
Workshop at the 6th Symposium on Advances in Approximate Bayesian Inference (non-archival), 2024 1–12

Hamiltonian Monte Carlo with categorical parameters using
the Concrete distribution

Jakob Torgander jakob.torgander@statistik.uu.se
Uppsala University
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Abstract

We introduce a method to enable Hamiltonian Monte Carlo (HMC) to simulate from mixed
continuous and discrete posterior distributions. In particular, we show how the ”Gumbel
Max Trick” and the Concrete (Gumbel-softmax) distribution can be used for constructing
a continuous approximation of a categorical distribution, and how this distribution can
be efficiently implemented for HMC. We also illustrate how the Concrete distribution can
be incorporated into a latent discrete parameter model, resulting in the Concrete Mixture
model.

1. Introduction

Hamiltonian Monte Carlo (HMC) constitutes a powerful Markov Chain Monte Carlo (MCMC)
technique for producing samples from probability distributions and is by many considered as
the current state-of-art for Bayesian computation (Gelman et al., 2013; Betancourt, 2017).
By utilising Hamiltonian dynamics in order to effectively explore the parameter space of a
given posterior distribution, HMC provides an effective method for sampling from a wide
range of complex and high-dimensional posteriors.

However, since Hamiltonian dynamics are defined by a system of differential equations,
HMC requires the target posterior to be continuous. Consequently, mixed continuous and
discrete parameter models are not directly accommodated by HMC. Historically, the meth-
ods for circumventing the problem of mixed continuous and discrete distribution for HMC
can be categorised into the following two classes:

1. Separate sampling of the continuous and discrete parameters

2. Marginalisation of the discrete parameters.

The first class includes classical MCMC methods such as HMC-within-Gibbs (Neal, 2012),
for which the continuous and discrete parameters are updated using separate Gibbs sampler
steps. For another approach to this, (Zhou, 2020) provides a method in which the discrete
parameters are sampled separately, but where the frequency of this sampling is controlled
by an auxiliary parameter which is modelled and updated together with the continuous
model parameters through standard HMC.
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While the methods in this class do produce samples corresponding to both discrete and
continuous parameters, they are subject to the well-known problem of producing highly
correlated samples. This in turn might result in a less efficient exploration of the parameter
space and hence in slow mixing times (Gelman et al., 2013).

In the second class of methods, the given mixed distribution is transformed into a
fully continuous distribution through marginalisation of the discrete parameters, (Gelman
et al., 2013). Conversely, the methods in the second class can here utilise the benefits of
HMC to efficiently explore the parameter space, but do not directly produce discrete-valued
samples. Additionally, the marginalisation procedure in general requires intractable manual
computations before any model fitting and inference can be commenced.

In recent years, important work has been done on a third class of methods, where the
discrete parameter space is turned into a continuous space using either relaxation or em-
bedding techniques. As an example of this, (Nishimura et al., 2020) uses a continuous
embedding to produce an ordinal discrete variable. Another important example of a con-
tinuous relaxation comes from the field of probabilistic machine learning with the Concrete
(Gumbel-Softmax) distribution (Maddison et al., 2016; Jang et al., 2016). The Concrete
distribution approximates a categorical distribution by utilising the so-called ”Gumbel Max
Trick”. In the Gumbel Max Trick, the maximum of a sample of independent Gumbel(0,1)-
distributed random variables is used to produce samples from an underlying categorical
distribution.

The continuity of the Concrete distribution makes it a promising alternative to extend
HMC to categorical distributions. A rigorous treatment of the distribution in the context
of Bayesian computation and HMC has to our knowledge, however, not yet been done.

2. The Concrete Mixture (CM) model

The Concrete (Gumbel-Softmax) distribution (Maddison et al., 2016; Jang et al., 2016) has
density function

pZ(z1, . . . , zK) = Γ(K)τK−1
( K∑

i=1

πi/z
τ
i

)−K
K∏
i=1

(πi/z
τ+1
i ), (1)

where τ ∈ (0,∞) is referred to as the temperature parameter of the distribution, and Γ(·)
is the gamma function.

The Concrete distribution constitutes a continuous approximation of a categorical ran-
dom variable C with distribution π = (π1, . . . , πK), where K is the number of categories
(classes). As described in (Jang et al., 2016), when τ → 0, the vector Z = (Z1, . . . , ZK)
approaches a one-hot vector, i.e. Zk ∈ {0, 1} and Zk = 1 indicates the k-th class. The
Concrete distribution is continuous with well-defined gradients for zi ∈ (0, 1) and is thus
eligible for use within an HMC-framework.

A common situation in probabilistic modelling is where C is a latent (unknown) pa-
rameter for a model, where data x is assumed to have a conditional likelihood fk(x, θk)
given C = k. Here, each fk is in turn depending on a corresponding parameter vector θk,
on which we want to conduct inference. To model this situation using HMC, we now let
C be approximated by the Concrete-distributed variable Z and then define the Concrete
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Mixture (CM) model by the following (unnormalised) posterior distribution given a data
point x(i),

p(θ, z(i)|x(i)) ∝
( K∑

k=1

z
(i)
k fk(x

(i), θk)
)
p(θ)pZ(z

(i)), (2)

where z(i) = (z
(i)
1 , . . . , z

(i)
K ), θ = (θ1, . . . , θK), and p(θ) denotes some prior distribution for

θ. The CM model is constructed so that, for moderate values of τ , the model resembles the
classical mixture model on the corresponding form

p(θ, π|x(i)) ∝
( K∑

k=1

πkfk(x
(i), θk)

)
p(θ)p(π), (3)

where π = (π1, . . . , πK). However, as τ → 0, the CM model will approach the pure cate-
gorical model

p(θ, c(i)|x(i)) ∝
( K∑

k=1

1(c(i) = k)fk(x
(i), θk)

)
p(θ)p(c(i)), (4)

where c(i) ∈ {1, . . .K} indicates which class x(i) belongs to, and p(c(i)) denotes the cor-
responding (categorical) prior distribution. Now, implementing the Concrete-distribution
with HMC will, however, be subject to the problem of exploding gradients as the vector
z(i) approaches the desired one-hot vector. This can easily be observed in Eq. (1) by the
K− 1 singularities formed when zi → 0 in the ratios πi/zi. This problem will in turn result
in instability of the HMC-algorithm during the sampling process.

To mitigate the problem of exploding gradients, we propose that the Centred Gumbel
(CG) distribution (Jang et al., 2016) instead be used when using HMC to sample from the
Concrete distribution. The CG distribution has density function

pU (u1, . . . , uK) = Γ(K)
( K∏

k=1

exp(πk − uk)
)( K∑

k=1

exp(πk − uk)
)−K

, (5)

with the restriction uK = 0. As shown by Jang et al. (2016), a CG-distributed random
vector U = (U1, . . . , UK) can be transformed into a Concrete-distributed random vector
Z = (Z1, . . . , ZK) through the transformation

Zi =
exp(Ui

τ )

1 +
∑K−1

j=1 exp(
Uj

τ )
. (6)

It can further be shown (see Appendix B) that applying this transformation for the CM
model results in the following corresponding unnormalised posterior

p(θ, u(i)|x(i)) ∝
( K∑

k=1

exp(
u
(i)
k
τ )

1 +
∑K−1

j=1 exp(
u
(i)
j

τ )

fk(x
(i), θk)

)
p(θ)pU (u

(i)), (7)

where u(i) = (u
(i)
1 , . . . , u

(i)
K ), and that this transformation circumvents the previously ob-

served problem with exploding gradients. It can also be shown that this transformation,
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(a) (b) (c)

Figure 1: Sampling from the CM model. In (a) the original data from a bivariate Gaussian
mixture is displayed. In (b) the class predictions formed by 10000 draws from
the CM model are shown together with the posterior distribution for the mean
parameters (c). The CM model clearly yields accurate samples corresponding to
both categorical and continuous parameters.

however, has the side effect of introducing equivalent singularity problems when τ → 0 and
that care thus must be taken when selecting this parameter. For more details of this, see
Appendix B.

3. Experimental results

We will in this section provide a simple example on how the CM model introduced in
the previous section can be used for modelling latent discrete parameters using HMC. For
this purpose, we will use simulated data from a bivariate Gaussian mixture distribution,
i.e. letting fk in Eq. (2) be the density of a 2-dimensional normal distribution with mean
vector µk, covariance matrix Σk and class probabilities πk. In particular, we will for this
set of experiments use a data set consisting of 100 simulated data points with mean vectors
µ1 = (1, 5), µ2 = (5, 1) and Σ1 = Σ2 = I, with I denoting the 2 × 2 identity matrix.
Moreover, we will here let the class distribution π = (0.3, 0.7) and for simplicity enforce the
resulting clusters to be linearly separable (see Figure 1(a)).

3.1. Parameter estimation

In the first experiment, we compare the ability of the CM model to accurately identify the
true parameters of the previously defined mixture model. The experiments are conducted in
R together with Stan (Carpenter et al., 2017), using the implementation in Eq. (7). To this
model we let µi ∼ N(2.5, 10) (i.e. centring the prior in between the two clusters in Figure
1(a)), and π ∼ Dirichlet(1, 1). Again for simplicity, we will here use a naive assumption of
known unit covariance, i.e let Σ = I be fixed for all fk. We also let τ = 0.1 be fixed for this
experiment.

In Figure 1(b), we visualise the class predictions resulting from the simulated categorical
variables z(i), and Figure 1(c) displays the posterior distribution corresponding to µi. The
figures are based on 10000 posterior draws. The class predictions ĉ(i) are formed for the
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(a)

Method 1-Wasserstein Runtime (s)

HMC/CM 7.0931 102.1689
HMC/Margin. 5.9171 18.9618
Gibbs 7.40021 2.3193

(b)
τ MSEŷ Leapfrog steps Step size

1 6.2651 15 0.3156
0.1 2.6842 31 0.1123
0.01 2.1293 267 0.0114
0.001 2.0707 1023 0.0015

Table 1: Comparison of actual and simulated parameters. In (a) the empirical 1-
Wasserstein distances between the simulated and ”true” reference posterior are
compared between the CM model and the current recommended methods for sam-
pling discrete parameters. In (b) the effect of the temperature parameter τ on the
performance of the CM model is illustrated.

i-th data point through a majority vote, i.e. letting ĉ(i) = k if z
(i)
k has the highest value

when averaged over all draws.

As illustrated by these figures, the CM model manages to correctly classify the data
points and results in posterior distributions correctly centred around their respective actual
values.

Secondly, we compare the similarity of our generated samples to a ”true” reference
posterior generated by HMC, using the marginalised model in Eq. (3). This is done by com-
puting the empirical 1-Wasserstein distance (Villani et al., 2009) between the samples from
the CM model and samples from the marginalised model. We also include the corresponding
distances using samples from standard Gibbs sampling, and from a second set of samples
generated by marginalised HMC. The sampling was for these two methods carried out using
Stan and JAGS (Plummer, 2004) respectively with the same prior distributions as for the
CM model, using the R transport package (Schuhmacher et al., 2024) for computation of
the Wasserstein distances.

The results of these experiments are collected in Table 1(a) and show that the CM
model performs equivalently to the current standards of simulating when 1-Wasserstein
distances are used as the similarity measure. Taking computational efficiency into account,
measured by the sampler run-times in Table 1(a), we observe that the CM model however is
significantly less efficient than both the HMC/marginalisation combination and the Gibbs
sampler.

3.2. Temperature calibration

As previously mentioned in Section 2, the temperature parameter τ in Eq. (1) controls how
closely the Concrete random variable approximates a categorical one hot vector. At the
same time, as was observed in Eq. (7), when τ → 0 the CM model will suffer from similar
singularity problems that was previously observed for the Concrete distribution.

To investigate the effect of the temperature on the CM model, we repeat the experiments
from the previous section, now for varying values of τ . In Table 1(b), we compare the MSE
between actual (in-sample) data points and fitted values

ŷ(i) = z
(i)
1 µ1 + z

(i)
2 µ2, (8)
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where z
(i)
j , j = 1, 2, denotes the simulated categorical variables from the CM model corre-

sponding to the i-th data point. The intuition behind this comparison is that, the lower the
temperature, the closer the CM model will be to the true (known) data generating process
on average. To see the effect on the computational complexity, we include in this table the
average number of leapfrog steps and the average step size of the underlying NUTS-sampler
(Hoffman et al., 2014). We can from Table 1(b) observe a clear trade-off between predictive
performance and computational cost as the temperature becomes lower.

4. Discussion

We have in this paper demonstrated the use of the Concrete distribution for simulating from
mixed discrete and continuous parameter models. Although further research is needed for
determining the scalability and reliability of the CM model, our experiments indicate that
the model can be seen as an alternative for extending HMC to latent discrete parameter
models.

As demonstrated in our experiments, the most significant bottleneck for the generali-
sation of the model is the computational complexity resulting from the difficult posterior
geometries created by low temperatures, and by the fact that K parameters are needed for
each observation in the data set in order to model the individual K-dimensional approx-
imated one-hot encoded vectors. This in turn will inevitably affect the scalability of the
model as the number of data points or categories becomes large.
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Appendix A. The Concrete (Gumbel-Softmax) distribution

This section provides a brief introduction to the Concrete (Gumbel-Softmax) distribution
and is based on the results and derivations in (Maddison et al., 2016; Jang et al., 2016).

Let C denote a categorical variable with probability distribution π = (π1, . . . , πK) for
some positive integer K. We here assume that the categories (classes) of C are encoded with
the integers 1, . . . ,K. Furthermore, let G1, . . . , GK denote K i.i.d.Gumbel(0, 1)-variables,
each having density function

pGi(x) = e−e−x
. (9)

The Gumbel Max trick then uses samples from the variables Gi in order to sample from C
using the following procedure:

1. Generate samples g1, . . . , gK from G1, . . . , GK

2. Let x = argmax
i

(log πi + gi)

Letting X denote the random variable resulting from this procedure, it can be shown Gum-
bel (1954) that P(X = k) = πk, i.e. the distribution of X coincides with the distribution of
C. Now, as the argmax-function can be shown to be problematic to optimise, the idea in
(Maddison et al., 2016) is to approximate the argmax function using the softmax function

softmax(x)i =
exp(xi)∑
j exp(xj)

using the following transformation.

Zi =
exp(log πi +Gi)/τ∑
j=1 exp(log πj +Gj)/τ

. (10)

Here, τ ∈ (0,∞) is referred to as the temperature parameter of the distribution. Now,
as τ → 0, the vector Y = (Z1, . . . , ZK) approaches a one-hot vector, where Zk = 1 is
equivalent to C = k. Conducting the transformation in Eq. (10) then yields the Concrete
or Gumbel-Softmax distribution with density function

pZ(z1, . . . , zK) = Γ(K)τK−1
( K∑

i=1

πi/z
τ
i

)−K
K∏
i=1

(πi/z
τ+1
i ), (11)

with parameters π, τ , zi ∈ (0, 1) and with
∑

zi = 1.
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Appendix B. Theoretical results

B.1. The exploding gradients problem of the CM model

In this section we will show that the CM model Eq. (2) suffers from the problem of exploding
gradients but that these problems are removed if the transformed model in Eq. (7) instead
is used. We also show that the transformed model however introduces a new problem with
exploding gradients in the parameter τ .

To this end, we first observe that the log-posterior of the CM model in Eq. (2) can for
a single observation x and up to the additive constants C1, C2, be written as

lCM(z1, . . . , zK) = log
( K∑

k=1

zkfk(x, θk)
)
+ log(pZ(z)) + C1, (12)

= log
( K∑

k=1

zkfk(x, θk)
)
+ log

(
Γ(K)τK−1

( K∑
k=1

πk/z
τ
k

)−K
K∏
i=1

( πk

zτ+1
k

))
+ C1

(13)

= log
( K∑

k=1

zkfk(x, θk)
)
−K log

( K∑
k=1

πk
zτk

)
+

K∑
k=1

log
( πk

zτ+1
k

)
+ C2. (14)

To see that the CM model suffers from exploding gradients, we observe that the partial
derivatives of lCM with respect to z, π can be written as follows,

∂lCM

∂zj
=

fj(x, θj)∑K
k=1 zkfk(x, θk)

− K∑K
k=1

πk
zτi

·
(−πjτ

zτ+1
j

)
+

1
πj

zτ+1
j

·
(
− (τ + 1)πj

zτ+2
j

)

=
fj(x, θj)∑K

k=1 zkfk(x, θk)
+

Kπjτ∑K
k=1

πk
zτi

·
( 1

zτ+1
j

)
−

zτ+1
j

πj
· (τ + 1)πj

zτ+2
j

=
fj(x, θj)∑K

k=1 zkfk(x, θk)
+

Kπjτ∑K
k=1

πi
zτi

· 1

zτ+1
j

− τ + 1

zj
,

(15)

and,

∂lCM

∂πk
=

−K∑K
k=1

πk
zτj

·
( 1

zτj

)
+

zτ+1
j

πj
·
( 1

zτ+1
k

)
=

1

πj
− K∑K

k=1
πk
zτk

· 1

zτj

(16)

Observing that 1
zj

→ ∞ as zj → 0, we can conclude from the expressions (15)-(16) that the

CM model indeed will suffer from exploding gradients when z approaches a one-hot vector.

Conversely, the log-posterior of the transformed CM model in Eq. (7) can similarly be
written,

9



Torgander Magnusson Wallin

lCGM(u1, . . . , uK) = log
( K∑

k=1

exp(uk
τ )

1 +
∑K−1

i=1 exp(ui
τ )

fk(x, θk)
)
+ log(pU (u)) + C3

= log
( K∑

k=1

exp(uk
τ )

1 +
∑K−1

i=1 exp(ui
τ )

fk(x, θk)
)

+
K∑
k=1

log
(
exp(πk − uk)

)
−K log

( K∑
k=1

exp(πk − uk)
)
+ C4

= log
( K∑

k=1

exp(uk
τ )

1 +
∑K−1

i=1 exp(ui
τ )

fk(x, θk)
)
+

K∑
k=1

(πk − uk)−K log
( K∑

k=1

exp(πk − uk)
)
+ C4.

(17)

The corresponding partial derivatives with respect to π are here given by

∂lCGM

∂πj
= πj −K

exp(πj − uj)∑K
k=1 exp(πk − uk)

. (18)

Since, for any i,
exp(πj−uj)∑K
k=1 exp(πi−ui)

≤ 1, it is clear that our transformation alleviates the

exploding gradients problem in the π-directions. Now, for the partial derivatives with
respect to u, we first focus on the first term of Eq. (17) and denote this by s(u). Furthermore,
we use the fact that uK = 0 to receive the following simplifying notation

1 +
K−1∑
k=1

exp(
uk
τ
) =

K∑
k=1

exp(
uk
τ
). (19)

The partial derivatives of s(u) can then be computed as follows:

∂s

∂uj
=

1∑K
k=1

exp(
uk
τ
)

1+
∑K−1

i=1 exp(
ui
τ
)
fk(x, θk)

·

( 1
τ exp(

uj

τ )
(∑K

k=1 exp(
uk
τ )
)
− exp (

uj

τ ) 1τ exp (
uj

τ )

(
∑K

k=1 exp(
uk
τ ))2

fj(x, θj)

−
∑
i ̸=j

exp(ui
τ )(∑K

k=1 exp(
uk
τ )
)2 1τ exp (

uj
τ
)fi(x, θi)

)

=
1∑K

k=1
exp(

uk
τ
)∑K

k=1 exp(
uk
τ
)
fk(x, θk)

·

(
1
τ exp(

uj

τ )∑K
k=1 exp(

uk
τ )

(
(1−

exp(
uj

τ )∑K
k=1 exp(

uk
τ )

)fj(x, θj)

−
∑
i ̸=j

exp(ui
τ )∑K

k=1 exp(
uk
τ )

fi(x, θi)
))
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=
1
τ exp(

uj

τ )∑K
k=1 exp(

uk
τ )fk(x, θk)

·

(∑
i ̸=j exp(

ui
τ )∑K

k=1 exp(
uk
τ )

fj(x, θj)−
∑

i ̸=j exp(
ui
τ )fi(x, θi)∑K

k=1 exp(
uk
τ )

)

=
1
τ exp(

uj

τ )∑K
k=1 exp(

uk
τ )

·
(∑

i ̸=j exp(
ui
τ )(fj(x, θj)− fi(x, θi))∑K

k=1 exp(
uk
τ )fk(x, θk)

)
=

1
τ exp(

uj

τ )∑K
k=1 exp(

uk
τ )

·
(∑K

i=1 exp(
ui
τ )(fj(x, θj)− fi(x, θi))∑K

k=1 exp(
uk
τ )fk(x, θk)

)
,

(20)

where the last equality follows since exp(ui
τ )(fj(x, θj) − fi(x, θi)) = 0 for i = j. Since the

corresponding partial derivatives for the remaining terms of Eq. (17) now can be written

− 1−K
− exp(πj − uj)∑K
k=1 exp(πk − uk)

= −1 +K
exp(πj − uj)∑K
k=1 exp(πk − uk)

, (21)

we thus receive the following expression for ∂lCGM
∂uj

1
τ exp(

uj

τ )∑K
k=1 exp(

uk
τ )

·
(∑K

i=1 exp(
ui
τ )(fj(x, θj)− fi(x, θi))∑K

k=1 exp(
uk
τ )fk(x, θk)

)
− 1 +K

exp(πj − uj)∑K
k=1 exp(πk − uk)

. (22)

Lastly, since the following upper bound can easily be seen∣∣∣∂lCGM

∂uj

∣∣∣ ≤ ∣∣∣1
τ

∣∣∣ · ∣∣∣∑K
i=1 exp(

uk
τ )(fj(x, θj)− fi(x, θi))∑K

k=1 exp(
uk
τ )fk(x, θk)

∣∣∣+ (K + 1) (23)

≤ 1

τ
·
( ∑K

i=1 exp(
ui
τ )fj(x, θj)∑K

k=1 exp(
uk
τ )fk(x, θk)

+ 1
)
+ (K + 1) (24)

≤ 1

τ
·
( fj(x, θj)

min0≤k≤K fk(x, θk)
+ 1
)
+ (K + 1), (25)

we can conclude that the transformation to the CM model also solves the problem of ex-
ploding gradients in the uj-directions. We can from Eq. (17) however observe that ∂lCGM

∂uj

becomes unbounded as τ → 0 for which exp(
uj

τ ) → ∞ for all i. Thus, the transformation to
the CM model introduces an equivalent problem of exploding gradients in the τ -direction.
Using the transformed CM model with HMC, we hence receive a trade-off between compu-
tational stability and the distance from the Concrete approximation to the true underlying
categorical distribution.

B.2. Proof of Eq. (10) (transformation of the CM model)

We will in this section prove that the transformation in Eq. (10) indeed transforms the CM
model to the unconstrained model in Eq. (7). For this purpose, let Z = (Z1, . . . , ZK) be
Concrete distributed with parameter τ fixed. We then define the transformation H(Z)
component-wise as follows

Ui = H(Z)i = τ(logZi − logZK), i = 1, . . . ,K. (26)

11
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It can be easily confirmed that this transformation is one-to-one and that

Zi = h−1(U) =
exp(Ui

τ )

1 +
∑K−1

i=1 exp(Ui
τ )

(27)

Now, by the change of variables formula,

( K∑
k=1

zkfk(x, θk)
)
p(θ)pZ(z) =

( K∑
k=1

h−1(u)fk(x, θk)
)
p(θ)pZ(h

−1(u)) · |J |

=
( K∑

k=1

exp(uk
τ )

1 +
∑K−1

j=1 exp(
uj

τ )
fk(x, θk)

)
p(θ)pZ(h

−1(u)) · |J |,

(28)

where |J | denotes the determinant of the Jacobian J corresponding to the transformation.
Now, when constructing the Concrete distribution, Jang et al. (2016) show that letting
U = (U1, . . . , UK) follow the Centred Gumbel distribution defined in Eq. (5), the following
result holds

pZ(z) = pU (h(z)) · |J ′|,

where J ′ again denotes the corresponding Jacobian. Since the transformation h is one to
one, the inverse of J ′ exists and hence

pU (u) =
1

|J ′|
· pZ(h−1(u)) = |J ′−1| · pZ(h−1(u)). (29)

Comparing this identity with Eq. (28) we see that J = J ′−1 and in turn

( K∑
k=1

zkfk(x, θk)
)
p(θ)pZ(z) =

( K∑
i=1

exp(ui
τ )

1 +
∑K−1

j=1 exp(
uj

τ )
.fk(x, θk)

)
p(θ)pU (u). (30)

This completes the proof.
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