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Abstract

We introduce a method to enable Hamiltonian Monte Carlo (HMC) to simulate from mixed
continuous and discrete posterior distributions. In particular, we show how the ”Gumbel
Max Trick” and the Concrete (Gumbel-softmax) distribution can be used for constructing
a continuous approximation of a categorical discrete distribution, and how this distribution
can be efficiently implemented for HMC. We also illustrate how the Concrete distribution
can be incorporated into a latent discrete parameter model, resulting in the Concrete
Mixture model.

1. Introduction

Hamiltonian Monte Carlo (HMC) constitutes a powerful Markov Chain Monte Carlo (MCMC)
technique for producing samples from probability distributions and is by many considered as
the current state-of-art for Bayesian computation (Gelman et al., 2013; Betancourt, 2017).
By utilising Hamiltonian dynamics in order to effectively explore the parameter space of a
given posterior distribution, HMC provides an effective method for sampling from a wide
range of complex and high-dimensional posteriors.

However, since Hamiltonian dynamics are defined by a system of differential equations,
HMC requires the target posterior to be continuous. Consequently, mixed continuous and
discrete parameter models are not directly accommodated by HMC. Historically, the meth-
ods for circumventing the problem of mixed continuous and discrete distribution for HMC
can be categorised into the following two classes:

1. Separate sampling of the continuous and discrete parameters

2. Marginalisation of the discrete parameters.

The first class includes classical MCMC methods such as HMC-within-Gibbs (Neal, 2012),
for which the continuous and discrete parameters are updated using separate Gibbs sampler
steps. For another approach to this, (Zhou, 2020) provides a method in which the discrete
parameters are sampled separately, but where the frequency of this sampling is controlled
by an auxiliary parameter which is modelled and updated together with the continuous
model parameters through standard HMC.

While the methods in this class do produce samples corresponding to both discrete and
continuous parameters, they are subject to the well-known problem of producing highly
correlated samples. This in turn might result in a less efficient exploration of the parameter
space and hence in slow mixing times (Gelman et al., 2013, Sec. 12.4).

In the second class of methods, the given mixed distribution is transformed into a
fully continuous distribution through marginalisation of the discrete parameters, (Gelman
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et al., 2013). Conversely, the methods in the second class can here utilise the benefits of
HMC to efficiently explore the parameter space, but do not directly produce discrete-valued
samples. Additionally, the marginalisation procedure in general requires intractable manual
computations before any model fitting and inference can be commenced.

In recent years, important work has been done on a third class of methods, where the dis-
crete parameter space is turned into a continuous space using either relaxation or embedding
techniques. As an example of this, (Nishimura et al., 2020) uses a continuous embedding to
produce an ordinal discrete variable. Another important example of a continuous relaxation
comes from the field of probabilistic machine learning with the Concrete (Gumbel-Softmax)
distribution (Maddison et al., 2016; Jang et al., 2016). The Concrete distribution approxi-
mates a discrete categorical distribution by utilising the so-called ”Gumbel Max Trick”. In
the Gumbel Max Trick, the maximum of a sample of independent Gumbel(0,1)-distributed
random variables is used to produce samples from an underlying categorical distribution.

The continuity of the Concrete distribution makes it a promising alternative to extend
HMC discrete categorical distributions. A rigorous treatment of the distribution in the
context of Bayesian computation and HMC has to our knowledge, however, not yet been
done.

2. The Concrete Mixture (CM) model

The Concrete (Gumbel-Softmax) distribution (Maddison et al., 2016; Jang et al., 2016) has
density function

pZ(z1, . . . , zK) = Γ(K)τK−1
( K∑

i=1

πi/z
τ
i

)−K
K∏
i=1

(πi/z
τ+1
i ), (1)

where τ ∈ (0,∞) is referred to as the temperature parameter of the distribution, and Γ(·)
is the gamma function.

The Concrete distribution constitutes a continuous approximation of a discrete cat-
egorical random variable C with distribution π = (π1, . . . , πK), where K is the num-
ber of categories (classes). As described in (Jang et al., 2016), when τ → 0, the vector
Z = (Z1, . . . , ZK) approaches a one-hot vector, i.e. Zk ∈ {0, 1} and Zk = 1 indicates the k-
th class. The Concrete distribution is continuous with well-defined gradients for zi ∈ (0, 1)
and is thus eligible for use within an HMC-framework.

A common situation in probabilistic modelling is where C is a latent (unknown) pa-
rameter for a model, where data is assumed to have a conditional likelihood fk(x, θk) given
C = k. Here, each fk is in turn depending on a corresponding parameter vector θk, on
which we want to conduct inference. To model this situation using HMC, we now let C
be approximated by the Concrete-distributed variable Z and then define the Concrete
Mixture (CM) model by the following (unnormalised) posterior distribution given data
x = (x1, . . . , xN ),

p(θ, z|x) ∝
N∏
i=1

( K∑
k=1

zkfk(xi, θk)
)
p(θ)pZ(z), (2)

where θ = (θ1, . . . , θK), z = (z1, . . . , zk) and p(θ) denotes some prior distribution for θ.
The CM model is constructed so that, for moderate values of τ , the model resembles the
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classical mixture model on the corresponding form

p(θ, π|x) ∝
N∏
i=1

( K∑
k=1

πkfk(xi, θk)
)
p(θ)p(π), (3)

where π = (π1, . . . , πK). However, as τ → 0, the CM model will approach the pure cate-
gorical model

p(θ, c|x) ∝
N∏
i=1

( K∑
k=1

1(c = k)fk(x, θk)
)
p(θ)p(c), (4)

where p(c) denotes a categorical prior distribution. Now, directly implementing the Concrete-
distribution with HMC will, however, be subject to the problem of exploding gradients as
the vector z = (z1, . . . , zK) approaches the desired one-hot vector. This can easily be ob-
served in Eq. (1) by the K − 1 singularities formed when zi → 0 in the ratios πi/zi. This
problem will in turn result in instability of the HMC-algorithm during the sampling process.

To mitigate the problem of exploding gradients, we propose that the Centred Gumbel
(CG) distribution (Jang et al., 2016) instead be used when using HMC to sample from the
Concrete distribution. The CG distribution has density function

pU (u1, . . . , uK) = Γ(K)
( K∏

k=1

exp(πk − uk)
)( K∑

k=1

exp(πk − uk)
)−K

, (5)

with the restriction uK = 0. As shown by Jang et al. (2016), a CG-distributed random
vector U = (U1, . . . , UK) can be transformed into a Concrete-distributed random vector
Z = (Z1, . . . , ZK) through the transformation

Zi =
exp(Ui

τ )

1 +
∑K−1

j=1 exp(
Uj

τ )
. (6)

It can further be shown (see Appendix B) that applying this transformation for the CM
model results in the following unnormalised posterior

p(θ, u|x) ∝
N∏
i=1

( K∑
k=1

exp(uk
τ )

1 +
∑K−1

j=1 exp(
uj

τ )
fk(xi, θk)

)
p(θ)pU (u), (7)

and that this transformation circumvents the previously observed problem with exploding
gradients. It can also be shown that this transformation, however, has the side effect of
introducing equivalent singularity problems when τ → 0 and that care thus must be taken
when selecting this parameter. For more details of this, see Appendix B.

3. Experimental results

We will in this section provide a simple example on how the CM model introduced in
the previous section can be used for modelling latent discrete parameters using HMC. For
this purpose, we will use simulated data from a bivariate Gaussian mixture distribution,
i.e. letting fk in Eq. (2) be the density of a 2-dimensional normal distribution with mean
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(a) (b) (c)

Figure 1: Sampling from the CM model. In (a) the original data from a bivariate Gaussian
mixture is displayed. In (b) the class predictions formed by 10000 draws from
the CM model are shown together with the posterior distribution for the mean
parameters (c). The CM model clearly yields accurate samples corresponding to
both categorical and continuous parameters.

vector µk, covariance matrix Σk and class probabilities πk. In particular, we will for this
set of experiments use a data set consisting of 100 simulated data points with mean vectors
µ1 = (1, 5), µ2 = (5, 1) and Σ1 = Σ2 = I, with I denoting the 2 × 2 identity matrix.
Moreover, we will here let the class distribution π = (0.3, 0.7) and for simplicity enforce the
resulting clusters to be linearly separable (see Figure 1(a)).

3.1. Parameter estimation

In the first experiment, we compare the ability of the CM model to accurately identify the
true parameters of the previously defined mixture model. The experiments are conducted in
R together with Stan (Carpenter et al., 2017), using the implementation in Eq. (7). To this
model we let µi ∼ N(2.5, 10) (i.e. centring the prior in between the two clusters in Figure
1(a)), and π ∼ Dirichlet(1, 1). Again for simplicity, we will here use a naive assumption of
known unit covariance, i.e let Σ = I be fixed for all fk. We also let τ = 0.1 be fixed for this
experiment.

In Figure 1(b), we visualise the class predictions resulting from the simulated Concrete
distributed variables zi and Figure 1(c) displays the posterior distribution corresponding
to µi. The figures are based on 10000 posterior draws. The class predictions ĉi are formed
for each data point y through a majority vote, i.e. letting ĉ = k if zk has the highest value
when averaged over all draws.

As illustrated by these figures, the CM model manages to correctly classify the data
points and results in posterior distributions correctly centred around their respective actual
values.

Secondly, we evaluate the Mean-Squared-Error (MSE) between the simulated param-
eters and the true parameter values. This procedure was subsequently repeated instead
using a HMC implementation of the marginalised model in Eq. (3), and a standard Gibbs
sampler using the model in Eq. (4). The sampling was for these two methods carried out
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(a)

Method MSEµ MSEπ Accc Runtime (s)

HMC/CM 0.3853 0.0042 100% 101.8742
HMC/Margin. 0.3848 0.0041 NA 14.03086
Gibbs 0.2705 0.0045 100% 0.67

(b)
τ MSEŷ Leapfrog steps Step size

1 6.2651 15 0.3156
0.1 2.6842 31 0.1123
0.01 2.1293 267 0.0114
0.001 2.0707 1023 0.0015

Table 1: Comparison of actual and simulated parameters. In (a) the Mean Squared Error
(MSE) between actual and true parameters are compared between the CM model
and the current recommended methods for sampling discrete parameters. In (b)
the effect of the temperature parameter τ on the performance of the CM model is
illustrated.

using Stan and JAGS (Plummer, 2004) respectively with the same prior distributions as for
the CM model.

The results of these experiments are collected in Table 1(a) and show that the CM
model performs equivalently to the current standards of simulating. Taking computational
efficiency into account, measured by the sampler run-times in Table 1(a), we observe that
the CM model however is significantly less efficient than both the HMC/marginalisation
combination and the Gibbs sampler.

3.2. Temperature calibration

As previously mentioned in Section 2, the temperature parameter τ in Eq. (1) controls how
closely the Concrete random variable approximates a categorical one hot vector. At the
same time, as was observed in Eq. (7), when τ → 0 the CM model will suffer from similar
singularity problems as observed in the Concrete distribution.

To investigate the effect of the temperature on the CM model, we repeat the experiments
from the previous section, now for varying values of τ . In Table 1(b), we compare the MSE
between actual (in-sample) data points y and fitted values

ŷ = z1µ1 + z2µ2, (8)

where zi, i = 1, 2 denote the simulated Concrete distributed variables. To see the effect on
the computational complexity, we include in this table the average number of leapfrog steps
and the average step size of the underlying NUTS-sampler (Hoffman et al., 2014). We can
from Table 1(b) observe a clear trade-off between predictive performance and computational
cost as the temperature becomes lower.

4. Discussion

We have in this paper demonstrated the use of the Concrete distribution for simulating from
mixed discrete and continuous parameter models. Although further research is needed for
determining the scalability and reliability of the CM model, our experiments indicate that
the model can be seen as an alternative for extending HMC to latent discrete parameter
models.
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As demonstrated in our experiments, the most significant bottleneck for the generali-
sation of the model is the computational complexity resulting from the difficult posterior
geometries created by low temperatures, and by the fact that K parameters are needed for
each observation in the data set in order to model the individual K-dimensional approx-
imated one-hot encoded vectors. This in turn will inevitably affect the scalability of the
model as the number of data points or categories becomes large.
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Appendix A. The Concrete (Gumbel-Softmax) distribution

This section provides a brief introduction to the Concrete (Gumbel-Softmax) distribution
and is based on the results and derivations in (Maddison et al., 2016; Jang et al., 2016).

Let C denote a discrete categorical variable with probability distribution π = (π1, . . . , πK)
for some positive integer K. We here assume that the categories (classes) of C are en-
coded with the integers 1, . . . ,K. Furthermore, let G1, . . . , GK denote K i.i.d.Gumbel(0, 1)-
variables, each having density function

pGi(x) = e−e−x
. (9)

The Gumbel Max trick then uses samples from the variables Gi in order to sample from C
using the following procedure:

1. Generate samples g1, . . . , gK from G1, . . . , GK

2. Let x = argmax
i

(log πi + gi)

Letting X denote the random variable resulting from this procedure, it can be shown Gum-
bel (1954) that P(X = k) = πk, i.e. the distribution of X coincides with the distribution of
C. Now, as the argmax-function can be shown to be problematic to optimise, the idea in
(Maddison et al., 2016) is to approximate the argmax function using the softmax function

softmax(x)i =
exp(xi)∑
j exp(xj)

using the following transformation.

Zi =
exp(log πi +Gi)/τ∑
j=1 exp(log πj +Gj)/τ

. (10)

Here, τ ∈ (0,∞) is referred to as the temperature parameter of the distribution. Now,
as τ → 0, the vector Y = (Z1, . . . , ZK) approaches a one-hot vector, where Zk = 1 is
equivalent to C = k. Conducting the transformation in Eq. (10) then yields the Concrete
or Gumbel-Softmax distribution with density function

pZ(z1, . . . , zK) = Γ(K)τK−1
( K∑

i=1

πi/z
τ
i

)−K
K∏
i=1

(πi/z
τ+1
i ), (11)

with parameters π, τ , zi ∈ (0, 1) and with
∑

zi = 1.
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Appendix B. Theoretical results

B.1. The exploding gradients problem of the CM model

In this section we will show that the CM model Eq. (2) suffers from the problem of exploding
gradients but that these problems are removed if the transformed model in Eq. (7) instead
is used. We also show that the transformed model however introduces a new problem with
exploding gradients in the parameter τ .

To this end, we first observe that the log-posterior of the CM model in Eq. (2) can for
a single observation x and up to the additive constants C1, C2, be written as

lCM(z1, . . . , zK) = log
( K∑

k=1

zkfk(x, θk)
)
+ log(pZ(z)) + C1, (12)

= log
( K∑

k=1

zkfk(x, θk)
)
+ log

(
Γ(K)τK−1

( K∑
k=1

πk\zτk
)−K

K∏
i=1

( πk

zτ+1
k

))
+ C1

(13)

= log
( K∑

k=1

zkfk(x, θk)
)
−K log

( K∑
k=1

πk
zτk

)
+

K∑
k=1

log
( πk

zτ+1
k

)
+ C2. (14)

To see that the CM model suffers from exploding gradients, we observe that the partial
derivatives of lCM with respect to z, π can be written as follows,

∂lCM

∂zj
=

fj(x, θj)∑K
k=1 zkfk(x, θk)

− K∑K
k=1

πk
zτi

·
(−πjτ

zτ+1
j

)
+

1
πj

zτ+1
j

·
(
− (τ + 1)πj

zτ+2
j

)

=
fj(x, θj)∑K

k=1 zkfk(x, θk)
+

Kπjτ∑K
k=1

πk
zτi

·
( 1

zτ+1
j

)
−

zτ+1
j

πj
· (τ + 1)πj

zτ+2
j

=
fj(x, θj)∑K

k=1 zkfk(x, θk)
+

Kπjτ∑K
k=1

πi
zτi

· 1

zτ+1
j

− τ + 1

zj
,

(15)

and,

∂lCM

∂πk
=

−K∑K
k=1

πk
zτj

·
( 1

zτj

)
+

zτ+1
j

πj
·
( 1

zτ+1
k

)
=

1

πj
− K∑K

k=1
πk
zτk

· 1

zτj

(16)

Observing that 1
zj

→ ∞ as zj → 0, we can conclude from the expressions (15)-(16) that the

CM model indeed will suffer from exploding gradients when z approaches a one-hot vector.

Conversely, the log-posterior of the transformed CM model in Eq. (7) can similarly be
written,
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lCGM(u1, . . . , uK) = log
( K∑

k=1

exp(uk
τ )

1 +
∑K−1

i=1 exp(ui
τ )

fk(x, θk)
)
+ log(pU (u)) + C3

= log
( K∑

k=1

exp(uk
τ )

1 +
∑K−1

i=1 exp(ui
τ )

fk(x, θk)
)

+
K∑
k=1

log
(
exp(πk − uk)

)
−K log

( K∑
k=1

exp(πk − uk)
)
+ C4

= log
( K∑

k=1

exp(uk
τ )

1 +
∑K−1

i=1 exp(ui
τ )

fk(x, θk)
)
+

K∑
k=1

(πk − uk)−K log
( K∑

k=1

exp(πk − uk)
)
+ C4.

(17)

The corresponding partial derivatives with respect to π are here given by

∂lCGM

∂πj
= πj −K

exp(πj − uj)∑K
k=1 exp(πk − uk)

. (18)

Since, for any i,
exp(πj−uj)∑K
k=1 exp(πi−ui)

≤ 1, it is clear that our transformation alleviates the

exploding gradients problem in the π-directions. Now, for the partial derivatives with
respect to u, we first focus on the first term of Eq. (17) and denote this by s(u). Furthermore,
we use the fact that u1 = 0 to receive the following simplifying notation

1 +
K−1∑
k=1

exp(
uk
τ
) =

K∑
k=1

exp(
uk
τ
). (19)

The partial derivatives of s(u) can then be computed as follows:

∂s

∂uj
=

1∑K
k=1

exp(
uk
τ
)

1+
∑K−1

i=1 exp(
ui
τ
)
fk(x, θk)

·

( 1
τ exp(

uj

τ )
(∑K

k=1 exp(
uk
τ )
)
− exp (

uj

τ ) 1τ exp (
uj

τ )

(
∑K

k=1 exp(
uk
τ ))2

fj(x, θj)

−
∑
i ̸=j

exp(ui
τ )(∑K

k=1 exp(
uk
τ )
)2 1τ exp (

uj
τ
)fi(x, θi)

)

=
1∑K

k=1
exp(

uk
τ
)∑K

k=1 exp(
uk
τ
)
fk(x, θk)

·

(
1
τ exp(

uj

τ )∑K
k=1 exp(

uk
τ )

(
(1−

exp(
uj

τ )∑K
k=1 exp(

uk
τ )

)fj(x, θj)

−
∑
i ̸=j

exp(ui
τ )∑K

k=1 exp(
uk
τ )

fi(x, θi)
))
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=
1
τ exp(

uj

τ )∑K
k=1 exp(

uk
τ )fk(x, θk)

·

(∑
i ̸=j exp(

ui
τ )∑K

k=1 exp(
uk
τ )

fj(x, θj)−
∑

i ̸=j exp(
ui
τ )fi(x, θi)∑K

k=1 exp(
uk
τ )

)

=
1
τ exp(

uj

τ )∑K
k=1 exp(

uk
τ )fk(x, θk)

·
(∑

i ̸=j fj(x, θj)− fi(x, θi)∑K
k=1 exp(

uk
τ )

)
=

1
τ exp(

uj

τ )∑K
k=1 exp(

uk
τ )

·
(∑

i ̸=j fj(x, θj)− fi(x, θi)∑K
k=1 exp(

uk
τ )fk(x, θk)

)
.

(20)

Since the corresponding partial derivatives for the remaining terms of Eq. (17) can be written

− uj −K
− exp(πj − uj)∑K
k=1 exp(πk − uk)

= −uj +K
exp(πj − uj)∑K
k=1 exp(πk − uk)

, (21)

we thus receive the following expression for ∂lCGM
∂uj

1
τ exp(

uj

τ )∑K
k=1 exp(

uk
τ )

·
(∑

i ̸=j fj(x, θj)− fi(x, θi)∑K
k=1 exp(

uk
τ )fk(x, θk)

)
− uj +K

exp(πj − uj)∑K
k=1 exp(πk − uk)

. (22)

Lastly, since the following upper bound can easily be shown

∣∣∣∂lCGM

∂uj

∣∣∣ ≤ ∣∣∣1
τ

∣∣∣ · ∣∣∣(∑
i ̸=j

fj(x, θj)− fi(x, θi)
)∣∣∣ · ∣∣∣ K∑

k=1

exp(
uk
τ
)fk(x, θk)

∣∣∣−1
, (23)

we can conclude that the transformation to the CM-model also solves the problem of ex-
ploding gradients in the u-direction. We can from Eq. (17) however observe that ∂lCGM

∂uj

becomes unbounded as τ → 0 for which exp(
uj

τ ) → ∞ for all i. Thus, the transformation to
the CM model introduces an equivalent problem of exploding gradients in the τ -direction.
Using the transformed CM model with HMC, we hence receive a trade-off between compu-
tational stability and the distance from the Concrete approximation to the true underlying
categorical distribution.

B.2. Proof of Eq. (10) (transformation of the CM model)

We will in this section prove that the transformation in Eq. (10) indeed transforms the CM
model to the unconstrained model in Eq. (7). For this purpose, let Z = (Z1, . . . , ZK) be
Concrete distributed with parameter τ fixed. We then define the transformation H(Z)
component-wise as follows

Ui = H(Z)i = τ(logZi − logZK), i = 1, . . . ,K. (24)

It can be easily confirmed that this transformation is one-to-one and that

Zi = h−1(U) =
exp(Ui

τ )

1 +
∑K−1

i=1 exp(Ui
τ )

(25)
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Now, by the change of variables formula,

( K∑
k=1

zkfk(x, θk)
)
p(θ)pZ(z) =

( K∑
k=1

h−1(u)fk(x, θk)
)
p(θ)pZ(h

−1(u)) · |J |

=
( K∑

k=1

exp(uk
τ )

1 +
∑K−1

j=1 exp(
uj

τ )
fk(x, θk)

)
p(θ)pZ(h

−1(u)) · |J |,

(26)

where |J | denotes the determinant of the Jacobian J corresponding to the transformation.
Now, when constructing the Concrete distribution, Jang et al. (2016) show that letting
U = (U1, . . . , UK) follow the Centred Gumbel distribution defined in Eq. (5), the following
result holds

pZ(z) = pU (h(z)) · |J ′|,

where J ′ again denotes the corresponding Jacobian. Since the transformation h is one to
one, the inverse of J ′ exists and hence

pU (u) =
1

|J ′|
· pZ(h−1(u)) = |J ′−1| · pZ(h−1(u)). (27)

Comparing this identity with Eq. (26) we see that J = J ′−1 and in turn

( K∑
k=1

zkfk(x, θk)
)
p(θ)pZ(z) =

( K∑
i=1

exp(ui
τ )

1 +
∑K−1

j=1 exp(
uj

τ )
.fk(x, θk)

)
p(θ)pU (u). (28)

This completes the proof.
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