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Abstract

Radiology report summarization (RRS) is cru-001
cial for patient care, requiring concise “Impres-002
sions” from detailed “Findings.” This paper003
introduces a novel prompting strategy to en-004
hance RRS by first generating a layperson sum-005
mary. This approach normalizes key observa-006
tions and simplifies complex information using007
non-expert communication techniques inspired008
by doctor-patient interactions. Combined with009
few-shot in-context learning, this method im-010
proves the model’s ability to link general terms011
to specific findings. We evaluate this approach012
on the MIMIC-CXR, CheXpert, and MIMIC-013
III datasets, benchmarking it against 7B/8B014
parameter state-of-the-art open-source large015
language models (LLMs) like Meta-Llama-3-016
8B-Instruct. Our results demonstrate improve-017
ments in summarization accuracy and accessi-018
bility, particularly in out-of-domain tests, with019
improvements as high as 5% for some metrics.020

1 Introduction021

Radiology reports summarization (RRS) is an inter-022

esting task to explore natural language processing023

(NLP) methods in the biomedical domain from a024

computational perspective (Van Veen et al., 2023a).025

RRS involves generating concise “Impressions”026

from the detailed “Findings” and images in radiol-027

ogy reports. These reports, critical for patient diag-028

nosis, treatment planning, and maintaining compre-029

hensive records, are written by radiologists based030

on medical imaging techniques like X-rays, CT031

scans, MRI scans, and ultrasounds. The “Find-032

ings” section details objective observations from033

the imaging, while the “Impressions” section pro-034

vides the radiologist’s professional interpretation035

and diagnostic conclusions.036

In biomedical applications, the effectiveness of037

large language models (LLMs) models largely de-038

pends on their adaptation through domain- and task-039

specific fine-tuning (Singhal et al., 2023). LLMs040

have shown remarkable proficiency in natural lan- 041

guage understanding and generation, making them 042

adaptable to various tasks. However, fine-tuning 043

large models like GPT-3, with billions of parame- 044

ters, requires substantial computational resources 045

and high costs. To address these issues, researchers 046

have shifted towards more efficient techniques like 047

parameter-efficient fine-tuning (PEFT) and prompt- 048

ing (Van Veen et al., 2023a,b), leveraging existing 049

model capabilities while reducing computational 050

demands (Liu et al., 2022). 051

In contrast, prompting through in-context learn- 052

ing (ICL) (Brown et al., 2020; Dong et al., 2022) 053

provides a practical alternative to extensive fine- 054

tuning of LLMs. In ICL, relevant information 055

is embedded directly within prompts, allowing 056

LLMs to adapt to tasks with few-shot demonstra- 057

tions (Lampinen et al., 2022) quickly. By care- 058

fully crafting these prompts, researchers can guide 059

LLMs to generate accurate responses by provid- 060

ing clear context and examples. Techniques such 061

as Retrieval-Augmented Generation (Wang et al., 062

2023b) can further improve this process. Prompt- 063

ing has also proven effective in converting com- 064

plex radiological data into clear and concise sum- 065

maries (Chen et al., 2022). Moreover, Nori et al. 066

(2023) found that combining ICL with explana- 067

tions enhances the adaptation of general LLMs to 068

specialized tasks, such as medical question answer- 069

ing, by integrating intermediate reasoning steps and 070

thus improving problem-solving abilities (Zhang 071

et al., 2022). However, generating explanations for 072

summarization tasks is inherently more challeng- 073

ing compared to question-answering and traditional 074

text classification. 075

Moreover, LLMs trained on general text cor- 076

pora often lack the specific knowledge required for 077

specialized fields, limiting their performance (Yao 078

et al., 2023a; Holmes et al., 2023). Addressing this 079

deficiency typically involves extensive fine-tuning, 080

which is resource-intensive and costly. While ICL 081
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can help by embedding relevant information within082

prompts, this alone is not always sufficient (Brown083

et al., 2020; Dong et al., 2022). Intuitively, non-084

fine-tuned models are “non-experts” in the medical085

domain, especially smaller open-source models.086

However, in real-world settings (e.g., in actual087

doctor-patient conversations), research indicates088

that scientific or technical knowledge can be ef-089

fectively transferred to non-experts through com-090

munication techniques like reformulation and sim-091

plification, which simplifies complex information092

and uses straightforward language to enhance un-093

derstanding (Gülich, 2003). Hence, inspired by094

effective doctor-patient communication methods,095

this paper proposes a novel prompting strategy that096

combines simplification techniques with ICL to097

enhance the performance of non-expert LLMs in098

specialized areas. This approach aims to improve099

model performance without needing costly fine-100

tuning (Nori et al., 2023; Zhang et al., 2022) by101

simplifying complex information and incorporat-102

ing it through prompts before an expert summary103

is generated. The in-context examples have layper-104

son/simplified language as part of them to help105

guide the model for a new example. From another106

perspective, we introduce a novel approach that107

first generates a layperson (non-expert) summary108

to normalize key observations. Radiologists often109

have distinct reporting styles, leading to variations110

in terminology and impacting the consistency of111

medical documentation (Yan et al., 2023). Addi-112

tionally, the vast number of illnesses increases the113

variety of vocabulary encountered in reports. Nor-114

malizing terms in the layperson summary can bet-115

ter identify patterns between simplified summaries116

and detailed expert impressions, making it easier117

to link general terms to specific findings (Peter118

et al., 2024). For example, normalizing “pneumo-119

nia” and “bronchitis” to “infection of the lungs”120

helps the model recognize important concepts in121

the in-context examples, even if pneumonia is used122

in the test instance while bronchitis is used in the123

in-context examples. The LLM can then connect124

them back to the findings (summary).125

In summary, this paper makes the following con-126

tributions:127

1. We introduce a novel prompting approach in-128

spired by doctor-patient communication tech-129

niques that generate a simplified (layperson)130

summary before the expert summary. This131

strategy, combines with a few-shot ICL with132

the layperson summary, enhances RRS using133

non-expert LLMs. 134

2. We evaluate LLM performance on three RRS 135

datasets: MIMIC-CXR (Johnson et al., 2019), 136

CheXpert (Irvin et al., 2019), and MIMIC- 137

III (Johnson et al., 2016), and benchmark 138

against open-source LLMs like Meta-Llama- 139

3-8B-Instruct (AI@Meta, 2024) for compre- 140

hensive comparison. 141

3. We conduct a comprehensive analysis to deter- 142

mine the optimal modality for ICL. We also 143

examine the required number of examples and 144

the impact of layperson summaries on impres- 145

sions and evaluate model performance on in- 146

puts of different lengths.1 147

2 Related Work 148

LLMs for Medicine. Recent advances in LLMs 149

have demonstrated that LLMs can be adapted 150

with minimal effort across various domains and 151

tasks. These expressive and interactive models 152

hold great promise due to their ability to learn 153

broadly useful representations from the exten- 154

sive knowledge encoded in medical corpora at 155

scale (Singhal et al., 2023). Fine-tuned general- 156

purpose models have proven effective in clinical 157

question-answering, protected health information 158

de-identification (Sarkar et al., 2024), and relation 159

extraction (Hernandez et al., 2023). Some LLMs, 160

such as BioGPT (Luo et al., 2022) and ClinicalT5 161

(Lu et al., 2022), have been trained from scratch 162

using clinical domain-specific notes, achieving 163

promising performance on several tasks. Addi- 164

tionally, in-context learning with general LLMs 165

like InstructGPT-3 (Ouyang et al., 2022), where 166

no weights are modified, has shown good perfor- 167

mance (Agrawal et al., 2022). They have also 168

demonstrated the ability to solve domain-specific 169

tasks through zero-shot or few-shot prompting and 170

have been applied to various medical tasks, such as 171

medical report summarization (Otmakhova et al., 172

2022) and medical named entity recognition (Hu 173

et al., 2023). But, this generally only works with 174

closed-source models such as GPT4. 175

Retrieval-Augmented LLMs. Retrieval augmen- 176

tation connects LLMs to external knowledge to 177

mitigate factual inaccuracies. By incorporating a 178

retrieval module, relevant passages are provided 179

as context, enhancing the language model’s predic- 180

tions with factual information like common sense 181

1See the appendix for complete analysis.
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FINDINGS (x): There is mild pulmonary edema with superimposed region of more confluent consolidation in the left
upper lung. There are possible small bilateral pleural effusions. Moderate cardiomegaly is again seen as well as tortuosity
of the descending thoracic aorta. No acute osseous abnormalities.

Layperson (r): There is some fluid in your lungs, which could be due to edema (swelling) or an infection. - The left
upper part of your lung has some extra fluid or congestion. -The exact cause of the fluid in your lungs is unclear.

IMPRESSION (y): "Mild pulmonary edema with superimposed left upper lung consolidation, potentially more
confluent edema versus superimposed infection."

 

Step 3 Prompt
Construction

LLMs

ieval

a) Retrieval K-shot Demonstrations

Layperson Summary
Training Corpus

Test/Dev Data

Modality Encoder K-shot Demonstrations

Expert SummaryLLMs

 Step 1 Generate
Layperson
Summary

 Step 2 Multimodal
Retrieval

Figure 1: Overview of the LaypersonPrompt Framework. First, we generate layperson summaries from the training
corpus using LLMs prompting. Then, for a test input, we use multimodal retrieval to find relevant examples. Finally,
we incorporate these layperson summaries into the prompt, applying patient-doctor communication techniques to
improve the model’s reasoning.

or real-time news (Ma et al., 2023). Recent stud-182

ies indicate that retrieval-augmented methods can183

enhance the reasoning ability of LLMs and make184

their responses more credible and traceable (Shi185

et al., 2023; Yao et al., 2023b; Nori et al., 2023; Ma186

et al., 2023). For example, Shi et al. (2023) trains187

a dense retrieval model to complement a frozen188

language model. By using feedback from the LLM189

as a training objective, the retrieval model is opti-190

mized to provide better contextual inputs for the191

LLM. Yao et al. (2023b) focuses on designing in-192

teractions between the retriever and the reader, aim-193

ing to trigger emergent abilities through carefully194

crafted prompts or a sophisticated prompt pipeline.195

Our approach combines retrieval-augmented meth-196

ods with layperson summaries to enhance gen-197

eral LLMs reasoning in radiology report summa-198

rization, using patient-doctor communication tech-199

niques for better understanding and accuracy.200

Communication Techniques for Laypersons.201

Non-experts, such as patients, have been shown to202

perform well on expert tasks, like medical decision-203

making and understanding complex topics when204

information is simplified using effective commu-205

nication techniques (Gülich, 2003; LeBlanc et al.,206

2014; Allen et al., 2023; van Dulmen et al., 2007;207

Neiman, 2017). This simplification can also im-208

prove general LLM’s performance on specialized209

tasks. Studies demonstrate that non-experts, with210

supervision, can generate high-quality data for ma-211

chine learning, producing expert-quality annota-212

tions for tasks like identifying pathological patterns213

in CT lung scans and malware run-time similar-214

ity (O’Neil et al., 2017; VanHoudnos et al., 2017;215

Snow et al., 2008). Recent research has shown that 216

LLMs can simplify complex medical documents, 217

such as radiology reports, making them more ac- 218

cessible to laypersons. For instance, ChatGPT has 219

been used to make radiology reports easier to un- 220

derstand, bridging the communication gap between 221

medical professionals and patients (Jeblick et al., 222

2023; Lyu et al., 2023; Li et al., 2023). Inspired 223

by these findings, we explore whether presenting 224

expert-level information in simpler language can 225

improve the performance of general LLMs on tasks 226

that typically require specialized knowledge, such 227

as those involving medical data. 228

3 Methodology 229

In this section, we describe our prompting strat- 230

egy. Figure 1 shows a high-level overview of our 231

approach. Our strategy has three main compo- 232

nents: 1) layperson summarization of the train- 233

ing dataset used as in-context examples; 2) “multi- 234

modal demonstration retrieval,” which is how we 235

generate embeddings to find relevant in-context 236

examples; and 3) final expert summary prompt con- 237

struction, which is how we integrate the layperson 238

summaries and in-context examples to generate the 239

final expert summary. We describe each compo- 240

nent in the following subsections and how the three 241

components are integrated into a unified prompt. 242

Step 1: Layperson Summarization of the 243

Training Dataset. Layperson summarization in- 244

volves converting complex medical texts into more 245

straightforward language, enhancing accessibility 246

and understanding for individuals without med- 247

ical expertise (Cao et al., 2020). For instance, 248

3



Your response should clearly summarize the key findings in the radiology
report using simple language, avoiding medical jargon. Accurately convey
the original information, making it accessible and understandable to a
layperson. Use analogies or examples to explain complex concepts, but
avoid oversimplifying or omitting important details.

CheXbert Observations

Layperson Translation

Task Description

LAYPERSON SUMMARY: - There is some fluid in your lungs, which could
be due to edema (swelling) or an infection. - The left upper part of your lung
has some extra fluid or congestion. -The cause of the fluid is unclear.

Ensure laymen translation includes these key findings: Presence of Edema,
Uncertainty or ambiguous description of Consolidation, Uncertainty or
ambiguous description of Pneumonia, to maintain factual correctness.

Training Instance

FINDINGS: {findings}
IMPRESSION: "Mild pulmonary edema with superimposed left upper lung
consolidation, potentially confluent edema versus superimposed infection."

CheXbert Labeler

LLMs

Figure 2: Step 1: Layperson Summarization of the
Training Dataset. An illustration of the layperson sum-
mary prompt used to generate layperson summaries for
training examples. Disease observations are highlighted
in different colors. The illustration shows a single ex-
ample, with Instruction and Response sections repeated
multiple times using few-shot in-context examples.

rephrasing “pulmonary edema” as “fluid in the249

lungs” makes it more comprehensible. This ap-250

proach not only helps to bridge the knowledge gap251

for laypeople but also plays an important role in252

helping models better understand and summarize253

medical content. Intuitively, by generating simpli-254

fied summaries as an intermediate step, models can255

more effectively capture the semantic meaning of256

the texts (Liu et al., 2024; Sulem et al., 2018; Paet-257

zold and Specia, 2016; Shardlow and Nawaz, 2019).258

In this context, we generate layperson summaries259

as an intermediate step for all training examples to260

enhance the generation of expert summaries.261

To generate accurate layperson summaries, we262

use a zero-shot prompting strategy enhanced with263

metadata from an external tool. Specifically, we264

employ the CheXbert labeler (Smit et al., 2020b) to265

extract important medical observations from radiol-266

ogy impressions (e.g., “No Finding”, “Pneumonia”,267

“Cardiomegaly”, etc.). Using CheXbert’s output,268

we create an additional instruction for the language269

model that includes these key concepts. The ex-270

act form of the prompt is shown in Figure 2. This271

prompt integrates the Task Instruction, Findings,272

Impression, and the extracted CheXbert concepts.273

We then use this prompt to generate layperson sum-274

maries and store these summaries along with their275

corresponding Findings and Impressions as train-276

ing triples, which are used as in-context examples.277

You are an expert chest radiologist. Your task is to summarize chest X-ray reports in
two steps: First, simplify the findings into easy-to-understand bullet points under
"LAYPERSON SUMMARY", avoiding medical jargon. Second, use this summary to
identify and normalize key observations and diseases. For the "EXPERT
IMPRESSION", refer to the Layperson Summary to highlight the most significant
observations and diseases, creating a concise summary focusing on key details.

ICL Demonstrations (k-shot)
FINDINGS: "{similar finding i}"
LAYPERSON SUMMARY: "{similar layperson i}"
EXPERT IMPRESSION: "{similar impression i}"

Test Input

Task Description

FINDINGS: "Right PICC tip terminates in the mid/ lower SVC, unchanged. Heart size
is normal. Mediastinal and hilar contours are normal. Lungs are clear. Pulmonary
vasculature is normal. No pleural effusion, focal consolidation or pneumothorax is
present. There are no acute osseous abnormalities."
LAYPERSON SUMMARY:

x K

Test Output
LLMs

LAYPERSON SUMMARY: "-There are no new or urgent problems with the heart or
lungs. - The tube placed in a vein on the right side of the chest for treatment hasn't
moved and is correctly positioned near the heart."
EXPERT IMPRESSION: "No acute cardiopulmonary abnormality. Right PICC tip is in
unchanged position, within the mid/lower SVC."

Figure 3: Step 3: Final Expert Summary Prompt Con-
struction. Example of LaypersonPrompt. This is the fi-
nal prompt after finding in-context examples to generate
the final expert summary (i.e., the Impression section).

Step 2: Multimodal Demonstration Retrieval A 278

major feature of our system is finding similar ex- 279

amples in the training dataset for each test example 280

to use as in-context examples. In our approach, we 281

focus on substantially improving the performance 282

of LLMs with a few well-chosen examples to gen- 283

erate more accurate and standardized summaries. 284

Selecting the right examples is a critical task in 285

few-shot learning, as it greatly affects the effective- 286

ness of the LLMs. To ensure the selection of the 287

most relevant examples, we follow the multimodal 288

retrieval procedure outlined by Wang et al. (2023b), 289

which is fine-tuned with radiology reports and chest 290

X-ray images. According to their approach, we re- 291

trieve the top-k similar radiology report based on 292

different modalities, i.e., chest X-ray images, text 293

findings, and multi-modal data (combining find- 294

ings and images) from a medical corpus using a 295

pre-trained multi-modal encoder. Then, we include 296

the findings and impressions of the top k of the 297

most similar report as input in our final prompt. 298

Formally, given an input instance xi consisting 299

of a text input w and image m, our goal is to re- 300

trieve the most similar examples {x1, . . . , xN (xi)}, 301

where N (xi) represents the top k similar exam- 302

ples to xi. To achieve this, we employ a multi- 303

modal image-text retrieval model that uses sepa- 304

rate encoders for text and image modalities along- 305

side a multimodal encoder for integrating their 306

embeddings. Specifically, the image is processed 307

through a pre-trained Vision Transformer (ViT) 308
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model (Dosovitskiy et al., 2020) to generate im-309

age embeddings. Since some findings correspond310

to multiple images, we average all image embed-311

dings corresponding to the same findings. Next, we312

adapt a pre-trained Transformer encoder-decoder313

model, such as Clinical-T5 (Lehman and Johnson,314

2023), to handle multimodal inputs. Specifically,315

we pass the findings as input to the T5 encoder and316

initialize its hidden state with the averaged image317

embeddings. The final EOS token from the T5 en-318

coder is used as the multimodal embeddings. Note319

that this model cannot be used as-is with the initial320

pre-trained models. Instead, we train this model321

where the T5 encoder outputs are passed to the T5322

decoder to generate the impressions. After training323

the joint model, we remove the decoder, and only324

the embeddings are used later.325

Step 3: Expert Summary Prompt Construction326

The final step in our pipeline involves prompting327

an LLM to generate an expert summary, following328

the generation of layperson summaries for all train-329

ing examples and identifying relevant in-context330

examples for development/test instances using mul-331

timodal demonstration retrieval. The prompt com-332

prises three main components: 1) Task Instruction;333

2) In-context learning examples (ICL Demonstra-334

tions); and 3) the test input instance. An example335

is shown in Figure 3.336

First, the Task Instruction specifies that the337

model should create a layperson summary followed338

by an expert impression. Detailed guidelines are339

provided for generating both the layperson sum-340

mary and the expert impression. It is important341

to note that the layperson summary is generated342

as part of this prompt for the input instance be-343

fore generating the expert impression. The prompt344

defined in Step 1 is only used for the training exam-345

ples. Next, given the input instance’s Findings text346

and radiology image, we use the same multi-modal347

encoder and retrieval approach described in Step 2348

to find relevant in-context examples from the train-349

ing dataset. We generate a sequence of up to 32350

in-context demonstrations. After identifying the351

relevant training examples, we append each train-352

ing instance’s Findings, layperson summary, and353

Impression to generate the sequence of in-context354

examples. Finally, we append the Findings section355

of the text instance and the string “Layperson Sum-356

mary:”. The model will first generate the layperson357

summary followed by the final expert Impression.358

Why does generating a layperson summary be-359

fore the expert impression work? Models can pro- 360

duce general information (e.g., “Infection of the 361

lungs” for “pneumonia”) in the layperson summary, 362

which helps to standardize the content in the Find- 363

ings before creating the Impression. This means 364

different illnesses can be simplified to the same 365

concept (e.g., “bronchitis” can also be simplified 366

to “Infection of the lungs”). The idea is that the 367

model can find common patterns in these general 368

(layperson) expressions that correlate with the ex- 369

pert Impression, as long as the Findings have sim- 370

ilar content. After generating the layperson sum- 371

mary, the model only needs to connect the general 372

terms in the summary to the specific details in the 373

Findings, similar to coreference resolution. With- 374

out the layperson summary, the model must directly 375

find patterns in the more varied Findings section, 376

making the task more complex. 377

4 Experimental Results 378

This section covers the datasets, evaluation metrics, 379

overall results, and error analysis. 380

Datasets In this study, we evaluate our prompt- 381

ing method on two radiology reports summariza- 382

tion datasets. The MIMIC-III summarization 383

dataset, as introduced by (Johnson et al., 2016; 384

Chen et al., 2023), contains 11 anatomy-modality 385

pairs (i.e., 11 body parts and imaging modali- 386

ties such as head-MRI and abdomen-CT). The 387

dataset consists of train, validation, and test splits 388

of 59,320, 7,413, and 6,531 findings-impression 389

pairs, respectively. The MIMIC-III dataset only 390

contains radiology reports without the original 391

images. On the other hand, the MIMIC-CXR 392

summarization dataset (Johnson et al., 2019) is a 393

multimodal summarization dataset containing find- 394

ings and impressions from chest X-ray studies and 395

corresponding chest X-ray images. It comprises 396

125,417 training samples, 991 validation samples, 397

and 1624 test samples. Additionally, we incor- 398

porate an out-of-institution multimodal test set of 399

1000 samples from the Stanford hospital (Irvin 400

et al., 2019) to assess the out-of-domain general- 401

ization of models trained on MIMIC-CXR. We use 402

OpenChat-3.5-7B (Wang et al., 2023a), Starling- 403

LM-7B (Zhu et al., 2023), and Meta-Llama-3-8B- 404

Instruct (AI@Meta, 2024) in our experiments to 405

compare model performance. 406

Evaluation Metrics. Performance is evaluated us- 407

ing the following metrics: BLEU4 (Papineni et al., 408

2002), ROUGE-L (Lin, 2004), Bertscore (Zhang* 409
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BLEU4 ROUGEL BERTScore F1-cheXbert F1-RadGraph

Zero-Shot
OpenChat-3.5-7B 3.98 21.74 42.74 64.98 18.34
Starling-LM-7B 3.64 21.28 42.29 64.63 17.93
Meta-Llama-3-8B-Instruct 5.19 23.56 40.99 66.65 23.56

Few-Shot
OpenChat-3.5-7B 8.24 27.44 45.86 67.00 26.90
Starling-LM-7B 6.79 25.85 44.71 66.76 25.13
Meta-Llama-3-8B-Instruct 6.33 25.81 40.19 65.72 30.13

Few-Shot + Chexbert
OpenChat-3.5-7B 8.11 27.68 44.62 65.71 26.80
Starling-LM-7B 6.29 25.57 42.96 63.56 24.09
Meta-Llama-3-8B-Instruct 9.20 28.25 44.63 67.23 30.48

Few-Shot + Layperson
OpenChat-3.5-7B 8.96 28.46 45.35 67.00 27.90
Starling-LM-7B 8.35 26.97 44.93 66.29 26.94
Meta-Llama-3-8B-Instruct 9.36 29.03 46.91 68.64 29.96

Table 1: Overall performance across the four prompts on the MIMIC CXR in-domain test.

BLEU4 ROUGEL BERTScore F1-cheXbert F1-RadGraph

Zero-Shot
OpenChat-3.5-7B 2.22 25.14 47.10 68.95 10.68
Starling-LM-7B 2.18 24.61 46.49 70.36 10.50
Meta-Llama-3-8B-Instruct 2.01 23.69 42.53 68.76 10.99

Few-Shot
OpenChat-3.5-7B 5.23 27.43 48.00 70.32 12.35
Starling-LM-7B 4.66 26.77 47.20 70.68 11.64
Meta-Llama-3-8B-Instruct 3.37 22.09 39.35 66.49 11.22

Few-Shot + Chexbert
OpenChat-3.5-7B 5.43 26.50 44.95 69.80 12.31
Starling-LM-7B 3.40 23.93 44.12 64.90 10.74
Meta-Llama-3-8B-Instruct 3.79 24.75 42.52 70.05 11.79

Few-Shot + Layperson
OpenChat-3.5-7B 7.74 28.71 48.04 71.28 13.15
Starling-LM-7B 7.01 28.90 48.02 71.02 12.93
Meta-Llama-3-8B-Instruct 7.47 29.03 47.29 71.91 13.63

Table 2: Overall performance across the four prompts on the Stanford Hospital (out-of-domain) test set. The
in-context examples for this dataset are from the MIMIC-CXR dataset.

et al., 2020), F1CheXbert (Delbrouck et al., 2022b),410

and F1RadGraph (Delbrouck et al., 2022a). In-411

tuitively, BLEU4 measures the precision, while412

ROUGE-L assesses the recall of the n-gram over-413

lap between the generated radiology reports and414

the original summaries. BERTScore calculates the415

semantic similarity between tokens of the refer-416

ence summary and the hypothesis, where the hy-417

pothesis refers to the model-generated summary.418

F1CheXbert uses CheXbert (Smit et al., 2020a), a419

Transformer-based model, to evaluate the clinical420

accuracy of generated summaries by comparing421

identified chest X-ray abnormalities in the gen-422

erated reports to those in the reference reports.423

F1RadGraph, an F1-score style metric, leverages424

the RadGraph (Jain et al., 2021) annotation scheme425

to evaluate the consistency and completeness of the426

generated reports by comparing them to reference427

reports based on observation and anatomy entities.428

Overall Results. Table 1 show the performance of429

Zero-Shot prompting, Few-Shot prompting, Few-430

Shot + Chexbert prompting, and our Few-Shot + 431

Layperson prompting strategies for the radiology 432

reports summarization task on the MIMIC-CXR 433

dataset. The Few-Shot + Chexbert method adds dis- 434

ease keywords to help the model focus. In contrast, 435

the Few-Shot + Layperson method mimics doctor- 436

patient communication by creating a simplified 437

summary for laypeople before generating the ex- 438

pert summary. We find that the Few-Shot + Layper- 439

son method yielded the best results overall. Meta- 440

Llama-3-8B-Instruct achieved the highest scores 441

in BLEU4 (9.36), ROUGEL (29.03), BERTScore 442

(46.91), and F1-cheXbert (68.64), and strong per- 443

formance in F1-RadGraph (29.96). OpenChat-3.5- 444

7B and Starling-LM-7B also showed significant 445

improvements with Few-Shot + Layperson, no- 446

tably in BLEU4 and F1-RadGraph. Specifically, on 447

OpenChat-3.5-7B, ROUGE-L, and F1-RadGraph, 448

there were respective increases of 0.78 and 1.10 449

compared to not using the layperson summary. For 450

Starling-LM-7B, these metrics rise by 1.12 and 451
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BLEU4 ROUGEL BERTScore F1-cheXbert F1-RadGraph

Zero-Shot
OpenChat-3.5-7B 4.61 19.85 43.02 52.06 21.41
Starling-LM-7B 4.51 19.52 42.57 51.77 21.19
Meta-Llama-3-8B-Instruct 5.61 20.34 41.70 51.87 24.43

Few-Shot
OpenChat-3.5-7B 8.02 22.33 45.56 52.71 23.37
Starling-LM-7B 7.95 21.98 45.05 52.49 23.01
Meta-Llama-3-8B-Instruct 6.25 20.03 38.75 47.54 24.76

Few-Shot + Chexbert
OpenChat-3.5-7B 8.05 21.94 45.61 51.03 24.70
Starling-LM-7B 9.28 22.43 44.93 49.94 22.05
Meta-Llama-3-8B-Instruct 7.39 21.36 40.76 48.06 24.40

Few-Shot + Layperson
OpenChat-3.5-7B 8.62 22.95 45.31 52.81 24.37
Starling-LM-7B 10.02 22.70 45.14 51.83 24.32
Meta-Llama-3-8B-Instruct 10.03 21.49 45.29 50.78 24.99

Table 3: Overall performance across the four prompts on the MIMIC III.

2.85, respectively. These results suggest incorpo-452

rating a layperson summary can enhance model453

performance in summarizing radiology reports.454

On the Stanford Hospital test set in Table 2,455

the Few-Shot + Layperson prompting yields a456

respective increase in performance across mul-457

tiple metrics. OpenChat-3.5-7B achieved the458

highest BLEU4 (7.74) and BERTScore (48.04),459

while Meta-Llama-3-8B-Instruct led in ROUGEL460

(29.03), F1-cheXbert (71.91), and F1-RadGraph461

(13.63). Starling-LM-7B also showed substantial462

improvements in ROUGEL (28.90 vs. 23.93) and463

BERTScore (48.02 vs. 44.12) compared to Few-464

Shot + Chexbert. These results highlight the effec-465

tiveness of using a layperson summary to enhance466

model performance in summarizing radiology re-467

ports on the out-of-domain dataset.468

The results of the comparison on the MIMIC-469

III dataset are detailed in Table 3. Our model470

demonstrates robust performance, indicating its471

capability to generalize across varied medical472

datasets. Specifically, Meta-Llama-3-8B-Instruct473

saw increases in BLEU4 (10.03 vs. 7.39) and F1-474

RadGraph (24.99 vs. 24.40) compared to Few-Shot475

+ Chexbert. In summary, across all three datasets,476

it is evident that the Few-Shot + Layperson method477

shows noticeable improvements, especially on the478

out-of-domain test set. Incorporating an interme-479

diate layperson summary, which mimics patient-480

doctor communication, introduces a step for “easy-481

to-hard” reasoning. This approach enhances the482

model’s accuracy and its ability to generalize across483

different datasets in medical imaging and report484

summarization.485

Error Analysis. We conducted an error analysis486

of the OpenChat-3.5-7B model on the MIMIC-487

CXR test dataset, comparing the Few-Shot + 488

Layperson prompting strategy to Few-Shot prompt- 489

ing using multimodal embeddings. We analyzed 490

performance trends across different impression 491

lengths using ROUGE-L for text similarity and 492

F1-RadGraph for entity accuracy and complete- 493

ness of the generated radiology reports. The results 494

are shown in Figure 4. We found that ROUGE- 495

L scores decrease with longer impressions while 496

F1-RadGraph scores increase. This suggests that 497

while the model’s text similarity drops with longer 498

impressions, its accuracy in identifying specific 499

medical entities improves. The F1-RadGraph met- 500

ric benefits from the richer context and greater de- 501

tail in longer impressions, allowing the model to 502

recognize better and generate relevant diseases or 503

observations. Our layperson summary approach 504

normalizes terminology and links general terms 505

to specific findings, enhancing the model’s accu- 506

racy. This approach is similar to how doctors ex- 507

plain complex medical information to patients: by 508

simplifying and clarifying terms, they ensure un- 509

derstanding and accuracy. This technique helps 510

the model identify and generate important entities 511

better, leading to higher F1-RadGraph scores for 512

longer impressions. 513

Conversely, the decrease in ROUGE-L scores 514

for longer impressions may be due to the increased 515

complexity and diversity of information. Longer 516

impressions often include more nuanced and varied 517

details, which may not exactly match the ground 518

truth in phrasing or specific word choice. As a 519

result, the text similarity measured by ROUGE- 520

L tends to be lower for longer impressions. This 521

metric is sensitive to the exact wording and word 522

sequence, so the greater length and complexity can 523

result in more divergence from the reference text. 524
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Interestingly, when evaluated with the ROUGE-525

L metric, the Few-Shot + Layperson prompting526

approach performs best on shorter texts (29.11 vs.527

27.41). For example, consider the short impression:528

Ground Truth Short Impression: “No acute
cardiopulmonary process.”
Layperson Summary: “The lungs look nor-
mal with no issues like infection or fluid build-
up. The heart and nearby structures are nor-
mal, and there are no broken bones.”
Few-Shot: “No acute thoracic pathology.”
Few-Shot + Layperson (Our): “No acute
cardiopulmonary process.”

529

The example above provides a qualitative analysis530

of the models’ performance, with given findings.531

The Few-Shot method summarized the findings as532

“No acute thoracic pathology,” which is too broad533

compared to the precise ground truth “No acute534

cardiopulmonary process.” However, our method535

accurately matched the ground truth by first creat-536

ing a layperson summary and then summarizing537

it, ensuring clarity and precision. This approach’s538

effectiveness in capturing short, concise statements539

makes it better at closely matching the ground truth.540

Despite the increasing complexity, the Few-Shot541

+ Layperson prompting continues to outperform542

Few-Shot prompting in longer impressions. An543

example of a long impression is:544

Ground Truth Long Impression: “Right
basilar opacity is probably atelectasis, but
could represent early or developing pneumo-
nia in the appropriate clinical setting.”
Layperson Summary: “The right lower part
of the lung has a subtle cloudy area, which
might be a small lung collapse but could also
be early or developing pneumonia, depending
on the patient’s condition.”
Few-Shot: “Normal cardiomegaly with sub-
tle lung base opacity, possibly atelectasis or
early pneumonia.”
Few-Shot + Layperson (Our): “1. Subtle
opacity at the right lung base, possibly rep-
resenting atelectasis, but could be early or
developing pneumonia in the appropriate clin-
ical setting.”

545

Short Medium Long Short Medium Long
0

5

10

15

20

25

30

Va
lu

e

ROUGEL F1-RadGraph

Few-Shot Few-Shot + Layperson

Figure 4: Error Analysis on MIMIC-CXR Test Dataset:
Performance Comparison of OpenChat-3.5-7B Model
across Different Impression Lengths.

For long impression, the Few-Shot method is 546

less precise than the ground truth, adding unneces- 547

sary details like “Normal cardiomegaly” and miss- 548

ing the position terms “right”. In contrast, our 549

method simplifies complex findings into layperson 550

terms and then translates them back into accurate 551

expert summaries. For example, "Right basilar 552

opacity is probably atelectasis, ... early or devel- 553

oping pneumonia" becomes "The right lower lung 554

looks cloudy, likely a small collapse or early pneu- 555

monia." This layperson summary is then accurately 556

converted to "Subtle opacity at the right lung base, 557

possibly atelectasis or early pneumonia," ensuring 558

clarity and precision. The improvement with longer 559

texts is likely due to the extra context they provide, 560

similar to detailed doctor-patient explanations. 561

5 Conclusion 562

This paper introduces a novel prompting approach 563

inspired by doctor-patient communication tech- 564

niques. By first generating a simplified (layper- 565

son) summary before creating the expert summary 566

and combining this with few-shot in-context learn- 567

ing, we aim to improve the summarization of ra- 568

diology reports using general LLMs. Evaluations 569

across three datasets (MIMIC-CXR, CheXpert, and 570

MIMIC-III) show that this method improves per- 571

formance, especially in out-of-domain tests. 572

However, this approach faces challenges due to 573

the computational demands and context token lim- 574

itations of the 7B model, particularly with longer, 575

more complex medical reports. Future work will 576

focus on optimizing token usage within these con- 577

straints and exploring larger models with expanded 578

context capacities. By leveraging the principles 579

of effective doctor-patient communication, our 580

method aims to enhance non-expert LLMs per- 581

formance in specialized fields without requiring 582

extensive fine-tuning. 583
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6 Limitation584

While our approach shows improvements in radi-585

ology report summarization (RRS), several limi-586

tations must be considered. First, the evaluation587

metrics used, such as ROUGE-L, do not always588

correlate well with human evaluations, necessitat-589

ing cautious interpretation of the results (Wang590

et al., 2024). Our study primarily relies on these591

automated metrics, which can overlook important592

nuances that human experts might catch. The ab-593

sence of comprehensive human evaluations further594

limits the assessment of practical effectiveness. In-595

corporating detailed evaluations by human experts596

is crucial for accurately measuring model perfor-597

mance in real-world clinical settings in future re-598

search, as human assessments provide insights into599

the clinical relevance and accuracy of summaries600

that automated metrics may miss.601

Additionally, the use of 7B parameter open-602

source models may not be optimal. More pow-603

erful closed models, like GPT-4 (Achiam et al.,604

2023) and Gemini (Team et al., 2023), often per-605

form better in summarization tasks. Including re-606

sults from these advanced models could provide a607

more comprehensive comparison and potentially608

challenge the necessity of the intermediate layper-609

son summary step. Furthermore, the computational610

demands and context token limitations of the 7B611

model present significant challenges, particularly612

with longer and more complex medical reports.613

This restricts the model’s ability to process exten-614

sive and detailed information effectively. Differ-615

ences in the quality and consistency of radiology616

reports from different datasets can also affect per-617

formance due to inconsistencies in terminology and618

reporting styles. Moreover, the current interaction619

between humans and non-expert LLMs can be im-620

proved. Incorporating communication techniques621

similar to doctor-patient interactions will enhance622

the human-AI experience by making complex infor-623

mation more accessible and understandable. This624

improvement aims to make LLMs more practical625

and effective for expert-level tasks in various areas,626

bridging the gap between specialized knowledge627

and everyday understanding.628

7 Ethics Statement629

In this work, we have introduced our Layperson630

Summary Prompting strategy, inspired by doctor-631

patient communication techniques. This approach632

aims to simplify complex medical findings into633

layperson summary first, then uses this simplified 634

information to generate accurate expert summaries. 635

However, it is important to address the ethical im- 636

plications of using LLMs in this context. LLMs 637

used for radiology report summarization can pro- 638

duce errors or biased outputs if the training data is 639

of low quality or representative. These models also 640

can be wrong, and such biases can lead to unfair 641

outcomes and exacerbate health disparities. There- 642

fore, radiologists should use AI-generated sum- 643

maries as supportive tools, retaining control over 644

clinical decisions. AI should be seen as an informa- 645

tion resource to reduce time and cognitive effort, 646

aiding in information retrieval and summarization, 647

rather than as an interpretative agent providing clin- 648

ical decisions or treatment recommendations. 649

Additionally, integrating AI into clinical practice 650

raises significant ethical considerations regarding 651

patient privacy, data security, and informed con- 652

sent. Using large volumes of sensitive patient data 653

for training AI models necessitates stringent mea- 654

sures to protect patient rights and ensure data con- 655

fidentiality. Ethical principles such as fairness, ac- 656

countability, and transparency should guide the de- 657

ployment of AI technologies in healthcare. These 658

principles help ensure that AI systems are used 659

responsibly and that the benefits of AI are dis- 660

tributed equitably among all stakeholders. Fur- 661

thermore, potential risks associated with AI im- 662

plementation include perpetuating existing biases, 663

privacy breaches, and the misuse of AI-generated 664

data, necessitating careful consideration and proac- 665

tive management (Yildirim et al., 2024). 666
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A Appendix1049

A.1 Baseline and Implementation Details1050

For our baseline approach, we adopt a prefixed1051

zero-shot prompting strategy (Duan et al., 2019;1052

Zhao and Schütze, 2021), which prepended a brief1053

instruction to the beginning of a standard null1054

prompt. We use the instruction, “You are an expert1055

chest radiologist. Your task is to summarize the1056

radiology report findings into an impression with1057

minimal text”. This instruction provides the model1058

with a fundamental context for the RRS task. Im-1059

mediately following the instruction, we append the1060

specific findings from the report and then prompt1061

the model with “IMPRESSION:” to initiate the1062

generation process. Additionally, we investigate1063

the effectiveness of few-shot ICL prompts with up1064

to 32 similar examples, using the same template1065

as our Few-Shot prompting method, which is not1066

incorporating the intermediate reasoning step (i.e.,1067

without the layperson summary).1068

We conduct experiments with three open-source1069

LLMs: OpenChat-3.5-7B (Wang et al., 2023a),1070

Starling-LM-7B (Zhu et al., 2023), Meta-Llama-1071

3-8B-Instruct (AI@Meta, 2024). All experiments1072

were conducted using two Nvidia A6000 GPUs.1073

For the few-shot model, the average running time1074

is around 2 hours. In contrast, the Few-Shot + 1075

Layperson models have an average running time 1076

of around 8 hours. Processing the MIMIC data 1077

with 24 examples takes approximately 36 hours. 1078

In our work, all these models have been imple- 1079

mented using the Hugging Face framework (Wolf 1080

et al., 2019). Specifically, the OpenChat-3.5-7B, 1081

Starling-LM-7B, and Meta-Llama-3-8B-Instruct 1082

are reported to perform strongly in common sense 1083

reasoning and problem-solving ability (Zhu et al., 1084

2023). OpenChat-3.5-7B is built on the Mistral 1085

7B with conditioned reinforcement learning fine- 1086

tuning, and Starling-LM-7B is built on OpenChat- 1087

3.5-7B with reinforcement learning from AI feed- 1088

back. To select the best parameters in our study, 1089

we employed ROUGE-L and F1RadGraph metrics 1090

on the validation set. These metrics help determine 1091

the most effective parameter settings for the model. 1092

The ROUGE-L metric focuses on the longest com- 1093

mon subsequence and is particularly suitable for 1094

evaluating the quality of text summaries. On the 1095

other hand, the F1RadGraph is specifically de- 1096

signed to assess the accuracy of extracting and sum- 1097

marizing key information from radiology reports 1098

by analyzing entity similarities. 1099

For optimizing our model’s hyper-parameters, 1100

we employed a random search strategy. This in- 1101

volved experimenting with various settings: the 1102

number of prepended similar examples was varied 1103

across a set 2, 8, 12, 16, 24, 32, and these examples 1104

were matched using different modality embeddings 1105

(text, image, or multimodal), all while employing 1106

the same template. We find that for the OpenChat- 1107

3.5-7B model and Meta-Llama-3-8B-Instruct, the 1108

best performance is achieved with 32 examples for 1109

both Few-Shot and Few-Shot + Layperson prompt- 1110

ing methods. In contrast, the Starling-LM-7B 1111

model exhibits optimal performance with 32 ex- 1112

amples when using the Few-Shot prompt and 24 1113

examples for the Few-Shot + Layperson prompt. 1114

Additionally, we experimented with temperature 1115

settings ranging from 0.1 to 0.9, top p values set 1116

between 0.1 and 0.6, and top k values of 10, 20, 1117

and 30. Through this exploratory process, we iden- 1118

tified the most effective settings as a temperature of 1119

0.2, a top p value of 0.5, and a top k setting of 20. 1120

We adopt the same hyperparameters for all experi- 1121

ments. These settings yielded the best results in our 1122

evaluations. It’s significant to note the impact of 1123

the “temperature” parameter on the diversity of the 1124

model’s outputs. Higher temperature values add 1125

more variation, introducing a greater level of ran- 1126
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domness into the content generated. This aspect is1127

especially valuable for adjusting the output to meet1128

specific requirements for creativity or diversity.1129

To ensure compatibility with the model’s capabil-1130

ities, we restricted the length of the prompt (which1131

includes the instruction, input, and output instance)1132

to 7800 tokens. This limit was set to prevent ex-1133

ceeding the model’s maximum sequence length of1134

8,192 tokens for OpenChat-3.5-7B, Starling-LM-1135

7B and Meta-Llama-3-8B-Instruct. In cases where1136

prompts exceeded this length, they were truncated1137

from the beginning, ensuring that essential informa-1138

tion and current findings were preserved. Moreover,1139

we constrained the generated output to a maximum1140

of 256 tokens to strike a balance between provid-1141

ing detailed content and adhering to the model’s1142

constraints. This approach was key in optimizing1143

the effectiveness of summarization within the oper-1144

ational limits of the 7B models.1145

A.2 Discussion and Model Analysis1146

A natural question that arises is, “Does integrat-1147

ing a larger number of examples in Few-Shot +1148

Layperson prompting lead to better overall perfor-1149

mance?”. To answer this question, we explore the1150

relationship between performance and the number1151

of examples integrated. To better quantify the con-1152

tributions of different components in our model,1153

we conducted ablation studies focusing on vari-1154

ous prompt types and modality embeddings for the1155

radiology reports summarization task. Using the1156

MIMIC-CXR validation dataset, we evaluated the1157

performance of three models, OpenChat-3.5-7B,1158

Starling-LM-7B, and Meta-Llama-3-8B-Instruct1159

across a range of configurations. Our analysis fo-1160

cuses on understanding the effectiveness of embed-1161

ding matches for different modalities (including1162

image, text, and multimodal), as well as determin-1163

ing the optimal number of examples needed for1164

effective summarization. The results of these ab-1165

lations on the MIMIC-CXR validation set are pre-1166

sented in Figure 5, Figure 6, and Figure 7. Specifi-1167

cally, we note that Few-Shot + Layperson prompt-1168

ing with multimodal embedding matched examples1169

slightly outperforms the image and text embedding1170

matched ones. For all OpenChat-3.5-7B, Starling-1171

LM-7B, and Meta-Llama-3-8B-Instruct employing1172

the LaypersonPrompt demonstrates performance1173

enhancements compared to the original prompt.1174

Furthermore, as we increase the number of exam-1175

ples, the performance continues to rise, demonstrat-1176

ing that prompting the model with more in-context1177

examples improves performance. However, we can 1178

also observe a slight performance decrease in some 1179

cases after reaching 24 examples. These findings 1180

suggest that while multimodal embeddings provide 1181

a robust framework for summarization, there is a 1182

complex relationship between the number of exam- 1183

ples and performance gains. Our studies highlight 1184

the importance of multimodal context and suggest 1185

a diminishing return for additional examples in text 1186

and image modalities beyond a certain point. This 1187

insight is critical for optimizing the efficiency and 1188

accuracy of our summarization model when pro- 1189

cessing radiology data. 1190

Table 4 shows the prompt lengths corresponding 1191

to various numbers of examples used in our study. 1192

We aim to explore how the length of prompts af- 1193

fects model performance. Initially, models with 1194

shorter context lengths were explored, like LLaMA- 1195

2-7B (Touvron et al., 2023), but their performance 1196

in summarizing radiology reports was limited due 1197

to context length constraints of 4,096 tokens. Be- 1198

cause these limitations significantly impacted their 1199

ability to perform in-context learning effectively, 1200

these models were not chosen for our study. In- 1201

stead, models capable of processing more extended 1202

contexts, like OpenChat-3.5-7B, up to 8,192 to- 1203

kens, were selected to handle better the extensive 1204

information needed for accurate radiology report 1205

summarization. 1206
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Figure 5: Validation results vs. the number of in-context examples across various prompt types and modality
embeddings on OpenChat-3.5-7B.
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Figure 6: Validation results vs. the number of in-context examples across various prompt types and modality
embeddings on Starling-LM-7B.
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Figure 7: Validation results vs. the number of in-context examples across various prompt types and modality
embeddings on Meta-Llama-3-8B-Instruct.

2 8 12 16 24 32

MIMIC-CXR
Few-Shot 643 1285 1713 2141 2994 3850

Few-Shot + Layperson 889 1826 2452 3084 4333 5587

MIMIC-III
Few-Shot 1035 2500 3474 4451 6405 8359

Few-Shot + Layperson 1340 3277 4565 5856 8442 11025

Table 4: Average Token of Prompts.
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