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ABSTRACT

Computed Tomography (CT) plays a crucial role in both medical diagnostics and
industrial quality control. Sparse-view CT, in particular, has advantages over
standard CT for its reduced ionizing radiation but poses challenges due to its in-
herently ill-posed nature arising from undersampled measurement data. Implicit
Neural Representations (INRs) have emerged as a promising solution, demon-
strating effectiveness in sparse-view CT reconstruction. Given that modern CT
often scans similar subjects, we propose to improve reconstruction quality via
joint reconstruction of multiple objects using INRs. This approach can potentially
leverage both the strengths of INRs and the statistical regularities across multiple
objects. While existing techniques of INR joint reconstruction focus on enhanc-
ing convergence rates through meta-initialization, they do not optimize for final
reconstruction quality. To fill this gap, we introduce a novel INR-based Bayesian
framework that incorporates latent variables to capture inter-object relationships.
These latent variables act as a continuously updated reference during the opti-
mization process, thereby enhancing the quality of individual reconstructions. We
conduct extensive experiments to evaluate various aspects such as reconstruction
quality, susceptibility to overfitting, and generalizability. Our results demonstrate
significant improvements over baselines in common numerical metrics, suggest-
ing a step forward in CT reconstruction techniques. Our code will be released.

1 INTRODUCTION

Computed Tomography (CT) serves as a crucial non-invasive imaging tool in both medical diagnosis
and industrial quality control. In CT, a series of X-ray projection images are captured from various
angles to reconstruct an object’s internal structure, solving an inverse problem. In specific situations,
limiting the number of CT measurements can offer benefits such as reduced radiation exposure
and cost management, which may lead to the use of sparse data. This sparsity complicates the
reconstruction process, making it an ill-posed inverse problem. Such challenges arise not only in
CT reconstruction but also across diverse computational tasks. Hence, while our study centers on
sparse-view CT reconstruction, the core ideas are transferable to numerous inverse problems.

Various strategies tackle this challenge by incorporating auxiliary information. While many ap-
proaches learn the mapping from sparse-view to dense-view images using supervised learning
(Zhang et al., 2018; Han & Ye, 2018; Zhu et al., 2018; Wu et al., 2021) or learn the image distribution
solely from dense-view images (Song et al., 2022), they often necessitate extensive, domain-specific
datasets which are difficult to obtain in practice. There are also works that adopt heuristic image pri-
ors, e.g. Total Variation (TV) (Sidky & Pan, 2008; Liu et al., 2013; Zang et al., 2018), or dense view
images as priors (Chen et al., 2008; Shen et al., 2022) to assist in the reconstruction. They often
lack domain-specific enhancements or require information from dense-view images. On a differ-
ent tangent, many works explore the potential of implicit neural representations (INRs). Thanks to
the continuous representation nature of INRs, these methods have consistently delivered promising
results with limited data (Zang et al., 2021; Zha et al., 2022; Rückert et al., 2022; Wu et al., 2023).

Given INRs’ proven capabilities in CT reconstruction and the known advantages of leveraging auxil-
iary information, we try to merge these two paradigms. Modern CT machines routinely scan similar
subjects, such as patients in hospitals or analogous industrial products. This observation motivates
us to investigate a novel question in this work:
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Figure 1: Framework of our proposed
method. It uses latent variables to capture
the relation among all reconstruction nodes.
The latent variables are updated based on all
nodes and regularizes each individual recon-
struction via minimizing the KL divergence
terms. Here, wj denotes the parameters of j-
th node, distributed according to N (µj ,ρj),
while N (ω,σ) specifies the prior distribu-
tion of parameters w1:J .

Can INRs use the statistical regularities shared among different objects with simi-
lar representation to improve reconstruction quality through joint reconstruction?

In our exploration of this research avenue, we found that several existing methods can be adapted
for our purpose (Zhang et al., 2013; Ye et al., 2019; Tancik et al., 2021; Martin-Brualla et al., 2021;
Kundu et al., 2022). Some previous works have exploited the statistical regularities among different
objects borne in the INR networks’ weights, but target different problems such as convergence rate
(Tancik et al., 2021; Lee et al., 2021). A common practice in these methods is to find a network
initialization that outperforms random initialization. However, these approaches may not fully capi-
talize on the available statistical regularities, as such information could be lost during the adaptation
phase of the individual reconstructions.

To address our research question, we introduce a novel INR-based Bayesian framework designed
to adaptively integrate prior information related to network weights throughout the training process.
Specifically, we employ latent variables that capture common trend among different objects’ neural
representations, and subsequently apply this prior information to improve the accuracy of individual
reconstructions. Both of these objectives are achieved by minimizing the Kullback-Leibler (KL)
divergence between the prior and the approximated posterior distributions associated with the neu-
ral representation networks. Importantly, our framework can automatically adjust the regularization
effect of the prior information based on the similarity among neural representation networks, allow-
ing for a broader range of applications in reconstructing diverse images. Overall, our framework
provides a robust solution to the challenges posed by sparse data and varied reconstructions in CT
imaging. An illustration of our proposed method is provided in Figure 1.

Our Contributions: i) We explore a novel problem of INR-based joint reconstruction in the context
of CT imaging, supported by a comprehensive review of existing methods that could be adapted to
address this challenge. ii) We propose a principled Bayesian framework that adaptively integrates
prior information throughout the training process for enhanced reconstruction quality. iii) Through
extensive experiments, we evaluate various facets of reconstruction performance using common
numerical metrics. Our results establish that our method either outperforms or is competitive with
existing INR-based baselines, suggesting notable advancements in the field of CT reconstruction.

2 RELATED WORKS

We briefly outline key studies related to our focal areas, with a comprehensive understanding of
NeRF and INR available in the survey (Tewari et al., 2022).

Neural Radiance Fields. Coordinates-based Multi-Layer Perceptrons (MLPs) have transitioned
from traditional discrete representations to implicit neural representations (INRs) by addressing
high-frequency function detailing issues (Jacot et al., 2018; Tancik et al., 2020). Neural Radiance
Fields (NeRF), a state-of-the-art INR approach, models continuous scenes using spatial coordinates
and viewing angles, incorporating transmittance effects during ray-tracing (Mildenhall et al., 2021;
Barron et al., 2021; 2022). Specifically, NeRF-wild (Martin-Brualla et al., 2021) differentiated be-
tween static and transient scene aspects, an approach echoed in video representations (Li et al., 2021;
Mai & Liu, 2022).
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INR for CT Reconstruction. INRs’ potential in CT reconstruction has been exploited in various
ways. While Sun et al. (2021) focused on representing sparse measurements, Zang et al. (2021) com-
bined INRs with total variation and non-local priors for CT reconstruction. Notable advancements
include cone-beam CT optimization (Zha et al., 2022) and adaptive hierarchical octree representation
(Rückert et al., 2022). Wu et al. (2023) also improved reconstruction precision using reprojections
on inferred density fields.

Building on the groundwork laid by INR-based approaches, several techniques have emerged to
leverage prior information in joint CT reconstruction. Meta-learning’s application in CT reconstruc-
tion was first introduced by Tancik et al. (2021), using techniques like MAML (Nichol et al., 2018).
Later, Lee et al. (2021) introduced sparsity to the initialization, while Chen & Wang (2022) pro-
posed using transformers. For scene representation, Kundu et al. (2022) applied federated learning
to obtain the prior information. Lastly, while other INR-based CT reconstructions like Shen et al.
(2022) use priors from pre-reconstructed images, and Reed et al. (2021) rely on finding a template
image from 4DCT, their practical limitations led to their exclusion from our comparative analysis.

3 PROBLEM STATEMENT AND PRELIMINARIES

Mathematically, the CT acquisition process can be formulated as a linear equation: y = Ax +
ϵ, where x ∈ Rm represents the unknown object of interest and y ∈ Rn symbolizes the noisy
measurements. These measurements arise from the interaction between the measurement matrix
A ∈ Rn×m and the object, with ϵ ∈ Rn accounting for the associated measurement noise. The
task in CT is to infer the unknown object x from the acquired CT measurements y. The inherent
challenge lies in the common sparsity of these measurements, resulting in m > n. This makes the
reconstruction problem ill-posed.

The INR designed for CT reconstruction is a function fw : R3 → R1 parameterized by w. It
maps the spatial coordinates of the object to its intensity in a continuous three-dimensional space.
INR consists of two components, formulated as fw = M ◦ γ. Here, γ : R3 → Rd servers as the
position encoding (Tancik et al., 2020; Barron et al., 2022; Martel et al., 2021; Müller et al., 2022),
while M : Rd → R1 acts as the neural representation. Typically, M is a multi-layer perceptron
(MLP). The function fw(·) takes a coordinate ci ∈ R3 and maps it to the intensity value v ∈ R1.
For a full set of coordinate C := {c1, c2, . . . , cN}, the INR outputs the representation of the entire
object as Fw(C) := {fw(c1), fw(c2), . . . , fw(cN )}. The optimization procedure for INR-based
reconstruction involves minimizing the loss function: ℓ(w) := ∥AFw(C)− y∥22.

Joint Reconstruction Problem. We aim to simultaneously recover J objects x1:J using their cor-
responding measurements y1:J and measurement matrices A1:J . The joint reconstruction problem
can be mathematically formulated as:

w∗
1:J = argmin

w1:J

J∑

j=1

ℓj(wj), ℓj(wj) := ∥AjFwj
(C)− yj∥22. (1)

We believe that by introducing a dynamic prior that not only links all the models w1:J during train-
ing but also updates in response to their optimization, a Bayesian framework can provide a princi-
pled way to exploit the shared statistical regularities among different objects, thereby enhancing the
quality of joint reconstruction.

3.1 EXISTING METHODS AVAILABLE FOR JOINT RECONSTRUCTION

Although several existing methods are originally designed for different problems and do not employ
a Bayesian framework, they also align well with the objective highlighted in Equation (1). In the
following sections, we delve into these methods in greater detail. Empirical evaluations suggest that
some of these techniques can outperform the individual reconstruction approach, as discussed in
Section 5. Thus, we also benchmark these methods against our proposed Bayesian framework.

Composite of Static and Transient Representations. Martin-Brualla et al. (2021) introduce a
composite representation approach, known as NeRFWild, designed to manage variable illumination
and transient occluders in a collective of observations. While CT does not involve variable illumina-
tion, their concept of combining “static” and “transient” components can be adapted for our context,
which we term INRWild.
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Let Gϕ represent the neural representation for the static component and Hw signify the transient
component. For a given set of J objects, each object-associated reconstruction node has its distinct
transient network wj and corresponding transient feature bj . In contrast, the static network ϕ is
shared across all nodes. The objective for this framework is formulated as:

ϕ∗,w∗
1:J , b

∗
1:J = argmin

ϕ,w1:J ,b1:J

J∑

j=1

∥Aj

(
Hwj

(
bj ,G\r

ϕ (C)
)
+ Gr

ϕ(C)
)
− yj∥22. (2)

Here, Gr
ϕ(C) represents the static intensity, and G\r

ϕ (C) serves as intermediate features for the
transient network. For a more detailed explanation and a schematic depiction of this framework,
readers can refer to the Appendix C.1. At its core, INRWild emphasizes training the static network
ϕ, which embodies most learnable parameters, using aggregated losses. Concurrently, the individual
parameters, characterized by w1:J and b1:J , are refined based on ϕ’s characteristics.

Model-agnostic Meta-learning (MAML): Meta-learning aims to train a network in a way that it
can quickly adapt to new tasks (Nichol et al., 2018; Fallah et al., 2020). Several INR-based works
have employed MAML to obtain a meta-learned initialization, thereby accelerating the convergence
or enabling model compression (Tancik et al., 2021; Lee et al., 2021). In the MAML framework,
computational cycles are organized into ”inner loops” and ”outer loops”, indexed by k = 1 . . .K
and t = 1, . . . , T respectively. For each node j = 1, . . . , J , the networks w1:J are initialized
according to the meta neural representation w

(0)
1:J = θ. These networks then undergo K steps of

inner-loop learning: w
(k)
j = w

(k−1)
j − η∇wj

ℓj(w
(k−1)
j ), where η is the inner-loop learning rate.

After these K steps, the meta network θ updates as follows:

θt = θt−1 − α
1

J

J∑

j=1

∇θℓj(w
(K)
j ), ∇θℓj(w

(K)
j ) = ∇wj

ℓj(w
(K)
j )

∂w
(K)
j

∂θ
, (3)

where α is the outer-loop learning rate. After T steps of outer-loop optimization, the meta-learned
neural representation θT serves as an effective initialization for individual reconstructions.

Federated Averaging (FedAvg): Kundu et al. (2022) suggested to employ FedAvg (McMahan
et al., 2017) as the optimization framework of the meta-learned initialization. Like MAML, FedAvg
also consists of inner and outer loops. The inner loop is identical to MAML. Whereas, the outer
loop simplifies the meta network optimization by averaging all individual networks, represented as
θ = 1

J

∑
j w

(K)
j . Essentially, the meta network acts as the centroid of all networks. 1

4 A NOVEL BAYESIAN FRAMEWORK FOR JOINT RECONSTRUCTION

In this section, we introduce INR-Bayes, our Bayesian framework for INR joint reconstruction.

Motivation. A method that uses a composition of static and transient components operates under the
assumption that all the representations substantially overlap. This may be true in 3D scene recon-
struction, where observations are taken from different viewpoints of the same object. Our empirical
findings on INRWild indicate such methods do not work efficiently in CT reconstruction and other
image-level reconstruction tasks. Meta-learned initialization methods train a meta-model to cap-
ture a conceptual common representation, which can then be flexibly adapted to individual objects.
However, such methods subsequently adapt the models purely based on local measurements, mak-
ing them prone to the notorious overfitting issue in iterative methods of CT reconstruction (Herman
& Odhner, 1991; Effland et al., 2020), as demonstrated in Section 5.

By considering the meta-model, which we denote by ω in the sequel, a latent variable that updates
based on individual networks and uses it as a reference for individual training, a Bayesian framework
provides a principled way to conduct this process.

Definition and Notation. We introduce distribution to the networks w1:J for J objects, and de-
fine latent variables {ω,σ} that parameterize an axis-aligned multivariate Gaussian prior N (ω,σ)

1It is noteworthy that FedAvg can also be regarded as using a specific first-order algorithm of MAML called
Reptile (Nichol et al., 2018) and setting the outer-loop learning rate to 1.
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from which the weights are generated. These latent variables collectively serve to capture the
shared trends within the network, effectively quantifying the mutual information across differ-
ent objects. To simplify the model, we assume the conditional independence among all objects:
p(w1:J |ω,σ) =

∏J
j=1 p(wj |ω,σ). This assumption of conditional independence allows us to de-

compose the variational inference into a separable optimization problem, thereby facilitating more
efficient parallel computing.

Given that the measurements of the objects y1, . . . ,yJ are mutually independent and that each net-
work focuses on a specific object, the posterior distribution of network weights and latent variables
can be derived using the Bayes’ rule as p(w1:J ,ω,σ|y1:J) ∝ p(ω,σ)

∏J
j=1 p(yj |wj)p(wj |ω,σ).

While this posterior enables various forms of deductive reasoning, inferring the true posterior is
often computationally challenging or intractable. Moreover, the selection of an appropriate prior
p(ω,σ) poses its own difficulties (Wenzel et al., 2020; Fortuin et al., 2022). To tackle these issues,
we present an algorithm that aims at maximizing the marginal likelihood p(y1:J |ω,σ) in the sequel.
The details of derivations are provided in Appendix B.

4.1 OPTIMIZATION METHOD

To optimize the marginal likelihood p(y1:J |ω,σ), we approximate the posterior distribution of the
network weights w1:J using variational inference techniques (Kingma & Welling, 2013; Blei et al.,
2017). Specifically, we introduce the factorized variational approximation q(w1:J) =

∏J
j=1 q(wj),

employing an axis-aligned multivariate Gaussian for the variational family, i.e. q(wj) = N (µj ,ρj).

Variational Expectation Maximization. To maximize the marginal likelihood, we use the evidence
lower bound (ELBO):

ELBO (q(w1:J),ω,σ) = Eq(w1:J ) log
p(y1:J ,w1:J |ω,σ)

q(w1:J)
. (4)

The ELBO is optimized using Expectation Maximization (EM) (Dempster et al., 1977), a two-stage
iterative algorithm involving an E-step and an M-step. Generally, each EM cycle improves the
marginal likelihood p(y1:J |ω,σ) unless it reaches a local maximum.

E-step. At this stage, the latent variables {ω,σ} are held fixed. The aim is to maximize ELBO by
optimizing the variational approximations q(w1:J). By assumption, the objective can be separately
optimized for each network. Specifically, each network minimizes:

L (q(wj)) = −Eq(wj) log p(yj |wj) +DKL(q(wj)∥p(wj |ω,σ)). (5)
The minimization of the negative log-likelihood term is achieved through the minimization of the
squared error loss of reconstruction (see Equation (1)). The KL divergence serves as a regulariza-
tion constraint on the network weights, pushing wj to be closely aligned with a conditional prior
determined by {ω,σ}. These parameters represent the collective mean and variance of all the net-
works in the ensemble. The KL divergence thus serves to couple the neural representations across
networks, allowing them to inform each other.

M-step. After obtaining the optimized variational approximations q(w1:J), we proceed to maximize
the ELBO with respect to the latent variables {ω,σ}:

ELBO(ω,σ) ∝
J∑

j=1

Eq(wj) log p(wj |ω,σ). (6)

Equation (6) allows for a closed-form solution of {ω,σ}, derived by setting the derivative of the
ELBO to zero:

ω∗ =
1

J

J∑

j=1

µj , σ∗ =
1

J

J∑

j=1

ρj + (µj − ω∗)2. (7)

In our framework, ω serves as a collective mean of individual network weights, while σ provides
an adaptive measure of dispersion, factoring in both individual variances and deviations from the
collective mean. We note the KL divergence term, introduced in the preceding E-step objective
(see Equation (5)), operates element-wise. During the training process, weight elements with larger
values of σ are less regularized, thereby offering a flexible, self-adjusting regularization scheme that
pushes all weights toward the latent mean ω.
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Algorithm 1 INR-Bayes: Joint reconstruction of INR using Bayesian framework

Input: µ(0,0)
1:J , π(0,0)

1:J , ω0, σ0, η, β, T , R
Output: µ(R,T )

1:J , π(R,T )
1:J , ωR, σR

1: for r = 1 to R do
2: for j = 1, . . . , J in parallel do
3: NodeUpdate(ωr−1,σr−1)
4: After the E-step of each network, collecting µ

(r,T )
1:J ,π

(r,T )
1:J .

5: ▷ Compute the optimal latent variable ω, σ. ◁

6: ωr = 1
J

∑J
j=1 µ

(r,T )
j

7: σr = 1
J

∑J
j=1 log

(
1 + exp(π

(r,T )
j )

)
+ (µ

(r,T )
j − ωr)2

8: NodeUpdate(ωr,σr):
9: for t = 1, . . . , T in parallel do

10: ▷ Sample ŵj . ◁

11: ŵt
j ∼ µ

(r,t)
j + log

(
1 + exp(π

(r,t)
j )

)
N (0, I)

12: ▷ Compute the loss function. ◁
13: L(µj ,ρj) = ∥Aj(Fŵt

j
(C))− yj∥22 + βDKL(q(wj)∥p(wj |ωr,σr))

14: ▷ SGD on the variational approximation µj ,ρj with learning rate η. ◁

15: µ
(r,t+1)
j = µ

(r,t)
j − η ∂L

µj
,π

(r,t+1)
j = π

(r,t)
j − η ∂L

πj

4.2 IMPLEMENTATION

We delve into the intricacies of implementation, addressing in particular the computational chal-
lenges associated with Equation (5). A summary of our method can be found in Algorithm 1.

Variational Approximation. Given that the expected likelihood in Equation (5) is generally in-
tractable, we resort to Monte Carlo (MC) sampling to provide an effective estimation. Moreover, we
introduce an additional hyperparameter β for the KL divergence to balance the trade-off between
model complexity and overfitting. Linking the likelihood with the square error loss, for any node j,
the effective loss function can be expressed as:

L (q(wj)) ≈ ∥Aj(Fŵj
(C))− yj∥22 + βDKL(q(wj)∥p(wj |ω,σ)), (8)

where ŵj denotes a sample from q(wj). We only do MC sampling once at each iteration, which
works efficiently in practice.

Reparameterization Tricks. To facilitate the gradient-based optimization schemes, we utilize the
reparameterization trick (Kingma & Welling, 2013):

q(wj) = µj + log (1 + exp (πj))N (0, I). (9)

Here, we additionally deploy the softplus function in parameterizing the variance σj with the vari-
able πj to ensure the non-negativity of the variance of the variational approximation.

The EM algorithm operates through alternating E and M steps. In the E-step, we perform T iterations
to achieve the locally optimal variational approximations. Following this, the M-step utilizes the
closed-form solution (see Equation (7)) to achieve an efficient parameter update. The entire cycle is
executed for R rounds to ensure convergence. Finally, the parameters µ1:J serve as the weights for
individual neural representation, while ω is used as the weights for meta neural representation.

5 EXPERIMENTS

Dataset. Our study utilizes three CT datasets: 4DCT on the lung area (Castillo et al., 2009), LungCT
from the Medical Segmentation Decathlon (Antonelli et al., 2022), and BrainCT from the Brain CT
Hemorrhage Challenge (Flanders et al., 2020). Additionally, we include a natural image dataset
CelebA (Liu et al., 2015) to evaluate the generalizability to broader applications.
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Experiment Metrics FBP SIRT SingleINR INRWild FedAvg MAML INR-Bayes

Intra-patient PSNR 26.50 ±0.06 28.81 ±0.06 32.80 ±0.11 28.46 ±0.07 32.42 ±0.08 33.26 ±0.10 33.90 ±0.10

SSIM 0.568 ±0.002 0.719 ±0.002 0.815 ±0.002 0.674 ±0.003 0.808 ±0.002 0.825 ±0.002 0.840 ±0.002

Inter-patient PSNR 24.97 ±0.14 28.32 ±0.13 32.64 ±0.27 25.05 ±0.18 31.68 ±0.19 33.13 ±0.22 33.75 ±0.20

Lung SSIM 0.503 ±0.004 0.678 ±0.005 0.821 ±0.007 0.560 ±0.08 0.807 ±0.006 0.833 ±0.006 0.847 ±0.006

Inter-patient PSNR 17.68 ±0.34 20.74 ±0.49 25.56 ±1.14 21.81 ±0.37 24.46 ±0.96 25.81 ±1.14 25.84 ±1.15

Brain SSIM 0.398 ±0.004 0.498 ±0.004 0.801 ±0.017 0.638 ±0.09 0.761 ±0.011 0.823 ±0.013 0.823 ±0.014

4DCT PSNR 25.19 ±0.03 28.61 ±0.03 34.07 ±0.04 33.76 ±0.04 34.67 ±0.04 34.35 ±0.05 34.79 ±0.04

SSIM 0.529 ±0.001 0.746 ±0.001 0.877 ±0.001 0.863 ±0.001 0.885 ±0.001 0.881 ±0.001 0.894 ±0.001

Table 1: Results from intra-patient, inter-patient joint reconstruction, and joint reconstruction across
temporal phases in 4DCT. The highest average PSNR/SSIM values that are statistically significant
are bolded. Our method, INR-Bayes, consistently achieves the best performance across datasets.

Comparison Methods. We compare our approach with the following methods: i) Classical
techniques: Filtered Back Projection (FBP) and Simultaneous Iterative Reconstruction Technique
(SIRT); ii) Naive INR-based single reconstruction method, denoted as SingleINR; iii) FedAvg,
a federated averaging approach proposed by Kundu et al. (2022); iv) MAML, A meta-learning tech-
nique as discussed by Tancik et al. (2021); v) INRWild, a method adapted from NeRFWild (Martin-
Brualla et al., 2021). FBP and SIRT are classical methods that do not use neural networks, while
all other methods employ an identical INR network as described in the next paragraph.

INR Network Configuration. The same backbone and associated configurations are applied to
ensure a fair comparison. All INR-based methods employ the SIREN architecture (Sitzmann et al.,
2020) coupled with the same positional embedding (Tancik et al., 2020). In alignment with the
INRWild design, we utilize an 8-layer SIREN network for the static segment and a 4-layer SIREN
for each transient component. Additional details are available in the Appendices C.2 and C.3.

CT Configuration. We simulate CT projections using the Tomosipo package (Hendriksen et al.,
2021) with a parallel beam. Experiments on 4DCT and BrainCT use projections from 40 angles
across 180◦, while others use 60 angles. Practical applicability is further tested under a 3D cone-
beam CT setting, detailed in Appendix E.1.

Experiment Configurations. i) Intra-patient: 10 equidistant slices from a patient’s lung center.
ii) Inter-patient: 10 slices from different patients, each from a similar upper-body/head position.
iii) 4DCT: 10 temporal phases from one 4DCT slice.

Metrics. We primarily evaluate using Peak Signal to Noise Ratio (PSNR) and Structural Similarity
Index Measure (SSIM), with metrics referenced against ground-truth images. We calulate mean and
standard error over all reconstructioned images in each experiment.

5.1 RESULTS

Reconstruction Performance. Table 1 presents the average metrics across various datasets. Our
method consistently achieves the top average PSNR/SSIM values, underscoring its proficiency in
exploiting inherent trends across slices. The superiority of our approach is more pronounced when
the images demonstrate an inherent transition pattern, as observed in both inter-patient and intra-
patient experiments. Meta-learning mostly ranks as the second-best joint reconstruction method,
with an exception in the 4DCT dataset where pronounced image similarities exist. This highlights
the advantages of utilizing averaging as a prior under such circumstances.

The visual comparisons in Figure 2 and Figure 3 further substantiate our findings. The reconstruction
of SingleINR shows noticeable artifacts. Although FedAvg and MAML achieve higher PSNR and
SSIM due to smoother reconstructions, they also sacrifice some image details. In contrast, our
INR-Bayes method consistently delivers superior visual quality, balancing smoothness and detail.

Comparison with Different Numbers of Nodes and Angles. Figure 4a demonstrates that all meth-
ods see an improvement in average PSNR values as the number of scanning angles increases. Meth-
ods that leverage prior information, such as FedAvg, MAML, and ours INR-Bayes outperform
singleINR when the number of angles is limited. With only 20 angles, FedAvg’s performance is
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SIRT SingleINR FedAvg MAML INR-Bayes GT
33.67 38.36 37.26 38.91

0.842 0.920 0.900 0.927
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0.722 0.890 0.864 0.885 0.914

33.18

0.819

INRWild

27.76

0.715

Figure 2: Visual comparison for intra-patient joint reconstruction. Enlarged areas are highlighted in
red insets. PSNR values are on the top left, with SSIM values on the bottom left.

SIRT SingleINR FedAvg MAML INR-Bayes GT
27.81

0.729

33.40

0.886

34.06

0.880

33.93

0.887

34.28

0.892
27.78

0.730

33.31

0.869

34.09

0.880

33.61

0.883

34.21

0.893

Ph
as

e 
1

Ph
as

e 
4

33.62

0.886
33.88

0.826

INRWild

Figure 3: Visual comparison for joint reconstruction across 4DCT temporal phases. Enlarged areas
are highlighted in red insets. PSNR values are on the top left, with SSIM values on the bottom left.
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Figure 4: Results of the impact of varying scanning angles and nodes on intra-patient LungCT.

on par with our method, indicating that simple averaging can be effective in extremely data-scarce
scenarios. However, as the number of angles grows, both ours INR-Bayes and MAML surpass
FedAvg. Remarkably, our INR-Bayes method generally yields the best results. It is also worth
noting that the performance gap between singleINR and ours INR-Bayes narrows as more data
becomes available, suggesting that while the prior information is useful in sparse data situations, its
advantage diminishes in the data-rich environment. In Figure 4b, our method consistently delivers
superior performance compared to other methods across a range of node counts. MAML shows strong
results when the node count is between 5 and 25, but experiences a decline in performance, eventu-
ally matching that of FedAvgwhen the node count reaches 40. This drop indicates that MAMLmight
struggle to capture the shared features when many nodes are participating in the joint reconstruction.

Overfitting. Iterative reconstruction methods tend to overfit when applied to limited data (Herman
& Odhner, 1991; Effland et al., 2020). In contrast, Bayesian frameworks have demonstrated ro-
bustness against overfitting (MacKay, 1992; Neal, 2012; Blundell et al., 2015). To validate this,
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Figure 5: After the initial 30,000 iterations, each
joint reconstruction method undergoes an addi-
tional 30,000 iterations for further adaptation.
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Figure 6: Reconstruction of 5 new patients us-
ing the learned prior from 10 other patients,
compared to individual reconstruction.

SingleINR FedAvg MAML INR-Bayes

PSNR 30.22 ±0.12 29.89 ±0.16 30.42 ±0.14 31.31 ±0.12

SSIM 0.769 ±0.003 0.754 ±0.004 0.770 ±0.003 0.799 ±0.003

Table 2: Adaptation on new patients us-
ing priors learned from other patients
compared to individual reconstruction.

we extend the training iterations from 30K to 60K, designating the latter half as a pure adaptation
phase. As shown in Figure 5 on inter-patient LungCT, the learning curves of baselines deteriorate in
the long run, indicating overfitting on the measurement noise. Conversely, our approach maintains
a consistent level of reconstruction quality once the optimal performance is achieved, underscoring
the robustness of our framework. We note that determining an exact stopping criterion is challenging
without reference ground truth, making such robustness highly valuable in practice.

Applying to Unseen Data using Learned Prior. We apply the acquired prior from the inter-patient
experiment to guide the reconstruction of test subjects in the LungCT dataset. Specifically, we
select 5 consecutive slices from new patients, choosing slices from the same anatomical location
the prior has been trained. The prior information is solely utilized to guide the reconstruction and
is not updated during the process. Table 2 shows that FedAvg fails to improve the reconstruction
quality compared with singleINR, suggesting its learned meta neural representation struggles to
generalize to unseen data. In contrast, both MAML and ours INR-Bayes effectively leverage their
trained priors for improved reconstruction, with our method showing notably better metrics. Figure 6
presents performance curves of different methods. All joint reconstruction methods converge faster
than individual reconstruction. Initially, FedAvg converges the fastest, but as training progresses,
both MAML and INR-Bayes surpass it. Additionally, the results reconfirm the robustness of ours
INR-Bayes against overfitting, a problem that other methods cannot avoid.

Broader Application. We also conduct experiments on the CelebA dataset to evaluate the general-
izability of different methods to natural images. Results are relegated to Appendix E.2.

6 DICUSSION AND CONCLUSION

We introduced a novel INR-based Bayesian framework tailored for joint CT reconstruction in this
study. Through extensive experiments, our method has effectively showcased its ability to leverage
the statistical regularities inherent in the sparse measurement of multiple objects to improve individ-
ual reconstructions. This capability allows our approach to outperform competing methods in terms
of reconstruction quality, robustness to overfitting as well as generalizability. While the primary
focus of our method has been on joint CT reconstruction, its underlying principles hold potential ap-
plicability across a variety of inverse problems plagued by the challenges of sparse measurements.

Limitation. We recognize that INR-based methods outperform conventional ones but require more
computation, making their efficiency a crucial focus for future research. Additionally, the metrics
employed in our study may not always correlate with clinical evaluations (Renieblas et al., 2017;
Verdun et al., 2015). If applied in a medical application, clinical verification of our method remains
essential to understand its practical implications and efficacy in a given clinical setting.
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A ILLUSTRATIVE OVERVIEW OF OUR METHOD

Figure 7: Overview of Our Proposed
Method: This schematic represents our INR-
based Bayesian framework for joint CT re-
construction. It features J nodes collabora-
tively reconstructing images, with a central
latent variable capturing the relationships be-
tween these nodes. The network-like struc-
ture of the latent variable and local param-
eters are depicted for illustrative purposes.
They are in the form of axis-aligned Gaus-
sian distributions, characterized by mean and
variance components in our Bayesian frame-
work.

B VARIATIONAL EXPECTATION MAXIMIZATION OF THE MARGINAL
LIKELIHOOD

To optimize the marginal likelihood p(y1:J |ω,σ), we leverage a variational approximation of the
network weights q(w1:J). We start by rewriting the marginal likelihood as follows:

log p(y1:J |ω,σ) = Eq(w1:J ) log
p(y1:J ,w1:J |ω,σ)q(w1:J)

q(w1:J)p(w1:J |y1:J ,ω,σ)
(10)

= Eq(w1:J ) log
p(y1:J ,w1:J |ω,σ)

q(w1:J)︸ ︷︷ ︸
ELBO(q(w1:J ),ω,σ)

+DKL (q(w1:J)∥p(w1:J |y1:J ,ω,σ))) .

(11)

Since directly maximizing the marginal likelihood is computationally infeasible, we instead maxi-
mize its variational lower bound, commonly known as the evidence lower bound (ELBO):

ELBO(q(w1:J),ω,σ) = Eq(w1:J ) log
p(y1:J ,w1:J |ω,σ)

q(w1:J)
(12)

= Eq(w1:J ) log p(y1:J |w1:J ,ω,σ)−DKL(q(w1:J)∥p(w1:J |ω,σ)).

(13)

The measurements are mutually independent and do not depend on the latent variables {ω,σ}
given network weights w1:J . Moreover, each network is trained solely on its corresponding
measurement. Therefore, the log likelihood decomposes into: Eq(w1:J ) log p(y1:J |w1:J ,ω,σ) =∑J

j=1 Eq(wj) log p(yj |wj). Additionally, due to the factorized variational approximation

q(w1:J) =
∏J

j=1 q(wj) and the assumption of conditional independence p(w1:J |ω,σ) =

14
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∏J
j=1 p(wj |ω,σ), we can obtain the following form of ELBO:

ELBO(q(w1:J),ω,σ) =

J∑

j=1

Eq(wj) log p(yj |wj)−DKL(q(wj)∥p(wj |ω,σ)). (14)

Since each network is trained separately, our framework runs efficiently via parallel computing. The
likelihood p(yj |wj) can be maximized by minimizing the squared error loss of the reconstruction
(see Equation (1)). Similarly to Zhu et al. (2023), we adopt EM to maximize the ELBO. At the
E-step, the latent variables {ω,σ} are fixed and each network optimizes with respect to the loss
function:

L(q(wj)) = Eq(wj)∥AFwj (C)− yj∥22 +DKL(q(wj)∥p(wj |ω,σ)). (15)

The expectation can be estimated via MC sampling. When the variational approximations q(wj) ∼
N (µj ,ρj), j = 1 . . . J are formed, we can perform the M-step with the q(w1:J) being fixed. Sim-
plifying Equation (14):

ELBO(ω,σ) = −
J∑

j=1

DKL (q(wj)∥p(wj |ω,σ)) (16)

∝
J∑

j=1

Eq(wj) log p(wj |ω,σ) (17)

∝ −
J∑

j=1

log |diag(σ)|+ (ω − µj)
2 · σ−1 + ρj · σ−1, (18)

where diag(σ) represent a diagonal matrix with the diagonal σ. The above equation delivers a
closed-form solution by setting the derivative to zero:

∂

∂ω
ELBO(ω,σ) ∝

J∑

j=1

ω − µj := 0 ⇒ ω∗ =
1

J

J∑

j=1

µj . (19)

∂

∂σ
ELBO(ω,σ) ∝

J∑

j=1

σ − (ω − µj)
2 − ρj := 0 ⇒ σ∗ =

1

J

J∑

j=1

(ω∗ − µj)
2 + ρj . (20)

C DETAILS FOR EXPERIMENTS

C.1 INRWILD

We implement INRWild using the Siren network architecture (Sitzmann et al., 2020). Specifically,
the static component, Gϕ, is represented using a standard 8-layer Siren network. In contrast, each
of the transient parts, Hwj , is characterized by a more compact 4-layer Siren network following
the design from NeRFWild (Martin-Brualla et al., 2021). The optimization process ensures that the
static and transient components are jointly optimized to ensure distinct representations, as articulated
in Equation 2. A visual representation of the INRWild structure is provided in Figure 8.

C.2 INR-BASED NETWORK CONFIGURATION

All INR-based methodologies in this study utilize the standard Siren (Sitzmann et al., 2020) as their
foundational network. This network comprises eight fully connected layers, each with a width of
256. To encode position, we employed the Fourier feature embedding (Tancik et al., 2020). Every
INR-based method features an embedding dimension of 512. Consistently, this embedded position
is input to the INRs to facilitate density prediction.

C.3 CONFIGURATION OF ALL METHODS

Individual Reconstruction Methods. For 2D experiments, we employ the FBPmethod, and for 3D
experiments, its counterpart, FDK. GPU-accelerated operations, FBP CUDA for 2D and FDK CUDA
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Figure 8: Schematic depiction of INRWild: A tailored version adapted from NeRFWild (Martin-
Brualla et al., 2021) for joint CT reconstruction.

for 3D, are sourced from the Astra-Toolbox (Van Aarle et al., 2016). The iterative method SIRT,
specifically the SIRT CUDA operation, also from the Astra-Toolbox, is configured with 5,000 itera-
tions. INR-based methods are set to operate for 30,000 iterations. The iteration counts for SIRT and
INR-based methods are determined through preliminary tests on a dataset subset to ensure optimal
performance.

Joint Reconstruction Methods. We tune the hyperparameters of our method and baselines in the
inter-patient scenario and subsequently apply to all experiments. In particular, for the federated av-
eraging approach FedAvg (Kundu et al., 2022), we average individual reconstructions every 300
iterations, amounting to a total of 100 averaging iterations. For the meta-learning technique MAML
(Tancik et al., 2021), which is rooted in the MAML update policy (Nichol et al., 2018), we designate
a learning phase spanning 10,000 iterations across all measurements. This is succeeded by 20,000
individual reconstruction iterations utilizing the learned parameters. Our method has the same itera-
tion configurations as FedAvg with 100 global iterations to update the latent variables, each global
iteration undergoes local 300 iterations across all nodes.

Hyperparameters. All INR-based models utilize the Adam optimizer Kingma & Ba (2014). The
initial learning rate is set at 1× 10−5 for each node, with β1 and β2 values of 0.9 and 0.999, respec-
tively. For the meta-learning phase in MAML, the inner learning rate is 1 × 10−3, the outer learning
rate is 1 × 10−6, the inner steps are set at 10, and the outer steps at 1000. These settings were
optimized based on a grid search conducted on a subset of the inter-patient scenario and were subse-
quently used across all experiments. For our method, the additional hyperparameter β is determined
as 1 × 10−16. This was decided upon after evaluating the initial loss terms of Equation 4 from the
same subset of the inter-patient scenario. This hyperparameter setting for our method is also applied
consistently across experiments.

D DATASET DETAILS

4DCT This dataset Castillo et al. (2009), sized 10× 136× 512× 512, contains 136 CT image slices
captured across 10 respiratory phases of one patient. The main variations across these phases are
due to respiratory movements, such as the lungs’ expansion and contraction.

LungCT Comprising CT scans from 96 patients Antonelli et al. (2022), its volumes range from
112 × 512 × 512 to 636 × 512 × 512. Despite inherent similarities representing human lungs, in-
dividual scan features can vary significantly. Slices within a volume show a consistent pattern, yet
fewer stationary features are shared between them. The dataset comprises scans both with and with-
out tumors. For our experiments, we randomly selected patients and images without distinguishing
between those containing tumors and those without, aiming for a diverse representation of lung CT
images.

BrainCT The dataset Flanders et al. (2020), with 874,035 CT images of size 512×512, is annotated
with hemorrhage labels. It’s organized as image sets without specific patient linkages.
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CelebA This dataset Li et al. (2021) consists of 202,599 celebrity face images of dimension 3 ×
218× 178.

E EXTRA RESULTS

E.1 3D JOINT RECONSTRUCTION

To assess the real-world viability of our method, we conduct evaluations in a 3D cone-beam CT
context, which more closely aligns with practical scenarios. We choose CT volumes from different
patients of size 1283, ensuring they represent analogous regions of the human body. The projections
are simulated with 40 angles spanning a full 360◦ rotation.

We conducted experiments on 9 groups of joint reconstructions, with each group jointly reconstruct-
ing 10 different patients’ CT volumes, each sized 1283. Table 3 displays the results. Consistent
with the findings from 2D CT experiments, our approach surpassed other comparative methods,
substantiating its practical relevance. MAML displayed slightly inferior performance compared to
SingleINR. A potential rationale for this could be that, given the augmented data volume, meta-
learning might necessitate extended meta-learning iterations to glean a meaningful representation.

FDK SIRT SingleINR FedAvg MAML INR-Bayes

PSNR 19.40 ±0.62 24.91 ±0.45 33.99 ±0.42 30.30 ±0.27 33.67 ±0.55 34.19 ±0.38

SSIM 0.550 ±0.005 0.650 ±0.007 0.932 ±0.007 0.862 ±0.004 0.932 ±0.009 0.945 ±0.004

Table 3: Results from 3D cone-beam CT reconstruction. The highest average PSNR/SSIM values
that are statistically significant are highlighted in bold.

E.2 JOINT RECONSTRUCTION ON HUMAN FACES

To assess the versatility of our proposed method, we expand its application to an unconventional
domain by considering natural RGB images as 3-slice objects, akin to CT. Although a departure
from traditional CT contexts, this experiment aimes to test the methods’ generalizability. For this
purpose, we sample 10 distinct faces from the CelebA dataset (Liu et al., 2015) and project them
using a parallel beam from 40 different angles.

The aggregate metrics for joint reconstruction across 10 groups, in total of 100 faces, are shown
in Table 4. Notably, our approach surpasses other techniques by a considerable margin. This sug-
gests not only its adaptability across diverse tasks but also underscores its potential applicability
in other inverse problems, particularly where undersampling challenges reconstruction. A visual
comparison in Figure 9 underscores our method’s prowess, revealing richer details and minimizing
reconstruction artifacts.

FBP SIRT SingleINR INRWild FedAvg MAML INR-Bayes

PSNR 18.12 ±0.39 29.13 ±0.20 30.90 ±0.32 16.43 ±0.28 25.71 ±0.27 30.74 ±0.29 31.31 ±0.31

SSIM 0.549 ±0.006 0.766 ±0.005 0.831 ±0.008 0.260 ±0.011 0.647 ±0.012 0.827 ±0.007 0.847 ±0.007

Table 4: Results of joint reconstruction on human faces. The highest average PSNR/SSIM values
that are statistically significant are highlighted in bold.

To offer a deeper insight, we visualize the learned priors across different joint reconstruction tech-
niques. Figure 10 illustrates INRWild’s extraction of ”static” and ”transient” components from vary-
ing faces. Notably, INRWild captured a generalized ”face”-like static component. However, due to
the significant disparities among face images, this generalized extraction do not significantly en-
hance individual reconstructions. Figure 11 showcases the learned priors from FedAvg, MAML, and
our approach INR-Bayes. While MAML struggles to capture a face-like prior during its preliminary
phase, both FedAvg and INR-Bayes succeed in deriving an interpretable prior. However, the av-
eraging distinct faces does not directly benefit reconstruction in the case of FedAvg. In contrast,
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Figure 9: Visual comparison on human faces results. PSNR values are on the top left, with SSIM
values on the bottom left.

our method astutely harnesses the cross-measurement prior information to amplify its individual
performance.
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Figure 10: Learned static and transient parts of INRWild on human faces of CelebA dataset.

E.3 INTER-PATIENT JOINT RECONSTRUCTION

In this section, we provide a visual comparison of inter-patient joint reconstruction using the
BrainCT dataset. As depicted in Figure 12, our approach consistently exhibits the best SSIM values,
outperforming others by a significant margin. Although the PSNR values of our method are either
the best or close to the best, it’s worth noting that the ground-truth image, which we utilize to sim-
ulate projections, inherently contains a considerable amount of noise. This noise could potentially
influence the performance metrics.

E.4 INTRA-PATIENT JOINT RECONSTRUCTION

In this section, we present visualizations of learned priors from various joint reconstruction methods
applied in intra-patient experiments. Figure 13 depicts the learned static and transient components
of INRWild. Notably, in scenarios where images markedly vary from one another, extracting static
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Figure 11: Visualization of learned prior of joint reconstruction methods on the faces of the CelebA
dataset.

FBP SIRT Single INR FedAvg MAML INR-Bayes GT
15.20

0.459

16.02

0.628

15.44

0.614

15.66

0.646

15.72

0.676

15.59

0.682
20.51

0.444

21.66

0.630

23.51

0.858

23.46

0.804

23.70 23.70

0.842 0.877

Figure 12: Visual comparison for joint reconstruction on brains of BrainCT dataset. Enlarged areas
are highlighted in red insets. PSNR values are on the top left, with SSIM values on the bottom left.

components still seems feasible but not necessarily beneficial to the reconstruction process, since
the static component does not constitute a significant portion of the overall representation.

Conversely, when observing joint reconstruction methods in Figure 14, it is evident that all joint
reconstruction methodologies ascertain a reasonable meta representation. Despite variations in im-
ages, the intrinsic consistency stemming from the same patient results in a discernible and coherent
trend. This inherent trend is adeptly captured by the joint reconstruction methodologies.

E.5 JOINT RECONSTRUCTION ACROSS TEMPORAL PHASES IN 4DCT

Figure 15 showcases that INRWild is adept at differentiating between static and transient compo-
nents. Nevertheless, INRWild’s efficiency predominantly arises in scenarios where image variations
are subtle. Such constraints limit its broader applicability in joint CT reconstruction. In contrast,
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Figure 13: Learned static and transient parts of INRWild on LungCT dataset on the same patient.

Figure 16 demonstrates that other joint reconstruction methods also proficiently disentangle the in-
herent prior. Interestingly, in these contexts, an averaging approach proves more beneficial than
meta-learned initialization. Notably, our proposed method continues to surpass both FedAvg and
meta-learning in this particular scenario.
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LungCT dataset.

E.6 COMPUTATION COST ANALYSIS

In Table 5, we present a comparative analysis of the computational costs associated with different
reconstruction methods. The experiment setting is aligned the with inter-patient configuration in
Table 1. These assessments were performed under identical conditions on the same workstation,
equipped with an Intel I7-11700KF CPU and a single Nvidia RTX 3070 GPU, to ensure consistency
in our evaluation.

SingleINR FedAvg MAML INR-Bayes

GPU Memory (MiB) 6338 6408 6344 6452

Time (hrs:mins) 09:03 09:07 09:07 09:53

Table 5: Comparison of computation cost on joint reconstruction of 10 nodes. The reconstructed
image size is 512 × 512. For reference, FBP requires 206 MiB of GPU memory and completes in
0.37 seconds, whereas SIRT utilizes 154 MiB of GPU memory and takes 13.62 seconds.
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Figure 15: Learned static and transient parts of INRWild on 4DCT dataset.

As indicated in the Table 5, the GPU memory usage across all methods was relatively similar.
SingleINR exhibited the shortest computation time, followed closely by FedAvg and MAML.
Our method, INR-Bayes, showed a slightly increased computation time, approximately 50 min-
utes longer than the others. This less than 10% increase over SingleINR, FedAvg and MAML
in time is attributed to the added model capacibility and the Gaussian noise sampling procedure in
INR-Bayes. However, considering the enhanced reconstruction quality and robustness achieved,
this additional time investment can be justified.

E.7 COMPARISON WITH NERP

The method Nerp, introduced by Shen et al. (2022), initially trains an INR network using high-
fidelity data through regression. This pre-trained network is subsequently utilized to initialize the
reconstruction of new object with sparse measurements. A notable drawback of this method is
its dependence on the new objects’ representations being highly similar to that of the high-fidelity
training object. When this similarity is absent, the initial training could hinder rather than help the
reconstruction process, potentially yielding worse results than even a random initialization.

To demonstrate this, we carried out experiments on the 4DCT dataset with two different setups
for Nerp. In the ’Match’ configuration, Nerp is provided with the ground truth of one phase at
a specific slice and tasked to reconstruct the remaining nine phases at that slice. In contrast, the
’Unmatch’ configuration uses the ground truth from a random slice. Our INR-Bayes approach,
on the other hand, performs a simultaneous reconstruction of all nine phases without any access to
ground truth images.

As Table 6 illustrates, the performance of Nerp is conditional, excelling in PSNR when ground
truth data is matched but faltering otherwise. While operating without access to additional infor-
mation, our INR-Bayes achieves the best performance in SSIM. Given the practical challenges in
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Figure 16: Visualization of learned prior of joint reconstruction methods on 4DCT dataset.

obtaining matched ground-truth data for unscanned objects, our method exhibits greater utility and
applicability.

SingleINR Nerp match Nerp unmatch INR-Bayes

PSNR 33.69 ±0.06 35.33 ±0.10 32.83 ±0.07 34.31 ±0.07

SSIM 0.883 ±0.002 0.889 ±0.001 0.849 ±0.02 0.901 ±0.001

Table 6: Results from 4DCT reconstruction. The highest average PSNR/SSIM values that are statis-
tically significant are highlighted in bold.

E.8 APPLYING TO UNSEEN DATA USING LEARNED PRIOR

Impact of Different Priors on an Unseen Patient. To investigate the influence of varying priors
on the reconstruction quality for new, unseen patients, we conducted an additional experiment. We
selected 10 sets of priors, each derived from a group of 10 different patients. These priors are
then employed to guide the reconstruction of the same unseen patient. Figure 18 showcases the
reconstructed images and their corresponding priors, represented by an INR that is parameterized
with the mean of the prior distribution. The accompanying PSNR and SSIM values, indicated at
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Figure 17: Results of Nerp with matched prior image and unmatched prior image. PSNR on the
upper left corner and SSIM on the lower left corner are calculated with respect to the target image.

the top left and bottom left of each image, demonstrate modest deviation across different priors.
Notably, no model collapse occurs despite the obvious visual difference in the prior means. This
observation suggests that our method is stable and can effectively extract useful information from
various priors when applied to unseen data.

It is important to clarify that the prior in Figure 18 is depicted using the mean of the prior distribution
to parameterize an INR. However, this representation is an incomplete portrayal of the prior distri-
bution’s full characteristics. The variance associated with our method’s estimates may contribute
to the robust and effective utilization of the prior distribution, even when there are variances in the
mean. This aspect of our model underscores its capability to leverage the entire prior distribution
for stable performance.

Impact of Joint Nodes Numbers on Learned Prior. We expand the investigation to assess the
influence of the learned prior derived from a varying number of nodes. The experiments are con-
ducted using the inter-patient configuration. As depicted in Figure 19, our INR-Bayes demon-
strates a slight performance enhancement as the number of nodes increases. FedAvg exhibits a
similar trend, albeit with consistently lower performance compared to the other methods. Notably,
MAML experiences a performance dip when scaled across a larger node ensemble, which has also
been observed in Figure 4b.

These results indicate that INR-Bayes is capable of developing a more robust prior with contri-
butions from an increased number of nodes. Interestingly, this upward trend is not present in the
intra-patient configuration (c.f. Figure 4b), possibly because additional data from the same individ-
ual does not introduce significantly new information. In the current experiment, the prior for a new
patient is learned from data of randomly selected other patients, thus the estimation incorporates
inherent biases and randomness. As the number of contributing nodes grows, the mean and variance
of the prior distribution are expected to converge to the population statistics, enhancing its benefit
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Figure 18: Reconstruction of the same unseen patient using different priors learned from various
patient groups. The PSNR and SSIM values are presented on the top left and bottom left of each
image, respectively, illustrating the method’s robustness across different priors.

to the new patient. We anticipate that the advantage will continue to grow until it plateaus at a large
number of joint nodes.
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Figure 19: The performance of different methods on new patients using prior obtained with different
number of patients. SingleINR is presented as reference.
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