Under review as a conference paper at ICLR 2025

LAGENCODER: A NON-PARAMETRIC METHOD FOR
REPRESENTATION LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Non-parametric encoders offer advantages in interpretability and generalizability.
However, they often perform significantly worse than deep neural networks on
many challenging recognition tasks, and it remains unclear how to effectively ap-
ply these techniques to such tasks. In this work, we view all Al recognition tasks
as function approximation problems and introduce LagEncoder, a non-parametric,
training-free feature extraction method based on finite element basis functions.
Our encoder features a universal architecture that can be applied to various types
of raw data and recognition tasks. We found that LagEncoder effectively over-
comes the limitations of neural networks in regression problems, particularly
when fitting multi-frequency functions. The LagEncoder-based model converges
quickly and requires low training costs, as only the head is trained. Additionally,
LagEncoder provides a parameter-efficient fine-tuning approach. Our experiments
on the ImageNet-1K and WikiText dataset demonstrate that pre-trained models
using LagEncoder achieve performance improvements within just one training
epoch. Furthermore, it does not require adjustments to the original training recipe,
extra training data, and the model’s total parameters remain nearly unchanged.
Our evaluation of the scaling law for model performance indicates that using the
LagEncoder is more cost-effective than increasing the model size.

1 INTRODUCTION

Neural networks have played a pivotal role in the evolution of artificial intelligence, particularly
excelling in challenge recognition tasks, where their performance has, in some cases, surpassed
human-level capabilities. Furthermore, advances in transfer learning have demonstrated that neural
network encoders exhibit notable domain adaptation properties, allowing them to generalize across
disparate tasks and data distributions. For instance, an encoder pre-trained for an image classifica-
tion task can be effectively transferred to an object detection task, even when the underlying data
distributions differ, while still maintaining robust feature extraction capabilities.

However, traditional machine learning models often demonstrate better domain adaptation. They
provided such feature extractors that require no training and are independent of specific recogni-
tion tasks (Pearson, |1901}; [Sparck Jones| |1972). For example, the kernel functions used in Support
Vector Machines (SVM) are unrelated to data labels, resulting in non-trainable feature extractors
that inherently provide complete domain adaptation. While traditional models typically offer higher
interpretability, they often perform significantly worse than neural networks in specific, highly chal-
lenging recognition tasks. It is worth noting that many neural network architectures are based on
mathematical methods that do not depend on labeled data. For instance, the linear layer and the
attention layer rely on inner products for feature extraction, where the vector basis in linear algebra
is fixed. Similarly, convolution layers perform feature extraction through convolution, in the Fourier
transform, the kernel function is predefined and independent of the target.

We view all recognition tasks as function approximation problems and focus on constructing an en-
coder with complete domain adaptation for challenging tasks. Through our extensive experiments,
we found that, as Fourier transforms, neural networks often struggle to fit multi-frequency functions
effectively (see Section 3.1.1). Specifically, when fitting functions with sharp transitions or local-
ized features, a large number of Fourier terms may be required, which can reduce computational
efficiency and potentially lead to overfitting. Similarly, neural networks often need to be much

Under review as a conference paper at ICLR 2025

Py P1 P2 Ps Py Ps Ps Pr Ps Py

basis function overlap

Figure 1: Left - The F'(x) (solid blue line) is approximated with f(x; @) (dashed red line), which
is a linear combination of linear basis functions (v); is represented by the solid black lines). All
ten spline basis functions are distributed on a uniform grid, resulting in poor fitting for the orange
high-frequency region. Middle - All ten Lagrange basis functions are distributed on a multi-scale
grid, resulting in a good fitting over the whole region. Right - Tent-shaped linear basis functions that
have a value of 1 at the corresponding node and zero on all other nodes. Two base functions that
share two elements have a basis function overlap.

deeper, resulting in a significant increase in model size, to fit such functions properly. In numerical
simulation problems, Finite Element Method (FEM) can be used to fit more complex functions and
is widely applied in fields such as engineering and mathematical modeling. Because FEM’s local
basis functions can easily handle multi-scale problems, allowing it to represent features at varying
scales, from coarse to fine resolution (see Fig. [I] middle), making it a powerful tool for extracting
multi-scale features. In this work, we employed the Lagrange basis function from the FEM as a
feature extractor, which we call LagEncoder.

Compared to other encoders, LagEncoder is parameter-free and provides a universal architecture
applicable across various recognition domains, such as regression, image classification, image super-
resolution, and language modeling. Moreover, LagEncoder serves as an efficient parameter-efficient
fine-tuning (PEFT) approach (see Fig. [3|(c)). Our experiments demonstrate that pre-trained models
with LagEncoder achieve performance improvements within a single training epoch (e.g., ResNet-
50 with an additional 1M parameters achieves a +0.2% gain in validation accuracy in just 40 minutes
of fine-tuning on four GPUs). Our evaluation of the scaling law for model performance reveals that
LagEncoder is more cost-effective than simply scaling the model. Unlike data augmentation and
other PEFT methods, LagEncoder is neither task- nor architecture-specific, requiring no adjustments
to the raw training recipe or extra training data to enhance performance.

2 METHOD

In general, neural networks provide a mapping from input to predicted output. The classical linear
interpolation method includes an error bound formula that demonstrates an explicit relationship
between the number of parameters and the mean absolute error. In the context of language models,
this relationship is now commonly known as the scaling law (Kaplan et al.,|2020). We now consider
using this interpolation method to approximate the latent function F'(x):

fla:0) = Ze i), |f(@:0) - F(a)| < max V()] - h. (1)

where 6 represents the model parameters, ¢;(x) is a basis function, and f(x; @) is the predicted
output given input . Here, h = max; max; 1 ,) p0)y_1 |p® — pl9)|| represents the maximum
length of mesh edges (see Section 2.1) and €2 is the domain over which the approximation occurs.

Directly replacing neural networks with traditional interpolation methods is not appropriate. Fig.
(left) illustrates the approach of KAN (Liu et al|2024), which approximates the latent function us-
ing a linear combination of spline basis functions. However, when the basis functions are distributed
on a uniform grid, the model performs poorly in high-frequency regions. KAN uses Feynman equa-
tions as a benchmark; while these equations are complex in expression, they represent very smooth
curves. Conversely, when attempting to fit multi-frequency functions, such as y = sin(1/z), neural
networks are likely to outperform KAN due to their flexibility.

Under review as a conference paper at ICLR 2025

0.00

Figure 2: Left - Mesh with eight nodes and seven triangles. Right - Contours of eight Lagrange basis
functions, linear variation of 1; associated with node p(*) across all triangles.

Mathematically, the FEM offers a standard solution to multi-frequency and high-dimensional chal-
lenges. As shown in Fig. [T] (middle), FEM adaptively allocates more parameters to high-frequency
regions and fewer to flat regions, enhancing performance in capturing complex multi-frequency be-
havior. Fig. [T] (middle) illustrates ten basis Lagrange functions for a one-dimensional input space,
while the right side shows two basis Lagrange functions for a two-dimensional input space. These
tent-shaped linear basis functions take a value of 1 at their corresponding node and O at all others.
In Section 2.2, we construct the Lagrange basis functions v;(x) using FEM. In Section 2.4, we
propose two domain decomposition methods to effectively estimate the basis function distribution
by analyzing the dataset.

2.1 MESH

In the context of FEM, elements often serve as the fundamental building blocks of the triangulation
mesh, taking the form of simplices created by connecting nodes. For instance, in 1D FEM, simplices
are intervals (see Fig. [I] left); in 2D FEM, triangles with three nodes are commonly used (see Fig.
[T} right), while 3D FEM often employs tetrahedra with four nodes. This concept is visually depicted
in Fig. 2| (left), where the mesh consists of eight nodes and seven triangles. This type of mesh is
established by specifying the coordinates of discrete nodes and the vertex indices of simplices. Let
d represent the dimensions, {p(i)}?z_o1 denote the grid nodes, and introduce a matrix P to store the
node coordinates:)
P, ; = p§Z)~

Additionally, utilize a matrix 7" to store the indices of nodes constituting the simplices within the
triangulation. Specifically, access the j-th sorted vertex of the i-th simplex in this mesh as Pr, ; ..
Fig. 2] (left) illustrate a matrix T takes the following form:

6 03 27 3 47
T=1|7 6 7 3 4 4 3
551 15 7 2

This matrix serves to describe all seven simplices within the mesh, such as the first simplex
Ap©@p(Mp®) and the last simplex ApHpGp(2),

The first-order Lagrange basis studied in this article, denoted as {¢o(x), - - - ,¥n_1(x)} C Pi(R?),
are piecewise linear polynomials associated with nodes {p(o), cee p(”_l)}. These functions are
defined such that ¢;(p")) = 1;_;. Fig. EI (right) illustrates this: 1; () corresponds to node p(*),
exhibiting linear variation across all elements. Its support encompasses the union of all neighbor-
ing elements of node p(*) (refer to Appendix B for a 3-dimensional visualization). For example,
supp(¢3) = ApBp@p(™M U ApG) pMpM) U ApBlpMpR) U Ap®) pRp),

2.2 LAGENCODER

Now, we formulate the Lagrange basis from its original definition to establish the foundational
architecture of LagEncoder. It is important to highlight that the traditional Lagrange basis involves
unbalanced computing of barycentric coordinates, which may not be well-suited for parallel deep

Under review as a conference paper at ICLR 2025

learning platforms (see Appendix C for details on the traditional definition of the Lagrange basis).
Consequently, in this subsection, we re-derive the Lagrange basis to enhance parallel computing.

Let n; represent the number of simplices in the multiscale mesh. We introduce the Parameters
Tensor S defined as:

T; Tj, -1

pé o pglflO) 1

Sj7:7:: ’ - ’)) j:()a"'7nt_1-
pg-:‘;d—)l) p&?;i‘d—;) 1
Py Py 1

Additionally, we introduce the Node Membership tensor M defined as:

M .. — 1, if the ¢-th node matches the k-th vertex of the j-th simplex,
Lik = 0, other cases.

By defining:

d—1
Ung(CB) = Zsj,‘nk 'wT+Sj,d,k7 ,7207 , g — 1a k:O7 7d'

T7=0

We will demonstrate in Appendix A that the following function qualifies the definition of Lagrange
basis:

-1 d
2t k=0 Lmin, Uy - @)20 - Mijk - Uj k()
- — d
max(;‘l;ol 2 k=0 Lmin, U, - (@)>0 - Mijk, 1)

Yi(x) , i=0,---,n—1. (2)

So far, we have successfully constructed :

LagEncoder :R? — [0, 1]",
T — (wO(w)7 o »1/)7171(%))-
The above basis is in the format of P;(R?), which is very useful for low-dimensional regression
tasks (see Section 3.1). Furthermore, if Eq. is a decoupled system, we can decompose the input
space into a direct sum of d one-dimensional subspaces. In this case, Eq. (@) simplifies to the
Lagrange basis P; (R?):
RCLU<£L' — pifl) ReLU(le — CL‘)
Pi —Pi-1 ’ Pi+1 — Pi

wi(w):min(>, 1=0,1,--- ,n—1. 3)
The P; (R!) basis has exceptionally low computational complexity, making it well-suited for recog-
nition tasks on large-scale datasets. In the next section, we will introduce the specific approach in
detail. We use the P;(R!) basis to implement an adaptive method for learning a decoupled residual
system. This method can enhance the performance of pre-trained models on large datasets.

2.3 PEFT-LAGENCODER

LagEncoder adheres to the universal approximation theorem and exhibits strong interpretability for
low-dimensional recognition tasks (see Section 3.1). However, as the data dimension d increases, the
output dimension of LagEncoder grows factorially (O(d!)) as described in Eq. . This exponential
growth makes it computationally expensive for high-dimensional data, such as large images, posing
challenges in resource-constrained environments.

To mitigate this, LagEncoder can be integrated as a module in PEFT methods. Consider a perfect
model F'(x) with 100% test accuracy and a pre-trained model f(x;@). If the pre-trained model
already achieves high test accuracy, the residual F'(x) — f(x;) will be very flat, typically close
to zero for different inputs . This sparsity in the residual’s support set implies that dimensionality
reduction on the pre-trained model’s features is likely reversible, enabling the effective application
of LagEncoder.

Under review as a conference paper at ICLR 2025

Outputs Outputs Outputs —— - - - p—
MobileNetv3-Small MobileNet, o ~ 0.265

1.3 —+—ResNet, o = 0.252 i
{ Netts —o— ResNeXt, o =~ 0.012
g 1ol ViT, a ~ —0.064
3

Head) 2 il L. - i
DDDDD \—I‘
©

T T |
5
Backbone A &

R Q099 E ol o130 e |

F Backbone viT-B16
0.8 |- % -
Inputs Inputs Inputs . 1(\]1 P 1(‘)7 P
(a) Baseline (b) LagEncoder (c) PEFT-LagEncoder Number of Parameters (Millions)

Figure 3: Left: (a) A plain network; (b) LagEncoder with a trainable linear layer; (c) LagEncoder
applied to PEFT, where the pre-trained model is frozen, and the SigmoidNorm layer for normaliza-
tion can be trainable or frozen, while the linear layer is trainable. Right: Colored lines represent
pre-trained models at different scales, and black lines represent our adaptive method, which outper-
forms model scaling with minimal changes to model size.

In Fig. [3| (c), the SigmoidNorm layer reduces the dimensionality and normalizes the output repre-
sentation vectors u from the pre-trained backbone:

v « Sigmoid(PCA(u)).
Here, v represents the reduced-dimensionality feature. The PCA model can be generated using

standard unsupervised methods or by training. The P; (R!) LagEncoder is then applied to compute
the residual, which is combined with the pre-trained model to estimate the prediction:

F(z) =~ f(x;0) + Zeglinear) r(). @

Since the residual F'(x) — f(x;0) is sparsely distributed, the additional branch converges quickly
during training. Experiments demonstrate that this method minimally increases model size while
significantly improving performance within one epoch of training (see Table [2). This approach
effectively fine-tunes the model while conserving computational resources.

2.4 MULTISCALE DOMAIN DECOMPOSITION METHOD

In our earlier discussion, we introduced the linear interpolation and its associated error-bound for-
mula Eq. (I). However, this tool is not appropriate for machine learning modeling, since we face a
crucial challenge: the “given function F'(x) to be fitted” represents a ground truth that remains un-
known. Instead, in the scenario of machine learning, a typical dataset provides us with a collection of
input-target pairs. For any given simplex, select a subset {(z(50), (ko)) ... (g(Fmr—1) 4 (Fn—1)y)}
from the training set {(2(*), y(©), ... (2(m=1 4(™=1)1 where m/ is the cardinality of subset, m
is the cardinality of subset, {k; :’;’0_ 1 C {i}7,!, and all subset elements reside within the given
simplex. Our goal now is to assess the error of f(x; @) within this simplex.

Crucially, due to the linearity of basis functions {to(x), - - - ,¥n—_1(x)} within each simplex, their
linear combination also remains linear within these simplices. As a result, in the given simplex,
there exists a set of coefficients 3 that:

Zek Ye(W) = Boal) + -+ Bacazy)y + Ba.

Therefore we can obtam the followmg error bound by solving a Ordinary Least Squares problem

m/—1
>y Zek i (z) Z y® — (Boz) + - + Barz) | + B2,)
=0

where B = (XTX)*lXTy, Xi.a= m(z), Xia=1andy; = y(®. This formula shows the error
bound reduced to 0 when m’ < d + 1. By combining this conclusion with the global error-bound
formula Eq. (I)), we can summarize two critical goals for mesh generation in modeling:

Under review as a conference paper at ICLR 2025

Algorithm 1 Domain decomposition method of generating multiscale mesh.

Input: Maximum degrees of freedom NV to perform. Depending on the size of the training set.
Input: Initial Simplex Indices Matrix T" of shape (1,d + 1) with Tp ; = .
Input: Initial Node Matrix P containing coordinates of d + 1 points forming a simplex covering all
training raw data.
Output: The updated Node Matrix P and Simplex Indices Matrix T of the refined mesh.
en+d+1
while n < N do
o Create the binary Longest Edge Matrix M where M ; = 1 indicates that the i-th edge is
the longest side of the j-th simplex.
e Formulate the binary Edge Membership Matrix E where E; ; = 1 indicates that the i-th
edge is a side of the j-th simplex.
e Establish the binary Data-Simplex Membership Matrix B where B; ; = 1 signifies that the
1-th raw data falls within the j-th simplex.
e Compute the index of the priority edge:

22k Mi By
max(3_; >y Ei jBr,j, 1)

The priority edge is the longest side among many simplices, and these relevant simplices cover
a substantial portion of the raw data.
o Insert a new node at the midpoint of the priority edge and update the Node Matrix P.
e Update the Simplex Indices Matrix 7' and utilize it to update mesh edges.
en<n+1
end while

arg min
i

Algorithm 2 V-Cycle.

Require: The pre-trained model f(x; 0) with frozen parameter 6.
Require: Initial parameter 8" of the linear head.
Require: Top-K threshold, K; and K5 (Suggested defaults: 0.1 x batchg,. and 1 respectively).
Require: Mesh updating frequency N.
ek« 1
e Generate PDF: Construct a histogram on the interval [—1, 1] to represent the Probability Den-
sity Function (PDF) of the empirical data distribution, initially using equal-width binning. The
grid P contains n — 1 bins, with n coarse nodes.
while stopping criterion not met do
e Sample a minibatch of m examples from the training set {21, - -, (™)} with targets y(*).
e Compute corresponding losses: I; < L(f(z;0) + >, OEhHear) i (v®), y®).
e Generate PDF: Estimate a temporary PDF using the current m examples by selecting the
top K examples with the highest losses and calculating their proportion in each bin.
e Update PDF: Update the PDF using the temporary PDF and Exponential Moving Average.
if K mod N = 0 then
o Mesh Refinement: Mark the top K bins as coarse elements and add their midpoints as
fine nodes, increasing degrees of freedom to n + K.
o Interpolation: Use linear interpolation to update 8" at each fine node.
e Mesh Coarsening: Solve a system of equations to transform the current histogram back
into equal-width binning, reducing the grid’s degrees of freedom back to n.
o Interpolation: Use linear interpolation to update 8" at each new node.
end if
k+—k+1
end while

1. Each simplex in the mesh should ideally contain as few original data points from the train-
ing set as possible. When each simplex covers no more than d + 1 raw data examples, the
model perfectly fits the training set.

2. Decreasing the bound of mesh edge lengths results in a reduced bound of error.

Under review as a conference paper at ICLR 2025

Algorithm [T] generates a multiscale mesh, serving as the initial step in constructing the LagEncoder
architecture. In each iteration, it adds a new fine node to the grid and subdivides coarse simplices into
finer ones. Fig. [7](left) in Appendix D illustrates this mesh refinement process. For PEFT methods,
Algorithm[T|can be replaced by the simpler V-cycle Algorithm [2]from FEM, which updates the mesh
by estimating the empirical distribution of training examples. The V-cycle allocates more nodes in
high-frequency (dense) regions and fewer in low-frequency (sparse) regions. A visualized workflow
is shown in Appendix D (Fig. [7] right).

3 EXPERIMENTS

In this section, we present a comprehensive series of experiments to showcase the effectiveness
and universality of LagEncoder across various tasks. Our exploration begins with an analysis of its
performance in regression tasks, followed by examinations in image and text recognition. Finally,
we apply it to the PEFT method and assess its performance on large datasets.

3.1 REGRESSION TASKS

3.1.1 THE LIMITATIONS OF TRADITIONAL REGRESSORS AND NEURAL NETWORKS

Traditional regressors often struggle with overfitting, while neural networks address this but perform
poorly when fitting multi-frequency functions, a phenomenon known as the frequency principle (Xu
et al 2019). As shown in Fig. [Support Vector Regression (Platt et al [1999) fits dataset B but
overfits on dataset A, whereas neural networks perform well on A but underfit on B. Neither MLPs,
CNNs, nor Transformers can effectively fit sharp transitions in dataset B, often treating these regions
as noise to avoid overfitting. Importantly, no existing model can fit the challenging dataset C.

LagEncoder addresses this gap by combining the strengths of traditional regressors and neural net-
works. It leverages a multiscale mesh to fit high-frequency regions using fine simplices adaptively.
Fig. [(right) demonstrates the LagEncoder-based model’s unique ability to handle dataset C, a
task no other model can achieve. Appendix E3 (Fig. [0) further illustrates its gradual fitting pro-
cess during training. Comparison experiments in Appendix F.1 show that the LagEncoder-based
model consistently achieves high R? scores across all test sets, demonstrating its robustness and
effectiveness, even in high-noise and multi-frequency scenarios.

o dataset B - Zes
TE AR e . W
h W - 0
9-; o Y
i& a.#": [L & 2
& Wi
bk S '
T ;5“7‘? Y] ,"H{'
17 . \e IA]
74 hi T
;’ .i:. ! '\ 1 T
S T 1
Ik X 4
5 8 f Ik b
b [l ¢ ?
Pl s g } .} i
8] 44 4 it l
el 7 i 4
'if!' t J & ¥
s i AN ! ‘ﬁ'ﬂk
h ¢ k" g

Figure 4: Left - Performance of traditional regressors and neural networks on high-noise
dataset A = (z,y)|X ~u(0,%),Y ~ N(sin8z,|cos8z|) and multi-frequency dataset B =
(z,y)|% ~ u(0.02,0.5),y =sin . The dashed teal curve shows that traditional regressors (e.g.,
Support Vector Regression) succeed on B but overfit A (solid teal curve). Conversely, neural net-
works (e.g., Multi-Layer Perceptron) fit A well (dashed orange curve) but underfit B (solid orange
curve). Right - The LagEncoder-based model demonstrates exceptional adaptability, successfully
fitting dataset C = (x,y)|+ ~ 1(0.02,0.5),Y ~ N(sin £, 0.522), which combines high noise and
multi-frequency features.

Under review as a conference paper at ICLR 2025

3.1.2 SCALING LAW AND ERROR-BOUND FORMULA

Our LagEncoder demonstrates strong interpretability, supported by the universal approximation the-
orem and our quantitative experimental results. In a triangular mesh, the number of parameters
N in the model’s linear head is proportional to the number of simplices n; in the mesh. Since
(n¢/d))'/4 = O(h~1), the error bound formula in Eq. (1) is derived as:

L(N) = |(@:0) — F(@)| = Olmax [VF)]| -y /") = O(N 1%, ©

The experiment shown in Fig. [5|demonstrates that we perfectly predicted the empirical scaling law.

1072 ¢

T T e F ! ! T E|
10 F E E °]
100 E . v 10-3 g i
B ° .5 El B °
101 e o ® e ,
5 E E é 1074 | . B
5 2L o3, b z o
= 10 : ° o] ~ o @t -®
L] 1077 F X A E
s oo oot 4 : 0. w® 1
[° E i . £ :
W01 F e 4 1070 £ Y S 4
f.r@] F P e]
-5 Lol Lol Lol - L - |
10 104 10-3 10-2 10-! 1072 107!

n;t n,

Figure 5: Left - Results of 32 experiments fitting the 1-dimensional function y = sin %, where each

gray point represents an experiment, showing the relationship between n; * and Mean Square Error
x

(MSE). Right - Results of 32 experiments fitting the 2-dimensional function y = Z?Il sin 2%, with

gray points illustrating individual experiments and the relationship between n, '/2 and MSE.

3.2 NATURAL LANGUAGE PROCESSING

In this section, we explored the practical application of LagEncoder for text feature extraction on
the AG News dataset (Zhang et al., [2015) for classification tasks. The degree of freedom n of
LagEncoder was set to 64. Using the SGD optimizer, we minimized the cross-entropy loss with
an initial learning rate of 5.0, reduced by a factor of 0.1 every two epochs, and a batch size of 32.
The experiment achieved 90.01% test accuracy after the first epoch and 90.4% within five epochs.
A unique feature of the LagEncoder-based model in text classification is that its parameter count is
independent of the token count. Compared to word2vec-based networks, which require over 6.13
million parameters, the LagEncoder-based model achieves comparable classification performance
with only 256 parameters, offering a significant reduction in complexity.

Through experiments, we found three key limitations of existing PEFT methods:

* Dependence on Transfer Learning: Methods like LoRA struggle to outperform pre-trained
models on the same or similar datasets, as no domain adaptation is needed. Additional
training data is often required for these methods to be effective, as shown in Table|l} Their
strength lies mainly in transfer learning scenarios. However, when trained from scratch on
the raw dataset, they fail to outperform pre-trained models (see Tables 2] and [5).

* Sensitive Training Requirements: PEFT methods require specific training recipes, such as
small learning rates. Without these, performance often deteriorates from the first epoch.

 Task and Architecture Limits: Many PEFT methods, like LoHA (Hyeon-Woo et al., 2021)
and A3 (Liu et al., [2022), are restricted to specific tasks or architectures, such as ConvlD
or linear layers.

We compare fine-tuning (FT), LoRA (Hu et al.,[2021)), and LagEncoder on WikiText benchmarks
(Merity et al.l 2016) using GPT?2 (Radford et al.| | 2019) for causal language modeling and RoBERTa
Liu| (2019) for masked language modeling. Pre-trained models and the default random seed (42)

Under review as a conference paper at ICLR 2025

of the HuggingFace Transformers library (Wolf et al.| 2020) are used. A reduced learning rate
(< 107°) is applied for LoRA to prevent performance degradation in these experiments. As shown
in Table [T} our method overcomes the mentioned challenges, performing well even without extra
training data. It is also versatile for transfer learning (see Table [5).

GPT2 GPT2-Medium

GPT2-Large Roberta-Base
#Params PPL Seq/s | #Params PPL Seq/s

Dataset ‘ Method

#Params PPL Seq/s | #Params PPL Seq/s

FT 1244M 21.6623 7.36 | 3548M 16.1183 338 | 7740M 13.9927 1.71 | 1247M 3.6337 9.82

Wikitext-2 LoRA 0.295M 21.6582 13.05 | 0.393M 16.1183 6.00 | 0.737M 13.9973 1.69 | 0.295M 3.6347 9.68
LagEncoder | 0.203M 21.597 9.76 | 0.404M 16.1086 583 | 0.607M 13.9964 3.02 | 0.303M 3.6346 15.39
FT 1244M 21.4234 698 | 354.8M 15.8900 3.50 | 774.0M 13.8468 1.58 | 1247M 3.6415 10.05

Wikitext-103 | LoRA 0.295M 21.4188 1290 | 0.393M 15.8873 629 | 0.737M 13.8486 1.67 | 0.295M 3.6425 9.85
LagEncoder | 0.203M 21.3401 9.58 | 0.404M 15.8674 6.66 | 0.607TM 13.8443 2.52 | 0.303M 3.6414 12.37

Table 1: GPT2 and RoBERTa with Different Adaptation Methods on the WikiText Benchmark. We
report the number of trainable parameters, perplexity (PPL, lower is better), and training throughput
(sequences per second) for language modeling tasks. For a fair comparison, we adjusted the number
of parameters of our method to be similar to those of LoRA.

3.3 COMPUTER VISION

As described in Section 2.3, LagEncoder can serve as a non-parametric module for the PEFT
method. The new model includes a residual branch where the SigmoidNorm layer and linear head
contain trainable parameters (see Fig. [3](c)). In this section, we illustrate the effectiveness of PEFT-
LagEncoder through ablation studies. To ensure a fair comparison with baseline models, we adopt a
stricter experimental setup: the original training recipe of the pre-trained model cannot be modified
when training the residual branch.

This restriction is crucial to ablation studies because the training recipes for pre-trained models
often have room for optimization (Wightman et al.,2021). Changes to batch size, optimizer, weight
decay rate, or the order of applying data augmentations could potentially improve the performance
of the pre-trained model (Touvron et al., 2019;2021). To avoid such effects, we selected pre-trained
models from TorchVision with publicly available training recipes as our baselines. The weights of
these pre-trained models closely reproduce the results from the original papers on the ImageNet-1K
dataset (Russakovsky et al.,|2015)), with recipes available at (TorchVision Contributors, [2024)).

Model Method # Trainable Speed | Training
Parameters | Acc@1 | Acc@5 | (img/s) | Time (total)
Baseline* 35M 71.878 | 90.286 16h 30m

LoRA 341,360 71.686 | 90.280 | 701.51 | 32m 54s
PromptTuning | 324,080 71.798 | 90.278 | 864.09 | 32m 12s
LagEncoder 328,720 71.934 | 90.268 | 685.17 | 32m 12s

Baseline* 25.6 M 76.130 | 92.862 2d 1h 15m
LoRA 597,933 76.288 | 92.972 | 440.18 | 32m 48s
PromptTuning | 536,750 76.674 | 93.128 | 434.07 | 39m 63
LagEncoder 540,688 76.274 | 92.932 | 411.50 | 40m 42s

Baseline* 25.0M 77.618 | 93.698 3d 1h 30m
LoRA 246,830 77.450 | 93.580 | 334.72 | 48m 54s
PromptTuning | 149,552 77.424 | 93.602 | 333.71 | 50m 9s
LagEncoder 135,172 77.650 | 93.672 | 315.33 | 51m9s

MobileNet-V2

ResNet-50

ResNeXt-50_32x4d

Baseline* 86.6 M 81.072 | 95.318 3d 3h 20m
VIT-B16 LoRA . 617,942 80.914 | 95.282 | 331.02 | 50m 6s

PromptTuning | 71,760 80.770 | 95.172 | 334.21 | 55m 9s

LagEncoder 67,076 81.082 | 95.316 | 316.31 | 56m 54s

Table 2: Comparison of Adaptation Methods on Various Networks and the ImageNet-1K Dataset.
PEFT-LagEncoder demonstrates superior performance compared to other methods, offering com-
petitive trainable parameters, validation accuracy, training throughput (images per second), and total
training time (five epochs). * indicates numbers published in prior works.

Under review as a conference paper at ICLR 2025

Due to space constraints, we present only the comparison results in Table 2] In Appendix E, we
highlight the strong stability of PEFT-LagEncoder, showing +0.07% fluctuation in validation accu-
racy across independent model training (see Table [3). Trainable parameters in our method originate
from the SigmoidNorm and linear layer (Fig. [3[c)) and the total number of trainable parameters can
be calculated as N = (Ciy + 1) x d+d x n x C, where N is the number of model parameters, Ciy, is
the SigmoidNorm input dimension, d the PCA output dimension, n is the mesh node count (degrees
of freedom), and C' the total output dimension.

Increasing n and d improves model performance (see Appendix E, Table). We also study empir-
ical scaling laws for model performance on cross-entropy loss to demonstrate how our adaptation
method fully exploits the potential of pre-trained models. (Kaplan et al.,[2020) proposed an empiri-
cal formula where the loss scales as a power-law with model size:

c

L= (5)

where L(N) is the cross-entropy loss on the validation dataset, ¢ and « are constants related to the
model type. Fig. [3| (right) shows that our adaptation method is more effective than simply scaling
the model size. Our method increases the « for MobileNet (Howard et al., [2017) from 0.27 to 0.47,
for ResNet[He et al.| (2016)) from 0.25 to 2.1, for ResNeXt | Xie et al.| (2017) from 0.01 to 3.1, and for
ViT (Dosovitskiy et al.,[2020) from -0.06 to 1.2.

Our method offers significant practical value. Unlike other model scaling and adaptation approaches,
it requires no adjustments to the training recipe, has low computational demands with minimal
trainable parameters, and converges within a single epoch. For instance, on 4x A6000 GPUs, it adds
1 million parameters to a ResNet-50 model and achieves a 0.2% accuracy gain in just 40 minutes of
training. Moreover, unlike other PEFT methods, our approach is not limited to transfer learning and
can improve performance directly on the raw dataset (see Table 2).

4 FUTURE DIRECTIONS

It is important to recognize that LagEncoder has certain limitations. As described in Section 2.3,
the high computational cost of extracting features from high-dimensional data restricts its direct
application to large-scale datasets. Currently, we address this by incorporating LagEncoder as part
of an adaptation method, but we aim to improve the encoder in the future to be able to extract
features directly from large images. Additionally, the experiments in Section 3.3 show that while
our adaptation method significantly reduces cross-entropy on the ImageNet-1K validation set and
consistently improves validation accuracy, the magnitude of improvement of accuracy is relatively
modest, which we intend to explore further. We did not compare LagEncoder with models like SVM
or KAN, which offer strong interpretability, because their underlying principles are entirely differ-
ent. Moreover, we prioritize performance on challenging tasks where most interpretable models
often lack relevant experimental results.

5 CONCLUSION

We explored domain adaptation in transfer learning and proposed a non-parametric encoder that
does not require training. This encoder has a universal design suitable for diverse raw data and
tasks. It extracts features by estimating data distribution across a multi-scale grid, enabling strong
generalization. Our experiments demonstrated several key advantages of the LagEncoder-based
model: 1) Strong mathematical explainability: The empirical model scaling law aligns perfectly
with the error-bounds formula of linear interpolation, providing a solid understanding of how it
learns representations. 2) Fast training: With only one linear layer to train, the model typically
converges in just one or two epochs, making it ideal for large datasets. 3) Not limited to transfer
learning: Unlike most PEFT methods, which are task-specific and underperform on raw datasets,
our method works effectively without these constraints.

In summary, LagEncoder is a novel encoder rooted in the universal approximation theorem, requir-
ing no extensive training, fine-tuning, or heavy computational resources. It offers an explainable and
efficient approach to representation learning, providing an alternative to black-box methods.

10

Under review as a conference paper at ICLR 2025

REFERENCES
Leo Breiman. Random forests. Machine learning, 45(1):5-32, 2001.

H Cantzler. Random sample consensus (ransac). Institute for Perception, Action and Behaviour,
Division of Informatics, University of Edinburgh, 1981.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of
statistics, pp. 1189-1232, 2001.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778, 2016.

Donald E Hilt and Donald W Seegrist. Ridge, a computer program for calculating ridge regression
estimates, volume 236. Department of Agriculture, Forest Service, Northeastern Forest Experi-
ment ..., 1977.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Nam Hyeon-Woo, Moon Ye-Bin, and Tae-Hyun Oh. Fedpara: Low-rank hadamard product for
communication-efficient federated learning. arXiv preprint arXiv:2108.06098, 2021.

Prateek Jain, Sham M Kakade, Rahul Kidambi, Praneeth Netrapalli, and Aaron Sidford. Accelerat-
ing stochastic gradient descent for least squares regression. In Conference On Learning Theory,
pp. 545-604. PMLR, 2018.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Haokun Liu, Derek Tam, Mohammed Mugeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
Colin A Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
learning. Advances in Neural Information Processing Systems, 35:1950-1965, 2022.

Yinhan Liu. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 364, 2019.

Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljacié,
Thomas Y Hou, and Max Tegmark. Kan: Kolmogorov-arnold networks. arXiv preprint
arXiv:2404.19756, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

Karl Pearson. Liii. on lines and planes of closest fit to systems of points in space. The London,
Edinburgh, and Dublin philosophical magazine and journal of science, 2(11):559-572, 1901.

John Platt et al. Probabilistic outputs for support vector machines and comparisons to regularized
likelihood methods. Advances in large margin classifiers, 10(3):61-74, 1999.

11

Under review as a conference paper at ICLR 2025

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115(3):211-252, 2015.

Karen Sparck Jones. A statistical interpretation of term specificity and its application in retrieval.
Journal of documentation, 28(1):11-21, 1972.

Mervyn Stone. Cross-validatory choice and assessment of statistical predictions. Journal of the
royal statistical society: Series B (Methodological), 36(2):111-133, 1974.

H Thiel. A rank-invariant method of linear and polynomial regression analysis. i, ii, iii. Nederl.
Akad. Wetensch., Proc. 53, pp. 386-392, 1950.

TorchVision Contributors. Torchvision models. https://pytorch.org/vision/master/
models.html, 2024. Accessed: 2024-08-09.

Hugo Touvron, Andrea Vedaldi, Matthijs Douze, and Hervé Jégou. Fixing the train-test resolution
discrepancy. Advances in neural information processing systems, 32, 2019.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International conference on machine learning, pp. 10347-10357. PMLR, 2021.

Ross Wightman, Hugo Touvron, and Hervé Jégou. Resnet strikes back: An improved training
procedure in timm. arXiv preprint arXiv:2110.00476, 2021.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 conference on empirical methods in
natural language processing: system demonstrations, pp. 38—45, 2020.

Saining Xie, Ross Girshick, Piotr Dollar, Zhuowen Tu, and Kaiming He. Aggregated residual trans-
formations for deep neural networks. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 1492-1500, 2017.

Zhi-Qin John Xu, Yaoyu Zhang, and Yanyang Xiao. Training behavior of deep neural network in
frequency domain. In International Conference on Neural Information Processing, pp. 264-274.
Springer, 2019.

Tong Zhang. Solving large scale linear prediction problems using stochastic gradient descent algo-
rithms. In Proceedings of the twenty-first international conference on Machine learning, pp. 116,
2004.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text clas-
sification. Advances in neural information processing systems, 28, 2015.

12

https://pytorch.org/vision/master/models.html
https://pytorch.org/vision/master/models.html

Under review as a conference paper at ICLR 2025

A PROOF OF LAGRANGE BASIS EXPRESSION

We will now demonstrate, in three concise steps, that Eq. (2) qualifies as a Lagrange basis function.
Piecewise Linear: Since {U, ,--- ,U, 4} are piecewise linear functions, their linear combination
L; is also piecewise linear.

Kronecker Delta: From the definition of U and S, we have the following equation:

pT0) o pTe)

xy - xgo1 1 =[Ujo(x) -+ Ujg(z)] ‘: - »;
J J pé’f:‘;d_)l) . pEl::;;_)l) 1
py Y pg 1

Decomposing this equation, we obtain @ = Y¢_, U, x(z)pT+) and S3¢_, U, x(z) = 1. This
implies two important conclusions: Uj,k/(p(ijk”)) = 1=~ and min, U; -(x) > 0 is true if and
only if belongs to the j-th simplex. Therefore, we have

Liin, Uy, ()20 = Mg = Ujr(pPW) =1, if i = Ty
M, ;. = Ujr(p?) =0, if i # Ty

This proves that ¢; (p\)) = 1,_;.
Globally Continuity: Lastly, since 1; is inherently linear within all simplices and exhibits continu-
ity across all grid nodes, we can conclude that 1; is globally continuous.

B VISUALIZATION OF LAGRANGIAN BASIS

In section 2, we introduced first-order Lagrange basis functions, a set of piecewise linear functions
defined on a mesh. Each basis function corresponds to a node.

Consider the grid depicted in Fig. [(left). Taking the node p) as an example, it has a total of
four neighboring nodes: p®, p(©), p(") and p*). By connecting these nodes, we can determine
the support of the basis function .

In Fig. [6] (middle), we present the function graphs of 159 and 7. It can be observed that these
functions exhibit linear variations on each mesh triangle. Taking 12 as an example, its function
value at pog is 1, and O at all other nodes. Similarly,)7 has a function value of 1 at p; and 0 at other
nodes.

In Fig. (right), the orange triangles represent the function graph of f(x;80) on the do-
main Ap®p(Mp®), where the function values of f(z;8) at the vertices (p(®,p(",p(®)) are
(80, 07,8), respectively. The green dots represent a subset of training set, where the projections
(raw data) fall on Ap@p(Mp®) As shown in equation (2), when the number of green points does
not exceed three, there exists a solution of (6, 87, 89) such that all green points lie on the surface
of f(a;8), such that MSE reach a minimum value of 0.

Figure 6: Data visualization. Left - an example of 2-dimensional mesh. Middle - the graphs of basis
functions 150 and 7. Right - the graphs of the function f(;0) and a subset of training set.

13

Under review as a conference paper at ICLR 2025

C THE TRADITIONAL EXPRESSION OF LAGRANGE BASIS

Given the complexity of FEM as a numerical method, to enhance understanding, we start with a
two-dimensional case and a triangulated mesh to illustrate the traditional expression of basis func-
tions. Let triangle A be defined by nodes {p(*), p{), p(*)1. The following barycentric coordinates
{AA,i, Aa i, A i} are three first-degree polynomials of @

. . k —1

g [0

Anjlz)| = i J x
; pi’ pi P

Ao k() 11 1 1

Referring to the instance depicted in Fig. [2] (left), the mesh consists of eight nodes and seven
triangles. Specifically, let {AV) = ApTio)p(Ti)pTiz)|j = 0,... 6}. We will now verify that
the following 13 corresponds to the third basis function in this mesh

1
Y3(xz) = Z loeamAn 3(T)-

maX(Zie{2,3,6,5} loenm,1) i€{2,3,6,5}

First, 13 possesses values of Kronecker Delta:

@(0 Aa@ 3(2) 40 Aa@ 5(2)+0 - Aa@ 5(2)+0 - Aae 5(2)= 0, if & = p?,
ﬁh -0 +1-0 H0 - Ane 5(2)+0 - Aace 5(x))=0, if z = p(V),
m(o Ao g(@)F1-0 +1-0 +0- Ape 3(2)=0, if ¢ = p®,
;(1.1 +1-1 +1-1 +1-1) =1, ife=p®,
(@) = maXYL, 0)
max(2,1) (0 Ap@ 3(®)+0 - Ap@ 3(x)+1-0 +1-0) =0, ifz =pW,
maxtO, 1) (0-Aa@ 3(2)+0 - Aae 3(®)+0 - Apw 3(®)+0 - Aaw) 3(x))=0, ifx = p®,
m(o “An@ 3(2)+0 - Ape) 3(2)+0 - Aa© 3(®)+0 - Ao 3(2)=0, if z = p©,
m(l 0 +0-Aa@ 3(2)+0 - Aao g(x)+1-0) =0, ifz = p?,
Then, 15 is a first-degree polynomial in every triangle and supp 3 = inn U;e(2 36,5} yANQE
maxtO, 1) (0-Ap@ 3(®)+0 - Ap@ 3(2)+0 - Aao 3(2)+0 - Ape) 5(2))=0, ifx € inn Ty,
maxt(L) (0-Aae 3(®) 40 - An@ 3(2)+0 - Apw 3(®)+0 - Aae) 3(2))=0, if z € inn T,
maxtl, 1) (1- Aa@ 3(®)+0 - Ap@ 3(2)+0 - Aao 3(2)+0 - Aae 3(2))=Aa@ 3(2), if ¢ € inn Ty,
h3(x) = maxtl, 0 (0-Ap@ 5(@)+1- Ape 5(€)40 - Apo) 5(@)40 - A 5(@))=Ape 5(2), if & € inn T,
maxto, 0 (0-Ape 3(2)4+0 - Ao 3(2)+0 - Aa@ 5(2)+0 - Aa) 3(2))=0, if € inn Ty,
maxtl, 1) (0-Aa@ 3(@)+0 - An@ 5(@)+0 - Ap@ 3(T)+1 - Ane 3(2)=Ane s(@), if € inn T,
maxtl, 1) (0-Aa@ 3(®)+H0 - A 3(2)+1- Aaw 3(2)4+0 - Aae) 3(2) =A@ 3(), if € inn T,

Finally, since 13 is continuous in all nodes and first-degree in all triangles, it is globally continuous.

D VISUALIZATION OF MESH REFINEMENT

In this work, we utilize the triangle mesh for constructing P; (R?) Lagrange basis. As the mesh is
refined, each simplex will contain the same number of points, so Algorithm 1 is an equal-frequency
binning method in d-dimensional space.

14

Under review as a conference paper at ICLR 2025

(Fig. [7} left) depicts a mesh variety during the iterations of Algorithm [} In the coarse mesh, sim-
plices containing more points will be refined, and simplies containing fewer points will be retained.
When we detect that the number of points (training input data) contained in all simplexes is not
much different, the mesh will stop being refined.

dof: 20 dof: 36 dof: 68 fine surface (Ground truth) coarse surface fine mesh (refiment)

-20 20 -20 20

dof:’260

o

dof132

7 fine surface (interpolation) coarse mesh (coarsening) coarse surface (interpolation)

‘

Figure 7: Left - Each triangle represents a 2-dimensional simplex, with increasing degrees of free-
dom indicating higher levels of refinement. Discrete points denote the raw data. Right - V-cycle
transforms a uniform mesh into a multiscale mesh by inspecting residuals, redistributing nodes from
flat regions to improve the mesh’s representation capacity.

E ADDITIONAL EXPERIMENTS

We study the robustness of the LagEncoder on the ImageNet-1K validation set with one training
epoch. The result is presented in Table[3] All methods follow the raw training recipes to ensure fair
comparisons.

Model | d |

MobileNet-V2 | 32

ResNet50 32

ResNeXt50 32
ViT-B-16 8

\ # Params \ Acc@1 (%) \ Acc@5 (%)

0.298 M (+8.51%) | 71.9204 o16(+.045) | 90.3024 921 (+.016)
0.324 M (+1.27%) 76334i054<+204) 92976i024(+114)
0.324 M (+1.30%) | 77.796.4 o63(+.178) | 93.653+ o5 (+.178)
1.032 M (+1.19%) | 81.092 o12(+.020) | 95.316 o0a(—.002)

W
NOOOOOO§

Table 3: Classification accuracy on the ImageNet-1K validation set and one epoch training, with
all methods adhering to the raw training recipes. We report the changes in the number of model
parameters and their ratio of changes and total. For each model, we conducted multiple experiments
and show the accuracy as “mean yq(mean — baseline)”.

Metric (n, d) (4, 4) 4, 8) (4, 16) (4,32) 8,4) 8,8) (8, 16) (8,32)
Parameters | 36,868 69,636 135,172 266,244 | 73,736 139,272 270,344 532,488

Acc@1 76.226 76.226 76.242 76.222 76.238 76.256 76.268 76.276
Acc@5 92952 92960 92.948 92.972 92.964 92954 92.966 92.952
Speed (img/s) | 405.31 411.18 390.26 418.84 38222 394.63 409.52 404.43

Metric (16,4) (16,8) (16,16) (16,32) | (32,4) (32,8) (32,16) (32,32)
Parameters | 147,472 278,544 540,688 1,064,976 | 294,944 557,088 1,081,376 2,129,952
Acc@1 76272 76244 76248 76284 | 76298 76272 76.248 76.294

Acc@5 92.940 92946 92.968 92.958 92.956 92.958 92.968 92.932
Speed (img/s) | 393.19 394.86 379.72 380.30 393.34 414.39 379.72 368.94

Table 4: ResNet-50 Performance with different n and d. The table explores the impact of varying n
(PCA output dimension) and d (degrees of freedom) on the performance of the LagEncoder-based
ResNet-50 model. Metrics include the number of additional parameters, top-1 (Acc@1) and top-5
(Acc@5) validation accuracy, and training speed (images per second). The baseline ResNet-50 has
25.6M parameters, Acc@1: 76.130%, and Acc@5: 92.862%.

15

Under review as a conference paper at ICLR 2025

Increasing n, d, and training epochs is an effective way to enhance model performance, as shown
in Table 4| Unlike the function fitting task, diminishing returns in performance improvements are
observed in this case due to the finite cardinality of image and text datasets.

LoRA and other PEFT methods perform exceptionally well in transfer learning when adapting to
new datasets or domains with limited data or computational resources. However, they may not be
ideal for tasks where fine-tuning models on the same dataset and have the following limitations.

1. When the dataset is fixed and does not differ significantly from the original dataset used for
pre-training, PEFT methods may underperform compared to training from scratch.

2. When using LoRA or other PEFT methods, it’s crucial to reset the training recipe (including
batch size, optimizer, and use a small learning rate of 1074 ~ 10*6).

3. Most PEFT methods are not general. Many Parameter-Efficient Fine-Tuning (PEFT) meth-
ods rely on model-specific and task-specific configurations. For example, IA3 and LoHA
apply to Linear and Conv1D layers only.

We also compared LoRA with our method of transfer learning by learning the fusion of WikiText-2
and WikiText-103 datasets. As shown in Table[5] our method outperforms LoRA in this scenario.

Model Method # Trainable
Parameters Acc Loss PPL Seq/s
FT 124,439,808 | 0.422 | 3.0756 | 21.6623 | 7.088
GPT2 LoRA 294,912 0.4221 | 3.0747 | 21.6431 | 13.048
LagEncoder | 202,566 0.4229 | 3.0702 | 21.5469 | 9.392
FT 354,823,168 | 0.455 | 2.78 16.1183 | 3.376
GPT2-Medium | LoRA 393,216 0.4556 | 2.7783 | 16.0916 | 6.152
LagEncoder | 404,106 0.4558 | 2.7773 | 16.0751 | 6.592
FT 774,030,080 | 0.4721 | 2.6385 | 13.9927 | 1.712
GPT2-Large LoRA 737,280 0.4725 | 2.6347 | 13.9387 | 1.648
LagEncoder | 606,927 0.4724 | 2.6369 | 13.97 2.34

Table 5: Comparison of Fine-Tuning (FT), LoRA, and LagEncoder on Transfer Learning with Fused
WikiText-2 and WikiText-103 Datasets. The table reports the number of trainable parameters, accu-
racy (Acc), loss, perplexity (PPL), and training throughput (sequences per second, Seq/s) for each
method and model size. LagEncoder achieves competitive accuracy and perplexity while maintain-
ing efficient parameter utilization and high training efficiency.

F ADDITIONAL APPLICATIONS

F.1 REGRESSION

As mentioned earlier, neural networks often struggle to fit multi-frequency datasets effectively.
Therefore, our primary focus is comparing the LagEncoder-based model with traditional regres-
sors. To evaluate the effectiveness and generalization of the LagEncoder-based model, we have
devised four diverse datasets, each generated from distinct probability distributions:
1. A': Generated from the distribution {(z,y)|X ~ U(-m,7),Y ~ N(sinz, £ cos?z)},
with 1000 training examples and 200 test examples. The LagEncoder-based model was
trained with a learning rate of 0.1.

2. B': Generated from the distribution {(, y)|+ ~ U(0.02,1.0),Y ~ A(sin 1,0.01)}, with
1000 training examples and 200 test examples. We trained the LagEncoder-based model
with a learning rate of 0.9.

3. A?: Generated from the distribution {(z,y)|X; ~ U(—m,),Y; ~ N (sinw;, 15 cos? x;)
Y = (V7 + Y2)}, with 7,500 training examples and 1,500 test examples. The
LagEncoder-based model was trained with a learning rate of 0.1.

16

Under review as a conference paper at ICLR 2025

4. B*: Generated from the distribution {(, y)| % ~ U(0.05,0.5), Y; ~ N(sin 3-,0.01),Y

= (Y1 + Y2)}, with 50,000 training examples and 10,000 test examples. The training
utilized a learning rate of 0.9.

Table E] displays the coefficient of determination (R?) scores for the LagEncoder-based model and
traditional regressors (Thiel, |1950; Cantzler, |198 1} Zhang] [2004} Hilt & Seegrist,|1977;|Stone, |[1974;
Jain et al.| [2018; [Murphyl 2012} Platt et al.| |1999; [Friedman, 2001} |Breiman, 2001)) across fitting
the four datasets. The LagEncoder-based model consistently achieves high R scores across all test
sets, demonstrating the effectiveness of the InterpolationNet on both high-noise and multi-frequency
datasets. Furthermore, the minimal gap between training and test set evaluations underscores the
robustness of the LagEncoder-based model, indicating its capability of generalization.

METHOD | Al | B! | A2 | B2

OLS Linear 0.037 0.042 [0.963 0951 | 0.085 0.092 | 0.984 0.984
Theil-Sen 447 544] 0958 0946 | -0.41 -3.81 | 0.982 0.982
RANSAC 121 -143 | 0963 0951 | 270 -27.1 | 0.983 0.983
Huber 0.036 0.041 | 0.962 0.949 | 0.085 0.092 | 0.984 0.984
Ridge 0.031 0.038 | 0.963 0.951 | 0.055 0.061 | 0.984 0.984
RidgeCV 0.037 0.042 | 0.963 0951 | 0.085 0.092 | 0.984 0.984
SGD 0.009 001 [0962 095 | 0.005 0.004 | 0.983 0.983
KRR 0.0036 0.04 | 0.97 0962 | 0.056 0.051 | 0.993 0.992
SVR 0.11 0101 [097 0962|029 0308 | 0.992 0.992
Gradient Boosting | 0.964 0.962 | 0.98 0.96 | 0.989 0.988 | 0.992 0.99
Random Forests | 1.0 0.999 | 0.995 0.945 | 1.0 0.999 | 0.999 0.9
Voting 0852 0.852 | 0.942 0917 | 0.869 0.868 | 0.951 0.946
Net 1.0 1.0 | 0971 0963 | 0.999 0.999 | 0.992 0.992

Table 6: A comprehensive comparison between the LagEncoder-based model and traditional re-
gressors. The left half of each paired column displays the training R? score, while the right half
showcases the corresponding test R? score.

F.2 FITTING HIGH-NOISE DATASET

In this section, we conduct the LagEncoder-based model on fitting the dataset A = {(z,y)|X ~
U(—4,4),Y ~ N(sinz,0.2cos?>x)}. A comprises 6000 examples, with 5000 for training and
1000 for testing. Fig. [8]shows the training progress.

Figure 8: Blue dots represent the training set, while the orange curve represents the network.

F.3 FITTING MULTI-FREQUENCY DATASET

In this section, we conduct the LagEncoder-based model on fitting the dataset A = {(z,y)|2 ~

U(0.02,0.5),y = sin = }. A comprises 6000 examples, with 5000 for training and 1000 for testing.
Fig. [illustrates the training progress. Remarkably, after just 4 epochs of training, the neural
network outputs closely approximate the target values. By the 32nd epoch’s conclusion, the neural
network outputs and target values are nearly indistinguishable.

17

Under review as a conference paper at ICLR 2025

(£) epoch=1.

(1) epoch=:

Figure 9: Blue dots represent the training set, while the orange curve represents the network.

F.4 FI1T A VECTOR-VALUED FUNCTION

In this instance, we utilize the LagEncoder-based model to fit spherical harmonics. Our dataset
denoted as A = {(z,y)|z = (0,0),y = (Real(Y(0, ¢)), Imag(Y2(0,9))),0 ~ U(0,27),® ~

U(0,7)} , comprises 48,000 examples, with 40,000 allocated for training and an additional 8,000
for testing. Fig. [[0]shows the training progress.

Figure 10: In each block, the left panel represents the real part of our model output, while the right
panel represents the imaginary part of the model output.

F.5 SoLvVE PDEs

In this section, we utilize the LagEncoder-based model to address the following partial differential
equations (PDEs):

Au+ (u—B)? = (acoswsiny — 1) + 1, (z,y) € Q;
u=p, (z,y) € Q.
Here, 2 = [0,1] x [0,1]. We construct a dataset that takes (c, §) as input data and assigns the

Figure 11: Residual - The gap between the exact solution and the model output.

18

Under review as a conference paper at ICLR 2025

corresponding numerical solution of the PDEs as the target output. This dataset comprises 12,000
examples, with o randomly selected from the distribution U(—7/2,7/2) and 8 randomly chosen
from the distribution U (0, 27). We then split the dataset into two parts: 10,000 for training and
2,000 for testing. Fig. [TT]illustrates how well the network predicts the exact solution.

19

	Introduction
	Method
	Mesh
	LagEncoder
	PEFT-LagEncoder
	Multiscale Domain Decomposition Method

	Experiments
	Regression Tasks
	The Limitations of Traditional Regressors and Neural Networks
	Scaling Law and Error-Bound Formula

	Natural Language Processing
	Computer Vision

	Future Directions
	Conclusion
	Proof of Lagrange Basis Expression
	Visualization of Lagrangian basis
	The Traditional Expression of Lagrange Basis
	Visualization of Mesh Refinement
	Additional Experiments
	Additional Applications
	Regression
	fitting high-noise dataset
	fitting multi-frequency dataset
	Fit a Vector-Valued Function
	Solve PDEs

