalanced computing of barycentric coordinates, which may not be well-suited for parallel deep

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

learning platforms (see Appendix C for details on the traditional definition of the Lagrange basis).
Consequently, in this subsection, we re-derive the Lagrange basis to enhance parallel computing.

Let nt represent the number of simplices in the multiscale mesh. We introduce the Parameters
Tensor S defined as:

Sj,:,: =

p
(Tj,0)
0 · · · p

(Tj,0)
d−1 1

...
. . .

...
...

p
(Tj,d−1)
0 · · · p

(Tj,d−1)
d−1 1

p
(Tj,d)
0 · · · p

(Tj,d)
d−1 1

−1

, j = 0, · · · , nt − 1.

Additionally, we introduce the Node Membership tensor M defined as:

Mi,j,k =

{
1, if the i-th node matches the k-th vertex of the j-th simplex,
0, other cases.

By defining:

Uj,k(x) =

d−1∑
τ=0

Sj,τ,k · xτ + Sj,d,k, j = 0, · · · , nt − 1, k = 0, · · · , d.

We will demonstrate in Appendix A that the following function qualifies the definition of Lagrange
basis:

ψi(x) =

∑nt−1
j=0

∑d
k=0 1minτ Uj,τ (x)≥0 ·Mi,j,k ·Uj,k(x)

max(
∑nt−1

j=0

∑d
k=0 1minτ Uj,τ (x)≥0 ·Mi,j,k, 1)

, i = 0, · · · , n− 1. (2)

So far, we have successfully constructed :

LagEncoder :Rd → [0, 1]n,

x 7→ (ψ0(x), · · · , ψn−1(x)).

The above basis is in the format of P1(Rd), which is very useful for low-dimensional regression
tasks (see Section 3.1). Furthermore, if Eq. (1) is a decoupled system, we can decompose the input
space into a direct sum of d one-dimensional subspaces. In this case, Eq. (2) simplifies to the
Lagrange basis P1(R1):

ψi(x) = min

(
ReLU(x− pi−1)

pi − pi−1
,

ReLU(pi+1 − x)

pi+1 − pi

)
, i = 0, 1, · · · , n− 1. (3)

The P1(R1) basis has exceptionally low computational complexity, making it well-suited for recog-
nition tasks on large-scale datasets. In the next section, we will introduce the specific approach in
detail. We use the P1(R1) basis to implement an adaptive method for learning a decoupled residual
system. This method can enhance the performance of pre-trained models on large datasets.

2.3 PEFT-LAGENCODER

LagEncoder adheres to the universal approximation theorem and exhibits strong interpretability for
low-dimensional recognition tasks (see Section 3.1). However, as the data dimension d increases, the
output dimension of LagEncoder grows factorially (O(d!)) as described in Eq. (2). This exponential
growth makes it computationally expensive for high-dimensional data, such as large images, posing
challenges in resource-constrained environments.

To mitigate this, LagEncoder can be integrated as a module in PEFT methods. Consider a perfect
model F (x) with 100% test accuracy and a pre-trained model f(x;θ). If the pre-trained model
already achieves high test accuracy, the residual F (x) − f(x;θ) will be very flat, typically close
to zero for different inputs x. This sparsity in the residual’s support set implies that dimensionality
reduction on the pre-trained model’s features is likely reversible, enabling the effective application
of LagEncoder.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(a) Baseline

Inputs

Backbone

Head

Outputs

(b) LagEncoder

Inputs

^

Outputs

Linear

(c) PEFT-LagEncoder

Inputs

Backbone^

Head^

SigmoidNorm

^

SigmoidNorm

Linear

⊕

Outputs

101 102

0.8

0.9

1

1.1

1.2

1.3

V2

MobileNetV3-Small

V3-Large

ResNet18

34

50

101

ResNeXt50-32x4d
101-32x8d

ViT-B-16

L-16

PEFT-V2

PEFT-50
PEFT-50-32x4d

PEFT-B-16

Number of Parameters (Millions)

Im
ag
eN

et
-1
K

V
al

L
os
s

MobileNet, α ≈ 0.265
ResNet, α ≈ 0.252
ResNeXt, α ≈ 0.012
ViT, α ≈ −0.064

Figure 3: Left: (a) A plain network; (b) LagEncoder with a trainable linear layer; (c) LagEncoder
applied to PEFT, where the pre-trained model is frozen, and the SigmoidNorm layer for normaliza-
tion can be trainable or frozen, while the linear layer is trainable. Right: Colored lines represent
pre-trained models at different scales, and black lines represent our adaptive method, which outper-
forms model scaling with minimal changes to model size.

In Fig. 3 (c), the SigmoidNorm layer reduces the dimensionality and normalizes the output repre-
sentation vectors u from the pre-trained backbone:

v ← Sigmoid(PCA(u)).

Here, v represents the reduced-dimensionality feature. The PCA model can be generated using
standard unsupervised methods or by training. The P1(R1) LagEncoder is then applied to compute
the residual, which is combined with the pre-trained model to estimate the prediction:

F (x) ≈ f(x;θ) +
∑
i

θ
(linear)
i · ψi(v). (4)

Since the residual F (x) − f(x;θ) is sparsely distributed, the additional branch converges quickly
during training. Experiments demonstrate that this method minimally increases model size while
significantly improving performance within one epoch of training (see Table 2). This approach
effectively fine-tunes the model while conserving computational resources.

2.4 MULTISCALE DOMAIN DECOMPOSITION METHOD

In our earlier discussion, we introduced the linear interpolation and its associated error-bound for-
mula Eq. (1). However, this tool is not appropriate for machine learning modeling, since we face a
crucial challenge: the ”given function F (x) to be fitted” represents a ground truth that remains un-
known. Instead, in the scenario of machine learning, a typical dataset provides us with a collection of
input-target pairs. For any given simplex, select a subset {(x(k0), y(k0)), · · · , (x(km′−1), y(km′−1))}
from the training set {(x(0), y(0)), · · · , (x(m−1), y(m−1))} where m′ is the cardinality of subset, m
is the cardinality of subset, {ki}m

′−1
i=0 ⊆ {i}m−1

i=0 , and all subset elements reside within the given
simplex. Our goal now is to assess the error of f(x;θ) within this simplex.

Crucially, due to the linearity of basis functions {ψ0(x), · · · , ψn−1(x)} within each simplex, their
linear combination also remains linear within these simplices. As a result, in the given simplex,
there exists a set of coefficients β that:∑

k

θk · ψk(x
(i)) = β0x

(i)
0 + · · ·+ βd−1x

(i)
d−1 + βd.

Therefore we can obtain the following error bound by solving a Ordinary Least Squares problem
m′−1∑
i=0

∣∣∣∣y(i) −∑
k

θk · ψk(x
(i))

∣∣∣∣2 ≤ m′−1∑
i=0

|y(i) − (β̂0x
(i)
0 + · · ·+ β̂d−1x

(i)
d−1 + β̂d)|2, (5)

where β̂ = (XTX)−1XTy, Xi,:d = x(i), Xi,d = 1, and yi = y(i). This formula shows the error
bound reduced to 0 when m′ ≤ d + 1. By combining this conclusion with the global error-bound
formula Eq. (1), we can summarize two critical goals for mesh generation in modeling:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 Domain decomposition method of generating multiscale mesh.
Input: Maximum degrees of freedom N to perform. Depending on the size of the training set.
Input: Initial Simplex Indices Matrix T of shape (1, d+ 1) with T0,i = i.
Input: Initial Node Matrix P containing coordinates of d+1 points forming a simplex covering all
training raw data.
Output: The updated Node Matrix P and Simplex Indices Matrix T of the refined mesh.
• n← d+ 1
while n < N do
• Create the binary Longest Edge Matrix M where Mi,j = 1 indicates that the i-th edge is
the longest side of the j-th simplex.
• Formulate the binary Edge Membership Matrix E where Ei,j = 1 indicates that the i-th
edge is a side of the j-th simplex.
• Establish the binary Data-Simplex Membership Matrix B where Bi,j = 1 signifies that the
i-th raw data falls within the j-th simplex.
• Compute the index of the priority edge:

argmin
i

∑
j

∑
k Mi,jBk,j

max(
∑

j

∑
k Ei,jBk,j , 1)

.

The priority edge is the longest side among many simplices, and these relevant simplices cover
a substantial portion of the raw data.
• Insert a new node at the midpoint of the priority edge and update the Node Matrix P .
• Update the Simplex Indices Matrix T and utilize it to update mesh edges.
• n← n+ 1

end while

Algorithm 2 V-Cycle.
Require: The pre-trained model f(x;θ) with frozen parameter θ.
Require: Initial parameter θ(linear) of the linear head.
Require: Top-K threshold, K1 and K2 (Suggested defaults: 0.1× batchsize and 1 respectively).
Require: Mesh updating frequency N .
• k ← 1
• Generate PDF: Construct a histogram on the interval [−1, 1] to represent the Probability Den-
sity Function (PDF) of the empirical data distribution, initially using equal-width binning. The
grid P contains n− 1 bins, with n coarse nodes.
while stopping criterion not met do
• Sample a minibatch ofm examples from the training set {x(1), · · · ,x(m)}with targets y(i).
• Compute corresponding losses: li ← L(f(x;θ) +

∑
i θ

(linear)
i · ψi(v

(i)),y(i)).
• Generate PDF: Estimate a temporary PDF using the current m examples by selecting the
top K1 examples with the highest losses and calculating their proportion in each bin.
• Update PDF: Update the PDF using the temporary PDF and Exponential Moving Average.
if k mod N ≡ 0 then
•Mesh Refinement: Mark the top K2 bins as coarse elements and add their midpoints as
fine nodes, increasing degrees of freedom to n+K2.
• Interpolation: Use linear interpolation to update θ(linear) at each fine node.
•Mesh Coarsening: Solve a system of equations to transform the current histogram back
into equal-width binning, reducing the grid’s degrees of freedom back to n.
• Interpolation: Use linear interpolation to update θ(linear) at each new node.

end if
k ← k + 1

end while

1. Each simplex in the mesh should ideally contain as few original data points from the train-
ing set as possible. When each simplex covers no more than d+ 1 raw data examples, the
model perfectly fits the training set.

2. Decreasing the bound of mesh edge lengths results in a reduced bound of error.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1 generates a multiscale mesh, serving as the initial step in constructing the LagEncoder
architecture. In each iteration, it adds a new fine node to the grid and subdivides coarse simplices into
finer ones. Fig. 7 (left) in Appendix D illustrates this mesh refinement process. For PEFT methods,
Algorithm 1 can be replaced by the simpler V-cycle Algorithm 2 from FEM, which updates the mesh
by estimating the empirical distribution of training examples. The V-cycle allocates more nodes in
high-frequency (dense) regions and fewer in low-frequency (sparse) regions. A visualized workflow
is shown in Appendix D (Fig. 7, right).

3 EXPERIMENTS

In this section, we present a comprehensive series of experiments to showcase the effectiveness
and universality of LagEncoder across various tasks. Our exploration begins with an analysis of its
performance in regression tasks, followed by examinations in image and text recognition. Finally,
we apply it to the PEFT method and assess its performance on large datasets.

3.1 REGRESSION TASKS

3.1.1 THE LIMITATIONS OF TRADITIONAL REGRESSORS AND NEURAL NETWORKS

Traditional regressors often struggle with overfitting, while neural networks address this but perform
poorly when fitting multi-frequency functions, a phenomenon known as the frequency principle (Xu
et al., 2019). As shown in Fig. 4, Support Vector Regression (Platt et al., 1999) fits dataset B but
overfits on dataset A, whereas neural networks perform well on A but underfit on B. Neither MLPs,
CNNs, nor Transformers can effectively fit sharp transitions in dataset B, often treating these regions
as noise to avoid overfitting. Importantly, no existing model can fit the challenging dataset C.

LagEncoder addresses this gap by combining the strengths of traditional regressors and neural net-
works. It leverages a multiscale mesh to fit high-frequency regions using fine simplices adaptively.
Fig. 4 (right) demonstrates the LagEncoder-based model’s unique ability to handle dataset C, a
task no other model can achieve. Appendix F.3 (Fig. 9) further illustrates its gradual fitting pro-
cess during training. Comparison experiments in Appendix F.1 show that the LagEncoder-based
model consistently achieves high R2 scores across all test sets, demonstrating its robustness and
effectiveness, even in high-noise and multi-frequency scenarios.

x

y dataset A
dataset B

x

y dataset C

Figure 4: Left - Performance of traditional regressors and neural networks on high-noise
dataset A = (x, y)|X ∼ u(0, π4), Y ∼ N(sin 8x, | cos 8x|) and multi-frequency dataset B =

(x, y)| 1X ∼ u(0.02, 0.5), y = sin 1
x . The dashed teal curve shows that traditional regressors (e.g.,

Support Vector Regression) succeed on B but overfit A (solid teal curve). Conversely, neural net-
works (e.g., Multi-Layer Perceptron) fit A well (dashed orange curve) but underfit B (solid orange
curve). Right - The LagEncoder-based model demonstrates exceptional adaptability, successfully
fitting dataset C = (x, y)| 1X ∼ u(0.02, 0.5), Y ∼ N(sin 1

x , 0.5x
2), which combines high noise and

multi-frequency features.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

3.1.2 SCALING LAW AND ERROR-BOUND FORMULA

Our LagEncoder demonstrates strong interpretability, supported by the universal approximation the-
orem and our quantitative experimental results. In a triangular mesh, the number of parameters
N in the model’s linear head is proportional to the number of simplices nt in the mesh. Since
(nt/d!)

1/d = O(h−1), the error bound formula in Eq. (1) is derived as:

L(N) = |f(x;θ)− F (x)| = O(max
ξ∈Ω
∥∇f(ξ)∥ · n−1/d

t) = O(N−1/d). (6)

The experiment shown in Fig. 5 demonstrates that we perfectly predicted the empirical scaling law.

10−4 10−3 10−2 10−1
10−5

10−4

10−3

10−2

10−1

100

101

n−1
t

l2
er
ro
r

10−2 10−1

10−6

10−5

10−4

10−3

10−2

n
− 1

2
t

l2
er
ro
r

Figure 5: Left - Results of 32 experiments fitting the 1-dimensional function y = sin 1
x , where each

gray point represents an experiment, showing the relationship between n−1
t and Mean Square Error

(MSE). Right - Results of 32 experiments fitting the 2-dimensional function y =
∑2

i=1 sin
xi

2π , with
gray points illustrating individual experiments and the relationship between n−1/2

t and MSE.

3.2 NATURAL LANGUAGE PROCESSING

In this section, we explored the practical application of LagEncoder for text feature extraction on
the AG News dataset (Zhang et al., 2015) for classification tasks. The degree of freedom n of
LagEncoder was set to 64. Using the SGD optimizer, we minimized the cross-entropy loss with
an initial learning rate of 5.0, reduced by a factor of 0.1 every two epochs, and a batch size of 32.
The experiment achieved 90.01% test accuracy after the first epoch and 90.4% within five epochs.
A unique feature of the LagEncoder-based model in text classification is that its parameter count is
independent of the token count. Compared to word2vec-based networks, which require over 6.13
million parameters, the LagEncoder-based model achieves comparable classification performance
with only 256 parameters, offering a significant reduction in complexity.

Through experiments, we found three key limitations of existing PEFT methods:

• Dependence on Transfer Learning: Methods like LoRA struggle to outperform pre-trained
models on the same or similar datasets, as no domain adaptation is needed. Additional
training data is often required for these methods to be effective, as shown in Table 1. Their
strength lies mainly in transfer learning scenarios. However, when trained from scratch on
the raw dataset, they fail to outperform pre-trained models (see Tables 2 and 5).

• Sensitive Training Requirements: PEFT methods require specific training recipes, such as
small learning rates. Without these, performance often deteriorates from the first epoch.

• Task and Architecture Limits: Many PEFT methods, like LoHA (Hyeon-Woo et al., 2021)
and IA3 (Liu et al., 2022), are restricted to specific tasks or architectures, such as Conv1D
or linear layers.

We compare fine-tuning (FT), LoRA (Hu et al., 2021), and LagEncoder on WikiText benchmarks
(Merity et al., 2016) using GPT2 (Radford et al., 2019) for causal language modeling and RoBERTa
Liu (2019) for masked language modeling. Pre-trained models and the default random seed (42)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

of the HuggingFace Transformers library (Wolf et al., 2020) are used. A reduced learning rate
(≤ 10−5) is applied for LoRA to prevent performance degradation in these experiments. As shown
in Table 1, our method overcomes the mentioned challenges, performing well even without extra
training data. It is also versatile for transfer learning (see Table 5).

Dataset Method GPT2 GPT2-Medium GPT2-Large Roberta-Base
#Params PPL Seq/s #Params PPL Seq/s #Params PPL Seq/s #Params PPL Seq/s

Wikitext-2
FT 124.4M 21.6623 7.36 354.8M 16.1183 3.38 774.0M 13.9927 1.71 124.7M 3.6337 9.82
LoRA 0.295M 21.6582 13.05 0.393M 16.1183 6.00 0.737M 13.9973 1.69 0.295M 3.6347 9.68
LagEncoder 0.203M 21.597 9.76 0.404M 16.1086 5.83 0.607M 13.9964 3.02 0.303M 3.6346 15.39

Wikitext-103
FT 124.4M 21.4234 6.98 354.8M 15.8900 3.50 774.0M 13.8468 1.58 124.7M 3.6415 10.05
LoRA 0.295M 21.4188 12.90 0.393M 15.8873 6.29 0.737M 13.8486 1.67 0.295M 3.6425 9.85
LagEncoder 0.203M 21.3401 9.58 0.404M 15.8674 6.66 0.607M 13.8443 2.52 0.303M 3.6414 12.37

Table 1: GPT2 and RoBERTa with Different Adaptation Methods on the WikiText Benchmark. We
report the number of trainable parameters, perplexity (PPL, lower is better), and training throughput
(sequences per second) for language modeling tasks. For a fair comparison, we adjusted the number
of parameters of our method to be similar to those of LoRA.

3.3 COMPUTER VISION

As described in Section 2.3, LagEncoder can serve as a non-parametric module for the PEFT
method. The new model includes a residual branch where the SigmoidNorm layer and linear head
contain trainable parameters (see Fig. 3 (c)). In this section, we illustrate the effectiveness of PEFT-
LagEncoder through ablation studies. To ensure a fair comparison with baseline models, we adopt a
stricter experimental setup: the original training recipe of the pre-trained model cannot be modified
when training the residual branch.

This restriction is crucial to ablation studies because the training recipes for pre-trained models
often have room for optimization (Wightman et al., 2021). Changes to batch size, optimizer, weight
decay rate, or the order of applying data augmentations could potentially improve the performance
of the pre-trained model (Touvron et al., 2019; 2021). To avoid such effects, we selected pre-trained
models from TorchVision with publicly available training recipes as our baselines. The weights of
these pre-trained models closely reproduce the results from the original papers on the ImageNet-1K
dataset (Russakovsky et al., 2015), with recipes available at (TorchVision Contributors, 2024).

Model Method # Trainable Speed Training
Parameters Acc@1 Acc@5 (img/s) Time (total)

MobileNet-V2

Baseline* 3.5 M 71.878 90.286 16h 30m
LoRA 341,360 71.686 90.280 701.51 32m 54s
PromptTuning 324,080 71.798 90.278 864.09 32m 12s
LagEncoder 328,720 71.934 90.268 685.17 32m 12s

ResNet-50

Baseline* 25.6 M 76.130 92.862 2d 1h 15m
LoRA 597,933 76.288 92.972 440.18 32m 48s
PromptTuning 536,750 76.674 93.128 434.07 39m 6s
LagEncoder 540,688 76.274 92.932 411.50 40m 42s

ResNeXt-50 32x4d

Baseline* 25.0 M 77.618 93.698 3d 1h 30m
LoRA 246,830 77.450 93.580 334.72 48m 54s
PromptTuning 149,552 77.424 93.602 333.71 50m 9s
LagEncoder 135,172 77.650 93.672 315.33 51m 9s

ViT-B16

Baseline* 86.6 M 81.072 95.318 3d 3h 20m
LoRA 617,942 80.914 95.282 331.02 50m 6s
PromptTuning 71,760 80.770 95.172 334.21 55m 9s
LagEncoder 67,076 81.082 95.316 316.31 56m 54s

Table 2: Comparison of Adaptation Methods on Various Networks and the ImageNet-1K Dataset.
PEFT-LagEncoder demonstrates superior performance compared to other methods, offering com-
petitive trainable parameters, validation accuracy, training throughput (images per second), and total
training time (five epochs). * indicates numbers published in prior works.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Due to space constraints, we present only the comparison results in Table 2. In Appendix E, we
highlight the strong stability of PEFT-LagEncoder, showing ±0.07% fluctuation in validation accu-
racy across independent model training (see Table 3). Trainable parameters in our method originate
from the SigmoidNorm and linear layer (Fig. 3(c)) and the total number of trainable parameters can
be calculated as N = (Cin +1)×d+d×n×C, where N is the number of model parameters, Cin is
the SigmoidNorm input dimension, d the PCA output dimension, n is the mesh node count (degrees
of freedom), and C the total output dimension.

Increasing n and d improves model performance (see Appendix E, Table 4). We also study empir-
ical scaling laws for model performance on cross-entropy loss to demonstrate how our adaptation
method fully exploits the potential of pre-trained models. (Kaplan et al., 2020) proposed an empiri-
cal formula where the loss scales as a power-law with model size:

L(N) =
(c

N

)α

where L(N) is the cross-entropy loss on the validation dataset, c and α are constants related to the
model type. Fig. 3 (right) shows that our adaptation method is more effective than simply scaling
the model size. Our method increases the α for MobileNet (Howard et al., 2017) from 0.27 to 0.47,
for ResNet He et al. (2016) from 0.25 to 2.1, for ResNeXt Xie et al. (2017) from 0.01 to 3.1, and for
ViT (Dosovitskiy et al., 2020) from -0.06 to 1.2.

Our method offers significant practical value. Unlike other model scaling and adaptation approaches,
it requires no adjustments to the training recipe, has low computational demands with minimal
trainable parameters, and converges within a single epoch. For instance, on 4x A6000 GPUs, it adds
1 million parameters to a ResNet-50 model and achieves a 0.2% accuracy gain in just 40 minutes of
training. Moreover, unlike other PEFT methods, our approach is not limited to transfer learning and
can improve performance directly on the raw dataset (see Table 2).

4 FUTURE DIRECTIONS

It is important to recognize that LagEncoder has certain limitations. As described in Section 2.3,
the high computational cost of extracting features from high-dimensional data restricts its direct
application to large-scale datasets. Currently, we address this by incorporating LagEncoder as part
of an adaptation method, but we aim to improve the encoder in the future to be able to extract
features directly from large images. Additionally, the experiments in Section 3.3 show that while
our adaptation method significantly reduces cross-entropy on the ImageNet-1K validation set and
consistently improves validation accuracy, the magnitude of improvement of accuracy is relatively
modest, which we intend to explore further. We did not compare LagEncoder with models like SVM
or KAN, which offer strong interpretability, because their underlying principles are entirely differ-
ent. Moreover, we prioritize performance on challenging tasks where most interpretable models
often lack relevant experimental results.

5 CONCLUSION

We explored domain adaptation in transfer learning and proposed a non-parametric encoder that
does not require training. This encoder has a universal design suitable for diverse raw data and
tasks. It extracts features by estimating data distribution across a multi-scale grid, enabling strong
generalization. Our experiments demonstrated several key advantages of the LagEncoder-based
model: 1) Strong mathematical explainability: The empirical model scaling law aligns perfectly
with the error-bounds formula of linear interpolation, providing a solid understanding of how it
learns representations. 2) Fast training: With only one linear layer to train, the model typically
converges in just one or two epochs, making it ideal for large datasets. 3) Not limited to transfer
learning: Unlike most PEFT methods, which are task-specific and underperform on raw datasets,
our method works effectively without these constraints.

In summary, LagEncoder is a novel encoder rooted in the universal approximation theorem, requir-
ing no extensive training, fine-tuning, or heavy computational resources. It offers an explainable and
efficient approach to representation learning, providing an alternative to black-box methods.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

H Cantzler. Random sample consensus (ransac). Institute for Perception, Action and Behaviour,
Division of Informatics, University of Edinburgh, 1981.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of
statistics, pp. 1189–1232, 2001.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Donald E Hilt and Donald W Seegrist. Ridge, a computer program for calculating ridge regression
estimates, volume 236. Department of Agriculture, Forest Service, Northeastern Forest Experi-
ment . . . , 1977.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Nam Hyeon-Woo, Moon Ye-Bin, and Tae-Hyun Oh. Fedpara: Low-rank hadamard product for
communication-efficient federated learning. arXiv preprint arXiv:2108.06098, 2021.

Prateek Jain, Sham M Kakade, Rahul Kidambi, Praneeth Netrapalli, and Aaron Sidford. Accelerat-
ing stochastic gradient descent for least squares regression. In Conference On Learning Theory,
pp. 545–604. PMLR, 2018.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
Colin A Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
learning. Advances in Neural Information Processing Systems, 35:1950–1965, 2022.

Yinhan Liu. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 364, 2019.

Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljačić,
Thomas Y Hou, and Max Tegmark. Kan: Kolmogorov-arnold networks. arXiv preprint
arXiv:2404.19756, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

Karl Pearson. Liii. on lines and planes of closest fit to systems of points in space. The London,
Edinburgh, and Dublin philosophical magazine and journal of science, 2(11):559–572, 1901.

John Platt et al. Probabilistic outputs for support vector machines and comparisons to regularized
likelihood methods. Advances in large margin classifiers, 10(3):61–74, 1999.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115(3):211–252, 2015.

Karen Sparck Jones. A statistical interpretation of term specificity and its application in retrieval.
Journal of documentation, 28(1):11–21, 1972.

Mervyn Stone. Cross-validatory choice and assessment of statistical predictions. Journal of the
royal statistical society: Series B (Methodological), 36(2):111–133, 1974.

H Thiel. A rank-invariant method of linear and polynomial regression analysis. i, ii, iii. Nederl.
Akad. Wetensch., Proc. 53, pp. 386–392, 1950.

TorchVision Contributors. Torchvision models. https://pytorch.org/vision/master/
models.html, 2024. Accessed: 2024-08-09.

Hugo Touvron, Andrea Vedaldi, Matthijs Douze, and Hervé Jégou. Fixing the train-test resolution
discrepancy. Advances in neural information processing systems, 32, 2019.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International conference on machine learning, pp. 10347–10357. PMLR, 2021.

Ross Wightman, Hugo Touvron, and Hervé Jégou. Resnet strikes back: An improved training
procedure in timm. arXiv preprint arXiv:2110.00476, 2021.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 conference on empirical methods in
natural language processing: system demonstrations, pp. 38–45, 2020.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual trans-
formations for deep neural networks. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 1492–1500, 2017.

Zhi-Qin John Xu, Yaoyu Zhang, and Yanyang Xiao. Training behavior of deep neural network in
frequency domain. In International Conference on Neural Information Processing, pp. 264–274.
Springer, 2019.

Tong Zhang. Solving large scale linear prediction problems using stochastic gradient descent algo-
rithms. In Proceedings of the twenty-first international conference on Machine learning, pp. 116,
2004.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text clas-
sification. Advances in neural information processing systems, 28, 2015.

12

https://pytorch.org/vision/master/models.html
https://pytorch.org/vision/master/models.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A PROOF OF LAGRANGE BASIS EXPRESSION

We will now demonstrate, in three concise steps, that Eq. (2) qualifies as a Lagrange basis function.
Piecewise Linear: Since {Uj,0, · · · ,Uj,d} are piecewise linear functions, their linear combination
Li is also piecewise linear.
Kronecker Delta: From the definition of U and S, we have the following equation:

[x0 · · · xd−1 1] = [Uj,0(x) · · · Uj,d(x)]

p
(Tj,0)
0 · · · p

(Tj,0)
d−1 1

...
. . .

...
...

p
(Tj,d−1)
0 · · · p

(Tj,d−1)
d−1 1

p
(Tj,d)
0 · · · p

(Tj,d)
d−1 1

 .

Decomposing this equation, we obtain x =
∑d

k=0 Uj,k(x)p
(Tj,k) and

∑d
k=0 Uj,k(x) = 1. This

implies two important conclusions: Uj,k′(p(Tj,k′′)) = 1k′=k′′ and minτ Uj,τ (x) ≥ 0 is true if and
only if x belongs to the j-th simplex. Therefore, we have{

1minτ Uj,τ (p(i))≥0 = Mi,j,k = Uj,k(p
(i)) = 1, if i = Tj,k

Mi,j,k = Uj,k(p
(i)) = 0, if i ̸= Tj,k

This proves that ψi(p
(j)) = 1i=j .

Globally Continuity: Lastly, since ψi is inherently linear within all simplices and exhibits continu-
ity across all grid nodes, we can conclude that ψi is globally continuous.

B VISUALIZATION OF LAGRANGIAN BASIS

In section 2, we introduced first-order Lagrange basis functions, a set of piecewise linear functions
defined on a mesh. Each basis function corresponds to a node.

Consider the grid depicted in Fig. 6 (left). Taking the node p(20) as an example, it has a total of
four neighboring nodes: p(5), p(0), p(7), and p(4). By connecting these nodes, we can determine
the support of the basis function ψ20.

In Fig. 6 (middle), we present the function graphs of ψ20 and ψ7. It can be observed that these
functions exhibit linear variations on each mesh triangle. Taking ψ20 as an example, its function
value at p20 is 1, and 0 at all other nodes. Similarly, ψ7 has a function value of 1 at p7 and 0 at other
nodes.

In Fig. 6 (right), the orange triangles represent the function graph of f(x;θ) on the do-
main △p(0)p(7)p(9), where the function values of f(x;θ) at the vertices (p(0),p(7),p(9)) are
(θ0,θ7,θ9), respectively. The green dots represent a subset of training set, where the projections
(raw data) fall on△p(0)p(7)p(9). As shown in equation (2), when the number of green points does
not exceed three, there exists a solution of (θ0,θ7,θ9) such that all green points lie on the surface
of f(x;θ), such that MSE reach a minimum value of 0.

−4 −2 0 2 4
−4

−2

0

2

4

p(20)

p(5)

p(4)

p(7)

p(0) L7

L20

Figure 6: Data visualization. Left - an example of 2-dimensional mesh. Middle - the graphs of basis
functions ψ20 and ψ7. Right - the graphs of the function f(x;θ) and a subset of training set.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

C THE TRADITIONAL EXPRESSION OF LAGRANGE BASIS

Given the complexity of FEM as a numerical method, to enhance understanding, we start with a
two-dimensional case and a triangulated mesh to illustrate the traditional expression of basis func-
tions. Let triangle △ be defined by nodes {p(i),p(j),p(k)}. The following barycentric coordinates
{λ△,i, λ△,j , λ△,k} are three first-degree polynomials of x[

λ△,i(x)
λ△,j(x)
λ△,k(x)

]
=

p(i)
0 p

(j)
0 p

(k)
0

p
(i)
1 p

(j)
1 p

(k)
1

1 1 1

−1 [
x0

x1

1

]
.

Referring to the instance depicted in Fig. 2 (left), the mesh consists of eight nodes and seven
triangles. Specifically, let {△(j) = △p(Tj,0)p(Tj,1)p(Tj,2)|j = 0, · · · , 6}. We will now verify that
the following ψ3 corresponds to the third basis function in this mesh

ψ3(x) =
1

max(
∑

i∈{2,3,6,5} 1x∈△(i) , 1)

∑
i∈{2,3,6,5}

1x∈△(i)λ△(i),3(x).

First, ψ3 possesses values of Kronecker Delta:

ψ3(x) =

1

max(0, 1)
(0 · λ△(2),3(x)+0 · λ△(3),3(x)+0 · λ△(6),3(x)+0 · λ△(5),3(x))= 0, if x = p(0),

1

max(2, 1)
(1 · 0 +1 · 0 +0 · λ△(6),3(x)+0 · λ△(5),3(x))= 0, if x = p(1),

1

max(2, 1)
(0 · λ△(2),3(x)+1 · 0 +1 · 0 +0 · λ△(5),3(x))= 0, if x = p(2),

1

max(4, 0)
(1 · 1 +1 · 1 +1 · 1 +1 · 1) = 1, if x = p(3),

1

max(2, 1)
(0 · λ△(2),3(x)+0 · λ△(3),3(x)+1 · 0 +1 · 0) = 0, if x = p(4),

1

max(0, 1)
(0 · λ△(2),3(x)+0 · λ△(3),3(x)+0 · λ△(6),3(x)+0 · λ△(5),3(x))= 0, if x = p(5),

1

max(0, 1)
(0 · λ△(2),3(x)+0 · λ△(3),3(x)+0 · λ△(6),3(x)+0 · λ△(5),3(x))= 0, if x = p(6),

1

max(2, 1)
(1 · 0 +0 · λ△(3),3(x)+0 · λ△(6),3(x)+1 · 0) = 0, if x = p(7),

Then, ψ3 is a first-degree polynomial in every triangle and supp ψ3 = inn ∪i∈{2,3,6,5} △(i):

ψ3(x) =

1

max(0, 1)
(0 · λ△(2),3(x)+0 · λ△(3),3(x)+0 · λ△(6),3(x)+0 · λ△(5),3(x))=0, if x ∈ inn T0,

1

max(0, 1)
(0 · λ△(2),3(x)+0 · λ△(3),3(x)+0 · λ△(6),3(x)+0 · λ△(5),3(x))=0, if x ∈ inn T1,

1

max(1, 1)
(1 · λ△(2),3(x)+0 · λ△(3),3(x)+0 · λ△(6),3(x)+0 · λ△(5),3(x))=λ△(2),3(x), if x ∈ inn T2,

1

max(1, 1)
(0 · λ△(2),3(x)+1 · λ△(3),3(x)+0 · λ△(6),3(x)+0 · λ△(5),3(x))=λ△(3),3(x), if x ∈ inn T3,

1

max(0, 1)
(0 · λ△(2),3(x)+0 · λ△(3),3(x)+0 · λ△(6),3(x)+0 · λ△(5),3(x))=0, if x ∈ inn T4,

1

max(1, 1)
(0 · λ△(2),3(x)+0 · λ△(3),3(x)+0 · λ△(6),3(x)+1 · λ△(5),3(x))=λ△(5),3(x), if x ∈ inn T5,

1

max(1, 1)
(0 · λ△(2),3(x)+0 · λ△(3),3(x)+1 · λ△(6),3(x)+0 · λ△(5),3(x))=λ△(6),3(x), if x ∈ inn T6,

Finally, since ψ3 is continuous in all nodes and first-degree in all triangles, it is globally continuous.

D VISUALIZATION OF MESH REFINEMENT

In this work, we utilize the triangle mesh for constructing P1(Rd) Lagrange basis. As the mesh is
refined, each simplex will contain the same number of points, so Algorithm 1 is an equal-frequency
binning method in d-dimensional space.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

(Fig. 7, left) depicts a mesh variety during the iterations of Algorithm 1. In the coarse mesh, sim-
plices containing more points will be refined, and simplies containing fewer points will be retained.
When we detect that the number of points (training input data) contained in all simplexes is not
much different, the mesh will stop being refined.

Figure 7: Left - Each triangle represents a 2-dimensional simplex, with increasing degrees of free-
dom indicating higher levels of refinement. Discrete points denote the raw data. Right - V-cycle
transforms a uniform mesh into a multiscale mesh by inspecting residuals, redistributing nodes from
flat regions to improve the mesh’s representation capacity.

E ADDITIONAL EXPERIMENTS

We study the robustness of the LagEncoder on the ImageNet-1K validation set with one training
epoch. The result is presented in Table 3. All methods follow the raw training recipes to ensure fair
comparisons.

Model d n # Params Acc@1 (%) Acc@5 (%)

MobileNet-V2 32 8 0.298 M (+8.51%) 71.920±.016(+.045) 90.302±.021(+.016)
ResNet50 32 8 0.324 M (+1.27%) 76.334±.054(+.204) 92.976±.024(+.114)

ResNeXt50 32 8 0.324 M (+1.30%) 77.796±.063(+.178) 93.653±.038(+.178)
ViT-B-16 8 32 1.032 M (+1.19%) 81.092±.012(+.020) 95.316±.004(−.002)

Table 3: Classification accuracy on the ImageNet-1K validation set and one epoch training, with
all methods adhering to the raw training recipes. We report the changes in the number of model
parameters and their ratio of changes and total. For each model, we conducted multiple experiments
and show the accuracy as “mean±std(mean− baseline)”.

Metric (n, d) (4, 4) (4, 8) (4, 16) (4, 32) (8, 4) (8, 8) (8, 16) (8, 32)
Parameters 36,868 69,636 135,172 266,244 73,736 139,272 270,344 532,488

Acc@1 76.226 76.226 76.242 76.222 76.238 76.256 76.268 76.276
Acc@5 92.952 92.960 92.948 92.972 92.964 92.954 92.966 92.952

Speed (img/s) 405.31 411.18 390.26 418.84 382.22 394.63 409.52 404.43

Metric (16, 4) (16, 8) (16, 16) (16, 32) (32, 4) (32, 8) (32, 16) (32, 32)
Parameters 147,472 278,544 540,688 1,064,976 294,944 557,088 1,081,376 2,129,952

Acc@1 76.272 76.244 76.248 76.284 76.298 76.272 76.248 76.294
Acc@5 92.940 92.946 92.968 92.958 92.956 92.958 92.968 92.932

Speed (img/s) 393.19 394.86 379.72 380.30 393.34 414.39 379.72 368.94

Table 4: ResNet-50 Performance with different n and d. The table explores the impact of varying n
(PCA output dimension) and d (degrees of freedom) on the performance of the LagEncoder-based
ResNet-50 model. Metrics include the number of additional parameters, top-1 (Acc@1) and top-5
(Acc@5) validation accuracy, and training speed (images per second). The baseline ResNet-50 has
25.6M parameters, Acc@1: 76.130%, and Acc@5: 92.862%.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Increasing n, d, and training epochs is an effective way to enhance model performance, as shown
in Table 4. Unlike the function fitting task, diminishing returns in performance improvements are
observed in this case due to the finite cardinality of image and text datasets.

LoRA and other PEFT methods perform exceptionally well in transfer learning when adapting to
new datasets or domains with limited data or computational resources. However, they may not be
ideal for tasks where fine-tuning models on the same dataset and have the following limitations.

1. When the dataset is fixed and does not differ significantly from the original dataset used for
pre-training, PEFT methods may underperform compared to training from scratch.

2. When using LoRA or other PEFT methods, it’s crucial to reset the training recipe (including
batch size, optimizer, and use a small learning rate of 10−4 ∼ 10−6).

3. Most PEFT methods are not general. Many Parameter-Efficient Fine-Tuning (PEFT) meth-
ods rely on model-specific and task-specific configurations. For example, IA3 and LoHA
apply to Linear and Conv1D layers only.

We also compared LoRA with our method of transfer learning by learning the fusion of WikiText-2
and WikiText-103 datasets. As shown in Table 5, our method outperforms LoRA in this scenario.

Model Method # Trainable
Parameters Acc Loss PPL Seq/s

GPT2
FT 124,439,808 0.422 3.0756 21.6623 7.088
LoRA 294,912 0.4221 3.0747 21.6431 13.048
LagEncoder 202,566 0.4229 3.0702 21.5469 9.392

GPT2-Medium
FT 354,823,168 0.455 2.78 16.1183 3.376
LoRA 393,216 0.4556 2.7783 16.0916 6.152
LagEncoder 404,106 0.4558 2.7773 16.0751 6.592

GPT2-Large
FT 774,030,080 0.4721 2.6385 13.9927 1.712
LoRA 737,280 0.4725 2.6347 13.9387 1.648
LagEncoder 606,927 0.4724 2.6369 13.97 2.34

Table 5: Comparison of Fine-Tuning (FT), LoRA, and LagEncoder on Transfer Learning with Fused
WikiText-2 and WikiText-103 Datasets. The table reports the number of trainable parameters, accu-
racy (Acc), loss, perplexity (PPL), and training throughput (sequences per second, Seq/s) for each
method and model size. LagEncoder achieves competitive accuracy and perplexity while maintain-
ing efficient parameter utilization and high training efficiency.

F ADDITIONAL APPLICATIONS

F.1 REGRESSION

As mentioned earlier, neural networks often struggle to fit multi-frequency datasets effectively.
Therefore, our primary focus is comparing the LagEncoder-based model with traditional regres-
sors. To evaluate the effectiveness and generalization of the LagEncoder-based model, we have
devised four diverse datasets, each generated from distinct probability distributions:

1. A1: Generated from the distribution {(x, y)|X ∼ U(−π, π), Y ∼ N (sinx, 15 cos
2 x)},

with 1000 training examples and 200 test examples. The LagEncoder-based model was
trained with a learning rate of 0.1.

2. B1: Generated from the distribution {(x, y)| 1X ∼ U(0.02, 1.0), Y ∼ N (sin 1
x , 0.01)}, with

1000 training examples and 200 test examples. We trained the LagEncoder-based model
with a learning rate of 0.9.

3. A2: Generated from the distribution {(x, y)|Xi ∼ U(−π, π), Yi ∼ N (sinxi,
1
10 cos

2 xi)

, Y = 1
2 (Y1 + Y2)}, with 7,500 training examples and 1,500 test examples. The

LagEncoder-based model was trained with a learning rate of 0.1.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

4. B2: Generated from the distribution {(x, y)| 1
Xi
∼ U(0.05, 0.5), Yi ∼ N (sin 1

xi
, 0.01), Y

= 1
2 (Y1 + Y2)}, with 50,000 training examples and 10,000 test examples. The training

utilized a learning rate of 0.9.

Table 6 displays the coefficient of determination (R2) scores for the LagEncoder-based model and
traditional regressors (Thiel, 1950; Cantzler, 1981; Zhang, 2004; Hilt & Seegrist, 1977; Stone, 1974;
Jain et al., 2018; Murphy, 2012; Platt et al., 1999; Friedman, 2001; Breiman, 2001) across fitting
the four datasets. The LagEncoder-based model consistently achieves high R2 scores across all test
sets, demonstrating the effectiveness of the InterpolationNet on both high-noise and multi-frequency
datasets. Furthermore, the minimal gap between training and test set evaluations underscores the
robustness of the LagEncoder-based model, indicating its capability of generalization.

METHOD A1 B1 A2 B2

OLS Linear 0.037 0.042 0.963 0.951 0.085 0.092 0.984 0.984
Theil-Sen -44.7 -54.4 0.958 0.946 -0.41 -3.81 0.982 0.982
RANSAC -1.21 -1.43 0.963 0.951 -27.0 -27.1 0.983 0.983
Huber 0.036 0.041 0.962 0.949 0.085 0.092 0.984 0.984
Ridge 0.031 0.038 0.963 0.951 0.055 0.061 0.984 0.984
RidgeCV 0.037 0.042 0.963 0.951 0.085 0.092 0.984 0.984
SGD 0.009 0.01 0.962 0.95 0.005 0.004 0.983 0.983
KRR 0.0036 0.04 0.97 0.962 0.056 0.051 0.993 0.992
SVR 0.11 0.101 0.97 0.962 0.29 0.308 0.992 0.992
Gradient Boosting 0.964 0.962 0.98 0.96 0.989 0.988 0.992 0.99
Random Forests 1.0 0.999 0.995 0.945 1.0 0.999 0.999 0.99
Voting 0.852 0.852 0.942 0.917 0.869 0.868 0.951 0.946
Net 1.0 1.0 0.971 0.963 0.999 0.999 0.992 0.992

Table 6: A comprehensive comparison between the LagEncoder-based model and traditional re-
gressors. The left half of each paired column displays the training R2 score, while the right half
showcases the corresponding test R2 score.

F.2 FITTING HIGH-NOISE DATASET

In this section, we conduct the LagEncoder-based model on fitting the dataset A = {(x, y)|X ∼
U(−4, 4), Y ∼ N (sinx, 0.2 cos2 x)}. A comprises 6000 examples, with 5000 for training and
1000 for testing. Fig. 8 shows the training progress.

(a) epoch=0, num simplices=1 (b) epoch=0, num simplices=32 (c) epoch=4, num simplices=145 (d) epoch=10, num simplices=414

Figure 8: Blue dots represent the training set, while the orange curve represents the network.

F.3 FITTING MULTI-FREQUENCY DATASET

In this section, we conduct the LagEncoder-based model on fitting the dataset A = {(x, y)| 1x ∼
U(0.02, 0.5), y = sin 1

x}. A comprises 6000 examples, with 5000 for training and 1000 for testing.
Fig. 9 illustrates the training progress. Remarkably, after just 4 epochs of training, the neural
network outputs closely approximate the target values. By the 32nd epoch’s conclusion, the neural
network outputs and target values are nearly indistinguishable.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

(a) epoch=0, num simplices=1 (b) epoch=0, num simplices=16 (c) epoch=0, num simplices=32 (d) epoch=0, num simplices=64

(e) epoch=2, num simplices=268 (f) epoch=4, num simplices=654 (g) epoch=9, num simplices=1423 (h) epoch=32, num simplices=2648

Figure 9: Blue dots represent the training set, while the orange curve represents the network.

F.4 FIT A VECTOR-VALUED FUNCTION

In this instance, we utilize the LagEncoder-based model to fit spherical harmonics. Our dataset
denoted as A = {(x,y)|x = (θ, ϕ),y = (Real(Y 2

4 (θ, ϕ)), Imag(Y 2
4 (θ, ϕ))),Θ ∼ U(0, 2π),Φ ∼

U(0, π)} , comprises 48,000 examples, with 40,000 allocated for training and an additional 8,000
for testing. Fig. 10 shows the training progress.

(a) epoch=0, num simplices=2 (b) epoch=0, num simplices=68 (c) epoch=0, num simplices=372 (d) epoch=1, num simplices=850

(e) epoch=2, num simplices=1330 (f) epoch=3, num simplices=1862 (g) epoch=16, num simplices=6620 (h) epoch=32, num simplices=12160

Figure 10: In each block, the left panel represents the real part of our model output, while the right
panel represents the imaginary part of the model output.

F.5 SOLVE PDES

In this section, we utilize the LagEncoder-based model to address the following partial differential
equations (PDEs):{

∆u+ (u− β)2 = (α cosx sin y − 1)2 + 1, (x, y) ∈ Ω;

u = β, (x, y) ∈ ∂Ω.

Here, Ω = [0, 1] × [0, 1]. We construct a dataset that takes (α, β) as input data and assigns the

(a) epoch=0, num simplices=2 (b) epoch=0, num simplices=139 (c) epoch=1, num simplices=628 (d) epoch=3, num simplices=962

Figure 11: Residual - The gap between the exact solution and the model output.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

corresponding numerical solution of the PDEs as the target output. This dataset comprises 12,000
examples, with α randomly selected from the distribution U(−π/2, π/2) and β randomly chosen
from the distribution U(0, 2π). We then split the dataset into two parts: 10,000 for training and
2,000 for testing. Fig. 11 illustrates how well the network predicts the exact solution.

19

	Introduction
	Method
	Mesh
	LagEncoder
	PEFT-LagEncoder
	Multiscale Domain Decomposition Method

	Experiments
	Regression Tasks
	The Limitations of Traditional Regressors and Neural Networks
	Scaling Law and Error-Bound Formula

	Natural Language Processing
	Computer Vision

	Future Directions
	Conclusion
	Proof of Lagrange Basis Expression
	Visualization of Lagrangian basis
	The Traditional Expression of Lagrange Basis
	Visualization of Mesh Refinement
	Additional Experiments
	Additional Applications
	Regression
	fitting high-noise dataset
	fitting multi-frequency dataset
	Fit a Vector-Valued Function
	Solve PDEs

