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ABSTRACT

Transformer-based detectors, such as DETR and DINO, often struggle with a spe-
cific limitation: they can detect only a fixed number of objects based on the prede-
fined number of queries set. This limitation leads to missed detections when the
scene exceeds the model’s capacity and increases false positives when the scene
contains fewer objects. In addition, existing approaches often combine one-to-one
and one-to-many matching label assignment methods in the decoder for acceler-
ating the model training and convergence. However, this operation introduces
a new detecting ambiguity issue, which is often overlooked by those methods.
To address these challenges, we propose QFree-Det, a novel query-free detec-
tor capable of dynamically detecting a variable number of objects across differ-
ent input images. In particular, we present an Adaptive Free Query Selection
(AFQS) algorithm to dynamically select queries from the encoder tokens, which
efficiently addresses the issue of fixed capacity. Then, we propose a sequential
matching method that decouples the one-to-one and one-to-many processes into
separating sequential steps, effectively addressing the issue of detecting ambigu-
ity. To achieve the sequential matching, we design a new Location-Deduplication
Decoder (LDD) by rethinking the role of cross-attention (CA) and self-attention
(SA) within the decoder. LDD first regresses the location of multiple boxes with
CA in a one-to-many manner and then performs object classification to recognize
and eliminate duplicate boxes with SA in a one-to-one manner. Finally, to improve
the detection ability on small objects, we design a unified PoCoo loss that lever-
ages prior knowledge of box size to encourage the model to pay more attention
to small objects. Extensive experiments on COCO2017 and WiderPerson datasets
demonstrate the effectiveness of our QFreeDet. For instance, QFree-Det achieves
consistent and remarkable improvements over DINO across five different back-
bone models. Notably, QFree-Det obtains a new state-of-the-art of 54.4% AP and
38.8% APS on val2017 of COCO with the backbone of VMamba-T under 1×
training schedule (12 epochs), higher than DINO-VMamba-T by +0.9% AP and
+2.2% APS . The source codes will be released upon acceptance.

1 INTRODUCTION

In the last few years, transformer-based detectors like DEtection TRansformer (DETR) Carion et al.
(2020) and DINO Zhang et al. (2022b), have simplified the detection pipeline by providing end-
to-end detection capabilities and demonstrating promising performance in comparison to classical
CNN-based detectors Girshick (2015); Ren et al. (2015); Liu et al. (2016); Redmon et al. (2016); He
et al. (2017). Subsequently, a series of follow-up works have been proposed to boost DETR on the
architecture of encoder and decoder Zhu et al. (2020); Cao et al. (2022), query formulations Meng
et al. (2021); Liu et al. (2022); Cao et al. (2024), and training efficacy Meng et al. (2021); Zhang
et al. (2022a); Li et al. (2022); Zhang et al. (2022b); Jia et al. (2023); Hu et al. (2024).

DETR-like models: the limited number of objects detection (OD) dilemma. DETR-like mod-
els Carion et al. (2020); Meng et al. (2021); Yao et al. (2021); Liu et al. (2022); Li et al. (2022); Zhang
et al. (2022b); Zheng et al. (2023); Cao et al. (2024) utilize a transformer encoder-decoder architec-
ture to treat OD as a set prediction problem. These models make predictions based on a fixed-size
set of N learnable object queries, and each query is responsible for predicting a single object, where
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(a) one-to-one matching in DETR
3q2q ...1q 2nq 1nq nq

(b) one-to-many in DETR variants (c) detecting ambiguity
2q ...1q 3q 2nq 1nq nq

3q2q ...1q 2nq 1nq nq

Only one query is matched (in solid 
line) with the ground truth box.

Many queries are matched (in solid line)
with each ground truth box.

When two matching methods are used 
together with shared weights of decoder, 
the model creates ambiguity on predicting 
one or many results for the single object?

?

Figure 1: The mixing of one-to-one and one-to-many matching label alignment approaches with shared weights
in decoder introduces detecting ambiguity in predicting one or many results for a single object. This ambiguity
often leads the model to predict multiple detection results for the same object, increasing false positives.

these predicted objects are matched with ground truth objects following a one-to-one matching label
assignment manner. However, this approach imposes a notable dilemma: the model can detect only
“limited number of objects”, as the fixed size of N queries becomes a hyper-parameter tied to the
model’s weight, which significantly hampers the model’s flexibility and applicability when dealing
with input images containing objects more than N . This dilemma raises the natural question: is there
an end-to-end approach that can predict a free number of objects and surpass the performance of
state-of-the-art (SOTA) DINO? We term this issue as the “free-object predictions” problem.

Detecting ambiguity. One-to-one matching is a fundamental design feature of DETR-like models,
enabling their end-to-end capability in OD without the need for a post-process like non-maximum
suppression (NMS) to remove duplicate detections. To address the low training efficacy and slow
convergence speed of the model, many works Carion et al. (2020); Zhang et al. (2022b); Jia et al.
(2023); Hu et al. (2024) adopt the one-to-many matching approach to increase the positive samples
with an auxiliary decoder or branches. However, the one-to-one and one-to-many matching label
alignment methods are mutually exclusive. They operate on the same shared decoder weights, which
introduces ambiguity in the model: it becomes unclear whether the model should predict one or
multiple results for the same object, as illustrated in Fig. 1 (c).

QFree-Det. To achieve the “free-object predictions” and address the “detecting ambiguity” issue,
we develop a novel end-to-end transformer-based query-free detector termed QFree-Det, which
frees the constraint on the fixed number of queries, allowing the model to detect adaptive quantities
of objects for any given input images. Our contribution can be summarized as follows: (1) We
present a new AFQS algorithm to dynamically select a flexible number of queries from the encoder
tokens, which solves the fixed capacity issue. (2) We introduce a new sequential matching method
that separates the one-to-one and one-to-many processes into two independent parts, effectively
addressing the issue of detecting ambiguity. To achieve this, we rethink the roles of core modules in
the decoder for predicting object bounding boxes and classes: cross-attention and self-attention, and
further design a new end-to-end Location-Deduplication Decoder (LDD), which decomposes the
detection process into two simple steps: boxes locating and objects deduplication. Specifically,
the LDD includes two parts of Box Locaing Part (BLP) and Deduplication Part (DP), respectively.
The BLP aims to accurately locate the extensive bounding boxes layer-by-layer for potential objects
and improve the training and convergence efficiency with one-to-many matching; in contrast, the
DP is designed for removing duplicate boxes through classification supervision with one-to-one
matching. Our model does not require additional decoder branches, maintains training efficiency,
and achieves “free-object predictions”, streamlining the model architecture. (3) We design a new
loss function, which incorPOrates Classification with IOu and BOx Size (PoCoo) for re-weighting
the classification loss, to improve the detection ability on small objects. (4) Extensive experiments on
COCO2017 and WiderPerson datasets demonstrate that QFree-Det achieves promising performance
compared with many existing methods across many different backbone models.

2 RELATED WORKS

Transformer detectors. DETR Carion et al. (2020), as the pioneer transformer-based detector, rep-
resents a significant breakthrough in OD. By framing OD as a direct set prediction task and lever-
aging transformer architectures, DETR introduces a more efficient end-to-end detection paradigm
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while eliminating the need for hand-designed components like NMS. Since then, many follow-up
efforts have focused on various aspects of DETR enhancement, including accelerating the model
training Meng et al. (2021); Li et al. (2022); Zhang et al. (2022b); Jia et al. (2023); Zong et al.
(2023), reformulating the decoder queries Meng et al. (2021); Yao et al. (2021); Liu et al. (2022);
Zhang et al. (2023), improving the encoder and decoder architectures Zhu et al. (2020); Roh et al.
(2021); Cao et al. (2022), and optimizing loss functions Liu et al. (2023a); Cai et al. (2023); Pu et al.
(2024); Hu et al. (2024). While these methods effectively enhance the detection capabilities, they
often overlook the vital dilemma of “limited number of objects detecting”, stemming from DETR’s
single-shot approach to aligning queries with objects via bipartite matching.

Free-form object detection. In real-world scenarios, the number of detectable objects varies
widely Shao et al. (2018); Zhang et al. (2019), ranging from individual instances to thousands, pre-
senting significant challenges for detectors Liu et al. (2021a); Cheng et al. (2023). The “free-object
predictions” problem in DETR-like models presents two challenges: when the number of objects to
be detected is much larger than the predefined queries, the model will miss detections; in contrast,
when the number of objects to be detected is far fewer than the predefined queries, the model would
introduce a substantial amount of redundant computation, leading to an increased false positive rate
and a decrease in detection performance.

Recently, a diffusion-based model called DiffusionDet Chen et al. (2023b) introduced a novel frame-
work that formulates OD as a denoising diffusion process from numerous noisy boxes to refined
object boxes, achieving the flexibility to predict an arbitrary number of detections by decoupling
training and evaluation processes and leveraging iterative evaluation. However, despite its advance-
ments, DiffusionDet still suffers from several limitations. Notably, it requires hand-designed post-
processing with NMS for duplicate box removal, complicating both the training and inference pro-
cess; additionally, its adaptability is constrained by manually defined parameters of noisy box num-
ber and evaluation iterations, increasing the evaluation complexity; moreover, DiffusionDet lags
behind the SOTA works such as DINO Zhang et al. (2022b), hindering its potential for development
and application.

One-to-one matching. DETR Carion et al. (2020) and its variants, such as Deformable DETR Zhu
et al. (2020) and DAB-DETR Liu et al. (2022), innovate with a one-to-one set matching approach for
end-to-end object detection, as shown in Fig. 1 (a), bypassing the need for conventional hand-crafted
NMS to remove duplicate detections. Though streamlining the detection workflow, this one-to-one
matching manner leads to only a few queries assigned as positive samples, thereby significantly
diminishing the training efficiency of positive samples due to sparse supervision. One-to-many
matching. To address the limitations of one-to-one matching and boost training efficiency, many
efforts, including Hybrid-DETR Jia et al. (2023), Co-DETR Zong et al. (2023), Group-DETR Chen
et al. (2023a), Align-DETR Cai et al. (2023) and DAC-DETR Hu et al. (2024), etc, have explored
one-to-many label assignments for increasing the matched positive samples among dense queries.
By explicitly assigning multiple queries to each ground truth box, these methods boost the quantity
of positive matches, accelerate model convergence, and enhance training efficiency.

Nevertheless, the shift towards one-to-many matching naturally introduces a new “detecting am-
biguity” issue, which contradicts the foundational one-to-one principle of DETR. This ambiguity
arises when mixing the one-to-many and one-to-one matching schemes through shared weights in
auxiliary decoders or branches. It creates uncertainty about whether one or multiple results should
be predicted for a single object, as depicted in Fig. 1 (c). Unfortunately, this issue is overlooked in
existing works Carion et al. (2020); Zhang et al. (2022b); Jia et al. (2023); Cai et al. (2023); Hu et al.
(2024). Furthermore, the adoption of additional decoder branches to enable one-to-many match-
ing, as observed in Hybrid-DETR Jia et al. (2023) and DAC-DETR Hu et al. (2024), significantly
increases training complexity and costs, further exacerbating the ambiguity.

3 METHODS

In this section, we first address the challenges by rethinking the main pipeline, model composition,
and the roles of each component of DETR-like models. We then introduce the overall architecture
of QFree-Det and propose the novel AFQS algorithm to achieve “free-object predictions”. Further-
more, we present our sequential matching approach to eliminate the detecting ambiguity through our
innovative LDD framework. Finally, we present PoCoo loss for improving small object detection.
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3.1 OVERVIEW OF DETR-LIKE FRAMEWORK

3.1.1 MAIN PIPELINE OF DETR-LIKE MODELS.

The DETR-like architecture comprises three main modules: a compact backbone for feature extrac-
tion, a transformer encoder neck for feature enhancement, and a transformer-decoder for predicting
bounding boxes and classes. Given an input image I ∈ RH×W×3 (H, W: image height and width),
the backbone extracts a compact feature representation B. This feature B is then passed through the
transformer encoder, which consists of a chain of attention Dosovitskiy et al. (2020) or deformable
attention Zhu et al. (2020) layers to disentangle objects and obtain the encoder feature E. Next, the
model initializes a fixed-size set of two types of queries: content query (CQ) and positional query
(PQ) Liu et al. (2022); Zhang et al. (2022b). These queries, along with the encoder feature E, are
fed into the transformer decoder, which updates these queries based on the information from the
encoder feature via the SA and CA modules. Finally, the content queries are passed through two
separate feed forward networks (FFN) to predict the bounding box coordinates and class labels, re-
spectively. While the aforementioned framework achieves end-to-end detection and demonstrates
promising detection performance, the specific roles of various components in the model, such as the
meaning of CQ and PQ, the effects of SA and CA, remain unclear, which poses a limitation to the
further development of the model.

3.1.2 RETHINKING THE ROLE OF CONTENT QUERY AND POSITIONAL QUERY

CQ and PQ are important modules in the DETR-like framework for OD. These modules have
been optimized in a series of research works Zhu et al. (2020); Meng et al. (2021); Yao et al.
(2021); Wang et al. (2022); Liu et al. (2022); Zhang et al. (2022b), as detailed in the Appendix
(Sec.A.1). However, the issue of “free-object prediction” is directly limited by the fixed number
of CQ and PQ, and the actual roles of these two types of queries in the detection process need to
be further explored. The CQ, also known as the decoder embeddings in DETR, plays a clear role,

Table 1: The ablation on PQ.

Backbone PQ in SA PQ in CA AP

ResNet50 He et al. (2016)

✓ ✓ 49.5
✓ % 49.8 (+0.3)
% ✓ 49.3 (-0.2)
% % 49.3 (-0.2)

Strip-MLP-T Cao et al. (2023)

✓ ✓ 51.7
✓ % 51.6 (-0.1)
% ✓ 51.8 (+0.1)
% % 51.7

which is indispensable for OD to predict the bounding
boxes and classes of objects directly. In the SA and CA
modules of the decoder, the PQ is added to the CQ to
increase the variation of CQ Carion et al. (2020) and fa-
cilitate predicting diverse detection results. However, the
exact role of PQ is not yet clear. To gain further insights,
we conduct ablation experiments with DINO under two
different backbones on COCO Lin et al. (2014), remov-
ing the PQ from these two modules and assessing its im-
pact. As illustrated in Table 1, the ablation results reveal
that the removal of the PQ has a minimal effect on the
model’s performance, with only a variation of ±0.3% in average precision (AP). In response to the
requirement for “free-object predictions”, we directly remove the PQ and propose a novel query type
termed the self-adaption decoder query (SADQ), which further replaces the fixed number of static
embeddings of CQ, enabling the model to generate a flexible number of predictions. The algorithm
for constructing this adaptive query is outlined in Sec 3.3 of the proposed AFQS algorithm.

3.1.3 SELF-ATTENTION AND CROSS-ATTENTION

Self-attention and its high GPU memory demand. In the decoder of DETR-like models, the
SA layer operates on a fixed number of N queries Q = {q1, ..., qn} as the input of both query,
key, and value for the attention process. The self-attention map is computed using the formulation
Attention(Q,K, V ) = softmax(QKT

√
dk

)V , where dk is the scaling factor. To obtain attention
scores for all pairwise queries, the operation QKT constructs a matrix with size n×n, resulting in a
complexity of O(n2). However, this issue of quadratic complexity becomes particularly significant
for free-form object detection. Specifically, SA may need to construct larger matrices of arbitrary
sizes, such as 20, 000×20, 000 or even larger. As the number of queries increases, the model would
present a new challenge regarding GPU resources and memory requirements, making it difficult
to train the model. Accordingly, the natural question comes: what is the role of SA? Can SA be
removed directly to solve this problem?
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Figure 2: The overall architecture of the QFree-Det model.

Role and necessity of SA in transformer decoder. To answer these two questions, we conduct
ablations on SA with the DINO model on COCO Lin et al. (2014) in Table 2. Directly removing
SA leads to a substantial 4.9% drop in AP, while the decrease in average recall (AR) is only 0.6%.

Table 2: Ablation on SA layers. The QNum means the
number of queries is fixed or not. APS and APL are the
AP for small and large objects, respectively.

Method SA QNum AP APS APL AR ARS ARL

Baseline
✓ fixed 49.0 32.0 63.0 72.7 55.9 88.4
% fixed 44.1(-4.9) 27.9 56.7 72.1(-0.6) 53.3 86.6

Binary % free 46.8 29.9 59.7 71.9 53.6 87.5
Binary-NMS % free 47.5 30.5 61.3 69.3 53.9 83.3

Binary-Linear-Attn ✓ free 48.4 30.4 62.4 73.9 58.9 88.0
Binary-SA ✓ free 49.1 31.4 63.4 73.1 57.9 88.3

This phenomenon suggests that SA plays a cru-
cial role in reducing false positive predictions.
To address the “free-object predictions” prob-
lem, we introduce a new variant termed the “Bi-
nary” model, which adds a binary classification
branch connected to the encoder. This branch
dynamically selects queries from encoder to-
kens based on the binary classification result.
This “Binary” model achieves a +2.7% AP im-
provement over the baseline. Further incorpo-
rating NMS leads to an additional +0.7% AP
gain, suggesting that SA module provides a similar performance boost as NMS. To reduce the
quadratic complexity of SA, we adopt linear transformer architectures, such as efficient atten-
tion Shen et al. (2021) and external attention Guo et al. (2023), which avoid computing pairwise at-
tention scores for each input token, reducing the complexity. We construct a new variant of Binary-
Linear-Attn, allowing for a more flexible number of query selections. However, as presented in
Table 2, the experiment result shows that Binary-SA significantly outperforms Binary-Linear-Attn,
suggesting that computing attention maps between all query pairs is a suitable approach for remov-
ing duplicate predictions. These results consistently highlight the significance and necessity of SA
for eliminating duplicate detections, which inspired us to design the DP for LDD in Sec. 3.4. We
argue that duplications are removed by the SA via computing similarities between each paired query
and further updating queries through one-to-one matching and class supervision in training process.
Please refer to the Sec. A.2 of Appendix for more detailed information.

Opposing role of CA and SA. The majority of existing DETR-like one-to-many decoder architec-
tures Jia et al. (2023); Zong et al. (2023); Cai et al. (2023); Hu et al. (2024) suffer from the problem
of detecting ambiguity. This issue is also aroused by the opposing impacts on the object queries of
CA and SA, where the SA disperses queries from each other, and the CA tends to gather multiple
queries around the same object Hu et al. (2024). In our analysis, CA primarily updates decoder
queries by performing cross-attention to flow the object information from the encoder feature to
decoder queries. This results in multiple queries being linked to the same object for more accurate
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bounding box predictions, namely the one-to-many process. While this process increases the accu-
racy of bounding box detections, it inevitably leads to a new issue of increasing the false positive
detections. Most existing decoder architectures apply the one-to-one process of SA before the one-
to-many process of CA layer-by-layer. This recurrent shifting between the two opposing processes
leads to the significant detecting ambiguity problem.

Based on the above analysis, we propose a new LDD framework in Sec. 3.4, which decouples the
detection process into two simple parts: box locating with CA and duplicate detections removing
with SA. LDD mitigates the detecting ambiguity while retaining the benefits of CA and SA.

3.2 MAIN ARCHITECTURE OF QFREE-DET

Fig. 2 presents an overview of the novel QFree-Det model. The input image I ∈ RH×W×3 is pro-
cessed by the backbone and encoder to obtain the enhanced feature representations E. Then, the
proposed algorithm AFQS operates on all encoder tokens to generate a variable number of self-
adaptive decoder queries. These decoder queries, along with the encoder features E, are input to
the Box Locating Part (BLP) for T1 iterations, aiming to locate the bounding box of each object
with multiple queries and keep the training efficacy through one-to-many matching. Subsequently,
the Deduplication Part (DP), consisting of T2 iterations, takes the feature E and updated decoder
queries as input to remove duplicate detections by one-to-one matching. Each decoder layer pro-
duces the bounding box and classification results for the detected objects. The initial locations of
bounding boxes Bx0y0w0h0 are initially predicted by the encoder and then refined layer-by-layer in
the decoder by regressing the box offsets. Mathematically, the whole process can be represented as:

Bx0y0w0h0
= FFN(AFQS(E)) (1)

Bi
xywh = Bx0y0w0h0

+

T1∑
i=1

BLP (qi
d,E) +

T2∑
j=i−T1
i>T1

DP (qj
d,E) (2)

where qd denotes the feature of the self-adaption decoder query; i and j indexes the layer of qd.

3.3 ADAPTIVE FREE QUERY SELECTION ALGORITHM

Recall that we have analyzed the role of CQ and PQ in Sec. 3.1.2. To construct the query-free
detection framework, we eliminate the unnecessary PQ and introduce the new AFQS algorithm. This
algorithm dynamically obtains appropriate decoder queries tailored to different images, allowing for
generating a flexible number of detections.

Algorithm 1 Adaptive free query selection

Input: token sequence of encoder E : (B, N, D)
Output: decoder query SADQ : (B, M, D)

Initialize:
S← s ∈ (0, 1);▷threshold of classification score
P ← p ∈ (0, N); ▷the size of query pool
Tclass

enc : (B, N, C)← FFN(E)
Tidx: (B, M)← filter (Tclass

enc , S)
/* select queries in training mode */
if training and M ≤ P then

SADQ : (B, M, D)← index(E,Tidx)
else if training and M>P then

Tidx: (B, P)← TopK (Tclass
enc , P )

SADQ : (B, P, D)← index(E,Tidx)
else if testing then

SADQ : (B, M, D)← index(E,Tidx)
end if
return SADQ

Shifting the fixed number of queries into dy-
namic initialization. In existing models Carion
et al. (2020); Zhu et al. (2020); Li et al. (2022);
Zhang et al. (2022b); Liu et al. (2023a), CQ is
designed as a fixed number of queries, either
with learnable static queries or initialized with
zero vectors. However, these fixed queries limit
the model’s flexibility, and the static initializa-
tion hinders the model from dynamically adapt-
ing to different images. Consequently, these lim-
itations significantly restrict the models’ detec-
tion capabilities. To address these issues and
achieve query-free detection, we introduce our
new self-adaptive decoder query (SADQ) to re-
place CQ. SADQ is obtained by sorting the clas-
sification scores of all N encoder tokens and se-
lecting the scores above a certain threshold S as
M SADQ. This threshold method with sorting
classification score (TSCS) approach enables the
model to adaptively select a variable number of queries for different input images. However, ensur-
ing that the same number of queries for different images is used within the same batch for practical
training is necessary during the training process. To overcome this challenge, we utilize an “Align-
ment Approach”, which is detailed in the Sec. A.3 of Appendix.
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Approach for saving GPU memory demand. To tackle the large GPU resources and memory
challenge for SA (in Sec. 3.1.3), we define a pool with size P during the training stage. When the
number of selected queries is higher than P , the TopK method is used to select P queries from M
queries to remove the duplicate queries. During the early training stages, the classification scores
of most encoder tokens are randomly distributed, leading to many redundant queries being selected.
As training progresses, the classification scores increase for selected queries and decrease for others,
leading to a decrease in query redundancy. The algorithm AFQS is illustrated in Algorithm 1. The
function of filter means the TSCS method. The index function aims to dynamically select SADQ
from E based on the index of token Tidx.

3.4 LOCATION-DEDUPLICATION DECODER

To effectively mitigate detecting ambiguity while maintaining training efficacy, we design a novel
LDD framework by decoupling the one-to-one and one-to-many matching processes. The LDD
comprises two parts: one for locating the object and the other for removing duplicate detections.

Box Locating Part. The BLP is specifically designed to accurately locate more potential objects
using multiple queries following a one-to-many matching manner, where the one-to-many matching
is achieved by repeating the ground truth box for K times and aligning each repeated box with one
query. Considering the different roles of CA in gathering multiple queries around the same object
and SA in removing duplicate detections, we only utilize CA in this part for object prediction.
Mathematically, this process can be formulated as:

BLP(qd,E) = LN{MLP (LN(qd + CA(qd,E))) + LN(qd + CA(qd,E))} (3)
where LN denotes the LayerNorm Ba et al. (2016) layer. The MLP consists of two linear layers to
facilitate the interaction of channel information. CA means the cross-attention operation through
the multi-scale deformable attention Zhu et al. (2020).

Deduplication Part. While the BLP achieves accurate object localization by assigning multiple
queries to the same object, it also introduces many false positive queries. To address these duplicate
queries, we introduce the Deduplication Part (DP), which performs one-to-one matching to remove
redundancies. The DP consists of two components: the DPCA module, which refines the box location
using the CA with one-to-one matching form, and the multi-head self-attention block (MSAB),
which combines SA and MLP to remove duplicate detections. The SA module and one-to-one label
alignment is combined together in DP to achieve one-to-one matching, and we iterate this block for
λ times to enhance the deduplication process. The overall process can be described as follows:

DPCA(qd,E) = LN(qd + CA(qd,E)) (4)

DPMSAB(qd,E) =

λ∑
m=1

MLPm{LNm
[
qm−1
d + SAm(qm−1

d )
]
} (5)

where λ indexes the block number. SA denotes the multi-head self-attention module Vaswani et al.
(2017). The q0

d is obtained by DPCA, and qm
d is updated by DPMSAB. The MSAB block signifi-

cantly helps the model to reduce false positive detections by using multiple SA, demonstrated by the
ablation in Table 6. Specifically, during the training process, by computing the pairwise attention
score between all queries, the assigned query for each ground truth object gradually obtains a high
classification score. In contrast, the remaining queries associated with the same ground truth receive
lower scores through one-to-one matching and classification supervision.

Stop gradient back-propagation from DP to BLP of queries. Since the query is sequentially
updated by the BLP and DP modules, the one-to-many matched queries in BLP may be matched in
a one-to-one fashion in DP. This can result in conflicting supervision and chaotic gradient updates,
leading to a re-emergence of detection ambiguity. To address this issue, we take an additional step
by stopping the gradient back-propagation of the queries (SGQ) from the DP to the BLP during
training, ensuring consistent matching across different parts, as demonstrated in Table 16.

3.5 CLASSIFICATION LOSS WITH IOU AND BOX SIZE

To address the misalignment of queries between the classification score and box regression result,
Align-DETR Cai et al. (2023) introduced an IA-BCE loss by combining Iou and predicted clas-
sification score as new label t in binary cross entropy (BCE) loss to align these two scores. To
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Table 3: Comparison with previous popular detectors on val2017 of COCO. The FLOPs of QFree-Det are
calculated on a 1280×800 resolution with 900 queries, which matches the configuration of the baseline DINO.

Model Year Backbone Objects Epochs AP AP50 AP75 APS APM APL Params FLOPs

DETR (Carion et al., 2020) 2020 ResNet50 fixed 500 42.0 62.4 44.2 20.5 45.8 61.1 41M 86G
DETR-DC5 (Carion et al., 2020) 2020 ResNet50 fixed 500 43.3 63.1 45.9 22.5 47.3 61.1 41M 187G

Deformable-DETR (Zhu et al., 2020) 2020 ResNet50 fixed 50 46.2 65.2 50.0 28.8 49.2 61.7 40M 173G
Conditional DETR (Meng et al., 2021) 2021 ResNet50 fixed 108 43.0 64.0 45.7 22.7 46.7 61.5 44M 90G

Sparse-DETR (Roh et al., 2021) 2021 ResNet50 fixed 50 46.3 66.0 50.1 29.0 49.5 60.8 41M 136G
DAB-DETR (Liu et al., 2022) 2022 ResNet50 fixed 50 42.6 63.2 45.6 21.8 46.2 61.1 44M 100G

DN-DETR (Li et al., 2022) 2022 ResNet50 fixed 50 44.1 64.4 46.7 22.9 48.0 63.4 44M 94G
Efficient-DETR (Yao et al., 2021) 2021 ResNet50 fixed 36 44.2 62.2 48.0 28.4 47.5 56.6 32M 159G

CF-DETR (Cao et al., 2022) 2022 ResNet50 fixed 36 47.8 66.5 52.4 31.2 50.6 62.8 - -
Focus-DETR (Zheng et al., 2023) 2023 ResNet50 fixed 36 50.4 68.5 55.0 34.0 53.5 64.4 48M 154G

DiffusionDet (Chen et al., 2023b) 2023 ResNet50 free 60 46.8 65.3 51.8 29.6 49.3 62.2 - -

Grounding DINO (Liu et al., 2023b) 2023 ResNet50 fixed 12 48.1 65.8 52.3 30.4 51.3 62.3 - -
Co-DETR-4scale Zong et al. (2023) 2023 ResNet50 fixed 12 49.5 67.6 54.3 32.4 52.7 63.7 - -

Stable-DINO Liu et al. (2023a) 2023 ResNet50 fixed 12 50.4 67.4 55.0 32.9 54.0 65.5 47M 279G
DETA Ouyang-Zhang et al. (2022) 2022 ResNet50 fixed 12 50.5 67.6 55.3 33.1 54.7 65.2 52M -

DDQ DETR Zhang et al. (2023) 2023 ResNet50 fixed 12 51.3 68.6 56.4 33.5 54.9 65.9 - -
MS-DETR Zhao et al. (2024) 2024 ResNet50 fixed 12 50.3 67.4 55.1 32.7 54.0 64.6 - -
Align-DETR Cai et al. (2023) 2023 ResNet50 fixed 12 50.2 67.8 54.4 32.9 53.3 65.0 47M 279G
DAC-DETR Hu et al. (2024) 2024 ResNet50 fixed 12 50.0 67.6 54.7 32.9 53.1 64.2 - -
DINO (Zhang et al., 2022b) 2022 ResNet50 fixed 12 49.0 66.6 53.5 32.0 52.3 63.0 47M 279G

QFree-Det (ours) 2024 ResNet50 free 12 50.5 +(1.5) 67.5 55.1 34.3 (+2.3) 54.6 64.5 48M 275G

Align-DETR Cai et al. (2023) 2023 ResNet50 fixed 24 51.3 68.2 56.1 35.5 55.1 65.6 47M 279G
DAC-DETR Hu et al. (2024) 2024 ResNet50 fixed 24 51.2 68.9 56.0 34.0 54.6 65.4 - -
DINO (Zhang et al., 2022b) 2022 ResNet50 fixed 24 50.4 68.3 54.8 33.3 53.7 64.8 47M 279G
DINO (Zhang et al., 2022b) 2022 ResNet50 fixed 36 50.9 69.0 55.3 34.6 54.1 64.6 47M 279G

QFree-Det (ours) 2024 ResNet50 free 24 51.3 (+0.9) 68.4 55.9 35.5 (+2.2) 54.8 65.7 48M 275G

DINO Zhang et al. (2022b) 2022 Strip-MLP-T fixed 12 51.7 69.5 56.8 34.7 55.1 66.0 44M 263G
QFree-Det (ours) 2024 Strip-MLP-T free 12 52.8 (+1.1) 70.1 57.6 35.7 (+1.0) 56.8 67.4 45M 264G
QFree-Det (ours) 2024 Strip-MLP-T free 24 54.5 72.0 59.5 37.4 58.5 69.6 45M 264G
QFree-Det (ours) 2024 Strip-MLP-T free 36 55.0 72.5 60.0 38.4 58.9 69.9 45M 264G

H-Deformable-DETR (Jia et al., 2023) 2023 Swin-T fixed 12 50.6 68.9 55.1 33.4 53.7 65.9 - -
H-Deformable-DETR (Jia et al., 2023) 2023 Swin-T fixed 36 53.2 71.5 58.2 35.9 56.4 68.2 - -

DINO (Ren et al., 2023) 2023 Swin-T fixed 12 51.3 69.0 56.0 34.5 54.4 66.0 48M 280G
QFree-Det (ours) 2024 Swin-T free 12 52.7 (+1.4) 70.2 57.6 36.3 (+1.8) 56.4 67.7 49M 281G
QFree-Det (ours) 2024 Swin-T free 24 54.4 71.9 59.3 38.1 58.1 69.2 49M 281G
QFree-Det (ours) 2024 Swin-T free 36 54.9 72.4 59.9 38.3 58.6 69.6 49M 281G

DINO Zhang et al. (2022b) 2022 Swin-L fixed 12 56.8 75.6 62.0 40.0 60.5 73.2 218M 945G
QFree-Det (ours) 2024 Swin-L free 12 57.7 (+0.9) 75.6 63.0 40.0 62.5 74.2 219M 946G

DINO (Zhang et al., 2022b) 2022 Swin-L fixed 36 58.0 76.1 64.0 40.1 62.2 74.3 218M 945G
QFree-Det (ours) 2024 Swin-L free 24 58.2 76.1 63.6 41.6 62.7 74.2 219M 946G

DINO 2024 VMamba-T fixed 12 53.5 71.5 58.2 36.6 56.7 68.3 50M 290G
QFree-Det (ours) 2024 VMamba-T free 12 54.4 (+0.9) 72.0 59.2 38.8 (+2.2) 58.2 69.2 51M 290G

further improve the detection ability of small objects, we develop a new unified PoCoo loss that
incorPOrates Classification with IOu and BOx Size:

PoCoo =

Npos∑
i

BCE(pi, ti)×

[(
1−

√
hi

H

wi

W

)α

+ 1

]
+

Nneg∑
j

p2jBCE(pj , 0) (6)

where i and j indexes the prediction of objects, hi and wi denote the height and width of the matched
ground truth box. p and t represent the predicted classification score and new label, respectively.
α ranges between 0 and 1. The distinction between our PoCoo loss and IA-BCE loss lies in the
[∗] term. In Eq 6, we introduce the prior of box size information into the loss function, explicitly
assigning higher weights to small objects and encouraging the model to pay more attention to them.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Dataset. We evaluate QFree-Det on two detection benchmark datasets: COCO2017 Lin et al. (2014)
and WiderPerson Zhang et al. (2019). These two datasets differ in the number of training images and
the variety of detection scenes. More dataset information is presented in Sec. B.1 of the Appendix.
The ablation studies are performed on the COCO2017 dataset.

Implementation details. For fair comparison, we adopt the same training recipe from DINO (Zhang
et al., 2022b) and train models with the AdamW (Loshchilov & Hutter, 2017) optimizer. QFree-
DINO utilizes 4-scale features from the backbone. The models are trained with a mini-batch size 8
on Tesla V100 GPUs. In the ablations, our models are trained for 12 epochs (1× training scheduler).
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Evaluation criteria. For COCO2017, we evaluate the detection performance using the standard
average precision (AP) (Liu et al., 2021a) metric under various IoU thresholds and object scales,
following the evaluation metrics in COCO (Lin et al., 2014). For WiderPerson, we employ the
evaluation metrics of AP, Recall, and mMR, commonly used in pedestrian detection (Zhang et al.,
2019; Rukhovich et al., 2021).

4.2 MAIN RESULTS

Results on COCO2017. Table 3 presents a comprehensive comparison of our QFree-Det with
multiple popular detectors using various backbones across different training epochs. It can be ob-
served that QFree-Det achieves overall the best performance across five different backbones He et al.
(2016); Cao et al. (2023); Liu et al. (2021b; 2024) in metrics of AP and APS for general object de-
tection and small object detection, respectively. For the ResNet50 backbone, our model outperforms
the baseline model DINO by +1.5% AP and +2.3% APS under 1 × scheduler (12 epochs). In partic-
ular, QFree-Det (24 epochs only) obtains higher performance by +0.4% AP (51.3% vs. 50.9%) and
+0.9% APS (35.5% vs. 34.6%) than DINO (36 epochs), clearly demonstrating its training efficacy
and effectiveness. For the backbone of Strip-MLP-T and Swin-T (where relatively fewer methods
have reported results), our models achieve new SOTA, 55.0% AP and 54.9% AP with parameters
of 45M and 49M, respectively. When compared to the larger backbone of Swin-L Liu et al. (2021b),
our model surpasses DINO with a notable improvement of +0.9% AP (57.7% vs. 56.8%).

Recently, the visual state space model Gu & Dao (2023) is introduced to address the quadratic com-
plexity of the attention mechanism, and MambaOut Yu & Wang (2024) has pointed out that visual
Mamba has great potential on long-sequence visual tasks like OD. Therefore, we test QFree-Det
and DINO with the backbone of VMamba-T Liu et al. (2024). Table 3 shows that QFree-Det creates
a new SOTA result of 54.4% AP and 38.8% APS under 1× training schedule (12 epochs), higher
than DINO by +0.9% AP and +2.2% APS . Moreover, when compared to DiffusionDet Chen et al.
(2023b), which is the only existing model capable of predicting a free number of objects, QFree-Det
(24 epochs) significantly outperforms DiffusionDet (60 epochs) with an increase of +4.5% AP and
+5.9% APS , clearly demonstrating its superiority.

Table 4: Results on WiderPerson. The symbol † means
the model is trained by us using the official code.

Method Year Epoch AP↑ Recall↑ mMR↓
PS-RCNN (Ge et al., 2020) 2020 12 89.96 94.71 -

IterDet-2-iter (Rukhovich et al., 2021) 2021 24 91.95 97.15 40.78
He et al. (He et al., 2022) 2022 - 91.29 - 40.43

Cascade Transformer (Ma et al., 2023) 2023 50 92.98 97.66 38.41

DINO-ResNet50† 2022 24 92.75 99.08 40.08
QFree-Det-ResNet50 (ours) 2024 24 93.24 99.57 39.47

DINO-Strip-MLP-T† 2022 24 93.19 99.42 38.21
QFree-Det-Strip-MLP-T (ours) 2024 24 93.75 99.65 38.11

DINO-Swin-T† 2022 24 93.07 99.42 38.78
QFree-Det-Swin-T (ours) 2024 24 93.67 99.65 38.05

DINO-VMamba-T† 2024 24 93.43 99.36 38.76
QFree-Det-VMamba-T (ours) 2024 24 94.04 99.65 37.04

Results on WiderPerson. To further evalu-
ate the effectiveness of QFree-Det, we conduct
another experiment on the challenging Wider-
Person dataset. Following the recipe of previ-
ous works Zhang et al. (2019); Rukhovich et al.
(2021), we present results on the “Hard” sub-
set of annotations in Table 4. QFree-Det ob-
tains higher performance across all metrics over
the baseline model of DINO using four differ-
ent backbones, and outperforms other advanced
models, demonstrating its effectiveness once again.

4.3 ABLATION STUDIES

Table 5: Ablation on the components of QFree-Det.
The free-c means “free-conditioned query”, indicating
the query is still constrained by the testing parameters.

AFQS PoCoo LDD QNum AP AP50 AP75 APS APM APL

fixed 49.0 66.6 53.5 32.0 52.3 63.0
free-c 44.1 59.5 48.1 27.9 47.6 56.7

✓ free 48.7 (+4.6) 65.8 53.4 31.6 52.1 62.4
✓ ✓ free 49.3 (+0.6) 65.6 53.9 32.2 52.6 63.4
✓ ✓ ✓ free 50.5 (+1.2) 67.5 55.1 34.3 54.6 64.5

Ablation on the components of QFree-Det.
We evaluate the impact of different components
in QFree-Det using DINO-ResNet50 Zhang
et al. (2022b) as the basic model. Our base-
line model undergoes a preliminary transfor-
mation from fixed-number object detection to
free-object detection through dynamic selection
from encoder tokens and the removal of the SA
mechanism. The results in Table 5 highlight the effectiveness of the proposed AFQS algorithm,
PoCoo loss, and the LDD framework in improving the model’s performance.

Ablation on the number of SA in DP. SA plays a crucial role in removing duplicate detections.
We conduct ablations on the number of SA to assess the impact of SA in DP and determine the
optimal configuration. Table 6 demonstrates that the absence of SA noticeably decreases model
performance, dropping to 34.7% AP. This significantly highlights the effectiveness and necessity of
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Table 6: Ablation on the number of SA.

λ AP AP50 AP75 APS APM APL

0 34.7 46.1 38.0 24.4 39.3 44.7
1 50.1 67.1 54.7 33.7 53.8 64.4
2 50.5 67.5 55.1 34.3 54.6 64.5
3 50.4 67.5 55.1 33.6 54.1 65.0

SA in the decoder of transformer-based detectors. To bal-
ance computational efficiency and accuracy, we utilize 2
layers of SA (λ = 2) in DP for other experiments. Notably,
the first four BLP layers for object localization do not incor-
porate SA, while only the last two DP layers each use two
SA (4 in total) for deduplication. This design remains ef-
ficient, achieving comparable or lower computational costs
than DINO, which employs 6 SA modules.

Table 7: Ablations on different loss functions.

Loss Type AP AP50 AP75 APS APM APL AR ARS

BCE 49.0 67.3 53.4 32.6 52.4 63.0 74.3 59.6
IA-BCE 50.1 66.8 54.7 33.1 53.9 65.2 74.1 59.0
PoCoo 50.5 67.5 55.1 34.3 (+1.2) 54.6 64.5 74.4 60.0

Ablation on PoCoo loss. To evaluate the effec-
tiveness of PoCoo loss, we conduct ablations
and compare it to the BCE loss and IA-BCE Cai
et al. (2023) loss. The results in Table 7 demon-
strate the significant effectiveness of our PoCoo
loss. It outperforms BCE loss and IA-BCE loss
by +1.7% and +1.2% in terms of APS , respectively. In addition, it can be observed that PoCoo loss
also achieves higher performance in average recall for small objects (ARS) than other losses, with a
increase of +0.4% and +1.0% over BCE loss and IA-BCE loss for small objects, respectively. The
consistently higher average precision and recall metrics for the PoCoo loss clearly demonstrate its
effectiveness in accurately detecting more small objects, compared to other loss functions.

Figure 3: Convergence curves of Deformable
DETR and Deformable DETR-QFree model.

Experiment on other transformer-based detector.
To further show the effectiveness of our QFree-Det
on other transformer-based detectors beyond DINO,
we further conducted another experiment on the other
transformer-based detector like Deformable DETR Zhu
et al. (2020). We developed a new variant of De-
formable DETR by applying our AFQS, PoCoo loss,
and the LDD to Deformable DETR model, denoted as
Deformable DETR-QFree (DD-QFree in Table 8). The
results presented in Table 8 show that our model out-
performs the original Deformable DETR by +3.1% AP
and +3.5% APS and converges faster (in Fig. 3) on
COCO dataset, further demonstrating the effectiveness
and generalizability of our approach.

Table 8: The experiment results about the Deformable DETR and
its variants with our approaches on val2017 of COCO dataset.

Method Epochs AP AP50 AP75 APS APM APL

Deformable DETR 50 46.2 65.2 50.0 28.8 49.2 61.7
DD-QFree (ours) 30 49.3 (+3.1) 66.4 53.6 32.3 (+3.5) 52.7 63.9

Other experiments and ablations in
the Appendix. Due to the limited
space, more experiments and abla-
tions are presented in Sec. B of Ap-
pendix, including experimental tests
about: (1) the proportional relation
between the number of objects and
the number of queries; (2) perfor-
mance on challenging dense objects
of WiderPerson dataset; and ablations on the (1) classification threshold S in AFQS; (2) architec-
ture configuration of LDD; (3) positional query; (4) connection order of CA and SA in DP; (5)
one-to-many matching of K; (6) SGQ; (7) cost weight and (8) loss weight, respectively.

5 CONCLUSION

This paper proposes QFree-Det, a novel query-free detector capable of dynamically detecting a vari-
able number of objects in different input images. QFree-Det addresses the limitation of “free-object
predictions” by introducing the AFQS algorithm. For the “detecting ambiguity” issue, by rethink-
ing the roles of SA and CA in the decoder, we design a novel LDD framework to decompose the
detection process into two simple steps: box locating and object deduplication, with the sequen-
tial matching in our BLP and DP parts. Extensive experiments on diverse datasets demonstrate the
effectiveness of QFree-Det across various backbone models. We hope that QFree-Det inspires the
development of high-quality object detectors and multi-modal models in future research.
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A APPENDIX FOR METHOD

A.1 CONTENT QUERY AND POSITIONAL QUERY

Based on DETR Carion et al. (2020), many follow-up works Zhu et al. (2020); Meng et al. (2021);
Yao et al. (2021); Wang et al. (2022); Liu et al. (2022); Zhang et al. (2022b) have made efforts
to represent the learned object queries in DETR more explicitly. These works propose different
formulations and interpretations for the object queries. For instance, Conditional DETR Meng et al.
(2021) and Anchor DETR Wang et al. (2022) formulate queries as learnable 2D coordinates (x, y),
which provide explicit spatial information for the cross-attention module in the transformer decoder.
DAB-DETR Liu et al. (2022) reformulates the query with 4D box coordinates (x, y, w, h) with better
spatial priors. DAB-DETR constructs each query with two types: content query and positional
query. The content query is initialized as static embeddings, similar to the decoder embeddings
in DETR Carion et al. (2020). The positional query incorporates the position and size of each
bounding box into the transformer decoder, enabling the measurement of query-to-feature similarity
in the cross-attention module between the encoder features and the queries. Recently, advanced
works, such as DINO Zhang et al. (2022b) and Stable-DINO Liu et al. (2023a), have followed these
two types of queries and achieved promising performance.

A.2 HOW DOES THE SA MODULE REDUCE DUPLICATE DETECTIONS?

In object detection, deduplicating detected objects is extremely challenging Carion et al. (2020);
Cheng et al. (2023). Commonly, NMS is used as a post-process to remove duplicate bounding boxes
based on overlap (IoU). However, this approach relies on manual thresholds and can mistakenly re-
move overlapping objects, hurting performance. In transformer-based detectors, where each query
predicts only one object, the similarity between queries can be used to deduplicate the predictions,
enabling end-to-end training. SA computes query similarities via attention scores, which are ob-
tained by computing attention maps between all pairwise queries. For these similar queries, with
the one-to-one matching label alignment mechanism, each query matched to a ground truth box will
gradually obtain a higher classification score under the supervision of the loss function, while un-
matched queries will gradually obtain lower scores. Ultimately, by reducing classification scores of
similar queries, SA can effectively deduplicate the predictions.

A.3 ALIGNMENT OF QUERY NUMBER IN THE SAME BATCH OF AFQS

In Sec. 3.3, we present our AFQS algorithm, which shifts the fixed number of queries into dynamic
initialization and achieves “free-object predictions”. Ensuring that the same number of queries is
used for different images within the same batch is necessary to facilitate effective training during
the training stage. For the training batch size b, we can get the number of queries from each image
within the batch: Nquery = {n1, ..., nb}. Then, we determine the maximum value among Nquery as
the batch query number N b

query, which ensures that a sufficient number of queries are selected for
all images. Notably, additional placeholder queries must be selected for images where the number
of queries filtered by the AFQS algorithm is less than N b

query. Finally, we sort the classification
scores of encoder tokens in ascending order and choose the tokens with low scores as placeholder
queries to minimize the similarity between the placeholder queries and non-placeholder queries.

A.4 DIFFERENCE WITH EXISTING ONE-TO-MANY METHODS

One-to-many matching label assignment is a common and significant approach Hu et al. (2024) to
accelerate the model convergence and enhancing the training efficiency. The proposed QFree-Det
model is fundamentally different from existing one-to-many matching approaches, such as Hybrid-
Matching Jia et al. (2023) and DAC-DETR Hu et al. (2024), which simply mixes the one-to-one and
one-to-many matching by the auxiliary decoder branches with shared weights. The differences are
in the following ways: (1) Motivation: QFree-Det specifically aims to address the issue of detecting
ambiguity that arises when combining one-to-one and one-to-many matching approaches. It serves
as an effective solution to address this issue for other transformer-based detectors. (2) Implementa-
tion: by decomposing the detection process into two simle steps: boxes locating with BLP module
and objects deduplication with DP module, we construct a novel decoder of LDD that utilizes se-

1



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

quential matching to alleviate matching ambiguity. In contrast, other methods achieve one-to-many
matching through additional decoder branches, which increase the complexity and training cost
of the model. (3) Performance: as shown in Table 3, QFree-Det outperforms other one-to-many
matching methods, such as H-Deformable-DETR and DAC-DETR. Additionally, our QFree-Det
significantly surpasses another free-form model of the diffusion-based Diffusion-Det Chen et al.
(2023b) model by +4.5% AP (51.3% in 24 epochs of QFree-Det vs. 46.8% in 60 epochs of
Diffusion-Det, Table 3), further confirming its effectiveness.

A.5 COMPLEXITY ANALYSIS

Figure 4: The number of queries and
FLOPs of the model w.r.t threshold of
classification score S.

QFree-Det is a novel query-free detector that can adaptively
select a variable number of queries with the different input
images, as shown in Fig. 9, Fig. 10 and Fig. 11. Due to
the dynamic computational complexity resulting from the
adaptive query selection process, we use a fixed 900 queries
for QFree-Det to calculate the FLOPs in Table 3 of Sec. 4.2
in the main text for fair comparison with other models.

Actually, the classification threshold S affects the number
of selected queries: a higher S leads to fewer queries, and
vice versa. Taking the QFree-Det-ResNet50 model with a
pool size P of 900 as an example, our model can effec-
tively reduce the number of queries, and the corresponding
FLOPs are also reduced, as shown in Fig. 4. The ablation
results on the S are presented in Table 11 of Sec. B.3.

B APPENDIX FOR EXPERIMENT

B.1 DETAILS ABOUT DATASETS

COCO2017. The COCO (Lin et al., 2014) dataset is a widely used benchmark dataset for object
detection. COCO2017 consists of 118k training images and 5k validation images, with over 80
object categories.

WiderPerson. WiderPerson (Zhang et al., 2019) is a large and diverse dataset for dense pedestrian
detection in real-world settings. It consists of 13,382 images with a total number of 399,786 an-
notations, averaging 29.87 annotations per image. This dataset presents significant challenges for
SOD due to its diverse scenarios and substantial occlusion. It includes 8,000 images for training and
1,000 images for validation.

B.2 EXPERIMENTAL TEST

Figure 5: The performance comparison on the
subsets of val2017 of COCO. The subsets are
generated based on the number of objects per
image with a step size of 5.

The proportional relation between the number of
objects and the number of queries. It is intuitive
that the more potential objects to be detected, the more
queries would be required. To verify the effectiveness
of AFQS in adpatively query selection, we conducted
an additional test to observe the trends in model ac-
curacy and the dynamic selection of query quantity
as the number of objects in the test images increases.
Specifically, we divided the COCO validation set into
10 subsets based on the number of objects in each im-
age, with a step size of 5 objects per image. Then,
we tested the performance and counted the number of
queries selected by the QFree-Det model for each sub-
set. As shown in Table 9, the number of queries se-
lected by the model increases as the number of objects
to be detected increases, and the growth rate gradually
becomes slow, as illustrated in the Fig. 5. At the same
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Table 9: The performance (AP) on the subsets of val2017 of COCO.

Object Numbers 1-5 6-10 11-15 16-20 21-25 26-30 31-35 36-40 41-45 46+

Average Objects 2.60 7.70 13.02 17.69 22.74 27.35 33.31 37.68 42.77 55.00
Image Numbers 2769 985 556 324 170 83 29 22 9 5
Query Numbers 65.22 180.46 312.47 443.98 537.91 645.16 699.82 812.41 872.00 900.00

Query Num/Object Num 25.08 23.44 23.99 25.10 23.65 23.59 21.01 21.56 20.39 16.37

DINO 60.6 51.0 46.9 44.0 40.1 39.0 40.9 39.3 37.1 36.0
QFree-Det (ours) 61.5 51.8 48.0 44.9 40.1 39.0 42.3 41.5 39.1 39.3

time, our model obtained overall higher performance across all subsets, further validating its effec-
tiveness, as presented in Table 9 and Fig. 5.

Figure 6: The relation between the number
of objects and queries dynamically selected
by the QFree-Det.

When processing images with more objects, the advan-
tages of our method become more apparent, outperform-
ing DINO by +2.0% AP and +3.3% AP in the subsets of
41-45 and over 46, respectively. The trend of the query
number starts to slow down as the number of objects in
the image increases, as shown in Fig. 6. The subset of 1-
5 occupies 55.9% images among val2017 of COCO. For
this subset, our model only uses 7.25% of the queries
(65.22 vs 900) while achieving higher performance by
+0.9% AP, indicating that the selected queries via AFQS
are more effective. This demonstrates a significant ad-
vantage in common scenarios, as it can effectively reduce
computational costs. Moreover, the number of queries se-
lected by our model can be adaptively adjusted based on
different classification thresholds , without the need to retrain the model, making it adaptable to
different detection scenarios more easily.

Figure 7: The histogram of the WiderPerson
validation dataset.

Performance on challenging dense objects detection of
WiderPerson dataset. WiderPerson is a large, diverse
and challenging dataset for dense pedestrian detection,
with an average of 29.87 annotations per image. As illus-
trated in Fig. 7, the statistic results on its validation set in-
dicate that there are 679 images with less than 30 objects,
and 321 images with 30 or more objects. To evaluate the
effectiveness of our method in handling the more chal-
lenging scenario with dense objects over 30 of the Wider-
Person dataset, we divided this validation set into two test
subsets. The results in Table 10 demonstrate that, across
four backbone models, our models consistently achieve
overall higher AP, Recall, and lower mMR, further vali-
dating its effectiveness.

Table 10: The experiment results on the WiderPerson dataset.

Objects Per Image Less Than 30 (679 images) Over 30 (321 images)
Method AP↑ Recall↑ mMR↓ AP↑ Recall↑ mMR↓

DINO-ResNet50 95.84 99.63 26.71 88.84 98.45 57.18
QFree-Det-ResNet50 (ours) 96.10 99.80 27.50 89.65 99.31 55.09

DINO-Strip-MLP-T 96.27 99.80 26.16 90.07 99.40 56.33
QFree-Det-Strip-MLP-T (ours) 96.39 99.83 26.03 90.45 99.45 53.37

DINO-Swin-T 96.45 99.71 26.35 90.06 99.00 55.58
QFree-Det-Swin-T (ours) 96.52 99.84 26.36 90.08 99.43 53.63

DINO-VMamba-T 96.09 99.83 27.12 90.09 99.46 53.68
QFree-Det-VMamba-T (ours) 96.60 99.80 25.68 90.76 99.47 52.08
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B.3 ABLATION STUDIES

Table 11: Ablation results of threshold of S in AFQS.

S AP AP50 AP75 APS APM APL

0.01 50.6 67.9 55.4 34.1 54.3 64.8
0.02 50.5 67.5 55.1 34.3 54.6 64.5
0.03 50.2 67.4 54.6 33.2 53.7 64.8
0.04 50.2 67.2 54.5 33.6 53.8 64.5
0.05 50.3 67.5 54.8 33.4 54.0 65.0
0.06 50.1 67.3 54.6 33.2 53.7 64.5
0.07 49.8 66.7 54.5 32.8 53.4 64.1
0.08 50.0 67.0 54.5 33.2 53.9 64.0
0.09 49.6 66.7 54.0 32.1 53.3 63.8
0.10 49.5 66.4 54.0 33.2 53.0 64.0

Ablation on the classification threshold S in
AFQS. The classification threshold S in AFQS
enables adaptive control of the number of decoder
queries. A higher value of S reduces the num-
ber of decoder queries, while a lower S increases
them, as illustrated in Fig. 4. We conduct abla-
tion experiments with varying S to evaluate its
impact on the model performance, as shown in
Table 11. The smaller S brings higher perfor-
mance, and when S ranges from 0.01 to 0.05,
the model performance varies in a small range of
50.2% ∼ 50.6% AP, indicating good robustness.
Notably, when S = 0.10, our model used only
20.2% of the DINO queries on average, yet achieved a +0.5% higher AP than DINO (49.5% vs.
49.0%). These results strongly demonstrate the significant effectiveness of our AFQS approach for
“free-object predictions”.

Table 12: Ablation on the BLP and DP layers.

BLP DP AP AP50 AP75 APS APM APL

1 5 49.5 67.1 54.2 33.3 53.1 63.5
2 4 49.4 67.2 53.8 33.4 52.9 63.3
3 3 50.0 67.1 54.6 33.3 53.7 64.5
4 2 50.5 67.5 55.1 34.3 54.6 64.5
5 1 50.0 66.7 54.3 32.9 53.8 64.7

The architecture configuration of LDD. To main-
tain consistency with methods such as DETR and
DINO, we design LDD architecture with six lay-
ers, ensuring that the parameter count remains un-
changed. However, the distribution of BLP and
DP within these six layers significantly affects the
model’s performance: excessive BLP layers can hin-
der the model’s ability to eliminate duplicate detec-
tions effectively; conversely, an excessive number of
DP layers may lead to inaccurate bounding box predictions and decreased training efficiency. To
determine the optimal configuration, we perform ablations on the number of BLP and DP layers in
LDD. As presented in Table 12, the best performance across all metrics is achieved with 4 BLP and
2 DP layers. We adopt this configuration for other experiments.

Table 13: Ablation on the positional query in LDD.

PQ in SA PQ in CA AP AP50 AP75 APS APM APL

✓ 50.0 67.1 54.5 33.3 53.1 65.3
✓ 50.3 67.4 54.8 33.5 53.7 64.5

✓ ✓ 50.1 67.1 54.5 33.5 53.9 64.7
50.5 67.5 55.1 34.3 54.6 64.5

Ablation on positional query. In Sec. 3.1.2 of
the main paper and Sec. A.1, we highlighted the
limitation of a fixed number of queries in ex-
isting transformer-based detectors. To address
this limitation, we introduced the new AFQS al-
gorithm, which replaced the CQ and eliminated
the need for PQ. To investigate the impact of
positional queries in our QFree-Det model, we conduct ablation experiments by adding positional
query to both the CA and SA modules in LDD. The results presented in Table 13 reveal that the
inclusion of PQ leads to a certain degree of accuracy degradation, supporting the validity of our
analysis. Furthermore, our proposed AFQS and SADQ methods simplify the model structure and
reduce model complexity, compared to the one-to-many model with additional decoder branches.

Table 14: Ablation on the order of the SA and CA.

Connection AP AP50 AP75 APS APM APL

SA → CA 50.1 67.1 54.6 33.5 53.3 64.7
CA → SA 50.5 67.5 55.1 34.3 54.6 64.5

Ablation on the connection order of CA and SA
in DP. In existing transformer-based detectors, it is
commonly observed that SA is connected before CA
in the decoder, following the original architecture in
DETR. However, this study argues that this connec-
tion scheme may introduce detecting ambiguity due
to the opposing impacts of SA and CA on the object
queries. We conduct an ablation study on QFree-Det
to investigate the effect of reversing the order of CA and SA connections. Table 14 demonstrates the
effectiveness of our connection scheme of SA in DP, significantly enhancing the model’s ability to
remove duplicate detections.

Ablation on the one-to-many matching of K. One-to-many matching is the significant ap-
proach to enhance training efficiency by increasing the number of positive samples. We per-
form ablations on the ground truth box repeating times K to determine the optimal configuration.
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Table 15: Ablation on K of one-to-many matching.

K AP AP50 AP75 APS APM APL

1 50.1 67.0 54.6 33.4 53.7 64.9
3 50.2 67.2 54.5 33.4 54.1 64.7
6 50.5 67.5 55.1 34.3 54.6 64.5
9 50.1 66.8 54.7 33.1 53.9 65.2

12 49.8 67.0 54.1 32.6 53.6 64.4

As K increases, the difficulty of removing duplicate
box detections also increases. Conversely, smaller
K values result in an insufficient number of positive
samples, leading to decreased training efficiency.
Table 15 shows the best performance is obtained
with K = 6, which is used for other experiments.

Ablation on the stop gradient of queries (SGQ).
The SGQ plays a crucial role in separating the
gradient flow of queries between the one-to-many
matching of BLP and the one-to-one matching of DP. We conduct an ablation on SGQ to show its
impact on performance. In Table 16, we observe that the absence of stop gradient of queries from
DP to BLP leads to a 2.0% decrease in performance, emphasizing the necessity and effectiveness of
our SGQ method for sequential matching to address the issue of detecting ambiguity.

Table 16: Ablation on SGQ.

SGQ AP AP50 AP75 APS APM APL

48.5 66.5 52.9 32.2 52.1 62.5
✓ 50.5 67.5 55.1 34.3 54.6 64.5

Ablation on the classification cost weight for the
matching process. Accurately matching predicted boxes
with ground truth boxes is critical for transformer-based
models. We employ the same cost components as DETR
and DINO, including the L1 cost for bounding boxes,
binary cross-entropy (BCE) cost for classification, and
generalized Intersection over Union (GIoU) cost. The
weights assigned to each cost component play a signifi-
cant role in optimizing the training process and affecting the model’s performance. In our QFree-Det
model, sequential matching primarily addresses the issue of duplicate detections through one-to-one
matching classification supervision. To investigate the impact of different classification costs on
model training, we conduct ablation experiments to determine the optimal configurations. The re-
sults in Table 17 show that the absence of the classification cost (BCEBLP = 0.0) hinders the
model’s performance. Including the classification cost in the matching process can introduce seman-
tic information, leading to more appropriate query matches. However, assigning a higher weight to
the classification cost makes it more challenging for the model to predict bounding boxes accurately,
as the query with higher classification score would be matched with the ground truth box rather than
the query with a higher Iou. Based on the experimental results, we adopt a weight of 0.2 for BCE
cost as our training parameter.

Table 17: Ablation on the classification cost weight in BLP.

BCEBLP L1BLP GIouBLP BCEDP L1DP GIouDP AP AP50 AP75 APS APM APL

0.0 5.0 2.0 2.0 2.0 2.0 48.9 66.0 52.9 31.3 52.6 63.3
0.1 5.0 2.0 2.0 2.0 2.0 50.0 67.0 54.6 33.4 53.4 64.8
0.2 5.0 2.0 2.0 2.0 2.0 50.5 67.5 55.1 34.3 54.6 64.5
0.3 5.0 2.0 2.0 2.0 2.0 49.9 67.0 54.3 33.3 53.5 64.4
0.5 5.0 2.0 2.0 2.0 2.0 50.2 67.7 54.7 34.0 53.7 64.8
0.8 5.0 2.0 2.0 2.0 2.0 49.4 66.9 53.7 33.1 52.9 64.4

Ablation on the loss weight for BLP and DP. In transformer-based detectors Carion et al. (2020),
there are three main loss functions: BCE loss for classification, L1 and GIoU loss for bounding box
regression. To investigate the impact of different loss weights on the encoder, BLP, and DP com-
ponents of the model, we conduct ablation experiments using various weight values. As presented
in Table 18, the baseline model (index 0) is achieved with the same weight as DINO. To improve
the one-to-one classification accuracy of the model, we reduce the weight of the L1 loss in the DP
component (index 1) and increase the weight of the classification loss (index 2). Building upon the
baseline, we further increase the overall weight of the classification loss across the encoder, BLP
and DP (index 3). We then test the effect of increasing the weights of both the classification loss and
the GIoU loss (index 4, 5, and 6, respectively). Experiments of index 3 and 6 indicate that a higher
weight on the L1 loss of bounding boxes is important for box refinement in DP component. Finally,
we adopt the weight configuration of index 3 as the loss weights for other model training.
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Table 18: Ablation on different loss weights for encoder, BLP and DP.

Index PoCooenc PoCooBLP L1BLP GIouBLP PoCooDP L1DP GIouDP AP AP50 AP75 APS APM APL

0 (baseline) 1.0 1.0 5.0 2.0 1.0 5.0 2.0 49.4 66.2 54.1 32.4 53.1 64.2
1 1.0 1.0 5.0 2.0 1.0 1.0 2.0 49.5 66.4 54.0 32.3 53.4 63.5
2 1.0 1.0 5.0 2.0 2.0 1.0 2.0 48.1 64.8 52.3 31.5 52.2 62.1
3 1.5 2.0 5.0 2.0 2.0 5.0 2.0 50.5 67.5 55.1 34.3 54.6 64.5
4 1.5 3.0 5.0 2.0 3.0 1.0 2.0 49.8 67.1 54.2 33.1 53.6 64.2
5 1.5 3.0 5.0 3.0 3.0 2.0 3.0 49.9 67.0 54.2 32.8 53.8 64.4
6 1.5 2.0 5.0 3.0 2.0 5.0 3.0 50.4 67.4 55.0 33.7 54.1 64.6

Table 19: The experiment results on the CrowdHuman
dataset with full-body annotations.

Method Epochs AP↑ Recall↑ mMR↓
DINO-ResNet50 24 86.61 95.11 52.85

QFree-Det-ResNet50 (ours) 24 86.87 95.25 52.08
DINO-Strip-MLP-T 24 88.38 95.82 50.30

QFree-Det-Strip-MLP-T (ours) 24 87.92 95.99 49.83
DINO-Swin-T 24 87.71 95.71 51.81

QFree-Det-Swin-T (ours) 24 88.14 95.86 51.12
DINO-VMamba-T 24 87.44 95.45 51.54

QFree-Det-VMamba-T (ours) 24 88.46 96.20 50.28

Experiments on the CrowdHuman dataset.
To further demonstrate the effectiveness of our
model, we conducted a new experiment on
CrowdHuman Shao et al. (2018) dataset, which
is also a challenging datasets for dense pedes-
trian detection in the wild. The results listed
in Table 19 show that QFree-Det obtains over-
all higher performance compared to DINO vari-
ants, further confirming the effectiveness of our
approach.

B.4 PERFORMANCE COMPARISON ON
COCO

Figure 8 compares the performance of different transformer-based detectors on the standard detec-
tion benchmarks of the COCO dataset. The results indicate that our QFree-Det model has significant
advantages in terms of training efficiency (AP-Epoch, APS-Epoch), fewer parameters (AP-Params,
APS-Params) on the performance of general object detection and small object detection. Notably,
QFree-Det dramatically enhances the detection capabilities of the baseline DINO model, effectively
demonstrating the effectiveness of the QFree-Det approach.

(a) AP-Epoch (b) AP-Params (c) APS-Epoch (d) APS-Params

Figure 8: Comparison of transformer-based models of AP and APS w.r.t the different number of parameters
and training epochs on val2017 of COCO.

C VISUALIZATION OF FREE QUERIES ON VAL2017 OF COCO

This paper proposes a novel transformer-based query-free detector that can predict a variable num-
ber of objects for different input images. QFree-Det effectively addresses the “fixed number of
object predictions” limitation of transformer-based detectors. By adaptively selecting the number of
queries from encoder tokens, our model significantly improves query efficiency by reducing redun-
dant queries and decreasing the computational cost.

To visually demonstrate this, we compare the test results of our QFree-Det-ResNet50 (12 epochs)
model and the DINO-ResNet50 (12 epochs) model on the val2017 of COCO dataset in Fig. 9,
Fig. 10, and Fig. 11. To ensure clear visualization, the queries are represented using solid circle
points with a radius of 3, where the color of the circles indicates the different classification confi-
dence scores. The detection bounding boxes are displayed using random colors to differentiate the
different object instances.
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Table 20: Inference speed tests on DINO and QFree-Det.

Model DINO QFree-Det QFree-Det QFree-Det QFree-Det QFree-Det
Query Number 900 1800 900 500 100 10

Backbone (ms) 15.2 15.2 15.2 15.2 15.2 15.2
Encoder (ms) 30.6 30.6 30.6 30.6 30.6 30.6

Query Selection (ms) 7.3 7.8 7.5 7.4 7.4 7.4
Decoder (ms) 14.1 11.0 9.2 8.9 8.9 8.8

Inference Time (ms) 67.2 64.6 62.5 62.1 62.1 62.0
FPS (frame/s) 14.9 15.5 16.0 16.1 16.1 16.1

In simple scenarios, such as the bear’s detection in Fig. 9, QFree-Det-ResNet50 only used 2% of
the queries compared to DINO-ResNet50, yet achieved accurate detection results. In the relatively
complex scenarios with more objects in Fig. 10 and Fig. 11, QFree-Det-ResNet50 similarly adapted
and selected fewer queries while achieving more precise detection results. This clearly demonstrates
that the QFree-Det model can adaptively select the number of queries based on different image
inputs, thereby enabling the “free-object predictions”. This approach also reduces the number of
redundant queries, effectively improving the model’s performance and efficiency.

D INFERENCE SPEED TESTS AND ANALYSIS

In Sec. A.5 and Sec. B.2, we conducted experiments on COCO and WiderPerson, along with anal-
yses to explore the relationship between the adaptive number of queries, computational complexity,
and model accuracy. The results highlight the advantages of our method in both aspects.

To further show the effectiveness of the LDD architecture, we conduct additional tests on the infer-
ence speed of QFree-Det. For a fair comparison of our model with the baseline model DINO, the test
was applied on the same codebase (official published code of DINO), backbone model (ResNet50),
input image size (1280 × 800), GPU device (RTX 3090), PyTorch lib (pytorch 2.2), and CUDA ver-
sion (Driver Version: 535.183.01, CUDA Version: 12.2). We tested the DINO (900 query) model
and QFreeDet (query varies from 10 to 1800) model’s inference speed, and the results are shown in
the Table 20.

The inference time of both models is composed of four components: backbone time, encoder time,
query selection time, and decoder time. Since the backbone and encoder components are identical
in both models, their inference speeds are also the same. The inference time of query selection
process in both models is similar, with most of the duration spent on the model classification head
in predicting scores (about 7ms) among all encoder tokens for subsequent selection. For our AFQS
algorithm, it then retrieves queries based on these scores within 1 ms, which is faster in query
selection to transform the fixed-query into a free-query for the DETR detector.

Additionally, we observed that under the same query conditions, such as using 900 queries, our LDD
framework significantly enhances the inference speed of decoder, achieving a +34.8% improvement
compared to DINO. This result clearly validates the effectiveness of our designed novel LDD de-
coder framework. When the number of queries is further reduced, the decoder’s inference speed
remains stable, primarily due to the parallel computation performed by CA and SA in the decoder.

It is noted that to improve the model’s inference speed is not the primary objective of our method. Ta-
ble 20 indicates that the backbone and encoder models account for 73% of the inference time. This
observation provides insights for further optimizing these components to accelerate the inference
speed of DETR models. Notably, our efficient LDD decoder framework has successfully increased
the inference speed of the model’s decoder by 34.8%. Thus, this framework can be integrated with
other model architectures, such as the YOLO series, not only to further enhance overall inference
speed but also achieve the detection of a free number of objects.
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Results of DINO-R50 Results of QFree-Det-R50 Results of DINO-R50 Results of QFree-Det-R50

Results of DINO-R50 Model Results of QFree-Det-R50 Model

Figure 9: Visualization of queries in simple scenarios. The number of queries (Q-Num) selected for each image
is on the top left corner of the corresponding image.

The primary limitation of query-fixed detectors is their requirement to predict a large and fixed num-
ber of detection results for both sparse and dense scenes. On one hand, this results in a considerable
amount of unnecessary and redundant computation. On the other hand, when these fixed-query de-
tectors are applied to more challenging downstream tasks, such as Open-Ended Detection Lin et al.
(2024), these redundant queries would be further fed into the large language model (LLM) to gen-
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Results of DINO-R50 Model Results of QFree-Det-R50 Model

Figure 10: Visualization of queries in complex scenarios.

erate object names directly, which will significantly increase the overall computational complexity
and cost.
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Results of DINO-R50 Model Results of QFree-Det-R50 Model

Figure 11: Visualization of queries in complex scenarios.

To demonstrate this, we conducted a simple test using the public official code of GenerateU Lin
et al. (2024). We evaluated the computational complexity of the generative large language model
used in GenerateU. With 900 queries of the detector fed into the LLM, the complexity is 10,139.64
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GFLOPs. In contrast, with 200 queries, the complexity dropped to 2,253.45 GFLOPs, which
indicates that reducing the number of queries can significantly decrease the computational load of
the LLM model for the open-ended detection multi-modal task.

Based on the analysis, our query-free model, which adapts the number of queries based on the image
itself, holds significant potential for open-ended object detection task. This adaption characteristic
enables reduced queries to feed into generative large language model, thereby decreasing the work-
load for subsequent category generation processing, which highlights its potential applications and
importance for the future research in vision community.

E DISCUSSION

E.1 THE DEDUPLICATION ROLES OF SELF-ATTENTION (SA) AND NMS

Removing duplicate detection boxes is a crucial step for reducing false positive samples in detection
systems. We categorize existing methods of deduplication into two types based on their principles:
box-based and class-based. Box-based methods, such as NMS, work by comparing the overlapping
(IoU) between predicted boxes. While straightforward, they are sensitive to the IoU threshold and
struggle with overlapping targets. In contrast, class-based methods utilize self-attention to compare
features between queries, influencing classification scores to achieve deduplication, which results in
lower scores for redundant boxes. This approach can mitigate the issue of overlapping objects and is
commonly employed in DETR-like models. Intuitively, combining both box-based and class-based
methods may further enhance the model’s overall performance.

DETA Ouyang-Zhang et al. (2022) and DDQ-DETR Zhang et al. (2023) both use NMS to eliminate
duplicates in their models. Compared to DETA and DDQ-DETR, our approach addresses different
problems (in motivation and objective), introduces different solutions to issues (in query selec-
tion, decoder architecture, and loss function), and achieves comparable results in performance. In
addition, these differences do not diminish the contributions of each method to solving the respective
issues.

DETA is a box-based method for deduplication. Specifically, DETA is designed to investigate the
impact of one-to-many assignment-based training on enhancing the training efficiency for DETR
models, which differs to our motivation and objective. It achieves this by employing one-to-many
IoU assignments in conjunction with NMS method, which is applied during both query selection
and final prediction post-processing. This study shows that the one-to-many IoU assignments, com-
bined with NMS, effectively improve training efficiency.

DDQ-DETR combines both box-based and class-based deduplication methods. It specifically ex-
plores how query distinctness affects the model’s optimization process and accuracy, which also
differs to our motivation and objective. DDQ-DETR introduces the Distinct Query Selection (DQS)
module, which uses training-unaware NMS to filter dense queries into distinct queries (box-based
method). Then, DDQ-DETR further applies Hungarian matching (class-based method), considering
both bounding box scores and class scores, to generate final one-to-one detection results. Addition-
ally, DDQ-DETR also uses one-to-many label assignments and incorporates an auxiliary head along
with Auxiliary Loss for Dense Queries to maintain training efficiency (but this kind of mixing label
assignments on same decoder weights still introduces the issue of “detection ambiguity”). Overall,
this approach highlights that both sparse and dense queries in end-to-end detection are problem-
atic. By explicitly combining box-based and class-based methods, DDQ-DETR ultimately enhances
model accuracy.

Unlike these two methods, our approach focuses on transforming a fixed-query detector into a free-
query detector, thereby addressing the fixed capacity of DETR-like models. We deeply explore the
role of SA (which has NOT been examined in DDQ-DETR) to address challenges related to the ex-
isting decoder structure during this transition, particularly the training GPU memory demands issue
associated with SA. In contrast to DETA and DDQ-DETR, our object is not to investigate how to en-
hance model accuracy through NMS. Furthermore, we observe that the existing connection between
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CA and SA can result in the “recurrent shifting” problem (as noted in Sec. 3.1.3). To tackle these
challenges, we developed a more effective decoder structure (LDD) and implemented decoupled
one-to-one and one-to-many label assignments. This design significantly alleviates the “detection
ambiguity” issue (Table 12 and Table 16). Notably, DETA and DDQ-DETR share a similar decoder
structure with existing methods, which highlights the contribution of our approach of novel LDD
decoder. Compared to previous class-based deduplication method, QFree-Det further optimizes the
decoder structure, enabling query-free detection while minimizing the “detection ambiguity” asso-
ciated with one-to-many assignments.

Deduplication Part (DP) vs. NMS. DP is an integral part of the decoder and not a post-processing
algorithm. Although we designed DP to eliminate duplicates, it is distinct from NMS and cannot
be directly replaced by it. Our model’s decoder, similar to those in existing DETR-like models,
comprises six layers: 4 LBP layers and 2 DP layers, connected in series. As analyzed in DETR Car-
ion et al. (2020), the decoder primarily reasons about the relations of queries and image context to
generate detections, which is necessary for the detector. In Table 12, we conducted ablations on the
BLP and DP layers. The results indicate that reducing the number of DP layers (for example, using
only one DP layer) is harmful for the performance, underscoring the importance of the DP layer.

In Table 2, we present a free-query model that removes all SA (approximating the removal of the
DP module), while employing the NMS to eliminate duplications. This model achieved only 47.5%
AP on COCO, which is significantly lower than the 50.5% AP achieved with our model with DP,
clearly highlighting the importance and irreplaceability of the DP.

On the other hand, NMS can only perform deduplication on the detection results that have already
been obtained, and it is sensitive to parameters; it cannot generate detection results directly, making
it unsuitable as a replacement for the decoder. The DETR model was originally designed to sim-
plify the detection process in an end-to-end pipeline, removing post-processing steps like NMS and
improving model robustness. Our method aligns well with this goal, enabling the model to function
effectively without relying on NMS, but not to pull NMS back again.

The original DETR Carion et al. (2020) also notes that the FFN (Feed Forward Network, FFN) in the
decoder has a significant impact on model accuracy. We have made a test on FFN of DINO model to
reduce computational complexity by decreasing the hidden layer dimension in the FFN from 2048
to 768. However, this change resulted in a 1.6% decrease in AP, underscoring the critical role of the
decoder network layers in maintaining performance. This further underscores the importance of the
decoder.

E.2 THE DIFFERENCES OF SEQUENTIAL MATCHING WITH EXISTING METHODS

One-to-one matching and one-to-many matching label assignments have been demonstrated in sev-
eral studies (such as H-DETR Jia et al. (2023), Align-DETR Cai et al. (2023), and DAC-DETR Hu
et al. (2024), etc) to enhance the training convergence by increasing the number of positive query
samples. Unlike simply employing one-to-one and one-to-many matching label assignments, our
method features a sequential matching process that constructs a new decoder LDD. This design
is based on experiments and an analysis of the roles of SA and CA (as outlined in Sec. 3.1.3) and
addresses the need to transition from a fixed-query to a free-query detector.

In this paper, our primary goal is not to accelerate model convergence as these methods do. Instead,
we address the matching ambiguity that arises from the mixed use of one-to-one and one-to-many
matching—a problem that these methods have overlooked and not effectively resolved. We
tackle this issue at the label assignment level by designing the LDD decoding structure with one-
to-many label assignment in BLP and one-to-one label assignment in DP, which decouples the two
types of matching while enabling each to fulfill its role effectively.

At the same time, we explore another dimension of one-to-one and one-to-many method (beyond the
label assignment level), specifically the opposing effects of CA and SA (with CA used to aggregate
predictions of boxes to a single object (one object to many queries); SA used to disperse boxes for
a single query to one object (one query to one object) and reduce the confidence scores of similar
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queries, as detailed in Sec. 3.1.3. By effectively leveraging the CA and SA in decoder structure, we
have alleviated the “recurrent shifting” issue associated with both CA and SA. This is illustrated
in Appendix Table 12 (the ablation on BLP and DP layers) and Table 14 (the ablation on the order
of CA and SA), which highlight our “sequential matching” impact on accuracy.

Differences between H-DETR, MS-DETR and QFree-Det on Sequential Matching. Specifi-
cally, our work differs from H-DETR Jia et al. (2023) and MS-DETR Zhao et al. (2024) in four
main aspects: (1) Problem Addressed: The primary goal of both H-DETR and MS-DETR is to
enhance the model’s training efficiency to speed up the training convergence. In contrast, our se-
quential matching model focuses on resolving “detection ambiguity” caused by mixed label as-
signments (i.e., combining one-to-one and one-to-many) and addressing the “recurrent shifting”
issue that arises from the interaction between CA and SA. (2) Design of Decoder Structure: H-
DETR uses additional branches to learn one-to-many assignments, which significantly increases the
training cost. The MS-DETR shares a similar decoder structure as DINO, and introduces additional
heads (box and class predictors) for one-to-many supervised to further enhance the training effi-
ciency. Different from these two methods, our approach employs a single branch and implements
an efficient end-to-end structure by dividing the decoder into decoupled locating and recognition
stages: BLP for localization and DP for refining and de-duplicating detection boxes. Our approach
effectively alleviates the “detection ambiguity” from mixing label assignments to sequential label
assignments, incorporating with the optimized decoder structure by leveraging the unique character-
istics of CA and SA to stop the “recurrent shifting” problem, not only ensuring faster convergence,
reducing the complexity, but also further mitigating the “detection ambiguity” at the same time. (3)
Detection Capability: H-DETR and MS-DETR are both limited to detecting a fixed number of ob-
jects, whereas our decoder is designed to detect an adaptive number of objects, which is beneficial
for many applications, such as sparse/dense/open-ended detection tasks. (4) Detection Accuracy:
Compared to H-DETR, as shown in Table 3, with the same backbone (Swin-T), our model achieves
higher performance, increasing by +2.1% AP (52.7% vs. 50.6%) and +2.9% APS (36.3% vs.
33.4%). Compared to MS-DETR, as shown in the Table 3, with the same backbone (ResNet50),
our model also achieves higher performance, increasing by +0.2% AP (50.5% vs. 50.3%) and
+1.6% APS (34.3% vs. 32.7%) than MS-DETR, further confirming our model’s effectiveness. As
mentioned in MS-DETR, we also believe that the one-to-many supervision using additional head
modules in MS-DETR is a complementary approach to our model, which could potentially further
enhance the training efficiency and accuracy of our method.

E.3 THE IMPACT OF REMOVING PQ AND THE LDD FRAMEWORK FOR ADDRESSING THE
DETECTION AMBIGUITY ISSUE

The impact of removing PQ. Our experiments (Table 1 and Table 13) show that removing PQ
has a slight effect on the model’s accuracy. We believe this is primarily due to the interaction
mechanisms of CA and SA in the decoder, as well as the specific role of PQ for the decoder.

In original DETR Carion et al. (2020), PQ was randomly initialized and learned to increase the
differences between query embeddings (as outlined in Sec.3.2 of DETR Carion et al. (2020) paper).
The follow-up works adopted a similar query structure to DETR, referring to them as content queries
(CQ) and positional queries (PQ) (as mentioned in the Sec. 1 of DAB-DETR Liu et al. (2022)). We
have discussed the role of CQ and PQ in the Sec. 3.1.2 and Sec. A.1. With the development of
PQ reformulating the box coordinates into PQ embeddings, we can observe that PQ provides the
essential object location information for CQ (via plus operation).

However, instead of the static random initialization in DETR, obtaining adaptive query directly
from encoder tokens would inherently contain these object location information. Specifically, these
queries integrate the token information of the regions where the object itself is located, which implic-
itly contain bounding box positions or offset information at each layer of the decoder, supervised by
the ground truth boxes. This is one of the reasons why adding additional PQ positional information
has a minimal impact on model accuracy.
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Additionally, the interaction mechanisms of CA and SA eliminate the need to explicitly include PQ
in queries. CA employs deformable attention Zhu et al. (2020) to interact information between the
query and encoder features. By inputting the bounding box position of the current query, CA samples
points around this bounding box to interact with the query, effectively updating the query’s informa-
tion, so that reducing the need for additional positional priors to indicate the object’s location. For
SA, the queries are derived from encoder tokens, which contain inherent differences in information
between different objects. This enables the SA module to learn these differences without needing
additional positional priors.

LDD framework for addressing Matching Ambiguity. In the Sec. 1, Sec. 2, and Sec. 3.1.3, we
have discussed that “detection ambiguity” arises from two main reasons: one-to-one and one-to-
many label assignments with shared decoder weights, and the opposing roles of CA and SA with
“recurrent shifting” operation. To address this, we designed a unified LDD framework that effec-
tively decouples mixing label assignments and explicitly removes the “recurrent shifting” operation.

Specifically, the BLP module contains only CA module and employs only the one-to-many su-
pervision mechanism, while the DP module incorporates multiple SA and employs the one-to-one
matching label assignment mechanism. These designs effectively eliminate the sources of detection
ambiguity from the outset.

When connecting the BLP and DP modules, the conflict between the two label assignments still
exists, due to the query is sequentially updated by the BLP and DP modules. To address this,
we designed a simple yet effective method for Stopping Gradient back-propagation of Query (SGQ)
from DP to BLP, which helps mitigate conflicts between the two modules. As shown in Table 16, the
absence of the SGQ approach resulted in a 2.0% AP drop in the model’s performance, highlighting
the significance of our approach in alleviating detection ambiguity and further validating LDD’s
effectiveness.

E.4 THE COMPUTATIONAL COMPLEXITY ANALYSIS

In this section, we discuss the computational complexity analysis in four aspects:

(1) For the computational complexity, we have included analysis in Sec. A.5, indicating that our
model can effectively reduce the number of queries, and the corresponding FLOPs are also reduced,
as illustrated in Fig. 4.

(2) For the efficiency comparison, we have conducted experiments on both COCO and WiderPerson
datasets to show the relations between the number of objects, adaptive query numbers, and the
corresponding performance (Sec. B.2). The results (in Table 9, Fig. 5) indicate that our model
obtained overall higher performance across all subsets of COCO than DINO. Especially for the
subset of 1-5, our model only uses 7.25% of the queries (65.22 vs 900) while achieving higher
performance by +0.9% AP. For the more challenging dataset of WiderPerson, our model obtains
overall higher performance under both sparse and dense scenes (in Table 10, Fig. 7). These results
clearly demonstrate the effectiveness of our method.

(3) For the inference time, we conducted additional comprehensive tests on inference speed (in
Sec. D), varying the number of queries from 10 to 1800. The results indicate that, with the same
number of queries as DINO (900 queries), our LDD decoder framework has improved the inference
speed of the model’s decoder by +34.8% over DINO.

(4) In terms of inference memory usage, our model is similar to DINO. During inference, modules
like CA and SA generate intermediate variables, causing dynamic changes in GPU memory. We
test and record the maximum memory allocation (batch size = 1): 912.3 MB for DINO (900
queries) and 914.9 MB for QFree-Det (900 queries), indicating only a small difference between
the two models. This slight variation may be due to differences in the implementation of decoder
structures, such as the intermediate variables within the code. Since the adaptive number of queries
learned by the model is limited to a small range, the differences in memory usage are minimal. It
is noteworthy that the significance of the model’s adaptive free number of queries, derived from the
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image itself, lies in its ability to detect a flexible number of objects while reducing computational
load, as illustrated in Sec. A.5.

Computational resources for dynamic query selection of AFQS algorithm. For the dynamic
query selection, the AFQS algorithm introduces a simple yet effective threshold-based method,
which maintains consistent complexity. Specifically, the AFQS algorithm serves two main pur-
poses: converting fixed queries into free queries and addressing the high training GPU memory
demand issue associated with excessive query numbers during training. It consists of two steps:

(1) generating classification scores for all encoder tokens, which has a fixed computation complexity;

(2) selecting queries using a threshold-based method that compares the scores of all encoder tokens
to get a global solution, also with fixed computation complexity.

Additionally, regarding inference time, most of the duration is spent on step one (approximately 7ms
for a 2080 × 800 image), while step two takes less than 1 ms.

How does the model scale with increasing image complexity and object density? In the
Sec. B.2, we have tested the proportional relation between the number of objects and the num-
ber of queries. The results show that as the number of objects in an image increases, the rate at
which the number of queries increases slows down. To better illustrate this, we calculated the ratio
of the model’s queries to the number of objects in the image, presented in Table 9. From the table, it
can be observed that as the number of objects increases, the growth rate of queries slows down and
gradually declines, falling from 25.08 to 16.37. Concurrently, our model demonstrates a growing
advantage over DINO as the number of objects increases across the subsets (31–35, 36–40, 41–45,
46+), as illustrated in Fig. 5. Notably, the subset of 1-5 objects accounts for 55.9% of the images in
the val2017 set of COCO. For this subset, our model utilizes only 7.25% of the queries (65.22 vs.
900) while achieving a higher performance with a +0.9% AP, suggesting that the queries selected
via AFQS are more effective.

In terms of complexity, we have discussed the changes in FLOPs with varying queries in Sec. A.5.
As shown in Fig. 5, the reduction in the number of queries (cyan dashed line) effectively lowers the
model’s FLOPs (purple solid line). These experiments underscore the effectiveness of our method’s
adaptive characteristics in object detection.

Trade-offs between performance and computational cost in QFree-Det. For the model with
an adaptive free number of queries, computational complexity and performance are related to the
number of objects in the test images. In the Sec. A.5, we have conducted ablation studies on the
classification score S using the COCO dataset, exploring how the number of queries and FLOPs
change with variations in the classification score S. From Table 11 and Fig. 4, we can observe that a
lower threshold S leads to a higher number of queries, which improves the model’s accuracy but also
increases its computational complexity. When S ranges from 0.01 to 0.05, the model’s performance
varies in a small range of 50.2% ∼ 50.6% AP, indicating good robustness. To balance the trade-offs
between performance and computational cost, we set S = 0.02 for the configuration used in other
experiments in the main paper. With this configuration, our model achieves higher performance
(50.5% vs. 49.0% in AP) while maintaining smaller computational complexity (273G vs. 279G)
and faster decoder inference speed (9.2ms vs. 14.1ms) than DINO.

E.5 THE CONTRIBUTIONS OF AFQS ALGORITHM

The decoder query plays a crucial role in reasoning about the relations of the object and the global
image context to output the detections, connecting the components of the decoder and greatly im-
pacting the performance. Transforming a fixed-query detector into a free-query detector is not
merely a matter of switching from a predefined to a dynamic number of queries in DETR models;
it is a complex process. As discussed in Sec. 3.1.2 and Sec. 3.1.3, this transformation is influenced
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by the decoder architecture, the statically initialized queries, and the using of self-attention module.
Specifically, the proposed AFQS algorithm is novel in three key aspects:

(1) New Query Type with Object Information: AFQS introduces a new query type that alters
the existing query composition in DETR models (from content and positional queries to SADQ).
This approach effectively leverages encoder token information and reduces the need of random
embeddings for query initialization. Most existing methods direct follow the query design of DETR,
where the positional query is original adopted to increase the difference between quries to produce
different results (as outlined in Sec.3.2 of DETR Carion et al. (2020)). However, our experiment and
analysis indicate that the positional query is unnecessary, which is an important insight for future
researches on both the fixed-query and free-query detectors.

(2) Adaptive Queries: AFQS switches from a fixed, predefined number of queries to an adaptive
number of queries, using a simple yet effective threshold-based method to filter appropriate encoder
tokens. As the model training progresses, this method gradually enables the classification head to
distinguish between positive and negative samples among all encoder tokens, obtaining a global
solution.

(3) Addressing Training GPU Memory Limitation for Using SA module: AFQS effectively
addresses training GPU memory limitations, allowing for training the model with the essential self-
attention (SA) module within the decoder architecture. In contrast, directly switching from fixed
queries to free queries would significantly degrade performance (e.g., a 4.9% AP drop as shown in
Table 2).

E.6 ADVANTAGES OF THE QFREE-DET MODEL

The primary limitation of query-fixed detectors is their requirement to predict a large and fixed num-
ber of detection results for both sparse and dense scenes. On one hand, this results in a considerable
amount of unnecessary and redundant computation. On the other hand, when these fixed-query de-
tectors are applied to more challenging downstream tasks, such as Open-Ended Detection Lin et al.
(2024), these redundant queries would be further fed into the large language model (LLM) to gen-
erate object names directly, which will significantly increase the overall computational complexity
and cost, as illustrated in Sec. D.

In contrast, our query-free detector adaptively eliminate redundant queries at an early stage in the
transformer-based detector. This leads to a more efficient, cost-effective, accurate, and flexible
approach, as demonstrated in the following four aspects:

(1) High-rate of effective query utilization, better cost-efficiency, and higher performance. In
sparse scenarios, QFree-Det achieves comparable or even higher accuracy with only a small number
of queries, while simultaneously reducing computational load of the decoder. The transformer-
decoder is primarily composed of layers of cross-attention (CA) and self-attention (SA). CA has a
complexity of o(NKC2) (using deformable attention Zhu et al. (2020), where N is the number of
queries, K is the number of sample points, and C denotes the number of channels), while SA has a
complexity of o(N2). As the number of queries N decreases, the computational load of the CA and
SA reduces at a linear and quadratic rate, respectively. This makes the approach highly cost-effective
and results in lower power consumption during deployment, particularly in edge devices.

In many scenarios, objects within the image are often sparse. For instance, in the val2017 of COCO
dataset, 55% of images contain between 1 and 5 objects (as shown in Sec. B.2, Table 9). In this
context, we achieved an accuracy that is +0.9% AP higher than the DINO model while using only
7.25% of the queries (65.22 vs. 900), clearly demonstrating the effectiveness of our query with
high-rate utilization.

(2) In dense scenarios, our query-free model also achieves higher accuracy with fewer queries than
DINO. This robust advantage becomes even more pronounced as the number of objects increases,
as illustrated in Fig. 5 and Table 9 (specifically in the subsets of 31 ∼ 35, 36 ∼ 40, 41 ∼ 45, 46+).

(3) For more complex multi-modal detection tasks, such as open-ended detection Lin et al. (2024),
decoder queries are inputted into large language models to directly generate corresponding object
names without additional vocabulary priors. This process is highly complexity-sensitive to the
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number of queries (for instance, the LLM model shows 10,139.64 GFLOPs with 900 queries and
2,253.45 GFLOPs with 200 queries Lin et al. (2024)). However, fixed-query approaches that using
a large fixed number of queries significantly increase the computational load. In contrast, our query-
free method reduces this redundancy by eliminating unnecessary queries at an early stage, which is
highly significant and holds great potential for these multi-modal tasks.

(4) Our query-free method offers greater flexibility through its inherent adaptive characteristics. For
example, once the model is trained, the number of queries can be adaptively adjusted to suit various
scenarios without the need for retraining, which is still required for fixed-query detectors.

Furthermore, our model has demonstrated superior performance on the COCO dataset (Table 3), as
well as on the more challenging WiderPerson (Table 4) and CrowdHuman (Table 19) datasets than
the DINO model. This further indicates its robustness across a variety of scenarios.

In addition, we also introduce a novel decoding framework, LDD, which effectively tackles the is-
sue of “detecting ambiguity” caused by mixing label assignments of one-to-one and one-to-many,
as well as the “recurrent shifting” problem. The effectiveness of our decoding framework is demon-
strated by the experimental results in Table 12 and Table 16. It enhances performance while simpli-
fying the decoder architecture by using fewer SA layers, a single adaptive query type, and eliminat-
ing the need for additional branches or multi-head prediction modules.

Finally, our LDD framework significantly improves the speed of the decoder by +34.8% compared
to DINO (as detailed in Sec. D). Although the overall speed advantage may not be substantial due
to the multiple components of transformer-based detectors——where the slow inference speed is a
common bottleneck, especially when compared to faster CNN-based detectors like YOLO Khanam
& Hussain (2024))—— it offers a promising solution for enhancing the speed of transformer-based
detectors. For instance, by integrating the YOLO backbone, the Sparse-DETR Roh et al. (2021)
encoder, and our LDD decoder, we may have great potential to develop a high-speed, low-cost, high-
performance, query-free transformer detector, which deserves further exploration in future work.
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