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ABSTRACT

In many problems, the measured variables (e.g., image pixels) are just mathe-
matical functions of the hidden causal variables (e.g., the underlying concepts
or objects). For the purpose of making prediction in changing environments or
making proper changes to the system, it is helpful to recover the hidden causal
variables Zi, their causal relations represented by graph GZ , and how their causal
influences change, which can be explained by suitable latent factors θi governing
changes in the causal mechanisms. This paper is concerned with the problem of
estimating the underlying hidden causal variables and the latent factors from mul-
tiple distributions (arising from heterogeneous data or nonstationary time series)
in nonparametric settings. We first show that under the sparsity constraint on the
recovered graph over the latent variables and suitable sufficient change conditions
on the causal influences, the recovered latent variables and their relations are re-
lated to the underlying causal model in a specific, nontrivial way. Moreover, we
show that orthogonally, under the modular change condition on the causal mod-
ules (without the sparsity constraint on the graph), the underlying latent factors θi
can be recovered up to component-wise invertible transformations. Putting them
together, one is able to recover the hidden variables, their causal relations, and the
corresponding latent factors up to minor indeterminacies.

1 INTRODUCTION

Causal representation learning holds paramount significance across numerous fields, offering in-
sights into intricate relationships within datasets. Most traditional methodologies (e.g., causal dis-
covery) assume the observation of causal variables. This assumption, however reasonable, falls
short in complex scenarios involving indirect measurements, such as electronic signals, image pix-
els, and linguistic tokens. In addition, there are usually changes on the causal mechanisms in the
real-world scenarios, such as the heterogeneous or nonstationary data. Identifying the hidden causal
variables and their structures together with the change of the causal mechanism is in pressing need
to understand the complicated real-world causal process.

At the same time, identifying only the hidden causal variables but not the structure among them, is
already a considerable challenge. In the i.i.d. case, different latent representations can explain the
same observations equally well, while not all of them are consistent with the true causal process. For
instance, independent component analysis (ICA), where a set of observed variables X is represented
as a mixture of independent latent variables Z, i.e, X = g(Z), is known to be unidentifiable without
additional assumptions (Comon, 1994). While being a strictly easier task since there are no relations
among hidden variables, the identifiability of ICA relies on conditions on distributional assumptions
(non-i.i.d. data) (Hyvärinen & Morioka, 2016; 2017; Hyvärinen et al., 2019; Khemakhem et al.,
2020a; Sorrenson et al., 2020; Lachapelle et al., 2022; Hälvä & Hyvärinen, 2020; Hälvä et al., 2021;
Yao et al., 2022) or specific functional constraints (Comon, 1994; Hyvärinen & Pajunen, 1999; Taleb
& Jutten, 1999; Buchholz et al., 2022; Zheng et al., 2022).

To generalize beyond the independent hidden variables and recover the causal structure among them,
recent advances either introduce additional experiments in the forms of interventional or counterfac-
tual data, or place more restrictive parametric or graphical assumptions on the latent causal model.
For observational data, various graphical conditions have been proposed together with parametric
assumptions such as linearity (Silva et al., 2006; Cai et al., 2019; Xie et al., 2020; 2022; Adams et al.,
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Figure 1: The generating process for each hidden causal variable Zi changes, governed by a latent
factor θi. The observations X are generated by X = g(Z) with a nonlinear mixing function g.

2021; Huang et al., 2022) and discreteness (Kivva et al., 2021). For interventional data, single-node
interventions have been considered together with parametric assumptions (e.g., linearity) on the mix-
ing funtion (Varici et al., 2023; Ahuja et al., 2023; Buchholz et al., 2022) or also on the latent causal
model Squires et al. (2023). The nonparametric settings for both the mixing function and causal
model have been explored by (Brehmer et al., 2022; von Kügelgen et al., 2023; Jiang & Aragam,
2023) together with additional assumptions on counterfactual views (Brehmer et al., 2022), distinct
paired interventions (von Kügelgen et al., 2023), and graphical conditions (Jiang & Aragam, 2023).

However, while it is possible to discover the latent causal structure using additional assumptions,
most previous studies fall short in identifying the potential shifts in the causal mechanism. In a
constantly changing world, assuming a static hidden causal model can be counterintuitive. It is
crucial to identify the latent factors that govern these changes. Consider, for instance, the essential
characteristic of our brain, where neural connections are persistently evolving, leading to the typical
nonstationarity of fMRI data (Havlicek et al., 2011). Regrettably, the majority of previous studies
to reveal hidden causal variables and their structures do not consider recovering the latent factors
directing the changes. As a result, current theories may not fully uncover the hidden causal model
in complex real-world scenarios since the mechanisms of change remain elusive.

In this work, we aim to reveal the hidden causal variables, their causal relations, and the latent factors
governing the changes in the causal mechanisms. Our results are only based on purely observational
data, offering insight into the underlying causal models and changes without the need for experi-
ments. We focus on the general nonparametric settings in the latent causal model, mixing function,
and the influence of the change. Concretely, we show that under the sparsity constraint on the
recovered graph and sufficient change on the causal influences, the ground-truth hidden variable can
be identified in a specific way (Lemma 1, Thm. 2). Moreover, the causal relations among them are
also recovered up to a certain indeterminacy with new relaxations of faithfulness (Lemma 1, Thm. 1,
Thm. 3). Furthermore, we prove the component-wise identifiability for the latent factors governing
the change, providing a nonparametric guarantees on the recovery of the hidden dynamics (Thm.
4). Therefore, we offer a collection of new identifiability findings in one of the most comprehensive
settings, where not only the hidden causal variables and the structures but also the latent changing
factors can be unveiled. Our theory has been validated by experiments across diverse settings.

2 PROBLEM SETTING

Let X = (X1, . . . , Xd) be an d-dimensional random vector that represents the observations. We
assume that they are generated by n hidden causal variables Z = (Z1, . . . , Zn) via a nonlinear
injective mixing function g : Rn → Rd (d ≥ n), which is also a C2 diffeomorphism. Furthermore,
the variables Zi’s are assumed to follow a structural equation model (SEM) (Pearl, 2000). Putting
them together, the data generating process can be written as

X = g(Z)︸ ︷︷ ︸
Nonlinear mixing

, Zi = fi(PA(Zi), ϵi; θi), i = 1, . . . , n︸ ︷︷ ︸
Latent SEM

. (1)

where PA(Zi) denotes the parents of variable Zi, ϵi’s are exogenous noise variables that are mutually
independent, and θi denotes the latent (changing) factor (or effective parameters) associated with
each model. Here, the data generating process of each hidden variable Zi may change, e.g., across
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domains or over time, governed by the corresponding latent factor θi; it is commonplace to encounter
such changes in causal mechanisms in practice (arising from heterogenous data or nonstationary time
series). In addition, interventional data can be seen as a special type of change, which qualitatively
restructure the causal relations. As their names suggest, we assume that the observations X are
observed, while the hidden causal variables Z and latent factors θ = (θ1, . . . , θn) are unobserved.

Let PX and PZ be the distributions of X and Z, respectively, and their corresponding probability
density functions be pX(X; θ) and pZ(Z; θ), respectively. To lighten the notation, we drop the
subscript in the density when the context is clear. The latent SEM in Eq. (1) induces a causal graph
GZ with vertices {Zi}ni=1 and edges Zj → Zi if and only if Zj ∈ PA(Zi). We assume that GZ is
acyclic, i.e., a directed acyclic graph (DAG). This implies that the distribution of variables Z satisfy
the Markov property w.r.t. DAG GZ (Pearl, 2000), i.e., p(Z; θ) =

∏n
i=1 p(Zi |PA(Zi); θi). We

provide an example of the data generating process in Eq. (1) and its corresponding latent DAG GZ
in Figure 1. In particular, given the observations X arising from multiple distributions (governed by
the latent factors θ), our goal is to recover the underlying hidden causal variables Z = g−1(X) and
their causal relations, as well as the latent factors θ, up to minor indeterminacies.

3 LEARNING CAUSAL REPRESENTATIONS WITH SPARSITY CONSTRAINTS

In this section, we provide theoretical results to show how one is able to recover the underlying
hidden causal variables and their causal relations up to certain indeterminacies. Specifically, we
show that under the sparsity constraint on the recovered graph over the latent variables and suitable
sufficient change conditions on the causal influences, the recovered latent variables are related to the
underlying hidden causal variables in a specific, nontrivial way. Such theoretical results serve as the
foundation of our algorithm described in Section 5.

To start with, we estimate a model (ĝ, f̂ , pẐ) which assumes the same data generating process as in
Eq. (1) and matches the true distribution of X in different domains:

pX(X ′; θ′) = pX̂(X ′; θ′), ∀X ′, θ′. (2)

where X and X̂ are generated from the true model (g, f, pZ) and the estimated model (ĝ, f̂ , pẐ),
respectively.

A key ingredient in our theoretical analysis is Markov network that represent conditional dependen-
cies among random variables in a graphical manner via an undirected graph. LetMZ be the Markov
network over variables Z, specifically, with vertices {Zi}ni=1 and edges (i, j) ∈ E(MZ) if and only
if Zi ⊥⊥ Zj | Z[n]\{i,j}.1 Also, we denote by |MZ | the number of undirected edges in the Markov
network. In Section 3.1, apart from showing how to estimate the underlying hidden causal variables
up to certain indeterminacies, we also show that such latent Markov networkMZ can be recovered
up to trivial indeterminacies (i.e., relabeling of the hidden variables). To achieve so, we make use of
the following property (assuming that pZ is twice differentiable):

Zi ⊥⊥ Zj | Z[n]\{i,j} ⇐⇒
∂2 log p(Z)

∂Zi∂Zj
= 0.

Such a connection between pairwise conditional independence and cross derivatives of the density
function has been noted by Lin (1997). With the recovered latent Markov network structure, we
provide results in Section 3.2 to show how it relates to the true latent causal DAG GZ , by exploiting
a specific type of faithfulness assumption that is considerably weaker than the standard faithfulness
assumption used in the literature of causal discovery (Spirtes et al., 2001).

3.1 RECOVERING HIDDEN CAUSAL VARIABLES AND LATENT MARKOV NETWORK

We show how one benefits from multiple distributions to recover the hidden causal variables and the
true Markov network structure among them up to minor indeterminacies, by making use of sparsity
constraint and sufficient change conditions on the causal mechanisms.

We start with the following result that provides information about the relationship between the
Markov networkMZ over true hidden causal variables Z and the Markov networkMẐ over the es-
timated hidden variables Ẑ. This result serves as the backbone of our further analysis in this section.
Denote by ⊕ the vector concatenation symbol.

1We use [n] to denote {1, . . . , n} and Z[n]\{i,j} to denote {Zi}ni=1 \ {Zi, Zj}.
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Lemma 1. Let the observations be sampled from the data generating process in Eq. (1), andMZ

be the Markov network over Z. Suppose that the following assumptions hold:

• A1 (Smooth and positive density): The probability density function of latent causal vari-
ables is smooth and positive, i.e. pZ is smooth and pZ > 0 over Rn.

• A2 (Sufficient changes): For any Z ∈ Rn, there exist 2n + |MZ | + 1 values of θ, i.e.,
θ(u) with u = 0, . . . , 2n + |MZ |, such that the vectors w(Z, u) − w(z, 0) with u =
1, . . . , 2n+ |MZ | are linearly independent, where vector w(Z, u) is defined as

w(Z, u) =

(
∂ log p(Z; θ(u))

∂Z1
, . . . ,

∂ log p(Z; θ(u))

∂Zn
,

∂2 log p(Z; θ(u))

∂Z2
1

, . . . ,
∂2 log p(Z; θ(u))

∂Z2
n

)
⊕
(
∂2 log p(Z; θ(u))

∂Zi∂Zj

)
(i,j)∈E(MZ)

.

Suppose that we learn (ĝ, f̂ , pẐ) to achieve Eq. (2). Then, for every pair of estimated hidden
variables Ẑk and Ẑl that are not adjacent in the Markov networkMẐ over Ẑ, we have the following
statements:

(a) Each true hidden causal variable Zi is a function of at most one of Ẑk and Ẑl.
(b) For each pair of true hidden causal variables Zi and Zj that are adjacent in the Markov

networkMZ over Z, at most one of them is a function of Ẑk or Ẑl.

The proof is provided in Appx. A. It is worth noting that the requirement of a sufficient number
of environments has been commonly adopted in the literature (e.g., see (Hyvärinen et al., 2023) for
a recent survey), such as visual disentanglement (Khemakhem et al., 2020b), domain adaptation
(Kong et al., 2022), video analysis (Yao et al., 2021), and image-to-image translation (Xie et al.,
2023). Also, we do not specify exactly how to learn (ĝ, f̂ , pẐ) to achieve Eq. (2), and leave the door
open for different approaches to be used, such as normalizing flow or variational approaches. For
example, we adopt a variational approach in Section 5.

The above result sheds light on how each pair of estimated latent variables Ẑk and Ẑl that are not
adjacent in Markov networkMẐ relate to the true hidden causal variables Z. Without any constraint
on the estimating process, a trivial solution would be a complete graph over Ẑ. To avoid it, we
enforce sparsity of the Markov network over Ẑ. This allows us to recover the true Markov network
structure up to trivial indeterminacies, formally stated below, with a proof provided in Appx. B.
Theorem 1 (Identifiability of Latent Markov Network). Let the observations be sampled from the
data generating process in Eq. (1), andMZ be the Markov network over Z. Suppose that Assump-
tions A1 and A2 from Theorem 1 holds. Suppose also that we learn (ĝ, f̂ , pẐ) to achieve Eq. (2)
with the minimal number of edges of Markov networkMẐ over Ẑ. Then, the Markov networkMẐ

over estimated hidden variables Ẑ is isomorphic to the true latent Markov networkMZ .

Apart from recovering the true Markov network MZ , we show that the sparsity constraint on the
Markov network structure over Ẑ also allows us to recover the underlying hidden causal variables
Z up to minor indeterminacies.
Theorem 2 (Identifiability of Hidden Causal Variables). Let the observations be sampled from the
data generating process in Eq. (1), and MZ be the Markov network over Z. Let NZi

be the set
of neighbors of variable Zi inMZ . Suppose that Assumptions A1 and A2 from Theorem 1 holds.
Suppose also that we learn (ĝ, f̂ , pẐ) to achieve Eq. (2) with the minimal number of edges of Markov
networkMẐ over Ẑ. Then, there exists a permutation π of the estimated hidden variables, denoted
as Ẑπ , such that the corresponding statements hold for i = 1, . . . , n:

(a) Zi is a function of Ẑπ(i) and a (possibly empty) subset of the variables in
{Ẑπ(j) |Zj is adjacent to Zi and all other neighbors of Zi inMZ}.
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(b) Ẑπ(i) is a function of Zi and a (possibly empty) subset of the variables in
{Zj |Zj is adjacent to Zi and all other neighbors of Zi inMZ}.

The proof is given in Appx. C. It is worth noting that in many cases, the above result already enables
us to recover some of the hidden variables up to a component-wise transformation.
Remark 1. No matter how many neighbors each hidden causal variable Zi has, as long as one of
its neighbors is not adjacent to any other neighbor in the Markov networkMZ , Zi can be recovered
up to a component-wise transformation.

Even if the above case does not hold, Theorem 2 still shows how the estimated hidden variables
relate to the underlying causal variables in a specific, nontrivial way. An example is provided below.

Example 1. Consider the Markov network MZ corresponding to the DAG GZ over Zi in Figure
1. By Theorem 2 and suitable permutation of estimated hidden variables Ẑ, we have: (a) Ẑπ(1) is
a function of Z1 and possibly Z2, (b) Ẑπ(2) is a function of Z2, (c) Ẑπ(3) is a function of Z3 and
possibly Z2, Z4, (d) Ẑπ(4) is a function of Z4, and (d) Ẑπ(5) is a function of Z5 and possibly Z4.

In the example above, the hidden causal variables Z2 and Z4 can be recovered up to component-
wise transformation, while variables Z1, Z3, and Z5 can be identified up to mixtures with certain
neighbors in the Markov network.

Permutation of estimated latent variables. Theorems 1 and 2 involve certain permutation of
the estimated hidden variables Ẑ. Such an indeterminacy is common in the literature of causal
discovery and representation learning tasks involving latent variables. In our case, since the function
h := ĝ−1 ◦ g where Ẑ = h(Z) is invertible, there exists a permutation of the latent variables such
that the corresponding Jacobian matrix Jh has nonzero diagonal entries (see Lemma 3 in Appx. B);
such a permutation is what Theorems 1 and 2 refer to.

3.2 FROM LATENT MARKOV NETWORK TO LATENT CAUSAL DAG

Now we have identified the Markov network up to an isomorphism, which characterizes conditional
independence relations in the distribution. To build the connection between Markov network or con-
ditional independence relations and causal structures, prior theory replies on the Markov and faith-
fulness assumptions. However, in real-world scenarios, the faithfulness assumption could be vio-
lated due to various reasons including path cancellations (Zhang & Spirtes, 2008; Uhler et al., 2013).

Since our goal is to generalize the identifiability theory as much as possible to fit practical applica-
tions, we introduce two relaxations of the faithfulness assumptions:
Assumption 1 (Single adjacency-faithfulness (SAF)). Given a DAG GZ and distribution PZ over
the variable set Z, if two variables Zi and Zj are adjacent in GZ , then Zi ⊥̸⊥Zj |Z[n]\{i,k}.
Assumption 2 (Single unshielded-collider-faithfulness (SUCF) (Ng et al., 2021)). Given a latent
causal graph GZ and distribution PZ over the variable set Z, let Zi → Zj ← Zk be any unshielded
collider in GZ , then Zi ⊥̸⊥Zk|Z[n]\{i,k}.

We propose SAF as a relaxtion of the Adjacency-faithfulness (Ramsey et al., 2012). The SUCF
assumption is first introduced by Ng et al. (2021), which is strictly weaker than Orientation-
faithfulness (Ramsey et al., 2012). Thus, both of them are strictly weaker than the faithfulness
assumption, since the combination of Adjacency-faithfulness and Orientation-faithfulness is weaker
than the faithfulness assumption (Zhang & Spirtes, 2008).

Interestingly, not only they are weaker variants of faithfulness, we prove that they are actually
necessary and sufficient conditions, thus the weakest possible ones, to bridge conditional indepen-
dence relations and causal structures. Specifically, we show that the recovered Markov network is
exactly the moralized graph of the true causal DAG if and only if the proposed variants of faithful-
ness hold. The proofs of Lemma 2 and Theorem 3 are shown in Appx. D.
Lemma 2. Given a latent causal graph GZ and distribution PZ with its Markov Network MZ ,
under Markov assumption, the undirected graph defined by MZ is a subgraph of the moralized
graph of the true causal DAG G.
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Theorem 3. Given a causal DAG GZ and distribution PZ with its Markov Network MZ , under
Markov assumption, the undirected graph defined byMZ is the moralized graph of the true causal
DAG GZ if and only if the SAF and SUCF assumptions are satisfied.

It is worth noting that the connection between conditional independence relations and causal struc-
tures has been developed by (Loh & Bühlmann, 2014; Ng et al., 2021) in the linear case by leverag-
ing the properties of the inverse covariance matrix; our results here focus on the nonparametric case
and thus being able to serve the considered general settings for identifiability. The necessary and
sufficient assumptions may also be of independent interest for other causal discovery tasks exploring
conditional independence relations.

4 LEARNING LATENT FACTORS GOVERNING THE CHANGES

In previous section, we describe how the sparsity constraint on recovered graph over latent variables
and sufficient change conditions on causal influences can be used to recover the latent variables and
causal graph up to certain indeterminacies. In addition to hidden variables and causal graph, one may
wonder whether it is possible to recover the latent factors that govern the changes across multiple dis-
tributions (e.g., arising from heterogeneous data or nonstationary time series). The changing param-
eters of different distributions of interest often lie in low-dimensional manifold, which leads to a low-
dimensional and interpretable representation of changing mechanisms (Stojanov et al., 2019). We
show that under the modular changes condition on the causal modules (without sparsity constraint on
the graph), the latent factors θi can be recovered up to component-wise invertible transformations.
Theorem 4 (Identifiability of Latent Factors). Let the observations be sampled from the data gen-
erating process in Eq. (1), and MZ be the Markov network over Z. Suppose that the following
assumptions hold:

• A1 (Smooth and positive density): The probability density function of latent causal vari-
ables is smooth and positive, i.e. pZ is smooth and pZ > 0 over Rn.

• A2 (Modular changes): θi across different i are not related via equality constraints.

• A3 (Sufficient changes): for Z ∈ Rn and each value of θ, the vectors w(θ) are linearly
independent, where w(θ) is defined as

w(θ) =

(
∂ log p(Z1 |PA(Z1); θ1)

∂θ1
, . . . ,

∂ log p(Zn |PA(Zn); θn)

∂θn
,

∂2 log p(Z1 |PA(Z1); θ1)

∂θ21
, . . . ,

∂2 log p(Zn |PA(Zn); θn)

∂θ2n

)
.

Suppose that we learn (ĝ, f̂ , pẐ) to achieve Eq. (2). Then, θi are identifiable up to component-wise
invertible transformation from the observations X in multiple domains.

The proof is provided in Appx. E. The condition of modular (or independent) changes above avoids
the latent factors θ to be coupled in a specific way. It is worth noting that similar principles of
modular changes have been adopted in the literature of causal discovery (Huang et al., 2020) to
learn causal structure from multiple distributions without hidden variables.

4.1 BENEFIT FROM PARAMETRIC CONSTRAINTS ON CHANGES

In several cases, we may be able to leverage the parametric constraint on the changes for the recovery
of the model. For instance, if we know that the changes happen to the linear causal mechanisms
with Gaussian noises, this constraint can immediately help reduce the search space and improve the
identifiability. As an illustrative example, consider a linear Gaussian causal model for the latent
variables with structure Z1 → Z2. In the true model, only limited parameters change according to
the latent factor, while for the alternative model, the change of parameters follow equality constraints
and thus all parameters can change. Thus, the identifiability is provided by assuming parametric
constraints such as the linear Gaussian model, which may be helpful in certain applications.
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5 CHANGE ENCODING NETWORK FOR REPRESENTATION LEARNING

Thanks to the identifiability result, we now present two different practical implementations to re-
cover the latent variables and their causal relations from observations from multiple domains. We
build our method on the variational autoencder (VAE) framework and can be easily extended to
other models, such as normalizing flows.

We learn a deep latent generative model (decoder) p(X|Z) and a variational approximation (en-
coder) q(Z|X, θ) of its true posterior p(Z|X, θ) since the true posterior is usually intractable. To
learn the model, we minimize the lower bound of the log-likelihood as

log p(X|u, θ) = log

∫
p(X|Z, u)p(Z|u)dZ (3)

= log

∫
q(Z|X,u)

q(Z|X,u)

∫
p(X|Z, u, θ)p(Z|u)dZ

≥ −KL(q(Z|X,u)||p(Z|u)) + Eq[log p(X|Z)].

For the posterior q(Z|X,u), we assume that it is a multivariate Gaussian or a Laplacian distribution,
where the mean and variance are generated by the neural network encoder. As for q(X|Z), we
assume that it is a multivariate Gaussian and the mean is the output of the decoder and the variance is
a pre-defined value (we use 0.01). Besides this lower bound likelihood, we use an adjacency matrix
Â to capture the relationship among the estimated latent variables. According to our theoretical
results, we apply a sparsity constraint to avoid trivial solution and find the true structure. Therefore,
we apply ℓ1 regularization to learn a graph which is sparse but sufficient to explain the changes
across components and domains.

An essential difference from VAE (Kingma & Welling, 2013) and iVAE (Khemakhem et al., 2020a)
is that our method allow the components of Z to be causally dependent and we are able to learn the
components and causal relationships. And the key is the prior distribution P (Z|u). Now we present
two different implementations to capture the changes with a properly defined prior distribution.

5.1 NON-PARAMETRIC IMPLEMENTATION

To recover the relationships and latent variables Z, we build the normalizing flow to mimic the
inverse of the latent SEM Zi = fi(PA(Zi), ϵi) in Eq. (1). We first assume a causal ordering as
Ẑ1, . . . , Ẑn. Then, for each component Ẑi, we consider the previous components {Ẑ1, . . . , Ẑi−1}
as potential parents of Ẑi and we can select the true parents with the adjacency matrix Â, where Âi,j

denotes that component Ẑj contributes in the generation of Ẑi. If Âi,j = 0, it means that Ẑj will not
contribute to the generation of Ẑi. Then, we use the selected parents {Âi,1Ẑ1, . . . , Âi,i−1Ẑi−1} and
the domain label u to generate parameters of normalizing flow and apply the flow transformation on
Ẑi to turn it into ϵ̂i. Specifically, we have

ϵ̂i, log deti = Flow(Ẑi;NN({Âi,jẐj}i−1
j=1, u)), (4)

where log deti is the log determinant of the flow transformation on Ẑi.

To compute the prior distribution, we make assumption on the noise term ϵ that it follows an inde-
pendent prior distribution p(ϵ), such as a standard isotropic Gaussian or a Laplacian. Then according
to the change of variable formula, the prior distribution of the dependent latents can be written as

log p(Ẑ|u) = log p(ϵ̂) +

n∑
i=1

log deti. (5)

Intuitively, to minimize the KL divergence loss between p(Z|u) and q(Z|X,u), the network has
to learn the correct structure and the underlying latent variables; otherwise, it can be difficult to
transform the dependent latent variables Ẑ to a factorized prior distribution, e.g., N (0, I).

5.2 PARAMETRIC IMPLEMENTATION

As mentioned in Section 4.1, we can make parametric assumption on the latent causal process and
facilitate the learning of true causal structure and components. Here, we consider the linear SEM
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Figure 2: Recovered latent variables v.s. the true latent variables with Non-Parametric Approach.
(a) Y-structure with Laplace noise. (b) Y-structure with Gaussian noise. (c) Chain structure with
Laplace noise. (d) Chain structure with Gaussian noise.

and more complex SEMs can be generalized. Specifically, we assume

Z = A(C(u)Z) + S(u)ϵ+B(u), (6)

where A is a causal adjacency matrix which can be permuted to be strictly lower-triangular, C(u) and
S(u) are underlying domain-specific scaling matrix and vector, respectively, B(u) is the underlying
domain-specific bias vector, and ϵ is the independent noise. θ governs the scaling and bias values.

To estimate the latent variables Z, the causal structure A, and capture the changes across do-
mains, we introduce the learnable scaling and bias parameters and pre-define a causal ordering
as Ẑ1, Ẑ2, . . . , Ẑn. Then we have the matrix form as

ϵ̂ = (Ẑ − B̂(u) − ÂĈ(u)Ẑ)/Ŝ(u). (7)

Given a prior distribution p(ϵ̂), and according to the change of variable rule, we have the prior
distribution for Ẑ as

log p(Ẑ|u) = log p(ϵ̂)− log

∣∣∣∣∣
n∑

i=1

Ŝ
(u)
i

∣∣∣∣∣ . (8)

We then minimize the lower bound in Eq. (4).

5.3 SIMULATIONS

To verify our theory and the proposed implementations, we run experiments on the simulated data
because the ground truth causal adjacency matrix and the latent variables across domains are avail-
able for simulated data. Consequently, we consider following common causal structures (i) Y-
structure with 4 variables, Z1 → Z3 ← Z2, Z3 → Z4 and (ii) chain structure Z1 → Z2 →
Z3 → Z4. The noises are modulated with scaling random sampled from Unif[0.5, 2] and biases are
sampled from Unif[−2, 2]. The scaling on the Z are also randomly sampled from Unif[0.5, 2]. In
other words, the changes are modular. After generating Z, we feed the latent variables into MLP
with orthogonal weights and LeakyReLU activations for invertibility. We present the results in Fig.
2 and 3. Firstly, we observe that all latent variables can be recovered accurately in Y and chain
structures with the linear parameterization implementation. The hidden structure is also recovered.
This supports our theoretical result that the components and structure are identifiable up to certain
indeterminacies. As for the results in Fig. 2, we observe that our non-parametric method is still able
to recover the true latent variables with Laplace noise. However, when the noises are Gaussian, it
becomes more challenging and we observe that some components are mixed, which further aligns
with our theory (e.g., Theorem 2) and demonstrate the benefit of using suitable parameterization.

6 RELATED WORK

Causal representation learning aims to unearth causal latent variables and their relations from ob-
served data. Despite its significance, the identifiability of the hidden generating process is known to
be impossible without additional constraints, especially with only observational data. In the linear,
non-Gaussian case, Silva et al. (2006) recover the Markov equivalence class, provided that each
observed variable has a unique latent causal parent; Xie et al. (2020); Cai et al. (2019) estimate the
latent variables and their relations assuming at least twice measured variables as latent ones, which
has been further extended to learn the latent hierarchical structure (Xie et al., 2022). Moreover,
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Figure 3: Recovered latent variables v.s. the true latent variables with Linear Parameterization Ap-
proach. The X-axis denotes the components of true latent variables Z and the Y -axis represent the
components of estimated latent variables Ẑ. (a) Y-structure with Laplace noise. (b) Y-structure with
Gaussian noise. (c) Chain structure with Laplace noise. (d) Chain structure with Gaussian noise.

Adams et al. (2021) provide theoretical results on the graphical conditions for identification. In the
linear, Gaussian case, Huang et al. (2022) leverage rank deficiency of the observed sub-covariance
matrix to estimate the latent hierarchical structure. In the discrete case, Kivva et al. (2021) identify
the hidden causal graph up to Markov equivalence by assuming a mixture model where the observed
children sets of any pair of latent variables are different.

Given the challenge of identifiability on purely observational data, a different line of research lever-
age experiments by assuming the accessibility of various types of interventional data. Based on
the single-node perfect intervention, Squires et al. (2023) leverage single-node interventions for the
identifiability of linear causal model and linear mixing function; (Varici et al., 2023) incorporate
for nonlinear causal model and linear mixing function; (Varici et al., 2023; Buchholz et al., 2023;
Jiang & Aragam, 2023) provide the identifiability of the nonparametric causal model and linear
mixing function; (Ahuja et al., 2023) further generalize the result to nonparametric causal model
and polynomial mixing functions with additional constraints on the latent support; and (Brehmer
et al., 2022; von Kügelgen et al., 2023; Jiang & Aragam, 2023) explore the nonparametric settings
for both the causal model and mixing function. In addition to the single-node perfect interventions,
Brehmer et al. (2022) introduced counterfactual pre- and post-intervention views; von Kügelgen
et al. (2023) assume two distinct, paired interventions per node for multivariate causal models; and
Jiang & Aragam (2023) places specific structural restrictions on the latent causal graph.

Our study lies in the line of leveraging only observational data, and provides a set of identifiability
results in the general nonparametric settings on both the latent causal model and mixing function.
Unlike prior works with observational data, we do not have any parametric assumptions or graphical
restrictions; Compared to those relying on interventional data, our results naturally benefit from the
heterogeneity of observational data (e.g., multi-domain data, nonstationary time series) and avoid
additional experiments for interventions. In addition, we recover the latent factors governing the
change up to trivial indeterminacies, shedding new light on understanding the dynamics in the latent
causal process, a view point overlooked by most existing work.

7 CONCLUSION AND DISCUSSIONS

We establish a set of new identifiability results to reveal hidden causal variables, latent structures,
and latent factors governing the changes of the causal mechanisms in the general nonparametric
settings. Specifically, with sparsity regularization during estimation and sufficient changes in the
causal influences, we demonstrate that the revealed hidden variables and structures are related to the
underlying causal model in a specific, nontrivial way. Furthermore, we prove that the latent factors
governing the change in the causal mechanism can be identified up to trivial indeterminacies. In
contrast to recent works on the recovery of hidden causal variables and structures, our results rely
on purely observational data without graphical or parametric constraints. Additionally, the identi-
fication of latent changing factors illustrate the potential to fully comprehend the hidden world, as
even the latent dynamics could also be unearthed. Therefore, our results offer insight into unveiling
the latent causal process in one of the most universal settings. Experiments in various settings have
been conducted to validate the theory. As future work, we will explore the scenario where only a
subset of the causal relations change, which could be a challenge as well as a chance, and show up to
what extent the underlying causal variables can be recovered with potentially weaker assumptions.
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Peter Sorrenson, Carsten Rother, and Ullrich Köthe. Disentanglement by nonlinear ICA with general
incompressible-flow networks (GIN). arXiv preprint arXiv:2001.04872, 2020.

P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search. MIT Press, Cambridge,
MA, 2nd edition, 2001.

Chandler Squires, Anna Seigal, Salil S Bhate, and Caroline Uhler. Linear causal disentanglement
via interventions. In International Conference on Machine Learning, 2023.

Petar Stojanov, Mingming Gong, Jaime Carbonell, and Kun Zhang. Data-driven approach to
multiple-source domain adaptation. In International Conference on Artificial Intelligence and
Statistics (AISTATS), 2019.

Anisse Taleb and Christian Jutten. Source separation in post-nonlinear mixtures. IEEE Transactions
on signal Processing, 47(10):2807–2820, 1999.
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A PROOF OF LEMMA 1

Lemma 1. Let the observations be sampled from the data generating process in Eq. (1), andMZ

be the Markov network over Z. Suppose that the following assumptions hold:

• A1 (Smooth and positive density): The probability density function of latent causal vari-
ables is smooth and positive, i.e. pZ is smooth and pZ > 0 over Rn.

• A2 (Sufficient changes): For any Z ∈ Rn, there exist 2n + |MZ | + 1 values of θ, i.e.,
θ(u) with u = 0, . . . , 2n + |MZ |, such that the vectors w(Z, u) − w(z, 0) with u =
1, . . . , 2n+ |MZ | are linearly independent, where vector w(Z, u) is defined as

w(Z, u) =

(
∂ log p(Z; θ(u))

∂Z1
, . . . ,

∂ log p(Z; θ(u))

∂Zn
,

∂2 log p(Z; θ(u))

∂Z2
1

, . . . ,
∂2 log p(Z; θ(u))

∂Z2
n

)
⊕
(
∂2 log p(Z; θ(u))

∂Zi∂Zj

)
(i,j)∈E(MZ)

.

Suppose that we learn (ĝ, f̂ , pẐ) to achieve Eq. (2). Then, for every pair of estimated hidden
variables Ẑk and Ẑl that are not adjacent in the Markov networkMẐ over Ẑ, we have the following
statements:

(a) Each true hidden causal variable Zi is a function of at most one of Ẑk and Ẑl.
(b) For each pair of true hidden causal variables Zi and Zj that are adjacent in the Markov

networkMZ over Z, at most one of them is a function of Ẑk or Ẑl.

Proof. Since h in Ẑ = h(Z) is invertible, we have

p(Ẑ; θ̂) = p(Z; θ)/|Jh|,
log p(Ẑ; θ̂) = log p(Z; θ)− log |Jh|. (9)

Suppose Ẑk and Ẑl are conditionally independent given Ẑ[n]\{k,l} i.e., they are not adjacent in the
Markov network over Ẑ. For each θ, by Lin (1997), we have

∂2 log p(Ẑ; θ̂)

∂Ẑk∂Ẑl

= 0.

To see what it implies, we find the first-order derivative:

∂ log p(Ẑ; θ)

∂Ẑk

=
∑
i

∂ log p(Z; θ)

∂Zi

∂Zi

∂Ẑk

− ∂ log |Jq|
∂Ẑk

.

Let η(θ) = log p(Z; θ), η′i(θ) =
∂ log p(Z;θ)

∂Zi
, η′′ij(θ) =

∂2 log p(Z;θ)
∂Zi∂Zj

, h′
i,l =

∂Zi

∂Ẑl
, and h′′

i,kl =
∂2Zi

∂Ẑk∂Ẑl
.

We then derive the second-order derivative:

0 =
∑
j

∑
i

∂2 log p(Z; θ)

∂Zi∂Zj

∂Zj

∂Ẑl

∂Zi

∂Ẑk

+
∑
i

∂ log p(Z; θ)

∂Zi

∂2Zi

∂Ẑk∂Ẑl

− ∂2 log |Jq|
∂Ẑk∂Ẑl

.

=
∑
i

∂2 log p(Z; θ)

∂Z2
i

∂Zi

∂Ẑl

∂Zi

∂Ẑk

+
∑
j

∑
(j,i)∈E(MZ)

∂2 log p(Z; θ)

∂Zi∂Zj

∂Zj

∂Ẑl

∂Zi

∂Ẑk

+
∑
i

∂ log p(Z; θ)

∂Zi

∂2Zi

∂Ẑk∂Ẑl

− ∂2 log |Jq|
∂Ẑk∂Ẑl

=
∑
i

η′′ii(θ)h
′
i,lh

′
i,k +

∑
j

∑
(j,i)∈E(MZ)

η′′ij(θ)h
′
j,lh

′
i,k +

∑
i

η′i(θ)h
′′
i,kl −

∂2 log |Jq|
∂Ẑk∂Ẑl

. (10)
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Here we denote by E(MZ) the set of edges in the Markov network over Z and we already make use
of the fact that if Zi and Zj are not adjacent in the Markov network, then ∂2 log p(Z;θ)

∂Zi∂Zj
= 0.

By Assumption A2, consider the 2n+ |MZ |+1 values of θ, i.e., θ(u) with u = 0, . . . , 2n+ |MZ |,
such that Eq. (10) hold. Then, we have 2n + |MZ | + 1 such equations. Subtracting each equation
corresponding to θ(u), u = 1, . . . , 2n + |MZ | with the equation corresponding to θ(0) resuls in
2n+ |MZ | equations:

0 =
∑
i

(η′′ii(θ
(u))− η′′ii(θ

(0)))h′
i,lh

′
i,k +

∑
j

∑
(j,i)∈E(MZ)

(η′′ij(θ
(u))− η′′ij(θ

(0)))h′
j,lh

′
i,k

+
∑
i

(η′i(θ
(u))− η′i(θ

(0)))h′′
i,kl,

where u = 1, . . . , 2n+ |MZ |. By Assumption A2, the vectors formed by collecting the correspond-
ing coefficients are linearly independent. Therefore, for any i and any j such that (j, i) ∈ E(MZ),
we have

h′
i,lh

′
i,k = 0, (11)

h′
j,lh

′
i,k = 0, (12)

h′′
i,kl = 0. (13)

Eq. (11) indicates that Zi is a function of at most one of Ẑk and Ẑl, while Eq. (12) implies that
given that Zi and Zj are adjacent in Markov networkMZ , at most one of them is a function of Ẑk

or Ẑl.

B PROOF OF THEOREM 1

First, we introduce the following lemma, which will be used in the proof.
Lemma 3. For any invertible matrix A, there exists a permutation of its row such that the diagonal
entries of the resulting matrix are nonzero.

Proof. Suppose by contradiction that there exists at least a zero diagonal entry for every row per-
mutation. By Leibniz formula, we have

det(A) =
∑
σ∈Sn

(
sgn(σ)

n∏
i=1

aσ(i),i

)
,

where Sn denotes the set of n-permutations. Since there exists a zero diagonal entry for every
permutation, we have

n∏
i=1

aσ(i),i = 0, ∀σ ∈ Sn,

which implies det(A) = 0 and that matrix A is not invertible. This is a contradiciton with the
assumption that A is invertible.

We now provide the proof of Theorem 1
Theorem 1 (Identifiability of Latent Markov Network). Let the observations be sampled from the
data generating process in Eq. (1), andMZ be the Markov network over Z. Suppose that Assump-
tions A1 and A2 from Theorem 1 holds. Suppose also that we learn (ĝ, f̂ , pẐ) to achieve Eq. (2)
with the minimal number of edges of Markov networkMẐ over Ẑ. Then, the Markov networkMẐ

over estimated hidden variables Ẑ is isomorphic to the true latent Markov networkMZ .

Proof. Based on Lemma 3, there exists a permutation π of the estimated hidden variables, denoted
as Ẑπ , such that

∂Zi

∂Ẑπ(i)

̸= 0, i = 1, . . . , n. (14)
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Suppose that Zi and Zj are adjacent in the Markov networkMZ over Z, but Z̃π(i) and Z̃π(i) are not
adjacent in the Markov networkMẐ over Ẑ. By Lemma 1, at most one of Zi and Zj is a function
of Z̃π(i) and Z̃π(i). This is clearly a contradiction with Eq. (14).

Therefore, we have shown by contradiction that, if Zi and Zj are adjacent in the Markov network
MZ over Z, then Z̃π(i) and Z̃π(i) are adjacent in the Markov network MẐπ

over variables Ẑπ .
That is, all edges inMZ must be present in Markov networkMẐπ

over variables Ẑπ . Also, note
that the true model (g, f, pZ) is clearly one of the solutions that achieves Eq. (2). Thus, under
sparsity constraint on the edges ofMẐ , we conclude that the Markov networkMẐπ

over Ẑπ must
be identical to the Markov networkMZ over Z,

C PROOF OF THEOREM 2

We first state the following lemma that is used to prove Statement (b) of Theorem 2. The proof is a
straightforward consequence of Cayley–Hamilton theorem and is omitted here.

Lemma 4. Let A be an n × n invertible matix. Then, it can be expressed as a linear combination
of the powers of A, i.e.,

A−1 =

n−1∑
k=0

ckA
k

for some appropriate choice of coefficients c0, c1, . . . , cn−1.

Now consider the Markov network MZ over hidden causal variables Z. Let NZi
be the set of

neighbors of Zi inMZ . We the following result that relates a matrix to its inverse, given that such
matrix satisfies certain property defined byMZ .

Proposition 1. Consider a Markov networkMZ over Z. Let NZi
be the set of neighbors of Zi in

MZ , and A be an n× n invertible matrix. For each i ̸= j where Zj is not adjacent to some nodes
in {Zi} ∪NZi

, suppose Aij = 0. Then, we have A−1
ij = 0.

Proof. By Lemma 4, A−1 can be expressed as linear combination of the powers of A. Therefore, it
suffices to prove that, each matrix power Ak satisfies the following property: Ak

ij = 0 for each i ̸= j
where Zj is not adjacent to some nodes in {Zi}∪NZi

. We proceed with mathematical induction on
k. By definition, the property holds in the base case where k = 1.

Now suppose that the property holds for Ak. We prove by contradiction that the property holds for
Ak+1. Suppose by contradiction that Ak+1

ij ̸= 0 for some i ̸= j where Zj is not adjacent to some
nodes in {Zi} ∪NZi . This implies that one of the following cases holds:

• Case (a): Zj is not adjacent to Zi inMGZ
.

• Case (b): There exists Zl ∈ NZi
\ {Zj} such that Zj and Zl are not adjacent inMGZ

.

Since Ak+1
ij =

∑n
r=0 A

k
irArj , the assumption Ak+1

ij ̸= 0 implies that there must exist m such that
Ak

imAmj ̸= 0, i.e., Ak
im ̸= 0 and Amj ̸= 0. Since both Ak and A satisfy the property, this indicates

(i) Zm is adjacent to Zi and all nodes in NZi
\ {Zm}, and (ii) Zj is adjacent to Zm and all nodes in

NZm \ {Zj}. We consider the following cases:

• Case of m = l: By (ii), Zj is adjacent to Zl, which contradicts Case (b) above. Also, we
know that Zl is adjacent to Zi by (i), which indicates that Zi is adjacent to Zj , contradicting
Case (a) above.

• Case of m ̸= l: By (i) and (ii), Zm is adjacent to Zi and Zj is adjacent to Zm, implying
that Zi and Zj are adjacent, which is contradictory with Case (a) above. Furthermore, since
Zl is a neighbor of Zi, we know that Zm and Zl are adjacent by (i). Also, by (ii), Zj is
adjacent to Zl, which contradicts Case (b) above.
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In either of the cases above, there is a contradiction.

We are now ready to give the following result.

Theorem 2 (Identifiability of Hidden Causal Variables). Let the observations be sampled from the
data generating process in Eq. (1), and MZ be the Markov network over Z. Let NZi

be the set
of neighbors of variable Zi inMZ . Suppose that Assumptions A1 and A2 from Theorem 1 holds.
Suppose also that we learn (ĝ, f̂ , pẐ) to achieve Eq. (2) with the minimal number of edges of Markov
networkMẐ over Ẑ. Then, there exists a permutation π of the estimated hidden variables, denoted
as Ẑπ , such that the corresponding statements hold for i = 1, . . . , n:

(a) Zi is a function of Ẑπ(i) and a (possibly empty) subset of the variables in
{Ẑπ(j) |Zj is adjacent to Zi and all other neighbors of Zi inMZ}.

(b) Ẑπ(i) is a function of Zi and a (possibly empty) subset of the variables in
{Zj |Zj is adjacent to Zi and all other neighbors of Zi inMZ}.

Proof. We provide proof for both part of the statements.

Proof of Statement (a):

By Theorem 1 and its proof, there exists a permutation π of the estimated variables, denoted as Ẑπ ,
such that the Markov networkMẐπ

over Ẑπ is identical toMZ , and that

∂Zi

∂Ẑπ(i)

̸= 0, i = 1, . . . , n.

Clearly, each variable Zi is a function of Ẑπ(i).

We first show that if Zj is not adjacent to Zi inMZ , then Zi cannot be a function of Ẑπ(j). Since Zi

and Zj are not adjacent inMZ , we know that Ẑπ(i) and Ẑπ(j) are not adjacent inMẐπ
. By Lemma

1, Zi is a function of at most one of Ẑπ(i) and Ẑπ(j), which implies that Zi cannot be a function of
Ẑπ(j), because we have shown that Zi is a function of Ẑπ(i).

To refine further, now suppose that Zj is adjacent to Zi, but not adjacent to some Zk ∈ NZi \ {Zj}.
SinceMZ andMẐπ

are identical, Ẑπ(j) is also not adjacent to Ẑπ(k) inMẐπ
. Since Zi and Zk

are adjacent inMZ , by Lemma 1, at most one of them is a function of Ẑπ(j) or Ẑπ(k). This implies
that Zi cannot be a function of Ẑπ(j), because we have shown that Zk is a function of Ẑπ(k).

Proof of Statement (b):

By Statement (a), we know that Zi is a function of at most the variables in Ẑπ(i) ∪
{Ẑπ(j) |Zj is adjacent to Zi and all other neighbors of Zi inMZ}. Therefore, for each i ̸= j where
Zj is not adjacent to some nodes in {Zi} ∪NZi

, we have

∂Zi

∂Ẑπ(j)

= 0.

By Proposition 1, we have (
∂Z

∂Ẑπ

)−1

ij

= 0,

which, by inverse function theorem, implies

∂Ẑπ(j)

∂Zi
=

(
∂Z

∂Ẑπ

)−1

ij

= 0.

This implies that Zi cannot be a function of Ẑπ(j).
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D PROOF OF LEMMA 2 AND THEOREM 3

Lemma 2. Given a latent causal graph GZ and distribution PZ with its Markov Network MZ ,
under Markov assumption, the undirected graph defined by MZ is a subgraph of the moralized
graph of the true causal DAG G.

Proof. Let Zj and Zk, j ̸= k be two variables that i and j are not adjacent in the moralized graph
of GZ . Then it suffices to show that (j, k) /∈ E(MZ) and (k, j) /∈ E(MZ). Because they are
not adjacent in the moralized graph of GZ , they must not be adjacent in GZ and must not share a
common child in GZ . Thus, j and k are d-separated conditioning on V \ {j, k}, which implies the
conditional independence Zj ⊥⊥ Zk|Z \ {Zj , Zk} based on the Markov assumption on {GZ , PZ}.
Then we have (j, k) /∈ E(MZ) and (k, j) /∈ E(MZ).

Theorem 3. Given a causal DAG GZ and distribution PZ with its Markov Network MZ , under
Markov assumption, the undirected graph defined byMZ is the moralized graph of the true causal
DAG GZ if and only if the SAF and SUCF assumptions are satisfied.

Proof. We prove both directions as follows.

Sufficient condition. We prove it by contradiction. Suppose that the structure defined by
supp(MZ) is not equivalent to the moralized graph of GZ . Then, according to Lem. 2, there
exists a pair of variables Zj and Zk, j ̸= k that i and j are adjacent in the moralized graph but
(j, k) /∈ E(MZ) and (k, j) /∈ E(MZ). Thus, we have Zj ⊥⊥ Zk|Z \ {Zj , Zk}. Then we consider
the following two cases:

• If variables Zj and Zk correspond to a pair of neighbors in GZ , then they are adjacent.
Together with the conditional independence relation Zj ⊥⊥ Zk|Z \ {Zj , Zk}, this implies
that the SAF assumption is violated.

• If variables Zj and Zk correspond to a pair of non-adjacent spouses in GZ . Then they have
an unshielded collider, indicating that the SUCF assumption is violated.

Necessary condition. We prove it by contradiction. Suppose SUCF or SAF is violated, we have
the following two cases:

• Suppose SUCF is violated, i.e., there exists an unshielded collider j → i← k in the DAG
GZ such that Zj ⊥⊥ Zk|Z \ {Zj , Zk}. This conditional independence relation indicates that
(j, k) /∈ E(MZ) and (k, j) /∈ E(MZ). Since j and k are spouses, there exists an edge
between them in the moralized graph of GZ , but is not contained in the structure defined by
MZ , showing that they are not the same.

• Or, suppose SAF is violated, i.e., there exists a pair of neighbors j and k in the DAG GZ
such that Zj ⊥⊥ Zk|Z \ {Zj , Zk}. This conditional independence relation indicates that
(j, k) /∈ E(MZ) and (k, j) /∈ E(MZ). Because j and k are adjacent in GZ , clearly they
are also adjacent in the moralized graph of GZ . However, the edge between them is not
contained in the structure defined byMZ , showing that they are not the same.

Thus, when SUCF or SAF is violated, the structure defined byMZ is the moralized graph of the
true DAG GZ .

E PROOF OF THEOREM 4

Theorem 4 (Identifiability of Latent Factors). Let the observations be sampled from the data gen-
erating process in Eq. (1), and MZ be the Markov network over Z. Suppose that the following
assumptions hold:

• A1 (Smooth and positive density): The probability density function of latent causal vari-
ables is smooth and positive, i.e. pZ is smooth and pZ > 0 over Rn.
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• A2 (Modular changes): θi across different i are not related via equality constraints.

• A3 (Sufficient changes): for Z ∈ Rn and each value of θ, the vectors w(θ) are linearly
independent, where w(θ) is defined as

w(θ) =

(
∂ log p(Z1 |PA(Z1); θ1)

∂θ1
, . . . ,

∂ log p(Zn |PA(Zn); θn)

∂θn
,

∂2 log p(Z1 |PA(Z1); θ1)

∂θ21
, . . . ,

∂2 log p(Zn |PA(Zn); θn)

∂θ2n

)
.

Suppose that we learn (ĝ, f̂ , pẐ) to achieve Eq. (2). Then, θi are identifiable up to component-wise
invertible transformation from the observations X in multiple domains.

Proof. Following the derivation in the proof of Lemma 1, we obtain

log p(Ẑ; θ̂) = log p(Z; θ)− log |Jq|,

which can be rewritten as
d∑

i=1

log p(Ẑ |PA(Ẑi); θ̂i) =

d∑
i=1

log p(Zi |PA(Zi); θi)− log |Jq|. (15)

Let η̂(k)i (θ̂i) := log p(Ẑ |PA(Ẑi); θ̂i) and ηi(θi) := log p(Zi |PA(Zi); θi). We have

d∑
i=1

η̂i(θ̂i) =

d∑
i=1

ηi(θi)− log |Jh|. (16)

With Assumption A2, the second-order cross derivative of Eq. (16) w.r.t. θ̂i and θ̂j is

0 =

d∑
l=1

(
η′′l (θl)

∂θl

∂θ̂i

∂θl

∂θ̂j
+ η′l(θl)

∂2θl

∂θ̂i∂θ̂j

)
.

If for each value of θ, η′′1 (θ1), η
′
1(θ1), η

′′
2 (θ2), η

′
2(θ2), . . . , η

′′
d (θd), η

′
d(θd) are linearly independent,

then ∂θl
∂θ̂i

∂θl
∂θ̂j

= 0 and ∂2θl
∂θ̂i∂θ̂j

= 0.

The statement ∂θl
∂θ̂i

∂θl
∂θ̂j

= 0 implies that each θl is a function of at most one of θ̂1, . . . , θ̂n. By

considering the inverse of Jacobian matrix, we also have ∂θ̂l
∂θi

∂θ̂l
∂θj

= 0, indicating that each θ̂l is a
function of at most one of θ1, . . . , θn. Combining both of them, θi are identifiable up to component-
wise invertible transformation.
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