
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Community Detection in Large-Scale Complex Networks via
Structural Entropy Game

Anonymous Author(s)

ABSTRACT
Community detection is a critical task in graph theory, social net-
work analysis, and bioinformatics, where communities are defined
as clusters of densely interconnected nodes. However, detecting
communities in large-scale networks with millions of nodes and
billions of edges remains challenging due to the inefficiency and un-
reliability of existing methods. Moreover, many current approaches
are limited to specific graph types, such as unweighted or undi-
rected graphs, reducing their broader applicability. To address these
limitations, we propose a novel heuristic community detection al-
gorithm inspired by game theory, termed CoDeSEG, which iden-
tifies communities by minimizing the network’s two-dimensional
(2D) structural entropy. In this potential game model, nodes de-
cide whether to stay or transfer to another community based on
a strategy that maximizes a 2D structural entropy utility function.
Additionally, we introduce a structural entropy-based node overlap-
ping heuristic to detect overlapping communities. The algorithm
operates with near-linear time complexity, enabling efficient com-
munity detection in large-scale networks. Experimental results
on real-world networks demonstrate that CoDeSEG is the fastest
method available and achieves state-of-the-art performance in over-
lapping normalized mutual information (ONMI) and F1 score.

KEYWORDS
Community Detection, Structural Entropy, Potential Games, Large-
scale Networks.

ACM Reference Format:
Anonymous Author(s). 2025. Community Detection in Large-Scale Complex
Networks via Structural Entropy Game. In Proceedings of the ACM Web
Conference 2025 (WWW ’25), April 28–May 2, 2025, Sydney, Australia. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Community refers to a set of closely related nodes within a network,
also known as a cluster or module in literature [14, 16]. Community
detection is a task that reveals fundamental structural information
within real-world networks, providing valuable insights by identi-
fying tightly knit subgroups. In drug discovery, for instance, detect-
ing protein functional groups facilitates the identification of novel,
valuable proteins [32]. In social event detection, analyzing message
groups within social streams helps to understand the development

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WWW ’25, April 28–May 2, 2025, Sydney, Australia.
© 2025 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1
2

3

4

5

6

7

8

9

10

(a) Network

1
2

3

4

5

6

7

8

9

10

(b) Non-overlapping
Communities

Nodes belong to
a single community.

1
2

3

4

5

6

7

8

9

10

(c) Overlapping
Communities

Nodes may belong
to multiple communities.

Figure 1: Illustration of non-overlapping and overlapping
community structures in a network.

trends of events and analyze public sentiment [8]. Community de-
tection also plays a role in recent retrieval-augmented generation
(RAG) applications, like GraphRAG [12]. Furthermore, commu-
nity detection has extensive applications across various domains,
including recommender systems [4], medicine [3], biomedical re-
search [33, 40], social networks [15, 38], and more.

As illustrated in Figure 1(b), most early research on community
detection has focused on disjoint clusters, where each node belongs
to a single community, and there is no overlap between communities
[7, 14, 39, 43, 45]. However, nodes often participate in multiple com-
munities inmany real-world applications (as depicted in Figure 1(c)),
sparking a growing interest in detecting overlapping communities
[22, 37, 48]. Overlapping community detection typically entails
higher computational costs and time overhead than disjoint com-
munity detection. In the past two decades, numerous algorithms for
overlapping community detection have been proposed, including
those based on modularity [10], label propagation [28, 49], seed
expansion [19, 47], non-negative matrix factorization [50], spectral
clustering [46]. However, existing overlapping community detec-
tion methods [9, 17, 24, 50] are not capable of large-scale networks
with millions of nodes and billions of edges. These algorithms often
require several days, or even longer, to achieve satisfactory results.

Many well-established and widely-used community detection
methods for large-scale networks are typically limited to specific
types of graphs, such as unweighted or undirected graphs, thereby
restricting their applicability. For instance, algorithms like Big-
clam [50] and SLPA [49] detect overlapping communities in un-
weighted and undirected graphs. Methods like Louvain [7], Lei-
den [43], and LPA [39] focus on detecting non-overlapping com-
munities in undirected graphs. Detecting overlapping communities
in weighted, directed, large-scale networks remains a significant
challenge.

In recent years, deep learning-based community detection mod-
els have achieved promising results by learning node embeddings
and detecting communities through node clustering or classifica-
tion. However, due to the learning and encoding processes of deep

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW ’25, April 28–May 2, 2025, Sydney, Australia. Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

models, these methods demonstrate inefficiencies when applied to
large-scale networks[20, 42].

To tackle these challenges, we propose a novel algorithm named
CoDeSEG (Community Detection via Structural Entropy Game)
for detecting overlapping communities in large-scale complex net-
works. The proposed algorithm follows the game-theoretic inspired
community detection framework [9], named as community for-
mation game. In the game, nodes join or leave communities by
maximizing their utility function. The Nash equilibrium of the game
directly corresponds to the network’s community structure, with
each node’s community memberships at equilibrium serving as the
output of the community detection algorithm.

The community-formation-game-based algorithm shows its ef-
fectiveness and efficiency in large-scale networks. Lyu et al. pro-
pose the FOX [31] algorithm, which measures the closeness be-
tween nodes and communities by approximating the number of
triangles in communities. Ferdowsi et al. introduce a two-phase
non-cooperative game model for community detection, where non-
overlapping communities are first identified using a local interac-
tion utility function, followed by identifying overlapping nodes
based on the payoffs derived from community memberships [13].

In contrast to these methods, we define the potential function as
the 2-dimensional structural entropy (2D SE) [26] of the network.
We further derive an efficient node utility function from the poten-
tial function, which can be computed in an approximately constant
time. By applying the node utility to the community formation
game, we detect communities in large-scale networks efficiently.
We also present a structural entropy-based node overlap heuristic
function to detect overlapping communities, which can leverage
the intermediate results of the community formation game to speed
up the algorithm. Moreover, the proposed algorithms can apply
to various graphs, whether unweighted, weighted, undirected, or
directed graphs, to produce stable, reliable community structures
in a unified framework. To our knowledge, CoDeSEG is the fastest
known algorithm for large-scale network community detection. The
algorithm’s simplicity also supports straightforward parallelization,
further enhancing its efficiency by computing the node strategies
concurrently. Experiments conducted on several real-world net-
works show that our proposed algorithm consistently outperforms
baselines in terms of performance. Moreover, the time overhead
of CoDeSEG is significantly lower than that of the second-fastest
baseline algorithm. The codes of CoDeSEG and baselines, along
with datasets, are publicly available on GitHub1. In summary, the
contributions of this paper are as follows:
• We propose a novel heuristic algorithm for community de-

tection in large-scale networks, termed CoDeSEG. This algorithm
introduces two-dimensional structural entropy to define the poten-
tial function of the community formation game and derives a node
utility function with nearly constant time complexity.
•We design an efficient and effective two-stage algorithm for de-

tecting overlapping communities in diverse graphs. Our algorithm
identifies non-overlapping communities through the proposed com-
munity formation game and subsequently detects overlapping com-
munities rapidly using a node overlap heuristic function based on
structural entropy.

1https://anonymous.4open.science/r/CoDeSEG-6B06

• Experimental results on publicly available large-scale real-
world networks demonstrate that the CoDeSEG algorithm outper-
forms state-of-the-art community detection algorithms regarding
overlapping NMI and F1 scores, significantly reducing detection
time. Compared to the fastest baseline method, CoDeSEG achieves
an average speedup of 45 times in detection time.

2 PRELIMINARIES
In this section, we summarize the concepts related to the back-
ground of our work, including community detection, community
formation games, and structural entropy. We summarize the glos-
sary notations in Appendix A.

2.1 Community Detection
The goal of community detection is to identify communities such
that the density of intra-community edges is higher than the density
of inter-community edges, even when nodes belong to multiple
communities. Given a graph 𝐺 = (V, E), where V is the set of
nodes (vertices), E is the set of edges (links) connecting the nodes,
community detection algorithms find a set of communities P =

{C1, C2, . . . , C𝑘 }, where each C𝑖 ⊆ V is a network community. In an
overlapping community detection task, nodes 𝑥 ∈ V can belong to
more than one community.

2.2 Community Formation Game
Chen et al. [9] propose a game-theoretic-based community de-
tection framework, named community formation game, that
simulates the strategy selection and interactions of nodes within a
network to identify community structures. In the game, each node
𝑥 ∈ V is treated as a rational participant (player), consistently choos-
ing the best strategy (community) that maximizes utility function.
When the game converges to a Nash equilibrium, it corresponds
to the communities the algorithm detects. We present relevant
definitions, as follows:

Definition 2.1 (Strategy Profile). A strategy profile is a combina-
tion of strategies chosen by all players in the game. If there are
𝑛 players in the game, and each player 𝑖 has a set of strategies 𝑆𝑖 ,
then a strategy profile 𝑠 is a tuple 𝒔 = (𝑠1, 𝑠2, . . . , 𝑠𝑛), where 𝑠𝑖 ∈ 𝑆𝑖
is the strategy chosen by player 𝑖 .

Definition 2.2 (Utility Function). A utility (payoff) function rep-
resents the benefit a player receives based on the chosen strategies.
For a player 𝑖 , the utility function is denoted by 𝑢𝑖 : 𝑆 → R, where
𝑆 is the set of all possible strategy profiles. The function 𝑢𝑖 (𝑠) gives
the payoff to player 𝑖 when the strategy profile 𝒔 is played.

Definition 2.3 (Potential Game). There exists a potential function
𝜑 : 𝑆 → R, for any player 𝑖 and any two strategy profiles 𝒔 and 𝒔′

differing only in the strategy of player 𝑖 , the change in the potential
function equals the change of player 𝑖’s payoff:

𝜑 (𝒔′) − 𝜑 (𝒔) = 𝑢𝑖 (𝑠′) − 𝑢𝑖 (𝑠) (1)

where 𝑢𝑖 is the utility function for player 𝑖 . Algorithms for learning
in potential games, such as best response dynamics, can converge
to a Nash equilibrium state, corresponding to the communities the
algorithm identifies.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Community Detection in Large-Scale Complex Networks via Structural Entropy Game WWW ’25, April 28–May 2, 2025, Sydney, Australia.

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

2.3 Structural Entropy
Structural entropy (SE) quantifies uncertainty and information con-
tent in complex networks, with lower values indicating more or-
dered structures and higher values reflecting greater disorder [26].
SE is defined on an encoding tree, where the encoding tree T of
a graph 𝐺 = (V, E) represents a hierarchical partition of 𝐺 and
satisfies the following conditions:
(1) Each node 𝛼 in T corresponds to a subset of nodes𝑇𝛼 ⊆ V . The

root node 𝜆 of T contains the entire set of nodes, i.e., 𝑇𝜆 = V .
Each leaf node 𝛾 in T is associated with exactly one node from
the graph 𝐺 , meaning 𝑇𝛾 = {𝑥}, where 𝑥 ∈ V .

(2) For each node 𝛼 in T , denote all its children as 𝛽1, . . . , 𝛽𝑘 , then
𝑇𝛽1 , . . . ,𝑇𝛽𝑘 is a partition of 𝑇𝛼 .

(3) For each node 𝛼 in T , denote its height as ℎ(𝛼). Let ℎ(𝛾) = 0
and ℎ(𝛼) = ℎ(𝛼) + 1, where 𝛼 is the parent of 𝛼 . The height of
T , ℎ(T) = max

𝛼∈T
ℎ(𝛼).

The structural entropy (SE) of graph 𝐺 on encoding tree T is
defined as:

HT (𝐺) = −
∑︁

𝛼∈T ,𝛼≠𝜆

𝑔𝛼

𝑣𝜆
log

𝑣𝛼

𝑣𝛼
, (2)

where 𝑔𝛼 is the summation of the degrees (or weights) of the cut
edges of 𝑇𝛼 (edges that have exactly one endpoint in 𝑇𝛼). 𝑣𝛼 , 𝑣𝛼 ,
and 𝑣𝜆 refer to the volumes of 𝑇𝛼 , 𝑇𝛼 , and 𝑇𝜆 , respectively.

The 𝑑-dimensional structural entropy of 𝐺 ,

H(𝑑) (𝐺) = min
∀T :ℎ (T)=𝑑

{HT (𝐺)}, (3)

is realized by acquiring an optimal encoding tree of height 𝑑 , in
which the disturbance derived from noise or stochastic variation is
minimized.

Communities within a network can be identified by minimizing
its two-dimensional structural entropy. SupposeP = {C1, C2, . . . , C𝑘 }
is a partition of the network𝐺 , then the 2D structural entropy of𝐺
is:

H2 (P) = −
∑︁
c∈P

(
𝑔c

𝑣𝜆
log

𝑣c

𝑣𝜆
+

∑︁
𝑥∈c

𝑑𝑥

𝑣𝜆
log

𝑑𝑥

𝑣c

)
, (4)

where 𝑑𝑥 is the degree of node 𝑥 , 𝑣𝜆 is the volume of the network.

3 METHODOLOGY
This section introduces the proposed algorithm CoDeSEG. Sec-
tion 3.1 presents the structural entropy-based heuristic for the com-
munity formation game, followed by Section 3.2, which details key
strategy computations. The full community detection algorithm is
outlined in Section 3.3, and Section 3.4 analyzes its time complexity.

3.1 Structural Entropy based Heuristic Function
The proposed algorithmmodels community formation as a potential
game, where the potential function is the network’s 2D structural
entropyH2 (P). Each node selects the community thatmost reduces
this entropy as its optimal strategy. When the game converges to
a Nash equilibrium, yielding communities with a minimized two-
dimensional structural entropy.

Consider a node in 𝐺 adopting a strategy, such as altering its
community membership, resulting in a new partition denoted byP ′.

We define the heuristic function Δ as the change in the potential
function.

Δ = H2 (P) −H2 (P ′) . (5)
In the disjoint community formation game, each node aims to

maximize the value of Δ by moving to the best adjacent community,
resulting in a partition with reduced 2D structural entropy. A node
can choose from three strategies: Stay, Leave and be alone, and
Transfer to another community.

Stay: Node 𝑥 decides to stay in the current community, then the
partition P remains unchanged, P ′ = P . The value of heuristic
function ΔS is:

ΔS = H2 (P) −H2 (P ′) = 0. (6)

Leave and be alone: Suppose the original partition is P =

{C1, C2, . . . , C𝑘 } and when node 𝑥 leaves its community C𝑘 , result-
ing a new partitionP ′ = {C1, C2, . . . , C′𝑘 , {𝑥}}, where C𝑘 = C′

𝑘
∪{𝑥}.

The value of heuristic function ΔL (𝑥, C𝑘) is:
ΔL (𝑥, C𝑘) =H2 (P) −H2 (P ′)

=H2 (C𝑘) −H2 (C′
𝑘
) −H2 ({𝑥}) .

(7)

The calculation details for Equation (7) are provided in Section 3.2.
If community C𝑘 is a singleton, then ΔL (𝑥, C𝑘) = 0.

Transfer to another community: Suppose 𝑥 transfers from C1
to C𝑘 , the original partition isP = {C1, C2, . . . , C𝑘 } and the new par-
tition is P ′ = {C′1, C2, . . . , C′𝑘 }, where C

′
1 = C1\{𝑥}, C′𝑘 = C𝑘 ∪ {𝑥}.

The transfer strategy can be seen as a composite transformation
of two steps. Firstly, node 𝑥 leaves C1 and does not join any com-
munity, which yields an intermediate P𝑚 = {C′1, C2, . . . , C𝑘 , {𝑥}}.
Secondly, node 𝑥 join C𝑘 , resulting in new partitionP . We can easily
figure out that the second step is an inverse transformation of the
Leave and be alone strategy. Therefore, the value of the heuristic
function ΔT (𝑥, C1, , C𝑘) can be expressed as:

ΔT (𝑥, C1, C𝑘) = H2 (P) −H2 (P ′)
= (H2 (P) −H2 (P𝑚)) + (H2 (P𝑚) −H2 (P ′))
= ΔL (𝑥, C1) − ΔL (𝑥, C𝑘) .

(8)

Since a node 𝑥 may have several adjective target communities, we
denote the best-transferring with max ΔT as ΔT (𝑥, Cbest).

In our community formation game, a node will only join a new
community if it decreases the network’s 2D structural entropy. Con-
sequently, a node will prefer to stay in its current community unless
another community offers a further reduction in 2D structural en-
tropy. Thus, Leave and be alone strategy is optional. Therefore, in
our disjoint community formation game algorithm, node 𝑥 selects
its movement strategy according to the following formula:

𝑆 (𝑥) = max(ΔS,ΔT (𝑥, Cbest)) . (9)

After identifying disjoint communities, we propose using a struc-
tural entropy heuristic to determine whether a node 𝑥 should over-
lap between communities.

Overlap nodes: Suppose the partition is P = {C1, C2, . . . , C𝑘 }
and a node 𝑥 ∉ C𝑘 . If we copy 𝑥 to community C𝑘 , we create a new
overlapping partition P ′ = {C1, C2, . . . , C′𝑘 }, where C

′
𝑘
= C𝑘 ∪ {𝑥}.

Since the copy action does not affect the origin community, we
define the overlapping heuristic function as follows:

ΔO (𝑥, C𝑘) = H2 (P) −H2 (P ′) = −Δ𝐿 (𝑥, C′𝑘) . (10)
3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW ’25, April 28–May 2, 2025, Sydney, Australia. Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

1
2

3

4

5

6

7

8

9

10

Input network

1
2

3

4

5

6

7

8

9

10

Each node as an
individual community.

I. Initialize communities

Node 1 transfer
from C1 to C2,
C2 = {1, 2}.

Node 2 stay in C2,
C2 = {1, 2}.

Node 3 transfer
from C3 to C2,
C2 = {1, 2, 3}.

1
2

3

4

5

6

7

8

9

10

Each node iteratively selects a community using 2D SE game.
Non-overlapping
Communities

II. Non-overlapping community detection

Node 4 Overlaps
in C2 = {1, 2, 3, 4}
and C6 = {4, 5, 6, 7}.

Node 5 does
Not Overlap.

Node 7 Overlaps
in C6 = {4, 5, 6, 7}
and C9 = {7, 8, 9, 10}.

Each node is greedily overlapped by 2D SE.

1
2

3

4

5

6

7

8

9

10

Overlapping
Communities

III. Overlapping community detection

Figure 2: Overview of the proposed CoDeSEG algorithm.

If ΔO (𝑥, C𝑘) > 0, it means the overlap action reduces the partition’s
structural entropy. However, this criterion may allow excessive
node overlapping. To address this, we propose using the average
value of ΔL (𝑥𝑖 , C𝑘) for nodes in the community C𝑘 as a threshold.
Nodes can only overlap with C𝑘 if their ΔL (𝑥, C𝑘) exceeds this
threshold.

3.2 Efficient computation of ΔL(𝑥, C𝑘)
The formulas for the strategies above highlight that efficiently
completing the community formation game depends on quickly
computing the node leave strategy. By deriving Equation (7), we
obtain an efficient formula for computing ΔL (𝑥, C𝑘):

ΔL (𝑥, C𝑘) = H2 (P) −H2 (P ′)
=H2 (C𝑘) −H2 (C′

𝑘
) −H2 ({𝑥})

=
𝑔c′

𝑘

𝑣𝜆
log

𝑣c′
𝑘

𝑣𝜆
−
𝑔c𝑘

𝑣𝜆
log

𝑣c𝑘

𝑣𝜆
+ 𝑑𝑥
𝑣𝜆

log
𝑣c𝑘

𝑣𝜆
+
𝑣c′

𝑘

𝑣𝜆
log

𝑣c𝑘

𝑣c′
𝑘

,

(11)

where 𝑣c′
𝑘
represents the volume of C′

𝑘
, and 𝑔c′

𝑘
denotes the sum of

the degrees (weights) of the cut edges of C′
𝑘
. The detailed derivation

is provided in Appendix B.
By caching all community volumes {𝑣c1 , 𝑣c2 , . . . , 𝑣c𝑘 } and cut

edge summations {𝑔c1 , 𝑔c2 , . . . , 𝑔c𝑘 }, computing 𝑣c′
𝑘
and𝑔c′

𝑘
becomes

straightforward, allowing us to calculate ΔL (𝑥, C𝑘) in constant time
complexity, 𝑂 (1). For an undirected graph, 𝑣c′

𝑘
and 𝑔c′

𝑘
can be com-

puted using the following equations:

𝑣c′
𝑘
= 𝑣c𝑘 − 𝑑𝑥 , 𝑔c′

𝑘
= 𝑔c𝑘 + 2𝑑 in𝑥 − 𝑑𝑥 , (12)

where 𝑑 in𝑥 denotes the sum of edge weights between node 𝑥 and its
neighbor nodes within community C𝑘 .

The proposed strategies can be easily adapted for directed net-
works by separately considering the in-degree and out-degree of
node 𝑥 relative to community C𝑘 . Consequently, Equation (12) is
updated accordingly:

𝑣c′
𝑘
= 𝑣c𝑘 − 𝑑𝑥 , 𝑔c′

𝑘
= 𝑔c𝑘 + 𝑑 in𝑥 + 𝑑out𝑥 − 𝑑𝑥 . (13)

Once a node 𝑥 is transferred to a new community, we will up-
date the statistics of the target and source communities using the
following formulas,

𝑣c𝑡 ← 𝑣c𝑡 + 𝑑𝑥 , 𝑣c𝑘 ← 𝑣c′
𝑘
,

𝑔c𝑡 ← 𝑔c𝑡 − 2𝑑 in𝑥 + 𝑑𝑥 , 𝑔c𝑘 ← 𝑔c′
𝑘
.

(14)

For directed graphs, we can easily derive similar formulas for up-
dating community statistics.

3.3 Community Detection Algorithm
After developing effective methodologies for community formation
games, we introduce a new two-stage algorithm for overlapping
community detection. Figure 2 provides an overview of this algo-
rithm. In the non-overlapping detection phase, each node 𝑥 sequen-
tially implements the best strategy from Equation (9) until all nodes
are assigned to their communities. In the overlapping phase, nodes
𝑥 can overlap multiple communities if the overlap action meets the
specified threshold.

3.3.1 Non-overlapping Community Detection. We propose a non-
overlapping community detection algorithm designed to minimize
2D structural entropy using a potential game, where the optimal

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Community Detection in Large-Scale Complex Networks via Structural Entropy Game WWW ’25, April 28–May 2, 2025, Sydney, Australia.

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

strategy is computed by Equation (9). Once the game reaches a Nash
equilibrium, the communities stabilize and no longer change. The
pseudo-code of the proposed algorithm is provided in Algorithm 1.

In Algorithm 1, we initialize each node as an individual cluster
and compute their volumes, setting the cut edges’ summations as
the node degrees (lines 1-3). In a directed network, the volumes of
these communities are node in-degrees, and the summations of cut
edges are node out-degrees.

The heart of our algorithm lies in an iterative loop of community
formation games. We evaluate every node 𝑥 in each iteration and
determine the optimal strategy for 𝑥 to significantly minimize the
2D structural entropy of the graph (lines 7-17). To get the best
strategy for a node, we firstly compute the heuristic ΔL (𝑥, C𝑥) that
provides a measure of the impact when node 𝑥 leaves its current
community. The maximum heuristic function value Δmax is initially
set to ΔL (𝑥, C𝑥), and the target community index 𝑡 is set to 𝑡𝑐
indicating stay in the current community (lines 7-11). Then, we
evaluate each adjacent community C𝑘 to determine if moving node
𝑥 to any of these communities would result in a greater heuristic
function value (lines 12-17). For each C𝑘 , we compute the transfer
heuristic ΔT (𝑥, C𝑥 , C𝑘) and compare it to the maximum heuristic
function value. If moving to an adjacent community C𝑘 offers a
larger heuristic function value, we update Δmax and set 𝑡 to the

Algorithm 1: Non-overlapping Community Detection.
Input: Graph 𝐺 = (V, E).
Output: Non-overlapping communities (partition) P of 𝐺 .

1 P ← Each node as an individual community.
2 Initialize community volumes {𝑣c1 , 𝑣c2 , . . . , 𝑣c𝑛 }.
3 Initialize cut edge summations {𝑔c1 , 𝑔c2 , . . . , 𝑔c𝑛 }.
4 while true do
5 Δsum ← 0, 𝑀 ← 0
6 for node 𝑥 ∈ V do
7 C𝑥 ← Community contains 𝑥
8 𝑡𝑐 ← Index of community C𝑥
9 𝑡 ← 𝑡𝑐 ⊲ 𝑡𝑐 means stay in C𝑥

10 ΔL (𝑥, C𝑥) ← Eq.11
11 Δmax ← ΔL (𝑥, C𝑥)
12 for 𝑘-th adjacent community C𝑘 of node 𝑥 do
13 ΔL (𝑥, C𝑘) ← Eq.11
14 ΔT (𝑥, C𝑥 , C𝑘) ←Eq.8
15 if ΔT (𝑥, C𝑥 , C𝑘) > Δmax then
16 Δmax ← ΔT (𝑥, C𝑥 , C𝑘)
17 𝑡 ← 𝑘

18 if 𝑡 ≠ 𝑡𝑐 then
19 Transfer 𝑥 from C𝑥 to C𝑡
20 Update statistics of C𝑥 , C𝑡 by Eq.14
21 𝑀 ← 𝑀 + 1.
22 Δsum ← Δsum + Δmax

23 if 𝑀 = 0 or Eq. 15 is satisfied then
24 Break

25 return P

Algorithm 2: Overlapping community detection.
Input: Non-overlapping communities P .
Output: Overlapping communities P𝑜

1 P𝑜 ← P
2 for node 𝑥 in V do
3 for 𝑘-th adjacent community C𝑘 of node 𝑥 do
4 ΔO (𝑥, C𝑘) ← Eq.10
5 if ΔO (𝑥, C𝑘) > 𝜏𝑜 then
6 Overlap node 𝑥 to C𝑘 in P𝑜

7 return P𝑜

index of community C𝑘 (lines 15-17). Finally, we find the optima
index 𝑡 and the maximum heuristic function value Δmax.

Suppose the strategy indicates that node 𝑥 should move to an-
other community. We transfer 𝑥 from its current community C𝑥
to the target community C𝑡 (line 19) and update the statistics of
the source and target communities, such as adjusting community
volumes and cut edge summations via Equation (14) (line 20).

At the end of each iteration, if all nodes choose to stay in their
current community (i.e.,𝑀 = 0), the algorithm is considered con-
verged. In practice, we introduce a stopping criterion: if the average
of ΔT decreases significantly compared to the initial average node
entropy, it suggests that further adjustments will have little im-
pact on improving the community structure. Formally, the stopping
criterion is defined as:

Δ𝑠𝑢𝑚
𝑀
≤ 𝜏𝑛

|𝑉 |
∑︁
𝑥∈𝑉
−𝑑𝑥
𝑣𝜆
· log

𝑑𝑥

𝑣𝜆
, (15)

where Δ𝑠𝑢𝑚 represents the change in the graph’s 2D structural
entropy during the current iteration, 𝑀 denotes the number of
nodes that changed communities, and 𝜏𝑛 is a hyper-parameter, with
a range of (0, 1). In the end, our algorithm outputs the partition P ,
representing the final assignment of nodes into non-overlapping
communities.

3.3.2 Overlapping Community Detection. The overlapping commu-
nity detection algorithm begins with a non-overlapping partitionP
of the network𝐺 . The goal of the overlapping community detection
(Algorithm 2) is to generate a set of overlapping communities P𝑜

of𝐺 . Initially, P𝑜 is identical to P . For each node 𝑥 in the network,
the algorithm iterates over all its adjacent communities C𝑘 . It com-
putes the overlapping heuristic function ΔO (𝑥, C𝑘). If the heuristic
function exceeds the overlap threshold 𝜏𝑜 , we overlap node 𝑥 to
community C𝑘 . We define the overlap threshold 𝜏𝑜 as the average
of node heuristic function values,

𝜏𝑜 =
1
|C𝑘 |

∑︁
𝑥𝑖 ∈C𝑘

−Δ𝐿 (𝑥𝑖 , C𝑘) . (16)

The iterative process ensures that nodes overlap in communities,
significantly reducing graph 2D structural entropy.

3.4 Time Complexity
The time complexity of the proposed community detection algo-
rithm is 𝑂 (𝐼 · 𝑑max · 𝑁), where 𝑁 denotes the number of nodes in
the graph, 𝑑max represents the maximum degree of any node, and 𝐼

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW ’25, April 28–May 2, 2025, Sydney, Australia. Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

is the number of iterations required for the algorithm to converge
to a stable partition.

In the non-overlapping detection phase (Algorithm 1), the algo-
rithm initially sets each node as an individual cluster and initializes
community volumes and cut edge summations, which takes 𝑂 (𝑁)
time. For each node, the best strategy computation for each node
depends on its degree, taking 𝑂 (𝑑avg) time, since we can compute
ΔL (𝑥,𝐶) in 𝑂 (1) time (Section 3.2). Therefore, evaluating and up-
dating all nodes in one iteration requires𝑂 (𝑑avg ·𝑁). Overall, given
that the algorithm runs for 𝐼 iterations, the total time complexity
is 𝑂 (𝐼 · 𝑑avg · 𝑁). This complexity indicates that the algorithm’s
performance scales linearly with the number of nodes and their av-
erage degree, with the number of iterations needed for convergence
influencing the overall computational effort. In the overlapping
community detection phase, the algorithm’s time complexity is
𝑂 (𝑑avg · 𝑁). This complexity arises because each node is processed
by iterating over its adjacent communities.

Owing to each node’s greedy selection of the most suitable com-
munity, our algorithm converges quickly, typically in fewer than
10 iterations (see the experiment in section 4.4). Moreover, in large-
scale real-world networks, 𝑑avg ≪ 𝑁 , which reduces the algo-
rithm’s complexity to almost𝑂 (𝑁) for many networks. This allows
our algorithm to detect overlapping communities on graphs with
millions of nodes in just seconds.

3.5 Parallelism Implementation
Parallelization can fully exploit the multi-core architecture of mod-
ern CPUs, significantly reducing the algorithm’s runtime. The pro-
posed algorithm is readily parallelizable. In our parallelized CoDe-
SEG algorithm, each node in different threads independently calcu-
lates the optimal strategy based on the current partition. During the
execution of the movement strategy, a mutex lock ensures the cor-
rect update of statistics such as 𝐶𝑘 and 𝑔𝑐 . It is crucial to note that
when the volume and cut of a community are concurrently updated
by multiple threads, the increments must be recalculated. However,
it is worth mentioning that as the algorithm progresses, the number
of nodes requiring movement decreases sharply, thereby enhancing
the acceleration effect of parallelism.

During the overlapping community detection phase, our algo-
rithm is inherently parallelizable. A node’s inclusion in an overlap-
ping community is determined by the change in entropy resulting
from its addition, which depends only on the outcomes of non-
overlapping community detection and the node’s connections to
those communities. This allows the overlapping strategies for each
node to be calculated concurrently. Experiments in section 4.5 show
that parallel CoDeSEG can significantly reduce the run time on
large networks.

4 EXPERIMENTS
In this section, we conduct extensive experiments to validate the
effectiveness and superiority of the proposed algorithm. Our goal
is to address the following four key research questions: RQ1: How
does the CoDeSEG perform in overlapping and non-overlapping
community detection tasks compared to baselines? RQ2: How does
the detection efficiency of CoDeSEG on different networks compare
to the baselines? RQ3: Can CoDeSEG achieve fast convergence,

Table 1: Statistics of datasets.

Dataset #Nodes #Edges Avg. Deg #Cmty

Amazon 334,863 925,872 5.530 75,149
YouTube 1,134,890 2,987,624 5.265 8,385
DBLP 317,080 1,049,866 6.622 13,477
LiveJournal 3,997,962 34,681,189 17.349 287,512
Orkut 3,072,441 117,185,083 76.281 6,288,363
Friendster 65,608,366 1,806,067,135 55.056 957,154

Wiki 1,791,489 28,511,807 15.915 17,364

Tweet12 68,841 10,141,672 147.320 503
Tweet18 64,516 17,926,784 277.866 257

and how do key hyperparameters impact its performance? RQ4:
How does parallelization of CoDeSEG influence its performance
and efficiency?

4.1 Experimental Setups
4.1.1 Evaluation Metrics. For datasets with ground truth, the main
goal of the experiment is to evaluate how closely the detected
results match the ground truth. We use two evaluation metrics: the
Average F1-Score (F1) [30, 50] and Overlapping Normalized Mutual
Information (ONMI) [24]. For non-overlapping detection tasks, we
use the non-overlapping NMI. More details on these metrics are
provided in Appendix C.

4.1.2 Datasets. We conduct overlapping community detection ex-
periments on seven large-scale unweighted networks with ground
truth from SNAP [21], where the Wiki dataset is a directed net-
work, and the others are undirected and unweighted. Additionally,
we perform non-overlapping community detection experiments
on two real-world weighted social networks: Tweet12 [36] and
Tweet18 [34]. The dataset statistics are shown in Table 1, with
detailed descriptions provided in Appendix D.

4.1.3 Baselines. To assess the performance of the proposed algo-
rithm across various networks, we compare it with four sophisti-
cated overlapping community detection methods (SLPA [49], Big-
clam [50], NcGame [13], and Fox [31]) and four proven non-
overlapping community detection methods (Louvain [7], DER
[23], Leiden [43], and FLPA [44]). For additional experimental
details, including the hyperparameter settings and descriptions of
the baseline algorithms, please refer to Appendix E.

4.1.4 Implementation. All experiments are conducted on a server
with a hardware configuration of dual 16-core Intel Xeon Silver
4314 processors @ 2.40GHz and 1024GB of memory. For CoDeSEG,
we set the termination threshold 𝜏𝑛 to 0.3.

4.2 Main Results (RQ1)
Tables 2 and 3 illustrate that CoDeSEG performs exceptionally in
overlapping and non-overlapping community detection tasks. In
the overlapping detection scenario, it consistently ranks first or
second in ONMI and F1 scores across all seven datasets, particu-
larly excelling in YouTube, Orkut, Friendster, and Wiki, where it
achieves the highest values. Compared to label propagation-based

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Community Detection in Large-Scale Complex Networks via Structural Entropy Game WWW ’25, April 28–May 2, 2025, Sydney, Australia.

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 2: Results on unweighted overlapping networks (%). The best results are bolded, and the second-best results are underlined.
* indicates the results when treating directed networks as undirected. N/A indicates the runtime extended beyond a week.

Dataset Amazon YouTube DBLP LiveJournal Orkut Friendster Wiki

Metric ONMI F1 ONMI F1 ONMI F1 ONMI F1 ONMI F1 ONMI F1 ONMI F1

SLPA 9.05 34.37 4.58 26.16 4.45 23.27 2.55 22.29 0.12 8.51 0.03 2.34 0.48∗ 12.16∗
Bigclam 7.62 33.30 1.47 27.78 5.96 24.91 2.05 10.67 0.10 11.72 N/A N/A N/A N/A
NcGame 9.94 36.01 1.23 11.37 4.89 23.94 1.33 7.96 0.07 2.20 0.19 0.10 0.02∗ 10.96∗
Fox 8.88 29.04 6.67 31.77 7.34 23.85 4.18 26.79 0.47 24.07 0.56 19.03 0.45∗ 10.80∗
CoDeSEG 10.75 34.51 8.17 36.80 7.21 25.34 3.75 28.46 0.49 25.26 0.73 19.21 2.28 18.92

Improve ↑ 0.81 ↓ 1.50 ↑ 1.50 ↑ 5.03 ↓ 0.13 ↑ 1.23 ↓ 0.43 ↑ 1.67 ↑ 0.02 ↑ 1.19 ↑ 0.17 ↑ 0.18 ↑ 1.83 ↑ 6.76

Table 3: Results on weighted non-overlapping networks (%).

Method Louvain DER Leiden FLPA CoDeSEG Improve

Twe-
et12

NMI 52.93 10.62 54.37 79.39 83.41 ↑ 4.02
F1 39.63 19.20 42.01 65.14 66.61 ↑ 1.47

Twe-
et18

NMI 47.85 11.94 48.81 49.25 73.27 ↑ 24.02
F1 53.60 32.76 52.13 65.05 69.77 ↑ 4.72

SLPA and Non-negative Matrix Factorization-based Bigclam, CoDe-
SEG consistently outperforms these algorithms in ONMI and F1
scores. Notably, SLPA and Bigclam experience significant perfor-
mance declines on larger networks such as Orkut and Friendster.
While NcGame records a higher F1 score on the Amazon dataset,
its performance is inconsistent across other datasets. Additionally,
FOX, which ranks second to CoDeSEG, relies on a complex heuristic
that impedes efficiency. CoDeSEG uniquely supports community
detection in the large-scale directed network Wiki, demonstrating
a significant performance drop in baseline methods when Wiki is
treated as an undirected network. Specifically, CoDeSEG enhances
ONMI by 381.25% and F1 by 55.59% compared to the best baseline,
SLPA, highlighting its advantages in directed network contexts.

In the non-overlapping detection scenario (as shown in Table 3),
CoDeSEG outperforms all baseline algorithms, showcasing supe-
rior stability and robustness. Compared to the second-best method,
FLPA, CoDeSEG achieves average improvements of 21.80% and
4.75% in NMI and F1 scores, respectively. Compared to modularity-
based methods (Leiden and Louvain), it shows even greater im-
provements, with average gains of 51.85% to 69.27% in NMI and
44.86% to 46.28% in F1 scores. Moreover, DER’s performance on both
the Tweet12 and Tweet18 networks is notably inferior to that of
CoDeGSE. Overall, CoDeSEG’s superior performance underscores
the effectiveness of the utility function that combines potential
games with structural entropy in uncovering network community
structures. Further details on network visual analysis can be found
in Appendix F.

4.3 Efficiency of CoDeSEG (RQ2)
As shown in Table 4, the detection efficiency of CoDeGSE signifi-
cantly surpasses that of all baseline methods, with efficiency gains
increasing as the network size expands. In the overlapping net-
work detection tasks, CoDeGSE exhibits particularly substantial
efficiency improvements on networks such as LiveJournal, Orkut,
Friendster, and Wiki. On average, CoDeSEG is 45 times faster than

Table 4: Time consumption of different algorithms (Sec).

Unweighted overlapping networks

Dataset Bigclam SLPA NcGame Fox CoDeSEG Ratio

Amazon 482 369 44 15 2 7.5
YouTube 442764 852 1374 220 6 36.7
DBLP 2106 263 62 15 2 7.5
LiveJournal 1064 11343 4147 2330 51 20.9
Orkut 2899 21429 37590 73385 279 10.4
Friendster > 7day 298536 191556 487397 5650 33.9

Wiki > 7day 4410 36233 15511 27 163.3

Weighted non-overlapping networks

Dataset Louvain DER Leiden FLPA CoDeSEG Ratio

Tweet12 26 3675 66 20 12 1.7
Tweet18 47 7622 149 45 15 3.0

the quickest baseline, NcGame. The proposed CoDeSEG converges
rapidly in just a few iterations, while Bigclam requires many more.
Moreover, due to the uncertainty in Bigclam’s convergence pro-
cess, its detection time on the YouTube network is considerably
longer than on larger networks like LiveJournal and Orkut. For
SLPA, the detection speed is constrained by the predefined number
of iterations. NcGame fails to dynamically update necessary vari-
ables during detection, resulting in additional computation time
on large networks. Additionally, for Fox, detection time increases
proportionately to the number of overlapping nodes.

In detecting non-overlapping networks, CoDeGSE achieves a
418-fold improvement in efficiency compared to DER, while its
efficiency increases by 2.4 times compared to the fastest baseline,
FLPA. The relatively modest improvement in efficiency compared
to FLPA can be attributed to the smaller scales of the Tweet12 and
Tweet18 networks, where the efficient derivation of the CoDeGSE
utility function demonstrates greater advantages in larger-scale
networks. CoDeSEG’s superior performance and efficiency make it
highly scalable for large, complex, real-world networks.

4.4 Convergence of CoDeSEG (RQ3)
Figure 3 presents the convergence of CoDeSEG during the non-
overlapping detection phase on the Amazon and DBLP networks.
The structural entropy and node movements drop sharply within
the first three iterations, with convergence achieved by the fifth

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW ’25, April 28–May 2, 2025, Sydney, Australia. Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

iteration, where moved nodes represent only 1/200 of the total. The
algorithm’s linear complexity and rapid convergence make it highly
efficient for large-scale complex networks. Furthermore, CoDe-
SEG’s stable convergence process has no node repeated adjustments
in the last iteration and yields an accurate Nash equilibrium.

264608

75127
21226

6067 1666 516 154 58 14 0

12.44530

1 2 3 4 5 6 7 8 9 10

0

1

2

3
×105

Iteration

 Stay
 Transfer

0 1 2 3 4 5 6 7 8 9 10

6

8

10

12

2D
 S

E

Iteration

(a) Amazon.

236074

65259
14964 3847 948 312 110 22 18 6 0

12.08320

1 2 3 4 5 6 7 8 9 10 11

0

1

2

3
×105

Iteration

 Stay
 Transfer

0 1 2 3 4 5 6 7 8 9 10 11

6

8

10

12

2D
 S

E
Iteration

(b) DBLP.

Figure 3: Convergence of CoDeSEG on Amazon and DBLP.

The influence of a few unstable nodes during the non-overlapping
detection phase is minimal. Although some nodes may not join
optimal communities initially, they are correctly replicated during
the overlapping phase. As Figure 4 shows, the F1 score stabilizes by
the 5th iteration for Amazon and the 4th for DBLP. We also analyze
the termination threshold 𝜏𝑛 , finding that a high 𝜏𝑛 (e.g., 0.4) may
cause premature termination and reduced performance, while a
low 𝜏𝑛 (e.g., 0.2) increases iteration time. A balanced 𝜏𝑛 (e.g., 0.3)
can maintain performance while improving detection efficiency.

1 2 3 4 5 6 7 8 9 10
0.28

0.30

0.32

0.34

Iteration

n

n n

(a) Amazon.

1 2 3 4 5 6 7 8 9 10 11

0.20

0.22

0.24

0.26

Iteration

n

n n

(b) DBLP.

Figure 4: F1 score of each iteration on Amazon and DBLP.

4.5 Parallelization Study (RQ4)
The primary objective of parallelizing the algorithm is to signifi-
cantly reduce runtime while preserving as much of the algorithm’s
performance as possible. To assess the impact of varying thread
counts on performance and efficiency, we conduct experiments on
the LiveJournal and Orkut networks using different thread configu-
rations (1, 2, 4, 8, 16, 32, 64), as presented in Figure 5. The results
reveal that although CoDeSEG’s partitioning outcomes show mi-
nor variations across different thread counts, these differences are
negligible compared to the ground truth communities. Additionally,
runtime reduction does not follow a strictly linear pattern as thread
count increases. For instance, runtime with 32 threads is shorter in
both networks than 64 threads. This can be attributed to the fact that
as thread count rises, computational discrepancies between threads
may lead to an increase in the number of iterations, thus prolonging
the total runtime. Moreover, with more threads, overhead related to
thread initialization, lock contention, and synchronization delays
also rise. Therefore, balancing task partitioning granularity and the
efficiency gains of parallelization is crucial when determining the
optimal number of threads.

51.35

1 2 4 8 16 32 64
0.10
0.15
0.20
0.25

Thread count

1 2 4 8 16 32 64
36.0
40.5
45.0
49.5

(a) LiveJournal.

278.68

1 2 4 8 16 32 64
0.12
0.16
0.20
0.24

Thread count

1 2 4 8 16 32 64
100
150
200
250

(b) Orkut.

Figure 5: F1 scores and runtime on LiveJournal and Orkut
with different threads.

5 RELATEDWORK
Community detection has a 20-year history, during which numer-
ous algorithms have been developed using various methods such
as modularity [7, 10, 18, 43], label propagation [28, 44, 49], seed ex-
pansion [2, 19, 47, 51], non-negative matrix factorization [6, 29, 50],
spectral clustering [5, 27, 46]. However, community detection in
large-scale networks remains a challenging task.

Game theory-based community detection methods focus on
decision-making processes where one agent’s choice affects others.
Early approaches like Chen’s non-cooperative game-based algo-
rithm inspired further work on utility functions for disjoint commu-
nity detection [9]. Alvari et al. [1] propose to use structural equiva-
lence to detect overlapping community structures, while Crampes
et al. [11] introduce a potential game for node reassignment, al-
though it requires knowing the number of clusters. However, most
game-theoretic-based algorithms proposed in the last decay are not
scalable for large networks.

For large-scale community detection, Lyu et al. propose the
FOX [31] algorithm, which measures the closeness between nodes
and communities by approximating the number of triangles in com-
munities. Ferdowsi et al. [13] propose a two-phase non-cooperative
game model that detects non-overlapping communities by a local
interaction utility function, then identifies overlapping nodes lever-
age payoffs acquired from communities membership. In contrast to
existing approaches, we propose a utility function based on struc-
tural entropy that facilitates efficient community detection, while
accounting for the global partition of the network.

6 CONCLUSION
In this paper, we propose a fast heuristic community detection al-
gorithm by minimizing the two-dimensional structural entropy of
networks within the framework of a potential game. By designing
a utility function with nearly linear time complexity, our algorithm
can efficiently detect high-quality communities in large-scale net-
works, completing the process within minutes, even for networks
comprising millions of nodes. Experimental results on real-world
datasets demonstrate its practicality and efficiency. We envision
broad applications for the proposed algorithm across diverse fields,
including social networks, biomedicine, and e-commerce. While
this study focuses on community detection in static graphs, an im-
portant future direction would be to extend the algorithmic frame-
work to dynamic graph community detection, further enhancing
its utility in evolving network structures.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Community Detection in Large-Scale Complex Networks via Structural Entropy Game WWW ’25, April 28–May 2, 2025, Sydney, Australia.

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Hamidreza Alvari, Sattar Hashemi, and Ali Hamzeh. 2011. Detecting overlapping

communities in social networks by game theory and structural equivalence con-
cept. In Proceedings of the Third International Conference on Artificial Intelligence
and Computational Intelligence. Springer, 620–630.

[2] Khawla Asmi, Dounia Lotfi, and Abdallah Abarda. 2022. The greedy coupled-
seeds expansion method for the overlapping community detection in social
networks. Computing 104, 2 (2022), 295–313.

[3] Albert-László Barabási, Natali Gulbahce, and Joseph Loscalzo. 2011. Network
medicine: a network-based approach to human disease. Nature reviews genetics
12, 1 (2011), 56–68.

[4] Partha Basuchowdhuri, Manoj Kumar Shekhawat, and Sanjoy Kumar Saha. 2014.
Analysis of product purchase patterns in a co-purchase network. In 2014 Fourth
International Conference of EAIT. IEEE, 355–360.

[5] Kamal Berahmand, Mehrnoush Mohammadi, Azadeh Faroughi, and Rojiar Pir
Mohammadiani. 2022. A novel method of spectral clustering in attributed net-
works by constructing parameter-free affinity matrix. Cluster Computing 25, 2
(2022), 869–888.

[6] Kamal Berahmand, Mehrnoush Mohammadi, Farid Saberi-Movahed, Yuefeng
Li, and Yue Xu. 2022. Graph regularized nonnegative matrix factorization for
community detection in attributed networks. IEEE Transactions on Network
Science and Engineering 10, 1 (2022), 372–385.

[7] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-
vre. 2008. Fast unfolding of communities in large networks. Journal of statistical
mechanics: theory and experiment 2008, 10 (2008), P10008.

[8] Yuwei Cao, Hao Peng, Zhengtao Yu, and Philip S. Yu. 2024. Hierarchical and
incremental structural entropy minimization for unsupervised social event de-
tection. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 38.
8255–8264.

[9] Wei Chen, Zhenming Liu, Xiaorui Sun, and Yajun Wang. 2010. A game-theoretic
framework to identify overlapping communities in social networks. Data Mining
and Knowledge Discovery 21 (2010), 224–240.

[10] Hocine Cherifi, Gergely Palla, Boleslaw K Szymanski, and Xiaoyan Lu. 2019.
On community structure in complex networks: challenges and opportunities.
Applied Network Science 4, 1 (2019), 1–35.

[11] Michel Crampes and Michel Plantié. 2015. Overlapping community detection op-
timization and nash equilibrium. In Proceedings of the 5th International Conference
on Web Intelligence, Mining and Semantics. 1–10.

[12] Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva
Mody, Steven Truitt, and Jonathan Larson. 2024. From Local to Global: A Graph
RAG Approach to Query-Focused Summarization. arXiv:2404.16130

[13] Farhad Ferdowsi and Keivan Aghababaei Samani. 2022. Detecting overlapping
communities in complex networks using non-cooperative games. Scientific
Reports 12, 1 (2022), 11054.

[14] Santo Fortunato. 2010. Community detection in graphs. Physics reports 486, 3-5
(2010), 75–174.

[15] Santo Fortunato and Darko Hric. 2016. Community detection in networks: A
user guide. Physics reports 659 (2016), 1–44.

[16] Santo Fortunato and Mark EJ Newman. 2022. 20 years of network community
detection. Nature Physics 18, 8 (2022), 848–850.

[17] Prem K Gopalan and David M Blei. 2013. Efficient discovery of overlapping
communities in massive networks. Proceedings of the National Academy of
Sciences 110, 36 (2013), 14534–14539.

[18] Kun Guo, Xintong Huang, Ling Wu, and Yuzhong Chen. 2022. Local community
detection algorithm based on local modularity density. Applied Intelligence 52, 2
(2022), 1238–1253.

[19] Alexandre Hollocou, Thomas Bonald, and Marc Lelarge. 2018. Multiple local
community detection. ACM SIGMETRICS PER 45, 3 (2018), 76–83.

[20] Di Jin, Zhizhi Yu, Pengfei Jiao, Shirui Pan, Dongxiao He, Jia Wu, Philip S. Yu, and
Weixiong Zhang. 2023. A Survey of Community Detection Approaches: From
Statistical Modeling to Deep Learning. IEEE Transactions on Knowledge and Data
Engineering 35, 2 (2023), 1149–1170.

[21] Leskovec Jure. 2014. SNAP Datasets: Stanford large network dataset collection.
Retrieved December 2021 from http://snap. stanford. edu/data (2014).

[22] Stephen Kelley. 2009. The existence and discovery of overlapping communities in
large-scale networks. Rensselaer Polytechnic Institute.

[23] Mark Kozdoba and Shie Mannor. 2015. Community detection via measure
space embedding. In Proceedings of the 28th International Conference on Neural
Information Processing Systems-Volume 2. 2890–2898.

[24] Andrea Lancichinetti, Santo Fortunato, and János Kertész. 2009. Detecting the
overlapping and hierarchical community structure in complex networks. New
journal of physics 11, 3 (2009), 033015.

[25] Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi. 2008. Benchmark
graphs for testing community detection algorithms. Physical Review E—Statistical,
Nonlinear, and Soft Matter Physics 78, 4 (2008), 046110.

[26] Angsheng Li and Yicheng Pan. 2016. Structural information and dynamical
complexity of networks. IEEE TIT 62, 6 (2016), 3290–3339.

[27] Yixuan Li, Kun He, Kyle Kloster, David Bindel, and John Hopcroft. 2018. Local
spectral clustering for overlapping community detection. ACM Transactions on
Knowledge Discovery from Data 12, 2 (2018), 1–27.

[28] Meilian Lu, Zhenglin Zhang, Zhihe Qu, and Yu Kang. 2018. LPANNI: Overlapping
community detection using label propagation in large-scale complex networks.
IEEE Transactions on Knowledge and Data Engineering 31, 9 (2018), 1736–1749.

[29] Xin Luo, Zhigang Liu, Mingsheng Shang, Jungang Lou, and MengChu Zhou.
2020. Highly-accurate community detection via pointwise mutual information-
incorporated symmetric non-negative matrix factorization. IEEE Transactions on
Network Science and Engineering 8, 1 (2020), 463–476.

[30] Artem Lutov, Mourad Khayati, and Philippe Cudré-Mauroux. 2019. Accuracy
evaluation of overlapping and multi-resolution clustering algorithms on large
datasets. In 2019 IEEE International Conference on BigComp. IEEE, 1–8.

[31] Tianshu Lyu, Lidong Bing, Zhao Zhang, and Yan Zhang. 2020. Fox: fast overlap-
ping community detection algorithm in big weighted networks. ACM Transac-
tions on Social Computing 3, 3 (2020), 1–23.

[32] Jun Ma, Jenny Wang, Laleh Soltan Ghoraie, Xin Men, Benjamin Haibe-Kains,
and Penggao Dai. 2019. A comparative study of cluster detection algorithms
in protein–protein interaction for drug target discovery and drug repurposing.
Frontiers in pharmacology 10 (2019), 109.

[33] Ichcha Manipur, Maurizio Giordano, Marina Piccirillo, Seetharaman Parashu-
raman, and Lucia Maddalena. 2021. Community detection in protein-protein
interaction networks and applications. IEEE/ACM Transactions on Computational
Biology and Bioinformatics 20, 1 (2021), 217–237.

[34] Béatrice Mazoyer, Julia Cagé, Nicolas Hervé, and Céline Hudelot. 2020. A french
corpus for event detection on twitter. In Proceedings of the 12th language resources
and evaluation conference. 6220–6227.

[35] Aaron F McDaid, Derek Greene, and Neil Hurley. 2011. Normalized mutual in-
formation to evaluate overlapping community finding algorithms. arXiv preprint
arXiv:1110.2515 (2011), 1–3.

[36] Andrew J McMinn, Yashar Moshfeghi, and Joemon M Jose. 2013. Building a
large-scale corpus for evaluating event detection on twitter. In Proceedings of the
22nd ACM CIKM. 409–418.

[37] Gergely Palla, Imre Derényi, Illés Farkas, and Tamás Vicsek. 2005. Uncovering
the overlapping community structure of complex networks in nature and society.
nature 435, 7043 (2005), 814–818.

[38] Hao Peng, Jingyun Zhang, Xiang Huang, Zhifeng Hao, Angsheng Li, Zhengtao
Yu, and Philip S. Yu. 2024. Unsupervised Social Bot Detection via Structural
Information Theory. ACM Transactions on Information Systems 42, 6 (2024).

[39] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. 2007. Near linear
time algorithm to detect community structures in large-scale networks. Physical
Review E—Statistical, Nonlinear, and Soft Matter Physics 76, 3 (2007), 036106.

[40] Sara Rahiminejad, Mano RMaurya, and Shankar Subramaniam. 2019. Topological
and functional comparison of community detection algorithms in biological
networks. BMC bioinformatics 20 (2019), 1–25.

[41] Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings
using siamese bert-networks. In Proceedings of EMNLP 2019. 3982–3992.

[42] Xing Su, Shan Xue, Fanzhen Liu, Jia Wu, Jian Yang, Chuan Zhou, Wenbin Hu,
Cecile Paris, Surya Nepal, Di Jin, Quan Z. Sheng, and Philip S. Yu. 2024. A
Comprehensive Survey on Community Detection With Deep Learning. IEEE
Transactions on Neural Networks and Learning Systems 35, 4 (2024), 4682–4702.

[43] VA Traag, L Waltman, and NJ van Eck. 2019. From Louvain to Leiden: guaran-
teeing well-connected communities. Scientific Reports 9 (2019), 5233.

[44] Vincent A Traag and Lovro Šubelj. 2023. Large network community detection
by fast label propagation. Scientific Reports 13, 1 (2023), 2701.

[45] Vincent A Traag, Paul Van Dooren, and Yurii Nesterov. 2011. Narrow scope for
resolution-limit-free community detection. Physical Review E 84 (2011), 016114.

[46] Hadrien Van Lierde, Tommy WS Chow, and Guanrong Chen. 2019. Scalable
spectral clustering for overlapping community detection in large-scale networks.
IEEE Transactions on Knowledge and Data Engineering 32, 4 (2019), 754–767.

[47] Joyce Jiyoung Whang, David F Gleich, and Inderjit S Dhillon. 2013. Overlapping
community detection using seed set expansion. In Proceedings of the 22nd ACM
CIKM. 2099–2108.

[48] Jierui Xie, Stephen Kelley, and Boleslaw K Szymanski. 2013. Overlapping com-
munity detection in networks: The state-of-the-art and comparative study. Acm
computing surveys 45, 4 (2013), 1–35.

[49] Jierui Xie, Boleslaw K Szymanski, and Xiaoming Liu. 2011. Slpa: Uncovering
overlapping communities in social networks via a speaker-listener interaction
dynamic process. In 2011 IEEE 11th international conference on data mining
workshops. IEEE, 344–349.

[50] Jaewon Yang and Jure Leskovec. 2013. Overlapping community detection at
scale: a nonnegative matrix factorization approach. In Proceedings of the sixth
ACM international conference on Web search and data mining. 587–596.

[51] Xingwang Zhao, Jiye Liang, and Jie Wang. 2021. A community detection algo-
rithm based on graph compression for large-scale social networks. Information
Sciences 551 (2021), 358–372.

9

https://arxiv.org/abs/2404.16130

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

WWW ’25, April 28–May 2, 2025, Sydney, Australia. Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A GLOSSARY OF NOTATIONS
Notations used in this paper, along with their corresponding de-
scription, are presented in Table 5.

Table 5: Glossary of Notations.

Notation Description

𝐺 Network or graph
V Nodes (vertices) in network 𝐺
E Edges (links) in network 𝐺
P A set of communities of network 𝐺
𝐶𝑖 The 𝑖-th community in P
𝑆𝑖 The strategy of the node (player) 𝑖

𝑠
A strategy profile combines the strategies chosen
by all the players in the game

𝑢𝑖 The payoff function of player 𝑖
𝜑 A potential function in the potential game

T An encoding tree of the graph 𝐺
𝛼 A node in the encoding tree T
𝛼 The parent node of the node 𝛼 in the encoding tree
𝜆 The root node of the encoding tree T
𝑇𝛼 A set of vertices in the encoding tree node 𝛼
ℎ(𝛼) The height of the tree node 𝛼

H(𝐺) The structural entropy (SE) of graph 𝐺 on
the encoding tree

H(𝑑) (𝐺) The 𝑑-dimensional structural entropy of 𝐺
H2 (P) The 2D structural entropy of the graph partition P
𝑔𝛼

The summation of the degrees (weights) of the cut
edges of 𝑇𝛼

𝑑𝑥 The degree of the node 𝑥 in the graph 𝐺

𝑣𝛼 , 𝑣𝛼 , 𝑣𝜆
The summation of the degrees (weights) of encoding
tree nodes, 𝛼 , 𝛼 , and 𝜆

ΔS,ΔL,ΔT
Heuristic functions for strategies: Stay, Leave and
be alone, and Transfer to another community

ΔO Heuristic function for overlapping nodes
𝜏𝑛 , 𝜏𝑜 the termination threshold, the overlap threshold

B PROOF OF THE ΔL(𝑥, C) COMPUTATION
FORMULA

Suppose the original partition is P = {C1, C2, . . . , C𝑘 } and when
node𝑥 leaves C𝑘 , forming a new partitionP ′ = {C1, C2, . . . , C′𝑘 , {𝑥}},
where C𝑘 = C′

𝑘
∪ {𝑥}. T ′ and T are encoding tree according to P ′

and P , 𝜆 is the root node of the encoding tree of graph 𝐺 .

Δ𝐿 (𝑥, C) =H2 (P) −H2 (P ′)

= −
∑︁

𝛼∈T ,𝛼≠𝜆

𝑔𝛼

𝑣𝜆
log

𝑣𝛼

𝑣𝛼
+

∑︁
𝛼 ′∈T ′,𝛼 ′≠𝜆

𝑔𝛼 ′

𝑣𝜆
log

𝑣𝛼 ′

𝑣𝛼 ′

=−
𝑔c𝑘

𝑣𝜆
log

𝑣c𝑘

𝑣𝜆
−

∑︁
𝑥𝑖 ∈C𝑘\{𝑥 }

𝑑𝑥𝑖

𝑣𝜆
log

𝑑𝑥𝑖

𝑣c𝑘︸ ︷︷ ︸
H2 (C𝑘\{𝑥 })

−𝑑𝑥
𝑣𝜆

log
𝑑𝑥

𝑣c𝑘︸ ︷︷ ︸
H2 (𝑥)

+
𝑔c′

𝑘

𝑣𝜆
log

𝑣c′
𝑘

𝑣𝜆
+

∑︁
𝑥𝑖 ∈C′𝑘

𝑑𝑥𝑖

𝑣𝜆
log

𝑑𝑥𝑖

𝑣c′
𝑘︸ ︷︷ ︸

−H2 (C′
𝑘
)

+𝑑𝑥
𝑣𝜆

log
𝑑𝑥

𝑣𝜆︸ ︷︷ ︸
−H2 ({𝑥 })

=
𝑔c′

𝑘

𝑣𝜆
log

𝑣c′
𝑘

𝑣𝜆
−
𝑔c𝑘

𝑣𝜆
log

𝑣c𝑘

𝑣𝜆
+ 𝑑𝑥
𝑣𝜆
(log

𝑑𝑥

𝑣𝜆
− log

𝑑𝑥

𝑣c𝑘
)

+
∑︁

𝑥𝑖 ∈C′𝑘

𝑑𝑥𝑖

𝑣𝜆
(log

𝑑𝑥𝑖

𝑣c′
𝑘

− log
𝑑𝑥𝑖

𝑣c𝑘
)

=
𝑔c′

𝑘

𝑣𝜆
log

𝑣c′
𝑘

𝑣𝜆
−
𝑔c𝑘

𝑣𝜆
log

𝑣c𝑘

𝑣𝜆
+ 𝑑𝑥
𝑣𝜆

log
𝑣c𝑘

𝑣𝜆

+ log
𝑣c𝑘

𝑣c′
𝑘

∑︁
𝑥𝑖 ∈C′𝑘

𝑑𝑥𝑖

𝑣𝜆

=
𝑔c′

𝑘

𝑣𝜆
log

𝑣c′
𝑘

𝑣𝜆
−
𝑔c𝑘

𝑣𝜆
log

𝑣c𝑘

𝑣𝜆
+ 𝑑𝑥
𝑣𝜆

log
𝑣c𝑘

𝑣𝜆
+
𝑣c′

𝑘

𝑣𝜆
log

𝑣c𝑘

𝑣c′
𝑘

(17)

where, 𝑑 in𝑥 denotes the sum of edges from node 𝑥 to nodes 𝑥 𝑗 ∈
C𝑘 . Since the 𝑣c𝑘 , 𝑔c𝑘 and 𝑑 in𝑥 can be cached during the algorithm
iterations:

𝑣c′
𝑘
= 𝑣c𝑘 − 𝑑𝑥 , 𝑔c′

𝑘
= 𝑔c𝑘 − 2 ∗ 𝑑 in𝑥 + 𝑑𝑥 . (18)

C EVALUATION METRICS.
Given a ground truth community C ⊆ V and a reconstructed com-
munity C′ ⊆ V , the precision 𝑃 (C′, C) and recall 𝑅(C′, C) are de-
fined as follows:

𝑃 (C′, C) = |C ∩ C
′ |

|C′ | , 𝑅(C′, C) = |C ∩ C
′ |

|C | . (19)

Precision represents the fraction of the reconstruction in the ground
truth, while recall represents the fraction of the ground truth in
the reconstruction. These notions are often combined into a single
number between 0 and 1, known as the 𝐹1-score, defined as:

𝐹1 (C′, C) = 2 · 𝑃 (C
′, C) · 𝑅(C′, C)

𝑃 (C′, C) + 𝑅(C′, C) . (20)

The 𝐹1-score has the additional advantage of being symmetric, i.e.,
𝐹1 (C′, C) = 𝐹1 (C, C′), and it equals 1 if and only if the sets C and
C′ are identical.

To evaluate the set of detected clusters, we define the 𝐹1 score
for a collection of ground truth communities P and a collection
of detected communities P ′ [30, 50]. The F1-score for detection is
calculated as the average of two values: the F1-score of the best-
matching ground-truth community for each detected community,
and the F1-score of the best-matching detected community for each
ground-truth community:

𝐹1 (P ′,P) =
1
2

(
1
|P ′ |

∑︁
C′∈P ′

max
C∈P

𝐹1 (C′, C)

+ 1
|P |

∑︁
C∈P

max
C′∈P ′

𝐹1 (C, C′)
)
.

(21)

We also use the Overlapping Normalized Mutual Information
(ONMI) based on information theory developed by Lancichinetti
and Fortunato [24] and later refined by McDaid et al. [35].

ONMI(P ′,P) = 𝐼 (P ′,P)
max(𝐻 (P ′), 𝐻 (P)) , (22)

where 𝐻 (P) is the Shannon entropy of P , and 𝐼 (P ′,P) is the mu-
tual information. It is important to note that the difference between

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Community Detection in Large-Scale Complex Networks via Structural Entropy Game WWW ’25, April 28–May 2, 2025, Sydney, Australia.

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

NMI and ONMI lies in that nodes in P and P ′ only belong to a
single community. For the specific calculation formula, refer to
literature [35]. F1 measures the node-level detection performance,
while NMI aims at the community-level detection performance.
These values are in [0, 1], with 1 representing perfect matching.

D DATASETS
We conduct comprehensive experiments on nine real-world, large-
scale networks, which are described in detail as follows:

• Amazon. The Amazon network is constructed by crawling the
Amazon website. If a product 𝑖 is frequently co-purchased with
product 𝑗 , the graph contains an undirected edge from 𝑖 to 𝑗 . Each
product category provided by Amazon defines a ground-truth
community.

• YouTube. YouTube is a video-sharing website that includes a
social network where users can form friendships and create
groups that other users can join. These user-defined groups are
considered ground-truth communities.

• DBLP. DBLP is a co-authorship network where two authors are
connected if they have published at least one paper together.
Publication venues, such as journals or conferences, define indi-
vidual ground-truth communities; Authors who have published
in a specific journal or conference form a community.

• LiveJournal. LiveJournal is a free online blogging community
where users can declare friendships with each other. User-defined
friendship groups are considered ground-truth communities.

• Orkut. Orkut is a free online social network where users can
form friendships and create groups that other members can join.
These user-defined groups are considered ground-truth commu-
nities.

• Friendster. Friendster is originally a social networking site
where users can form friendships and create groups. It later tran-
sitioned into an online gaming platform. User-defined groups
are considered ground-truth communities

• Wiki. Wiki is a directed overlapping network constructed based
on Wikipedia’s hyperlink data from September 2011. This net-
work includes page names and corresponding category informa-
tion, where each article may belong to multiple categories. These
categories can be considered as ground truth community labels.

• Tweet12. After filtering out duplicates and unusable tweets,
the dataset comprises 68,841 English tweets published over four
weeks in 2012, covering 503 distinct event types. In the con-
structed Tweet12 network, each node represents a tweet. We
utilize SBERT [41] to embed all tweets’ content and calculate the
cosine similarity between each pair of tweets. For each node, the
top 150most semantically similar nodes are selected as neighbors.
Additionally, nodes are connected based on common attributes,
such as hashtags or users. The weight of each edge corresponds
to the cosine similarity of the embeddings between the connected
nodes.

• Tweet18. After filtering out duplicates and unusable tweets, the
dataset contains 64,516 French tweets published over 23 days
in 2018, covering 257 types of events. The construction method
for the social network graph of Tweet18 is identical to that of
Tweet12.

E BASELINES
We compare CoDeSEG with four overlapping community detec-
tion algorithms and four non-overlapping community detection
algorithms. The detailed descriptions of all baselines are as follows:
• SLPA is an overlapping community detection method based on

label propagation, designed to identify community structures in
networks by propagating labels between nodes. We implement
this algorithm in Python3.8 with the NetworkX package in CDlib,
with the number of iterations set to 21 and the filtering threshold
set to 0.01. The original code is available at https://github.com/
kbalasu/SLPA.

• Bigclam is an overlapping community detection method for
large networks based on Non-negative Matrix Factorization
(NMF), which maximizes the likelihood estimate of the graph to
find the optimal community structure. We implement this algo-
rithm using open-source code, with the number of communities
set to 25,000. The code is available at https://github.com/snap-
stanford/snap.

• NcGame is an overlapping community detection algorithm
based on non-cooperative game theory, which treats nodes as
rational, self-interested participants and aims to find communi-
ties that maximize individual node benefits. We implement this
algorithm with python3.8 via open-source code available in the
paper’s supplementary material https://doi.org/10.1038/s41598-
022-15095-9.

• Fox is a heuristic overlapping community detection method
that measures the closeness between nodes and communities
by approximating the number of triangles formed by nodes and
communities. We implement this algorithm using open-source
code available at https://github.com/timgarrels/LazyFox, with
the stopping threshold set to 0.1.

• Louvain is a community detection method based on modular-
ity optimization, which identifies non-overlapping community
structures in networks through a multi-level optimization strat-
egy. We implement this algorithm in Python3.8 with API pro-
vided by igraph library, and its open-source code is available at
https://github.com/taynaud/python-louvain.

• DER is a diffusion entropy reduction graph clustering algorithm
with randomwalks and k-means for non-overlapping community
detection. We implement this algorithm in Python3.8 with the
NetworkX package in CDlib, and its original code is available at
https://github.com/komarkdev/der_graph_clustering.

• Leiden is an improved version of the Louvain algorithm, which
enhances community detection accuracy and stability through
local optimization and refinement steps. We implement this al-
gorithm using open-source code available at https://github.com/
vtraag/leidenalg.

• FLPA is a fast variant of LPA [39] that is based on processing
a queue of nodes whose neighborhood recently changed. We
implement this algorithm in Python3.8 with API provided by
igraph library, and its open-source code is available at https:
//github.com/vtraag/igraph/tree/flpa.

F VISUALIZATION
To intuitively assess the quality of community detection across var-
ious algorithms, we visualize the network consisting of the top 500

11

https://github.com/kbalasu/SLPA
https://github.com/kbalasu/SLPA
https://github.com/snap-stanford/snap
https://github.com/snap-stanford/snap
https://doi.org/10.1038/s41598-022-15095-9
https://doi.org/10.1038/s41598-022-15095-9
https://github.com/timgarrels/LazyFox
https://github.com/taynaud/python-louvain
https://github.com/komarkdev/der_graph_clustering
https://github.com/vtraag/leidenalg
https://github.com/vtraag/leidenalg
https://github.com/vtraag/igraph/tree/flpa
https://github.com/vtraag/igraph/tree/flpa

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

WWW ’25, April 28–May 2, 2025, Sydney, Australia. Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

(a) Ground truth. (b) CoDeSEG. (c) Fox.

(d) NcGame. (e) SLPA. (f) Bigclam.

Figure 6: Community detection result visualization on Amazon (top 500 communities). Light gray indicates community nodes
ranked beyond 100, while gray denotes nodes misaligned with the ground truth.

(a) Ground truth. (b) CoDeSEG. (c) Fox. (d) NcGame. (e) SLPA. (f) Bigclam.

Figure 7: Community detection result visualization on LFR benchmark network.

communities by node count from the Amazon dataset, comprising
13,132 nodes and 41,263 edges. For clarity, the top 100 communi-
ties are highlighted with distinct colors. As illustrated in Figure 6,
the detected communities by the proposed CoDeSEG closely align
with baselines NcGame and SLPA, exhibiting the highest similarity
to the ground truth. In contrast, the results of Fox and Bigclam
display a higher proportion of gray nodes (i.e., nodes that do not
match ground truth assignments), with Fox showing the most sig-
nificant deviation from the ground truth communities. To clearly
demonstrate the detection performance of the CoDeSEG algorithm,
we visualize the detection results of various algorithms on the LFR
benchmark network [25]. The constructed LFR benchmark network

comprises five communities, 100 nodes, and 977 edges. The visu-
alization in Figure 7 demonstrates that the detected communities
by CoDeSEG are almost identical to the ground truth. While Fox
accurately assigns most nodes to correct communities, it detects
more communities than the ground truth. NcGame and SLPA, on
the other hand, tend to assign most nodes to fewer communities.
Bigclam, in contrast, fails to assign some nodes to any community
(i.e., the gray nodes in Figure 7(f)), which are considered noise
or not part of any significant community. Overall, CoDeSEG con-
sistently delivers superior performance across different networks,
demonstrating enhanced stability and robustness.

12

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Community Detection
	2.2 Community Formation Game
	2.3 Structural Entropy

	3 Methodology
	3.1 Structural Entropy based Heuristic Function
	3.2 Efficient computation of L(x, Ck)
	3.3 Community Detection Algorithm
	3.4 Time Complexity
	3.5 Parallelism Implementation

	4 Experiments
	4.1 Experimental Setups
	4.2 Main Results (RQ1)
	4.3 Efficiency of CoDeSEG (RQ2)
	4.4 Convergence of CoDeSEG (RQ3)
	4.5 Parallelization Study (RQ4)

	5 Related Work
	6 Conclusion
	References
	A Glossary of Notations
	B Proof of the L(x, C) Computation Formula
	C Evaluation Metrics.
	D Datasets
	E Baselines
	F Visualization

