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Community Detection in Large-Scale Complex Networks via
Structural Entropy Game

Anonymous Author(s)

ABSTRACT
Community detection is a critical task in graph theory, social net-
work analysis, and bioinformatics, where communities are defined
as clusters of densely interconnected nodes. However, detecting
communities in large-scale networks with millions of nodes and
billions of edges remains challenging due to the inefficiency and un-
reliability of existing methods. Moreover, many current approaches
are limited to specific graph types, such as unweighted or undi-
rected graphs, reducing their broader applicability. To address these
limitations, we propose a novel heuristic community detection al-
gorithm inspired by game theory, termed CoDeSEG, which iden-
tifies communities by minimizing the network’s two-dimensional
(2D) structural entropy. In this potential game model, nodes de-
cide whether to stay or transfer to another community based on
a strategy that maximizes a 2D structural entropy utility function.
Additionally, we introduce a structural entropy-based node overlap-
ping heuristic to detect overlapping communities. The algorithm
operates with near-linear time complexity, enabling efficient com-
munity detection in large-scale networks. Experimental results
on real-world networks demonstrate that CoDeSEG is the fastest
method available and achieves state-of-the-art performance in over-
lapping normalized mutual information (ONMI) and F1 score.

KEYWORDS
Community Detection, Structural Entropy, Potential Games, Large-
scale Networks.
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1 INTRODUCTION
Community refers to a set of closely related nodes within a network,
also known as a cluster or module in literature [14, 16]. Community
detection is a task that reveals fundamental structural information
within real-world networks, providing valuable insights by identi-
fying tightly knit subgroups. In drug discovery, for instance, detect-
ing protein functional groups facilitates the identification of novel,
valuable proteins [32]. In social event detection, analyzing message
groups within social streams helps to understand the development
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Figure 1: Illustration of non-overlapping and overlapping
community structures in a network.

trends of events and analyze public sentiment [8]. Community de-
tection also plays a role in recent retrieval-augmented generation
(RAG) applications, like GraphRAG [12]. Furthermore, commu-
nity detection has extensive applications across various domains,
including recommender systems [4], medicine [3], biomedical re-
search [33, 40], social networks [15, 38], and more.

As illustrated in Figure 1(b), most early research on community
detection has focused on disjoint clusters, where each node belongs
to a single community, and there is no overlap between communities
[7, 14, 39, 43, 45]. However, nodes often participate in multiple com-
munities inmany real-world applications (as depicted in Figure 1(c)),
sparking a growing interest in detecting overlapping communities
[22, 37, 48]. Overlapping community detection typically entails
higher computational costs and time overhead than disjoint com-
munity detection. In the past two decades, numerous algorithms for
overlapping community detection have been proposed, including
those based on modularity [10], label propagation [28, 49], seed
expansion [19, 47], non-negative matrix factorization [50], spectral
clustering [46]. However, existing overlapping community detec-
tion methods [9, 17, 24, 50] are not capable of large-scale networks
with millions of nodes and billions of edges. These algorithms often
require several days, or even longer, to achieve satisfactory results.

Many well-established and widely-used community detection
methods for large-scale networks are typically limited to specific
types of graphs, such as unweighted or undirected graphs, thereby
restricting their applicability. For instance, algorithms like Big-
clam [50] and SLPA [49] detect overlapping communities in un-
weighted and undirected graphs. Methods like Louvain [7], Lei-
den [43], and LPA [39] focus on detecting non-overlapping com-
munities in undirected graphs. Detecting overlapping communities
in weighted, directed, large-scale networks remains a significant
challenge.

In recent years, deep learning-based community detection mod-
els have achieved promising results by learning node embeddings
and detecting communities through node clustering or classifica-
tion. However, due to the learning and encoding processes of deep

1
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models, these methods demonstrate inefficiencies when applied to
large-scale networks[20, 42].

To tackle these challenges, we propose a novel algorithm named
CoDeSEG (Community Detection via Structural Entropy Game)
for detecting overlapping communities in large-scale complex net-
works. The proposed algorithm follows the game-theoretic inspired
community detection framework [9], named as community for-
mation game. In the game, nodes join or leave communities by
maximizing their utility function. The Nash equilibrium of the game
directly corresponds to the network’s community structure, with
each node’s community memberships at equilibrium serving as the
output of the community detection algorithm.

The community-formation-game-based algorithm shows its ef-
fectiveness and efficiency in large-scale networks. Lyu et al. pro-
pose the FOX [31] algorithm, which measures the closeness be-
tween nodes and communities by approximating the number of
triangles in communities. Ferdowsi et al. introduce a two-phase
non-cooperative game model for community detection, where non-
overlapping communities are first identified using a local interac-
tion utility function, followed by identifying overlapping nodes
based on the payoffs derived from community memberships [13].

In contrast to these methods, we define the potential function as
the 2-dimensional structural entropy (2D SE) [26] of the network.
We further derive an efficient node utility function from the poten-
tial function, which can be computed in an approximately constant
time. By applying the node utility to the community formation
game, we detect communities in large-scale networks efficiently.
We also present a structural entropy-based node overlap heuristic
function to detect overlapping communities, which can leverage
the intermediate results of the community formation game to speed
up the algorithm. Moreover, the proposed algorithms can apply
to various graphs, whether unweighted, weighted, undirected, or
directed graphs, to produce stable, reliable community structures
in a unified framework. To our knowledge, CoDeSEG is the fastest
known algorithm for large-scale network community detection. The
algorithm’s simplicity also supports straightforward parallelization,
further enhancing its efficiency by computing the node strategies
concurrently. Experiments conducted on several real-world net-
works show that our proposed algorithm consistently outperforms
baselines in terms of performance. Moreover, the time overhead
of CoDeSEG is significantly lower than that of the second-fastest
baseline algorithm. The codes of CoDeSEG and baselines, along
with datasets, are publicly available on GitHub1. In summary, the
contributions of this paper are as follows:
• We propose a novel heuristic algorithm for community de-

tection in large-scale networks, termed CoDeSEG. This algorithm
introduces two-dimensional structural entropy to define the poten-
tial function of the community formation game and derives a node
utility function with nearly constant time complexity.
•We design an efficient and effective two-stage algorithm for de-

tecting overlapping communities in diverse graphs. Our algorithm
identifies non-overlapping communities through the proposed com-
munity formation game and subsequently detects overlapping com-
munities rapidly using a node overlap heuristic function based on
structural entropy.

1https://anonymous.4open.science/r/CoDeSEG-6B06

• Experimental results on publicly available large-scale real-
world networks demonstrate that the CoDeSEG algorithm outper-
forms state-of-the-art community detection algorithms regarding
overlapping NMI and F1 scores, significantly reducing detection
time. Compared to the fastest baseline method, CoDeSEG achieves
an average speedup of 45 times in detection time.

2 PRELIMINARIES
In this section, we summarize the concepts related to the back-
ground of our work, including community detection, community
formation games, and structural entropy. We summarize the glos-
sary notations in Appendix A.

2.1 Community Detection
The goal of community detection is to identify communities such
that the density of intra-community edges is higher than the density
of inter-community edges, even when nodes belong to multiple
communities. Given a graph 𝐺 = (V, E), where V is the set of
nodes (vertices), E is the set of edges (links) connecting the nodes,
community detection algorithms find a set of communities P =

{C1, C2, . . . , C𝑘 }, where each C𝑖 ⊆ V is a network community. In an
overlapping community detection task, nodes 𝑥 ∈ V can belong to
more than one community.

2.2 Community Formation Game
Chen et al. [9] propose a game-theoretic-based community de-
tection framework, named community formation game, that
simulates the strategy selection and interactions of nodes within a
network to identify community structures. In the game, each node
𝑥 ∈ V is treated as a rational participant (player), consistently choos-
ing the best strategy (community) that maximizes utility function.
When the game converges to a Nash equilibrium, it corresponds
to the communities the algorithm detects. We present relevant
definitions, as follows:

Definition 2.1 (Strategy Profile). A strategy profile is a combina-
tion of strategies chosen by all players in the game. If there are
𝑛 players in the game, and each player 𝑖 has a set of strategies 𝑆𝑖 ,
then a strategy profile 𝑠 is a tuple 𝒔 = (𝑠1, 𝑠2, . . . , 𝑠𝑛), where 𝑠𝑖 ∈ 𝑆𝑖
is the strategy chosen by player 𝑖 .

Definition 2.2 (Utility Function). A utility (payoff) function rep-
resents the benefit a player receives based on the chosen strategies.
For a player 𝑖 , the utility function is denoted by 𝑢𝑖 : 𝑆 → R, where
𝑆 is the set of all possible strategy profiles. The function 𝑢𝑖 (𝑠) gives
the payoff to player 𝑖 when the strategy profile 𝒔 is played.

Definition 2.3 (Potential Game). There exists a potential function
𝜑 : 𝑆 → R, for any player 𝑖 and any two strategy profiles 𝒔 and 𝒔′

differing only in the strategy of player 𝑖 , the change in the potential
function equals the change of player 𝑖’s payoff:

𝜑 (𝒔′) − 𝜑 (𝒔) = 𝑢𝑖 (𝑠′) − 𝑢𝑖 (𝑠) (1)

where 𝑢𝑖 is the utility function for player 𝑖 . Algorithms for learning
in potential games, such as best response dynamics, can converge
to a Nash equilibrium state, corresponding to the communities the
algorithm identifies.

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Community Detection in Large-Scale Complex Networks via Structural Entropy Game WWW ’25, April 28–May 2, 2025, Sydney, Australia.

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

2.3 Structural Entropy
Structural entropy (SE) quantifies uncertainty and information con-
tent in complex networks, with lower values indicating more or-
dered structures and higher values reflecting greater disorder [26].
SE is defined on an encoding tree, where the encoding tree T of
a graph 𝐺 = (V, E) represents a hierarchical partition of 𝐺 and
satisfies the following conditions:
(1) Each node 𝛼 in T corresponds to a subset of nodes𝑇𝛼 ⊆ V . The

root node 𝜆 of T contains the entire set of nodes, i.e., 𝑇𝜆 = V .
Each leaf node 𝛾 in T is associated with exactly one node from
the graph 𝐺 , meaning 𝑇𝛾 = {𝑥}, where 𝑥 ∈ V .

(2) For each node 𝛼 in T , denote all its children as 𝛽1, . . . , 𝛽𝑘 , then
𝑇𝛽1 , . . . ,𝑇𝛽𝑘 is a partition of 𝑇𝛼 .

(3) For each node 𝛼 in T , denote its height as ℎ(𝛼). Let ℎ(𝛾) = 0
and ℎ(𝛼) = ℎ(𝛼) + 1, where 𝛼 is the parent of 𝛼 . The height of
T , ℎ(T ) = max

𝛼∈T
ℎ(𝛼).

The structural entropy (SE) of graph 𝐺 on encoding tree T is
defined as:

HT (𝐺) = −
∑︁

𝛼∈T ,𝛼≠𝜆

𝑔𝛼

𝑣𝜆
log

𝑣𝛼

𝑣𝛼
, (2)

where 𝑔𝛼 is the summation of the degrees (or weights) of the cut
edges of 𝑇𝛼 (edges that have exactly one endpoint in 𝑇𝛼 ). 𝑣𝛼 , 𝑣𝛼 ,
and 𝑣𝜆 refer to the volumes of 𝑇𝛼 , 𝑇𝛼 , and 𝑇𝜆 , respectively.

The 𝑑-dimensional structural entropy of 𝐺 ,

H(𝑑 ) (𝐺) = min
∀T :ℎ (T )=𝑑

{HT (𝐺)}, (3)

is realized by acquiring an optimal encoding tree of height 𝑑 , in
which the disturbance derived from noise or stochastic variation is
minimized.

Communities within a network can be identified by minimizing
its two-dimensional structural entropy. SupposeP = {C1, C2, . . . , C𝑘 }
is a partition of the network𝐺 , then the 2D structural entropy of𝐺
is:

H2 (P) = −
∑︁
c∈P

(
𝑔c

𝑣𝜆
log

𝑣c

𝑣𝜆
+

∑︁
𝑥∈c

𝑑𝑥

𝑣𝜆
log

𝑑𝑥

𝑣c

)
, (4)

where 𝑑𝑥 is the degree of node 𝑥 , 𝑣𝜆 is the volume of the network.

3 METHODOLOGY
This section introduces the proposed algorithm CoDeSEG. Sec-
tion 3.1 presents the structural entropy-based heuristic for the com-
munity formation game, followed by Section 3.2, which details key
strategy computations. The full community detection algorithm is
outlined in Section 3.3, and Section 3.4 analyzes its time complexity.

3.1 Structural Entropy based Heuristic Function
The proposed algorithmmodels community formation as a potential
game, where the potential function is the network’s 2D structural
entropyH2 (P). Each node selects the community thatmost reduces
this entropy as its optimal strategy. When the game converges to
a Nash equilibrium, yielding communities with a minimized two-
dimensional structural entropy.

Consider a node in 𝐺 adopting a strategy, such as altering its
community membership, resulting in a new partition denoted byP ′.

We define the heuristic function Δ as the change in the potential
function.

Δ = H2 (P) −H2 (P ′) . (5)
In the disjoint community formation game, each node aims to

maximize the value of Δ by moving to the best adjacent community,
resulting in a partition with reduced 2D structural entropy. A node
can choose from three strategies: Stay, Leave and be alone, and
Transfer to another community.

Stay: Node 𝑥 decides to stay in the current community, then the
partition P remains unchanged, P ′ = P . The value of heuristic
function ΔS is:

ΔS = H2 (P) −H2 (P ′) = 0. (6)

Leave and be alone: Suppose the original partition is P =

{C1, C2, . . . , C𝑘 } and when node 𝑥 leaves its community C𝑘 , result-
ing a new partitionP ′ = {C1, C2, . . . , C′𝑘 , {𝑥}}, where C𝑘 = C′

𝑘
∪{𝑥}.

The value of heuristic function ΔL (𝑥, C𝑘 ) is:
ΔL (𝑥, C𝑘 ) =H2 (P) −H2 (P ′)

=H2 (C𝑘 ) −H2 (C′
𝑘
) −H2 ({𝑥}) .

(7)

The calculation details for Equation (7) are provided in Section 3.2.
If community C𝑘 is a singleton, then ΔL (𝑥, C𝑘 ) = 0.

Transfer to another community: Suppose 𝑥 transfers from C1
to C𝑘 , the original partition isP = {C1, C2, . . . , C𝑘 } and the new par-
tition is P ′ = {C′1, C2, . . . , C′𝑘 }, where C

′
1 = C1\{𝑥}, C′𝑘 = C𝑘 ∪ {𝑥}.

The transfer strategy can be seen as a composite transformation
of two steps. Firstly, node 𝑥 leaves C1 and does not join any com-
munity, which yields an intermediate P𝑚 = {C′1, C2, . . . , C𝑘 , {𝑥}}.
Secondly, node 𝑥 join C𝑘 , resulting in new partitionP . We can easily
figure out that the second step is an inverse transformation of the
Leave and be alone strategy. Therefore, the value of the heuristic
function ΔT (𝑥, C1, , C𝑘 ) can be expressed as:

ΔT (𝑥, C1, C𝑘 ) = H2 (P) −H2 (P ′)
= (H2 (P) −H2 (P𝑚)) + (H2 (P𝑚) −H2 (P ′))
= ΔL (𝑥, C1) − ΔL (𝑥, C𝑘 ) .

(8)

Since a node 𝑥 may have several adjective target communities, we
denote the best-transferring with max ΔT as ΔT (𝑥, Cbest).

In our community formation game, a node will only join a new
community if it decreases the network’s 2D structural entropy. Con-
sequently, a node will prefer to stay in its current community unless
another community offers a further reduction in 2D structural en-
tropy. Thus, Leave and be alone strategy is optional. Therefore, in
our disjoint community formation game algorithm, node 𝑥 selects
its movement strategy according to the following formula:

𝑆 (𝑥) = max(ΔS,ΔT (𝑥, Cbest)) . (9)

After identifying disjoint communities, we propose using a struc-
tural entropy heuristic to determine whether a node 𝑥 should over-
lap between communities.

Overlap nodes: Suppose the partition is P = {C1, C2, . . . , C𝑘 }
and a node 𝑥 ∉ C𝑘 . If we copy 𝑥 to community C𝑘 , we create a new
overlapping partition P ′ = {C1, C2, . . . , C′𝑘 }, where C

′
𝑘
= C𝑘 ∪ {𝑥}.

Since the copy action does not affect the origin community, we
define the overlapping heuristic function as follows:

ΔO (𝑥, C𝑘 ) = H2 (P) −H2 (P ′) = −Δ𝐿 (𝑥, C′𝑘 ) . (10)
3
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Figure 2: Overview of the proposed CoDeSEG algorithm.

If ΔO (𝑥, C𝑘 ) > 0, it means the overlap action reduces the partition’s
structural entropy. However, this criterion may allow excessive
node overlapping. To address this, we propose using the average
value of ΔL (𝑥𝑖 , C𝑘 ) for nodes in the community C𝑘 as a threshold.
Nodes can only overlap with C𝑘 if their ΔL (𝑥, C𝑘 ) exceeds this
threshold.

3.2 Efficient computation of ΔL(𝑥, C𝑘 )
The formulas for the strategies above highlight that efficiently
completing the community formation game depends on quickly
computing the node leave strategy. By deriving Equation (7), we
obtain an efficient formula for computing ΔL (𝑥, C𝑘 ):

ΔL (𝑥, C𝑘 ) = H2 (P) −H2 (P ′)
=H2 (C𝑘 ) −H2 (C′

𝑘
) −H2 ({𝑥})

=
𝑔c′

𝑘

𝑣𝜆
log

𝑣c′
𝑘

𝑣𝜆
−
𝑔c𝑘

𝑣𝜆
log

𝑣c𝑘

𝑣𝜆
+ 𝑑𝑥
𝑣𝜆

log
𝑣c𝑘

𝑣𝜆
+
𝑣c′

𝑘

𝑣𝜆
log

𝑣c𝑘

𝑣c′
𝑘

,

(11)

where 𝑣c′
𝑘
represents the volume of C′

𝑘
, and 𝑔c′

𝑘
denotes the sum of

the degrees (weights) of the cut edges of C′
𝑘
. The detailed derivation

is provided in Appendix B.
By caching all community volumes {𝑣c1 , 𝑣c2 , . . . , 𝑣c𝑘 } and cut

edge summations {𝑔c1 , 𝑔c2 , . . . , 𝑔c𝑘 }, computing 𝑣c′
𝑘
and𝑔c′

𝑘
becomes

straightforward, allowing us to calculate ΔL (𝑥, C𝑘 ) in constant time
complexity, 𝑂 (1). For an undirected graph, 𝑣c′

𝑘
and 𝑔c′

𝑘
can be com-

puted using the following equations:

𝑣c′
𝑘
= 𝑣c𝑘 − 𝑑𝑥 , 𝑔c′

𝑘
= 𝑔c𝑘 + 2𝑑 in𝑥 − 𝑑𝑥 , (12)

where 𝑑 in𝑥 denotes the sum of edge weights between node 𝑥 and its
neighbor nodes within community C𝑘 .

The proposed strategies can be easily adapted for directed net-
works by separately considering the in-degree and out-degree of
node 𝑥 relative to community C𝑘 . Consequently, Equation (12) is
updated accordingly:

𝑣c′
𝑘
= 𝑣c𝑘 − 𝑑𝑥 , 𝑔c′

𝑘
= 𝑔c𝑘 + 𝑑 in𝑥 + 𝑑out𝑥 − 𝑑𝑥 . (13)

Once a node 𝑥 is transferred to a new community, we will up-
date the statistics of the target and source communities using the
following formulas,

𝑣c𝑡 ← 𝑣c𝑡 + 𝑑𝑥 , 𝑣c𝑘 ← 𝑣c′
𝑘
,

𝑔c𝑡 ← 𝑔c𝑡 − 2𝑑 in𝑥 + 𝑑𝑥 , 𝑔c𝑘 ← 𝑔c′
𝑘
.

(14)

For directed graphs, we can easily derive similar formulas for up-
dating community statistics.

3.3 Community Detection Algorithm
After developing effective methodologies for community formation
games, we introduce a new two-stage algorithm for overlapping
community detection. Figure 2 provides an overview of this algo-
rithm. In the non-overlapping detection phase, each node 𝑥 sequen-
tially implements the best strategy from Equation (9) until all nodes
are assigned to their communities. In the overlapping phase, nodes
𝑥 can overlap multiple communities if the overlap action meets the
specified threshold.

3.3.1 Non-overlapping Community Detection. We propose a non-
overlapping community detection algorithm designed to minimize
2D structural entropy using a potential game, where the optimal
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strategy is computed by Equation (9). Once the game reaches a Nash
equilibrium, the communities stabilize and no longer change. The
pseudo-code of the proposed algorithm is provided in Algorithm 1.

In Algorithm 1, we initialize each node as an individual cluster
and compute their volumes, setting the cut edges’ summations as
the node degrees (lines 1-3). In a directed network, the volumes of
these communities are node in-degrees, and the summations of cut
edges are node out-degrees.

The heart of our algorithm lies in an iterative loop of community
formation games. We evaluate every node 𝑥 in each iteration and
determine the optimal strategy for 𝑥 to significantly minimize the
2D structural entropy of the graph (lines 7-17). To get the best
strategy for a node, we firstly compute the heuristic ΔL (𝑥, C𝑥 ) that
provides a measure of the impact when node 𝑥 leaves its current
community. The maximum heuristic function value Δmax is initially
set to ΔL (𝑥, C𝑥 ), and the target community index 𝑡 is set to 𝑡𝑐
indicating stay in the current community (lines 7-11). Then, we
evaluate each adjacent community C𝑘 to determine if moving node
𝑥 to any of these communities would result in a greater heuristic
function value (lines 12-17). For each C𝑘 , we compute the transfer
heuristic ΔT (𝑥, C𝑥 , C𝑘 ) and compare it to the maximum heuristic
function value. If moving to an adjacent community C𝑘 offers a
larger heuristic function value, we update Δmax and set 𝑡 to the

Algorithm 1: Non-overlapping Community Detection.
Input: Graph 𝐺 = (V, E).
Output: Non-overlapping communities (partition) P of 𝐺 .

1 P ← Each node as an individual community.
2 Initialize community volumes {𝑣c1 , 𝑣c2 , . . . , 𝑣c𝑛 }.
3 Initialize cut edge summations {𝑔c1 , 𝑔c2 , . . . , 𝑔c𝑛 }.
4 while true do
5 Δsum ← 0, 𝑀 ← 0
6 for node 𝑥 ∈ V do
7 C𝑥 ← Community contains 𝑥
8 𝑡𝑐 ← Index of community C𝑥
9 𝑡 ← 𝑡𝑐 ⊲ 𝑡𝑐 means stay in C𝑥

10 ΔL (𝑥, C𝑥 ) ← Eq.11
11 Δmax ← ΔL (𝑥, C𝑥 )
12 for 𝑘-th adjacent community C𝑘 of node 𝑥 do
13 ΔL (𝑥, C𝑘 ) ← Eq.11
14 ΔT (𝑥, C𝑥 , C𝑘 ) ←Eq.8
15 if ΔT (𝑥, C𝑥 , C𝑘 ) > Δmax then
16 Δmax ← ΔT (𝑥, C𝑥 , C𝑘 )
17 𝑡 ← 𝑘

18 if 𝑡 ≠ 𝑡𝑐 then
19 Transfer 𝑥 from C𝑥 to C𝑡
20 Update statistics of C𝑥 , C𝑡 by Eq.14
21 𝑀 ← 𝑀 + 1.
22 Δsum ← Δsum + Δmax

23 if 𝑀 = 0 or Eq. 15 is satisfied then
24 Break

25 return P

Algorithm 2: Overlapping community detection.
Input: Non-overlapping communities P .
Output: Overlapping communities P𝑜

1 P𝑜 ← P
2 for node 𝑥 in V do
3 for 𝑘-th adjacent community C𝑘 of node 𝑥 do
4 ΔO (𝑥, C𝑘 ) ← Eq.10
5 if ΔO (𝑥, C𝑘 ) > 𝜏𝑜 then
6 Overlap node 𝑥 to C𝑘 in P𝑜

7 return P𝑜

index of community C𝑘 (lines 15-17). Finally, we find the optima
index 𝑡 and the maximum heuristic function value Δmax.

Suppose the strategy indicates that node 𝑥 should move to an-
other community. We transfer 𝑥 from its current community C𝑥
to the target community C𝑡 (line 19) and update the statistics of
the source and target communities, such as adjusting community
volumes and cut edge summations via Equation (14) (line 20).

At the end of each iteration, if all nodes choose to stay in their
current community (i.e.,𝑀 = 0), the algorithm is considered con-
verged. In practice, we introduce a stopping criterion: if the average
of ΔT decreases significantly compared to the initial average node
entropy, it suggests that further adjustments will have little im-
pact on improving the community structure. Formally, the stopping
criterion is defined as:

Δ𝑠𝑢𝑚
𝑀
≤ 𝜏𝑛

|𝑉 |
∑︁
𝑥∈𝑉
−𝑑𝑥
𝑣𝜆
· log

𝑑𝑥

𝑣𝜆
, (15)

where Δ𝑠𝑢𝑚 represents the change in the graph’s 2D structural
entropy during the current iteration, 𝑀 denotes the number of
nodes that changed communities, and 𝜏𝑛 is a hyper-parameter, with
a range of (0, 1). In the end, our algorithm outputs the partition P ,
representing the final assignment of nodes into non-overlapping
communities.

3.3.2 Overlapping Community Detection. The overlapping commu-
nity detection algorithm begins with a non-overlapping partitionP
of the network𝐺 . The goal of the overlapping community detection
(Algorithm 2) is to generate a set of overlapping communities P𝑜

of𝐺 . Initially, P𝑜 is identical to P . For each node 𝑥 in the network,
the algorithm iterates over all its adjacent communities C𝑘 . It com-
putes the overlapping heuristic function ΔO (𝑥, C𝑘 ). If the heuristic
function exceeds the overlap threshold 𝜏𝑜 , we overlap node 𝑥 to
community C𝑘 . We define the overlap threshold 𝜏𝑜 as the average
of node heuristic function values,

𝜏𝑜 =
1
|C𝑘 |

∑︁
𝑥𝑖 ∈C𝑘

−Δ𝐿 (𝑥𝑖 , C𝑘 ) . (16)

The iterative process ensures that nodes overlap in communities,
significantly reducing graph 2D structural entropy.

3.4 Time Complexity
The time complexity of the proposed community detection algo-
rithm is 𝑂 (𝐼 · 𝑑max · 𝑁 ), where 𝑁 denotes the number of nodes in
the graph, 𝑑max represents the maximum degree of any node, and 𝐼

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW ’25, April 28–May 2, 2025, Sydney, Australia. Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

is the number of iterations required for the algorithm to converge
to a stable partition.

In the non-overlapping detection phase (Algorithm 1), the algo-
rithm initially sets each node as an individual cluster and initializes
community volumes and cut edge summations, which takes 𝑂 (𝑁 )
time. For each node, the best strategy computation for each node
depends on its degree, taking 𝑂 (𝑑avg) time, since we can compute
ΔL (𝑥,𝐶) in 𝑂 (1) time (Section 3.2). Therefore, evaluating and up-
dating all nodes in one iteration requires𝑂 (𝑑avg ·𝑁 ). Overall, given
that the algorithm runs for 𝐼 iterations, the total time complexity
is 𝑂 (𝐼 · 𝑑avg · 𝑁 ). This complexity indicates that the algorithm’s
performance scales linearly with the number of nodes and their av-
erage degree, with the number of iterations needed for convergence
influencing the overall computational effort. In the overlapping
community detection phase, the algorithm’s time complexity is
𝑂 (𝑑avg · 𝑁 ). This complexity arises because each node is processed
by iterating over its adjacent communities.

Owing to each node’s greedy selection of the most suitable com-
munity, our algorithm converges quickly, typically in fewer than
10 iterations (see the experiment in section 4.4). Moreover, in large-
scale real-world networks, 𝑑avg ≪ 𝑁 , which reduces the algo-
rithm’s complexity to almost𝑂 (𝑁 ) for many networks. This allows
our algorithm to detect overlapping communities on graphs with
millions of nodes in just seconds.

3.5 Parallelism Implementation
Parallelization can fully exploit the multi-core architecture of mod-
ern CPUs, significantly reducing the algorithm’s runtime. The pro-
posed algorithm is readily parallelizable. In our parallelized CoDe-
SEG algorithm, each node in different threads independently calcu-
lates the optimal strategy based on the current partition. During the
execution of the movement strategy, a mutex lock ensures the cor-
rect update of statistics such as 𝐶𝑘 and 𝑔𝑐 . It is crucial to note that
when the volume and cut of a community are concurrently updated
by multiple threads, the increments must be recalculated. However,
it is worth mentioning that as the algorithm progresses, the number
of nodes requiring movement decreases sharply, thereby enhancing
the acceleration effect of parallelism.

During the overlapping community detection phase, our algo-
rithm is inherently parallelizable. A node’s inclusion in an overlap-
ping community is determined by the change in entropy resulting
from its addition, which depends only on the outcomes of non-
overlapping community detection and the node’s connections to
those communities. This allows the overlapping strategies for each
node to be calculated concurrently. Experiments in section 4.5 show
that parallel CoDeSEG can significantly reduce the run time on
large networks.

4 EXPERIMENTS
In this section, we conduct extensive experiments to validate the
effectiveness and superiority of the proposed algorithm. Our goal
is to address the following four key research questions: RQ1: How
does the CoDeSEG perform in overlapping and non-overlapping
community detection tasks compared to baselines? RQ2: How does
the detection efficiency of CoDeSEG on different networks compare
to the baselines? RQ3: Can CoDeSEG achieve fast convergence,

Table 1: Statistics of datasets.

Dataset #Nodes #Edges Avg. Deg #Cmty

Amazon 334,863 925,872 5.530 75,149
YouTube 1,134,890 2,987,624 5.265 8,385
DBLP 317,080 1,049,866 6.622 13,477
LiveJournal 3,997,962 34,681,189 17.349 287,512
Orkut 3,072,441 117,185,083 76.281 6,288,363
Friendster 65,608,366 1,806,067,135 55.056 957,154

Wiki 1,791,489 28,511,807 15.915 17,364

Tweet12 68,841 10,141,672 147.320 503
Tweet18 64,516 17,926,784 277.866 257

and how do key hyperparameters impact its performance? RQ4:
How does parallelization of CoDeSEG influence its performance
and efficiency?

4.1 Experimental Setups
4.1.1 Evaluation Metrics. For datasets with ground truth, the main
goal of the experiment is to evaluate how closely the detected
results match the ground truth. We use two evaluation metrics: the
Average F1-Score (F1) [30, 50] and Overlapping Normalized Mutual
Information (ONMI) [24]. For non-overlapping detection tasks, we
use the non-overlapping NMI. More details on these metrics are
provided in Appendix C.

4.1.2 Datasets. We conduct overlapping community detection ex-
periments on seven large-scale unweighted networks with ground
truth from SNAP [21], where the Wiki dataset is a directed net-
work, and the others are undirected and unweighted. Additionally,
we perform non-overlapping community detection experiments
on two real-world weighted social networks: Tweet12 [36] and
Tweet18 [34]. The dataset statistics are shown in Table 1, with
detailed descriptions provided in Appendix D.

4.1.3 Baselines. To assess the performance of the proposed algo-
rithm across various networks, we compare it with four sophisti-
cated overlapping community detection methods (SLPA [49], Big-
clam [50], NcGame [13], and Fox [31]) and four proven non-
overlapping community detection methods (Louvain [7], DER
[23], Leiden [43], and FLPA [44]). For additional experimental
details, including the hyperparameter settings and descriptions of
the baseline algorithms, please refer to Appendix E.

4.1.4 Implementation. All experiments are conducted on a server
with a hardware configuration of dual 16-core Intel Xeon Silver
4314 processors @ 2.40GHz and 1024GB of memory. For CoDeSEG,
we set the termination threshold 𝜏𝑛 to 0.3.

4.2 Main Results (RQ1)
Tables 2 and 3 illustrate that CoDeSEG performs exceptionally in
overlapping and non-overlapping community detection tasks. In
the overlapping detection scenario, it consistently ranks first or
second in ONMI and F1 scores across all seven datasets, particu-
larly excelling in YouTube, Orkut, Friendster, and Wiki, where it
achieves the highest values. Compared to label propagation-based
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Table 2: Results on unweighted overlapping networks (%). The best results are bolded, and the second-best results are underlined.
* indicates the results when treating directed networks as undirected. N/A indicates the runtime extended beyond a week.

Dataset Amazon YouTube DBLP LiveJournal Orkut Friendster Wiki

Metric ONMI F1 ONMI F1 ONMI F1 ONMI F1 ONMI F1 ONMI F1 ONMI F1

SLPA 9.05 34.37 4.58 26.16 4.45 23.27 2.55 22.29 0.12 8.51 0.03 2.34 0.48∗ 12.16∗
Bigclam 7.62 33.30 1.47 27.78 5.96 24.91 2.05 10.67 0.10 11.72 N/A N/A N/A N/A
NcGame 9.94 36.01 1.23 11.37 4.89 23.94 1.33 7.96 0.07 2.20 0.19 0.10 0.02∗ 10.96∗
Fox 8.88 29.04 6.67 31.77 7.34 23.85 4.18 26.79 0.47 24.07 0.56 19.03 0.45∗ 10.80∗
CoDeSEG 10.75 34.51 8.17 36.80 7.21 25.34 3.75 28.46 0.49 25.26 0.73 19.21 2.28 18.92

Improve ↑ 0.81 ↓ 1.50 ↑ 1.50 ↑ 5.03 ↓ 0.13 ↑ 1.23 ↓ 0.43 ↑ 1.67 ↑ 0.02 ↑ 1.19 ↑ 0.17 ↑ 0.18 ↑ 1.83 ↑ 6.76

Table 3: Results on weighted non-overlapping networks (%).

Method Louvain DER Leiden FLPA CoDeSEG Improve

Twe-
et12

NMI 52.93 10.62 54.37 79.39 83.41 ↑ 4.02
F1 39.63 19.20 42.01 65.14 66.61 ↑ 1.47

Twe-
et18

NMI 47.85 11.94 48.81 49.25 73.27 ↑ 24.02
F1 53.60 32.76 52.13 65.05 69.77 ↑ 4.72

SLPA and Non-negative Matrix Factorization-based Bigclam, CoDe-
SEG consistently outperforms these algorithms in ONMI and F1
scores. Notably, SLPA and Bigclam experience significant perfor-
mance declines on larger networks such as Orkut and Friendster.
While NcGame records a higher F1 score on the Amazon dataset,
its performance is inconsistent across other datasets. Additionally,
FOX, which ranks second to CoDeSEG, relies on a complex heuristic
that impedes efficiency. CoDeSEG uniquely supports community
detection in the large-scale directed network Wiki, demonstrating
a significant performance drop in baseline methods when Wiki is
treated as an undirected network. Specifically, CoDeSEG enhances
ONMI by 381.25% and F1 by 55.59% compared to the best baseline,
SLPA, highlighting its advantages in directed network contexts.

In the non-overlapping detection scenario (as shown in Table 3),
CoDeSEG outperforms all baseline algorithms, showcasing supe-
rior stability and robustness. Compared to the second-best method,
FLPA, CoDeSEG achieves average improvements of 21.80% and
4.75% in NMI and F1 scores, respectively. Compared to modularity-
based methods (Leiden and Louvain), it shows even greater im-
provements, with average gains of 51.85% to 69.27% in NMI and
44.86% to 46.28% in F1 scores. Moreover, DER’s performance on both
the Tweet12 and Tweet18 networks is notably inferior to that of
CoDeGSE. Overall, CoDeSEG’s superior performance underscores
the effectiveness of the utility function that combines potential
games with structural entropy in uncovering network community
structures. Further details on network visual analysis can be found
in Appendix F.

4.3 Efficiency of CoDeSEG (RQ2)
As shown in Table 4, the detection efficiency of CoDeGSE signifi-
cantly surpasses that of all baseline methods, with efficiency gains
increasing as the network size expands. In the overlapping net-
work detection tasks, CoDeGSE exhibits particularly substantial
efficiency improvements on networks such as LiveJournal, Orkut,
Friendster, and Wiki. On average, CoDeSEG is 45 times faster than

Table 4: Time consumption of different algorithms (Sec).

Unweighted overlapping networks

Dataset Bigclam SLPA NcGame Fox CoDeSEG Ratio

Amazon 482 369 44 15 2 7.5
YouTube 442764 852 1374 220 6 36.7
DBLP 2106 263 62 15 2 7.5
LiveJournal 1064 11343 4147 2330 51 20.9
Orkut 2899 21429 37590 73385 279 10.4
Friendster > 7day 298536 191556 487397 5650 33.9

Wiki > 7day 4410 36233 15511 27 163.3

Weighted non-overlapping networks

Dataset Louvain DER Leiden FLPA CoDeSEG Ratio

Tweet12 26 3675 66 20 12 1.7
Tweet18 47 7622 149 45 15 3.0

the quickest baseline, NcGame. The proposed CoDeSEG converges
rapidly in just a few iterations, while Bigclam requires many more.
Moreover, due to the uncertainty in Bigclam’s convergence pro-
cess, its detection time on the YouTube network is considerably
longer than on larger networks like LiveJournal and Orkut. For
SLPA, the detection speed is constrained by the predefined number
of iterations. NcGame fails to dynamically update necessary vari-
ables during detection, resulting in additional computation time
on large networks. Additionally, for Fox, detection time increases
proportionately to the number of overlapping nodes.

In detecting non-overlapping networks, CoDeGSE achieves a
418-fold improvement in efficiency compared to DER, while its
efficiency increases by 2.4 times compared to the fastest baseline,
FLPA. The relatively modest improvement in efficiency compared
to FLPA can be attributed to the smaller scales of the Tweet12 and
Tweet18 networks, where the efficient derivation of the CoDeGSE
utility function demonstrates greater advantages in larger-scale
networks. CoDeSEG’s superior performance and efficiency make it
highly scalable for large, complex, real-world networks.

4.4 Convergence of CoDeSEG (RQ3)
Figure 3 presents the convergence of CoDeSEG during the non-
overlapping detection phase on the Amazon and DBLP networks.
The structural entropy and node movements drop sharply within
the first three iterations, with convergence achieved by the fifth
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iteration, where moved nodes represent only 1/200 of the total. The
algorithm’s linear complexity and rapid convergence make it highly
efficient for large-scale complex networks. Furthermore, CoDe-
SEG’s stable convergence process has no node repeated adjustments
in the last iteration and yields an accurate Nash equilibrium.
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Figure 3: Convergence of CoDeSEG on Amazon and DBLP.

The influence of a few unstable nodes during the non-overlapping
detection phase is minimal. Although some nodes may not join
optimal communities initially, they are correctly replicated during
the overlapping phase. As Figure 4 shows, the F1 score stabilizes by
the 5th iteration for Amazon and the 4th for DBLP. We also analyze
the termination threshold 𝜏𝑛 , finding that a high 𝜏𝑛 (e.g., 0.4) may
cause premature termination and reduced performance, while a
low 𝜏𝑛 (e.g., 0.2) increases iteration time. A balanced 𝜏𝑛 (e.g., 0.3)
can maintain performance while improving detection efficiency.
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Figure 4: F1 score of each iteration on Amazon and DBLP.

4.5 Parallelization Study (RQ4)
The primary objective of parallelizing the algorithm is to signifi-
cantly reduce runtime while preserving as much of the algorithm’s
performance as possible. To assess the impact of varying thread
counts on performance and efficiency, we conduct experiments on
the LiveJournal and Orkut networks using different thread configu-
rations (1, 2, 4, 8, 16, 32, 64), as presented in Figure 5. The results
reveal that although CoDeSEG’s partitioning outcomes show mi-
nor variations across different thread counts, these differences are
negligible compared to the ground truth communities. Additionally,
runtime reduction does not follow a strictly linear pattern as thread
count increases. For instance, runtime with 32 threads is shorter in
both networks than 64 threads. This can be attributed to the fact that
as thread count rises, computational discrepancies between threads
may lead to an increase in the number of iterations, thus prolonging
the total runtime. Moreover, with more threads, overhead related to
thread initialization, lock contention, and synchronization delays
also rise. Therefore, balancing task partitioning granularity and the
efficiency gains of parallelization is crucial when determining the
optimal number of threads.

51.35
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0.20
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Thread count
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100
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(b) Orkut.

Figure 5: F1 scores and runtime on LiveJournal and Orkut
with different threads.

5 RELATEDWORK
Community detection has a 20-year history, during which numer-
ous algorithms have been developed using various methods such
as modularity [7, 10, 18, 43], label propagation [28, 44, 49], seed ex-
pansion [2, 19, 47, 51], non-negative matrix factorization [6, 29, 50],
spectral clustering [5, 27, 46]. However, community detection in
large-scale networks remains a challenging task.

Game theory-based community detection methods focus on
decision-making processes where one agent’s choice affects others.
Early approaches like Chen’s non-cooperative game-based algo-
rithm inspired further work on utility functions for disjoint commu-
nity detection [9]. Alvari et al. [1] propose to use structural equiva-
lence to detect overlapping community structures, while Crampes
et al. [11] introduce a potential game for node reassignment, al-
though it requires knowing the number of clusters. However, most
game-theoretic-based algorithms proposed in the last decay are not
scalable for large networks.

For large-scale community detection, Lyu et al. propose the
FOX [31] algorithm, which measures the closeness between nodes
and communities by approximating the number of triangles in com-
munities. Ferdowsi et al. [13] propose a two-phase non-cooperative
game model that detects non-overlapping communities by a local
interaction utility function, then identifies overlapping nodes lever-
age payoffs acquired from communities membership. In contrast to
existing approaches, we propose a utility function based on struc-
tural entropy that facilitates efficient community detection, while
accounting for the global partition of the network.

6 CONCLUSION
In this paper, we propose a fast heuristic community detection al-
gorithm by minimizing the two-dimensional structural entropy of
networks within the framework of a potential game. By designing
a utility function with nearly linear time complexity, our algorithm
can efficiently detect high-quality communities in large-scale net-
works, completing the process within minutes, even for networks
comprising millions of nodes. Experimental results on real-world
datasets demonstrate its practicality and efficiency. We envision
broad applications for the proposed algorithm across diverse fields,
including social networks, biomedicine, and e-commerce. While
this study focuses on community detection in static graphs, an im-
portant future direction would be to extend the algorithmic frame-
work to dynamic graph community detection, further enhancing
its utility in evolving network structures.
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A GLOSSARY OF NOTATIONS
Notations used in this paper, along with their corresponding de-
scription, are presented in Table 5.

Table 5: Glossary of Notations.

Notation Description

𝐺 Network or graph
V Nodes (vertices) in network 𝐺
E Edges (links) in network 𝐺
P A set of communities of network 𝐺
𝐶𝑖 The 𝑖-th community in P
𝑆𝑖 The strategy of the node (player) 𝑖

𝑠
A strategy profile combines the strategies chosen
by all the players in the game

𝑢𝑖 The payoff function of player 𝑖
𝜑 A potential function in the potential game

T An encoding tree of the graph 𝐺
𝛼 A node in the encoding tree T
𝛼 The parent node of the node 𝛼 in the encoding tree
𝜆 The root node of the encoding tree T
𝑇𝛼 A set of vertices in the encoding tree node 𝛼
ℎ(𝛼) The height of the tree node 𝛼

H(𝐺) The structural entropy (SE) of graph 𝐺 on
the encoding tree

H(𝑑 ) (𝐺) The 𝑑-dimensional structural entropy of 𝐺
H2 (P) The 2D structural entropy of the graph partition P
𝑔𝛼

The summation of the degrees (weights) of the cut
edges of 𝑇𝛼

𝑑𝑥 The degree of the node 𝑥 in the graph 𝐺

𝑣𝛼 , 𝑣𝛼 , 𝑣𝜆
The summation of the degrees (weights) of encoding
tree nodes, 𝛼 , 𝛼 , and 𝜆

ΔS,ΔL,ΔT
Heuristic functions for strategies: Stay, Leave and
be alone, and Transfer to another community

ΔO Heuristic function for overlapping nodes
𝜏𝑛 , 𝜏𝑜 the termination threshold, the overlap threshold

B PROOF OF THE ΔL(𝑥, C) COMPUTATION
FORMULA

Suppose the original partition is P = {C1, C2, . . . , C𝑘 } and when
node𝑥 leaves C𝑘 , forming a new partitionP ′ = {C1, C2, . . . , C′𝑘 , {𝑥}},
where C𝑘 = C′

𝑘
∪ {𝑥}. T ′ and T are encoding tree according to P ′

and P , 𝜆 is the root node of the encoding tree of graph 𝐺 .

Δ𝐿 (𝑥, C) =H2 (P) −H2 (P ′)

= −
∑︁

𝛼∈T ,𝛼≠𝜆

𝑔𝛼

𝑣𝜆
log

𝑣𝛼

𝑣𝛼
+

∑︁
𝛼 ′∈T ′,𝛼 ′≠𝜆

𝑔𝛼 ′

𝑣𝜆
log

𝑣𝛼 ′

𝑣𝛼 ′

=−
𝑔c𝑘

𝑣𝜆
log

𝑣c𝑘

𝑣𝜆
−

∑︁
𝑥𝑖 ∈C𝑘\{𝑥 }

𝑑𝑥𝑖

𝑣𝜆
log

𝑑𝑥𝑖

𝑣c𝑘︸                                            ︷︷                                            ︸
H2 (C𝑘\{𝑥 })

−𝑑𝑥
𝑣𝜆

log
𝑑𝑥

𝑣c𝑘︸         ︷︷         ︸
H2 (𝑥 )

+
𝑔c′

𝑘

𝑣𝜆
log

𝑣c′
𝑘

𝑣𝜆
+

∑︁
𝑥𝑖 ∈C′𝑘

𝑑𝑥𝑖

𝑣𝜆
log

𝑑𝑥𝑖

𝑣c′
𝑘︸                                     ︷︷                                     ︸

−H2 (C′
𝑘
)

+𝑑𝑥
𝑣𝜆

log
𝑑𝑥

𝑣𝜆︸        ︷︷        ︸
−H2 ({𝑥 })

=
𝑔c′

𝑘

𝑣𝜆
log

𝑣c′
𝑘

𝑣𝜆
−
𝑔c𝑘

𝑣𝜆
log

𝑣c𝑘

𝑣𝜆
+ 𝑑𝑥
𝑣𝜆
(log

𝑑𝑥

𝑣𝜆
− log

𝑑𝑥

𝑣c𝑘
)

+
∑︁

𝑥𝑖 ∈C′𝑘

𝑑𝑥𝑖

𝑣𝜆
(log

𝑑𝑥𝑖

𝑣c′
𝑘

− log
𝑑𝑥𝑖

𝑣c𝑘
)

=
𝑔c′

𝑘

𝑣𝜆
log

𝑣c′
𝑘

𝑣𝜆
−
𝑔c𝑘

𝑣𝜆
log

𝑣c𝑘

𝑣𝜆
+ 𝑑𝑥
𝑣𝜆

log
𝑣c𝑘

𝑣𝜆

+ log
𝑣c𝑘

𝑣c′
𝑘

∑︁
𝑥𝑖 ∈C′𝑘

𝑑𝑥𝑖

𝑣𝜆

=
𝑔c′

𝑘

𝑣𝜆
log

𝑣c′
𝑘

𝑣𝜆
−
𝑔c𝑘

𝑣𝜆
log

𝑣c𝑘

𝑣𝜆
+ 𝑑𝑥
𝑣𝜆

log
𝑣c𝑘

𝑣𝜆
+
𝑣c′

𝑘

𝑣𝜆
log

𝑣c𝑘

𝑣c′
𝑘

(17)

where, 𝑑 in𝑥 denotes the sum of edges from node 𝑥 to nodes 𝑥 𝑗 ∈
C𝑘 . Since the 𝑣c𝑘 , 𝑔c𝑘 and 𝑑 in𝑥 can be cached during the algorithm
iterations:

𝑣c′
𝑘
= 𝑣c𝑘 − 𝑑𝑥 , 𝑔c′

𝑘
= 𝑔c𝑘 − 2 ∗ 𝑑 in𝑥 + 𝑑𝑥 . (18)

C EVALUATION METRICS.
Given a ground truth community C ⊆ V and a reconstructed com-
munity C′ ⊆ V , the precision 𝑃 (C′, C) and recall 𝑅(C′, C) are de-
fined as follows:

𝑃 (C′, C) = |C ∩ C
′ |

|C′ | , 𝑅(C′, C) = |C ∩ C
′ |

|C | . (19)

Precision represents the fraction of the reconstruction in the ground
truth, while recall represents the fraction of the ground truth in
the reconstruction. These notions are often combined into a single
number between 0 and 1, known as the 𝐹1-score, defined as:

𝐹1 (C′, C) = 2 · 𝑃 (C
′, C) · 𝑅(C′, C)

𝑃 (C′, C) + 𝑅(C′, C) . (20)

The 𝐹1-score has the additional advantage of being symmetric, i.e.,
𝐹1 (C′, C) = 𝐹1 (C, C′), and it equals 1 if and only if the sets C and
C′ are identical.

To evaluate the set of detected clusters, we define the 𝐹1 score
for a collection of ground truth communities P and a collection
of detected communities P ′ [30, 50]. The F1-score for detection is
calculated as the average of two values: the F1-score of the best-
matching ground-truth community for each detected community,
and the F1-score of the best-matching detected community for each
ground-truth community:

𝐹1 (P ′,P) =
1
2

(
1
|P ′ |

∑︁
C′∈P ′

max
C∈P

𝐹1 (C′, C)

+ 1
|P |

∑︁
C∈P

max
C′∈P ′

𝐹1 (C, C′)
)
.

(21)

We also use the Overlapping Normalized Mutual Information
(ONMI) based on information theory developed by Lancichinetti
and Fortunato [24] and later refined by McDaid et al. [35].

ONMI(P ′,P) = 𝐼 (P ′,P)
max(𝐻 (P ′), 𝐻 (P)) , (22)

where 𝐻 (P) is the Shannon entropy of P , and 𝐼 (P ′,P) is the mu-
tual information. It is important to note that the difference between
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NMI and ONMI lies in that nodes in P and P ′ only belong to a
single community. For the specific calculation formula, refer to
literature [35]. F1 measures the node-level detection performance,
while NMI aims at the community-level detection performance.
These values are in [0, 1], with 1 representing perfect matching.

D DATASETS
We conduct comprehensive experiments on nine real-world, large-
scale networks, which are described in detail as follows:

• Amazon. The Amazon network is constructed by crawling the
Amazon website. If a product 𝑖 is frequently co-purchased with
product 𝑗 , the graph contains an undirected edge from 𝑖 to 𝑗 . Each
product category provided by Amazon defines a ground-truth
community.

• YouTube. YouTube is a video-sharing website that includes a
social network where users can form friendships and create
groups that other users can join. These user-defined groups are
considered ground-truth communities.

• DBLP. DBLP is a co-authorship network where two authors are
connected if they have published at least one paper together.
Publication venues, such as journals or conferences, define indi-
vidual ground-truth communities; Authors who have published
in a specific journal or conference form a community.

• LiveJournal. LiveJournal is a free online blogging community
where users can declare friendships with each other. User-defined
friendship groups are considered ground-truth communities.

• Orkut. Orkut is a free online social network where users can
form friendships and create groups that other members can join.
These user-defined groups are considered ground-truth commu-
nities.

• Friendster. Friendster is originally a social networking site
where users can form friendships and create groups. It later tran-
sitioned into an online gaming platform. User-defined groups
are considered ground-truth communities

• Wiki. Wiki is a directed overlapping network constructed based
on Wikipedia’s hyperlink data from September 2011. This net-
work includes page names and corresponding category informa-
tion, where each article may belong to multiple categories. These
categories can be considered as ground truth community labels.

• Tweet12. After filtering out duplicates and unusable tweets,
the dataset comprises 68,841 English tweets published over four
weeks in 2012, covering 503 distinct event types. In the con-
structed Tweet12 network, each node represents a tweet. We
utilize SBERT [41] to embed all tweets’ content and calculate the
cosine similarity between each pair of tweets. For each node, the
top 150most semantically similar nodes are selected as neighbors.
Additionally, nodes are connected based on common attributes,
such as hashtags or users. The weight of each edge corresponds
to the cosine similarity of the embeddings between the connected
nodes.

• Tweet18. After filtering out duplicates and unusable tweets, the
dataset contains 64,516 French tweets published over 23 days
in 2018, covering 257 types of events. The construction method
for the social network graph of Tweet18 is identical to that of
Tweet12.

E BASELINES
We compare CoDeSEG with four overlapping community detec-
tion algorithms and four non-overlapping community detection
algorithms. The detailed descriptions of all baselines are as follows:
• SLPA is an overlapping community detection method based on

label propagation, designed to identify community structures in
networks by propagating labels between nodes. We implement
this algorithm in Python3.8 with the NetworkX package in CDlib,
with the number of iterations set to 21 and the filtering threshold
set to 0.01. The original code is available at https://github.com/
kbalasu/SLPA.

• Bigclam is an overlapping community detection method for
large networks based on Non-negative Matrix Factorization
(NMF), which maximizes the likelihood estimate of the graph to
find the optimal community structure. We implement this algo-
rithm using open-source code, with the number of communities
set to 25,000. The code is available at https://github.com/snap-
stanford/snap.

• NcGame is an overlapping community detection algorithm
based on non-cooperative game theory, which treats nodes as
rational, self-interested participants and aims to find communi-
ties that maximize individual node benefits. We implement this
algorithm with python3.8 via open-source code available in the
paper’s supplementary material https://doi.org/10.1038/s41598-
022-15095-9.

• Fox is a heuristic overlapping community detection method
that measures the closeness between nodes and communities
by approximating the number of triangles formed by nodes and
communities. We implement this algorithm using open-source
code available at https://github.com/timgarrels/LazyFox, with
the stopping threshold set to 0.1.

• Louvain is a community detection method based on modular-
ity optimization, which identifies non-overlapping community
structures in networks through a multi-level optimization strat-
egy. We implement this algorithm in Python3.8 with API pro-
vided by igraph library, and its open-source code is available at
https://github.com/taynaud/python-louvain.

• DER is a diffusion entropy reduction graph clustering algorithm
with randomwalks and k-means for non-overlapping community
detection. We implement this algorithm in Python3.8 with the
NetworkX package in CDlib, and its original code is available at
https://github.com/komarkdev/der_graph_clustering.

• Leiden is an improved version of the Louvain algorithm, which
enhances community detection accuracy and stability through
local optimization and refinement steps. We implement this al-
gorithm using open-source code available at https://github.com/
vtraag/leidenalg.

• FLPA is a fast variant of LPA [39] that is based on processing
a queue of nodes whose neighborhood recently changed. We
implement this algorithm in Python3.8 with API provided by
igraph library, and its open-source code is available at https:
//github.com/vtraag/igraph/tree/flpa.

F VISUALIZATION
To intuitively assess the quality of community detection across var-
ious algorithms, we visualize the network consisting of the top 500
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(a) Ground truth. (b) CoDeSEG. (c) Fox.

(d) NcGame. (e) SLPA. (f) Bigclam.

Figure 6: Community detection result visualization on Amazon (top 500 communities). Light gray indicates community nodes
ranked beyond 100, while gray denotes nodes misaligned with the ground truth.

(a) Ground truth. (b) CoDeSEG. (c) Fox. (d) NcGame. (e) SLPA. (f) Bigclam.

Figure 7: Community detection result visualization on LFR benchmark network.

communities by node count from the Amazon dataset, comprising
13,132 nodes and 41,263 edges. For clarity, the top 100 communi-
ties are highlighted with distinct colors. As illustrated in Figure 6,
the detected communities by the proposed CoDeSEG closely align
with baselines NcGame and SLPA, exhibiting the highest similarity
to the ground truth. In contrast, the results of Fox and Bigclam
display a higher proportion of gray nodes ( i.e., nodes that do not
match ground truth assignments), with Fox showing the most sig-
nificant deviation from the ground truth communities. To clearly
demonstrate the detection performance of the CoDeSEG algorithm,
we visualize the detection results of various algorithms on the LFR
benchmark network [25]. The constructed LFR benchmark network

comprises five communities, 100 nodes, and 977 edges. The visu-
alization in Figure 7 demonstrates that the detected communities
by CoDeSEG are almost identical to the ground truth. While Fox
accurately assigns most nodes to correct communities, it detects
more communities than the ground truth. NcGame and SLPA, on
the other hand, tend to assign most nodes to fewer communities.
Bigclam, in contrast, fails to assign some nodes to any community
(i.e., the gray nodes in Figure 7(f)), which are considered noise
or not part of any significant community. Overall, CoDeSEG con-
sistently delivers superior performance across different networks,
demonstrating enhanced stability and robustness.
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