
GLSO: Grammar-guided Latent Space Optimization
for Sample-efficient Robot Design Automation

Jiaheng Hu
Robotics Institute

Carnegie Mellon University
jiahengh@andrew.cmu.edu

Julian Whitman
Department of Mechanical Engineering

Carnegie Mellon University
jwhitman@andrew.cmu.edu

Howie Choset
Robotics Institute

Carnegie Mellon University
choset@andrew.cmu.edu

Abstract: Robots have been used in all sorts of automation, and yet the design of
robots remains mainly a manual task. We seek to provide design tools to automate
the design of robots themselves. An important challenge in robot design automa-
tion is the large and complex design search space which grows exponentially with
the number of components, making optimization difficult and sample inefficient.
In this work, we present Grammar-guided Latent Space Optimization (GLSO),
a framework that transforms design automation into a low-dimensional continu-
ous optimization problem by training a graph variational autoencoder (VAE) to
learn a mapping between the graph-structured design space and a continuous la-
tent space. This transformation allows optimization to be conducted in a continu-
ous latent space, where sample efficiency can be significantly boosted by applying
algorithms such as Bayesian Optimization. GLSO guides training of the VAE us-
ing graph grammar rules and robot world space features, such that the learned
latent space focus on valid robots and is easier for the optimization algorithm to
explore. Importantly, the trained VAE can be reused to search for designs special-
ized to multiple different tasks without retraining. We evaluate GLSO by design-
ing robots for a set of locomotion tasks in simulation, and demonstrate that our
method outperforms related state-of-the-art robot design automation methods.

Keywords: Robot Design Automation, Latent Optimization, Graph Grammar

1 Introduction

Robot design automation aims to discover robot body structures that optimize a given objective.
While this subject has been long-studied [1, 2, 3, 4, 5], the problem is difficult due to the large
search space and the computational expense involved in evaluating candidate designs. Classic de-
sign automation approaches resort to discrete black-box optimization techniques such as Genetic
Algorithms (GA)[1], Genetic Programming (GP) [3], and Random Graph Search (RGS)[4]. While
these methods typically work well when the objective function is inexpensive to evaluate (e.g., ob-
taining the locomotion speed of a simple robot in simulation with a pre-defined controller), they
require a large number of objective function evaluations and are not suitable for situations where
evaluation is expensive (e.g., through real-world evaluation, or creating customized dynamic motion
plans for each new design). Recent works utilize graph grammar rules to confine the search space
[5, 1], such that the number of evaluations can be reduced. However, they still operate in a high-
dimensional combinatorial search space and require a considerable number of sample evaluations.

In this work, we introduce Grammar-guided Latent Space Optimization (GLSO), a framework for
sample-efficient robot design automation. Given a robot design space defined by the possible combi-
nations of a set of discrete primitive components, GLSO first learns a low-dimensional, continuous

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.

1

Encoder D
ec

od
er

Reconstructed Design
Graph Representation

Low Dimensional
Latent Representation

Graph Grammar Rules for
Data Generation

Pr
ed

ic
to

r

Robot World
Space Features

Input Design
Graph Representation

Figure 1: Our framework begins by collecting a dataset of robot designs based on a set of graph
grammar rules, as shown on the top left. This process of enumerating designs is computationally
inexpensive, as no controller is needed. The collected data (example on bottom left) is subsequently
used to train a graph variational autoencoder (VAE), which defines a mapping between a low dimen-
sional continuous latent space and the combinatorial design space. A property predictor (shown as
the green trapezoid) is simultaneously trained to predict the world space features grounding of the
robots from the latent vector, in order to encourage physically similar robots to be grouped together
in the latent space. After the VAE is trained, optimization can be performed in the latent space in
search of high-performing designs. This VAE can further be used for multiple distinct tasks without
the need for retraining.

representation of the robot design space through unsupervised learning. The learned representation
allows us to then convert the combinatorial design automation search into a continuous optimization
problem, where we apply sample-efficient Bayesian Optimization (BO) [6] to search in the latent
space for high-performing designs. GLSO uses a graph variational auto-encoder (VAE) to learn
mappings between the design space and latent space. Importantly, the learned latent space can be
used to optimize designs for multiple different tasks without the need for retraining.

GLSO is inspired by recent advancements in molecule synthesis [7, 8]. However, unlike molecule
optimization, where existing large-scale datasets such as ZINC [9] are readily available to supervise
training, the domain of robot design has no such dataset available. Instead, GLSO generates training
data by leveraging graph grammar rules [5], which confine the search space and implicitly inject a
prior into our learned latent representation.

An additional challenge associated with robot design automation is the potentially “chaotic” objec-
tive function, i.e. that two structurally similar robots may have very different performance for a
given task. For example, consider the designs shown in Fig. 3b: they have nearly the same design
graph, but they all have drastically different locomotive performance. We address this problem by
including an additional objective in our VAE training, which ensures that neighboring designs in the
latent space not only have similar graphs, but also share similar world space features, such as the
bounding box of the robot or the end-effector workspace. That is, in addition to the conventional
VAE encoder/decoder reconstruction loss, GLSO simultaneously trains a neural network to learn
world space feature grounding the robot designs, which we called the property prediction network.
The complete pipeline can be seen in Fig. 11.

We evaluate GLSO by designing robots for a set of locomotion tasks, with a component library
that includes different joints and links with various rotational angles and axes, sizes, and weights.
Our method outperforms state-of-the-art robot design automation methods, consistently identifying
higher-performing designs when given the same number of sample evaluations2.

1Upper left portion of the figure adopted from Xu et al. [10] with author’s approval
2The code used in this work is available at https://github.com/JiahengHu/GLSO.

2

https://github.com/JiahengHu/GLSO

(a) Frozen Lake Task (b) Flat Terrain Task (c) Ridged Terrain Task (d) Wall Terrain Task

Figure 2: We evaluate our framework on a set of locomotion tasks as shown in the figures. The
above images showcase the best design identified by our method for four tasks. A video showing
the motion of these robots is provided in the supplement.

2 Related Work

2.1 Evolutionary Algorithms

A de facto choice for robot design automation is population-based stochastic optimization algo-
rithms, such as evolutionary algorithms (EAs), due to their ability to search combinatorial design
spaces [1, 2, 4, 11, 12, 13, 14, 15]. Specifically, EAs maintain and update a population of candidate
solutions through a set of operations (e.g., mutations, cross-over, evaluation, and elite selection) to
search for high-quality designs. However, EAs require a large number of objective function evalua-
tions, and can quickly become computationally infeasible when the objective function evaluation is
costly, such as when the determining the optimal controller can be computationally burdensome, or
when the evaluation needs to take place in real world instead of in simulation.

2.2 End-to-end Design Generation

Another class of design automation methods uses learning-based approaches to train a design gen-
erator (typically in the form of a neural network) to predict suitable designs for a given task
[16, 17, 18]. Learning-based approaches are particularly promising for field deployment due to
their near real-time execution speed. However, they require computationally expensive training pro-
cedures in which many different combinations of tasks and designs must be tested. During this
training, they apply strong assumptions about the set of tasks for which the robot will be special-
ized. Furthermore, recent works also assume a restrictive design space (e.g., fixed-topology graph,
binary 3D voxel grid), and it is unclear how end-to-end approaches can be extended to more complex
designs.

2.3 RoboGrammar

Graph grammar rules provide an effective means to restrict a combinatorial design space, which
can improve optimization efficiency, especially when the design space is high-dimensional [5, 1].
In robotics, graph grammars have been applied to model both physical structure as well as control
laws [19, 20, 21]. More recently, RoboGrammar [5, 10] introduced a set of recursive graph gram-
mar rules for robot design automation. RoboGrammar operates on graphs composed of terminal
and non-terminal symbols, where non-terminal symbols are temporary nodes and terminal symbols
correspond to physical robot components. Starting from a nonterminal symbol “S”, RoboGrammar
iteratively applies available rules until reaching a acyclic graph of terminal symbols. The final graph
corresponds to a robot design, where the hardware components are represented as nodes and the
physical links are represented as edges. The upper left corner of Fig. 1 demonstrates the set of rules
proposed by RoboGrammar. To optimize the robot designs based on the grammar rules, RoboGram-
mar proposed Graph Heuristic Search (GHS), which operates on a search tree defined by the graph
grammar rules. The search is conducted in an A* like manner, where a heuristic function in the
form of a graph neural network [22] is trained during the search process. For more details about the
RoboGrammar method, see Zhao et al. [5].

2.4 Latent Space Optimization

Latent space optimization (LSO) is a framework designed to extend continuous optimization tech-
niques to combinatorial search spaces [23, 24]. LSO first learns a generative model (typically a

3

variational autoencoder) [25] g : Z → X which maps data points from a continuous latent space
Z to the combinatorial search space X . Continuous optimization can subsequently be performed
in the latent space Z using standard continuous optimization algorithms such as BO. LSO has been
shown to be an effective framework for domains involving discrete data, including natural language
[26], arithmetic expressions [7], programs generation [27] and molecules synthesis [28, 8]. In the
domain of robotics, Spielberg et al. [29, 30] facilitated design and control co-optimization for soft
robots by learning a low-dimensional latent representation. For graph-based representation of robot
designs, Kim et al. [31] made initial progress in learning a latent representation of robot morphology,
but only with a small set of serial-chain topology designs, and did not perform design optimization
within that latent space.

2.5 Graph Neural Networks for Robotics

Graph Neural Networks (GNN) [22] are a neural network architecture which operates on graph-
structured inputs. For robots with graph-based representation, GNNs have been used to control
different designs by abstracting the robots as graphs [32, 33, 34, 35]. In our work, we utilize GNNs as
a premutation-invariant process to learn a compressed continuous representation of graph-structured
robot designs.

3 GLSO: Learning Latent Design Representation

GSLO trains a generative model that defines a mapping between a continuous latent space and the
discrete design space. Similar to previous LSO works, our method uses a VAE as a generative
model. The VAE consists of an encoder (section 3.2) and a decoder (section 3.3). In addition to the
encoder and decoder, we co-train a property prediction network (section 3.4) to predict world space
features of the robots. The goal of co-training the property predictor is to encourage designs with
similar physical properties to be close together in the latent space; we find that in turn, this makes
downstream design optimization in the latent space more efficient. The training data for the VAE
is generated through recursively applying a set of graph grammar rules (section 3.1). The grammar
ensures that the training designs are valid, which implicitly bias the mapping from latent space to
design space towards promising robots. Importantly, the trained VAE can be reused to search for
designs specialized to multiple different tasks without retraining.

Notation. Each design is represented as an acyclic graph G = (V,E) where V corresponds to the
hardware components (nodes) and E the connectivity between them (edges). Note that an acyclic
design graph can also be viewed as a tree, where the root node corresponds to the one component
on the body, and the each of the leaf nodes correspond to the robot’s end-effectors. We use i, j, k to
refer to nodes indices, and define N(i) as the neighbor of a node i. We denote the sigmoid function
as σ(·) and the ReLU function as τ(·), and trainable weights in the models as W and U .

3.1 Data Collection via Graph Grammar

For a given set of robot hardware components, GSLO begins by collecting a dataset of robots com-
posed of these hardware components. This dataset will then be used to train the graph VAE. We
desire a dataset that covers much of the design space, while containing few invalid designs.

One key idea behind GSLO is that graph grammar rules can serve as a guiding tool to generate a
large dataset of designs, due to their ability to filter out invalid designs and to produce a tractable
and meaningful subspace of designs. Specifically, we adopt the set of grammar rules proposed
in RoboGrammar [5]. To generate a random design using RoboGrammar, we start from the start
symbol “S” and randomly apply valid grammar rules until the design graph consists of only terminal
nodes. Each terminal node corresponds to a specific hardware component, and therefore each design
graph has a one-to-one correspondence with a physical robot. We additionally collect each design’s
contact locations when that design is placed at rest on flat ground in simulation. These contact
locations will be used to train the property predictor in section 3.4. Since the data collection process
does not involve creating controllers, it can be readily applied to a new set of grammar rules /
hardware components. In our experiments, the data collection process produces around 5e5 designs
in approximately four hours, and could be parallelized for additional speedup.

4

(a) Latent Space with PPN (b) Latent Space without PPN

Figure 3: Visualization of two different latent spaces (a) when the VAE is co-trained with the prop-
erty predictor, and (b) without the property predictor. Here we project the latent points into a two-
dimensional space, for visualization purposes, by taking the first two principal components. The
color of the points correspond to its performance for a given task (here, traversing flat terrain),
where a darker color denotes worse performance. We additionally show designs neighboring the
same robot (with red border) in the two different latent spaces. We can see that the addition of the
property predictor implicitly encourages designs with similar performance to be grouped together,
which we find results in more efficient optimization.

3.2 Robot Encoder

Since the robots are represented as graphs, we use a graph autoencoder to encode the robots via a
graph message passing neural network (MPNN)[36, 8]. MPNNs operate on graph-structured inputs,
where hidden representations of the graph nodes are updated iteratively via messages sent along
graph edges [22]. Each node vi contains a one-hot feature vector xi indicating its type. We denote
a message from a node vi to vj as mi,j , and mj,i vice versa.

At each message passing iteration, messages are updated as:

mi,j = GRU(xi, {mki}k∈N(i)/j) (1)

where GRU refers to Gated Recurrent Unit [37] adapted for graph message passing. For detailed
formula of the GRU update, please refer to the supplementary material.

After t iterations of message passing, we obtain the latent representation of each node by aggregating
its inward messages,

hi = τ(W exi +
∑

k∈N(i)

Uemki). (2)

The robot graph representation is calculated as the sum of the latent representation of the leaf nodes,

hG =
∑

hleaf. (3)

Finally, the mean µG and variance σG of the variational posterior approximation are computed from
hG by applying two separate affine layers, where the latent vector zG is sampled from a Gaussian
distribution zG ∼ N (µG , σG)

3.3 Robot Decoder

The robot decoder maps the continuous latent vector zG back to a robot design tree G by sequentially
adding nodes to a partial design tree in depth-first order, starting from the root. For every visited
node, the decoder first predicts whether it has children to be generated. If so, a new node is created
and attached to the current node, with its node type predicted by the decoder. The messages of
existing nodes will not be cleared during decoding. This procedure is recursively applied to the
newly created nodes until the current node has no more children to generate, where the decoder
backtracks to its parent node and repeat this process.

The decoder makes predictions based on message propagation in the current partial tree at each time
step. The messages are propagated using the same GRU structure as in the encoder. The decision

5

of whether to create new node at each time step is predicted as a probability pt based on the inward
messages hk,i, latent vector zG and the node features xi,

pt = σ(uc · τ(W c
1xit +W c

2 zG +W c
3

∑
k

hk,it)). (4)

For a new node j created from parent i, the label qj is predicted with,

qj = softmax(U lτ(W l
1zG +W l

2hi,j)). (5)
The decoder is trained to maximize the reconstruction likelihood p(G|zG). Let p̂t and q̂j be the
ground truth values of pt and qj respectively, the decoder loss is:

Ld(G) =
∑
t

Lc(pt, p̂t) +
∑
j

Ll(qj , q̂j), (6)

where Lc and Ll are cross-entropy losses. Similar to language generation, we apply teacher forcing
[38] during training, where ground truth topology and labels are used at each step for prediction.

3.4 Property Predictor

We hypothesize that a learned latent space in which designs with similar capabilities are close to-
gether, and which contains few invalid designs, will allow for more efficient optimization. To obtain
such a latent space, we co-train a property prediction network (PPN) with the VAE. The PPN maps
the mean of the variational encoding distribution µG to the corresponding robot’s world space fea-
tures, which implicitly encourages robots with similar world space features to have similar latent
representations. In this work, since we are primarily experimenting with locomotion tasks, we de-
fine the world space features as a vector vcontact consisting of the robot’s 2D contact locations on flat
ground. The contact locations are sorted based on their x values and zero padded to a fixed length
to form vcontact. vcontact is collected together with the robot data as described in section 3.1. The PPN
is trained to minimize the mean square error between the predicted contact vector v̂contact and the
ground truth contact vector vcontact, i.e. LPPN = ||v̂contact − vcontact||2.

Training:

The final loss of the graph VAE is a weighted sum of the decoder loss Ld, the PPN loss LPPN , and
the KL-divergence LKL between the variational posterior and the prior latent distributionN (0, I):

Lvae = Ld + LKL + λLPPN (7)
We minimize Lvae using gradient descent. Training took around five hours on a NVIDIA GTX
1070 graphics card. We provide the detailed training hyperparameters, as well as visualization of
interpolation in the learned latent space, in the supplementary materials.

4 GLSO: Optimization in the Learned Latent Space

The trained VAE associates each robot design with a latent vector, given by the mean of the varia-
tional encoding distribution µG . We can use the VAE to transform robot design automation from a
combinatorial optimization problem into a continuous one. We then apply Bayesian Optimization
to search for the latent vector where the associated robot design has the highest performance.

4.1 Controller & Evaluation

To evaluate the performance of a given robot structure, we need to derive its controls. This reveals
one challenge in robot design optimization– hidden inside each evaluation of the design optimization
objective function is a trajectory or policy optimization problem, which itself is often computation-
ally expensive. In this work, we utilized model predictive control (MPC) [39] to create controllers
for different robot structures across different terrains. MPC predicts future behaviour using a model
of the system, optimizes controls for a finite horizon, executes a small number of the optimized
control, and then replans. Specifically, we used model predictive path integral control (MPPI) [40],
a sampling based MPC method for controlling the generated robot designs. Our implementation fol-
lows [5]. Each robot is controlled in a simulation implemented using the Bullet Physics library [41].
We adopt the same objective function as in [5], where robots are rewarded for forward progression
while maintaining its initial orientation. Computing the trajectory of each robot takes 30 - 60 sec,
and is the primary computational bottleneck of the design optimization.

6

(a) Frozen Lake (b) Flat Terrain (c) Ridged Terrain (d) Wall Terrain

Figure 4: Comparison against related methods. The solid line shows average over 3 different random
seeds, and the error band represents the maximum and minimum. In each task, GLSO produces
higher-reward designs within 500 steps (design samples).

4.2 Bayesian Optimization in Latent Space

We use Bayesian Optimization (BO) [6], a sample-efficient black-box optimizer, to perform opti-
mization in the latent space. Specifically, our BO implementation uses Gaussian Processes (GP) [42]
to build a model of the objective function, which includes both the current estimation of the function
and the uncertainty around the estimation. We then use expected improvement (EI) as the acquisition
function to determine the optimal point to sample next. The sampled point is subsequently evaluated
and used to update the GP model. This procedure is repeated until we reach the computation limit,
defined as the maximum number of objective function evaluations. We additionally apply domain
reduction [43], where the bounds of the latent space are contracted during the optimization to reduce
oscillation. The hyperparameters of the BO are provided in the supplementary material.

5 Experimental Results

We evaluate our method by generating designs for the following four locomotion tasks, each defined
by its corresponding terrain:

• Flat Terrain: A flat plane with a friction coefficient of 0.9.
• Frozen Lake Terrain: A flat plane with a low friction coefficient of 0.05.
• Ridged Terrain: Includes hurdles that the robots must jump or crawl over.
• Wall Terrain: Includes high walls placed in a slalom-like manner.

The reward of each robot is measured as described in section 4.1. We report comparisons to previous
approaches as well as ablated versions of our approach. For each each task, we allow each method
a maximum of 500 objective function evaluations, i.e., control and trajectory optimization for up to
500 designs. Images of the tasks and optimized designs are shown in Fig. 2. Videos of their motions
are in the supplementary material.

5.1 Comparisons and Baselines

To demonstrate the effectiveness of GLSO, we benchmark our method against the following:

Random Search: Random designs are generated using the graph grammar rules.

Monte Carlo Tree Search (MCTS): A baseline adopted from [5], performing Monte Carlo Tree
Search (MCTS) [44] on a search tree defined by the graph grammar rules.

Graph Heuristic Search (GHS): A design automation method proposed in [5]. GHS performs
search on the same graph grammar search tree as does MCTS. Our implementation follows [5].

Genetic Algorithm (GA): Our implementation of Genetic Algorithm (GA) follows [4], where graph
mutation with uncertainty is used to mutate the population at each iteration. We used a population
size of 50 and evolved them until the number of evaluation limit was reached. Note that unlike the
other comparison methods, GA does not operate in the grammar space, as crossover and mutation
operations are not clearly defined for the graph grammar proposed by Zhao et al. [5].

7

(a) Frozen Lake (b) Flat Terrain (c) Ridged Terrain (d) Wall Terrain

Figure 5: Comparison of GLSO with ablated variants. The solid line shows average over 3 different
random seeds, and the error band represents the maximum and minimum. These results show that
both the graph grammar and the property predictor are important to GLSO.

The optimization curves for each of the tested algorithms is shown in Fig. 4. We found our method
outperform all comparison methods and baselines.

5.2 Ablation Studies.

We performed ablation studies to investigate the effects of the graph grammar rules and the property
prediction network. Results are shown in Fig. 5. In the “GLSO nogram” test, we removed the graph
grammar rules during data collection, and the VAE training set is created through random generation
of topology and node labels. In the “GLSO nopred” test, we removed the property prediction net-
work during VAE training. We found that both the graph grammar and property predictor are crucial
to the success of GLSO. Additionally, we created a visualization of how the property prediction
network influences the latent space. Fig. 3 presents points in the latent space created by training the
VAE with and without the property prediction.

6 Limitations & Conclusions

In this work, we proposed GLSO: a sample-efficient approach for optimizing robot designs based
on latent encoding. We believe that our approach is general to the domain of robot design automa-
tion, and represents a step towards achieving efficient robot design automation, in particular when
evaluation of each design is computationally expensive.

An important limitation of our approach is the requirement for a pre-defined set of graph grammar
rules as well as world space features. Extending this work to different sets of hardware components
and tasks will likely take some expert knowledge or domain intuition. Secondly, while we ultimately
aim to extend design automation to real-world tasks, the designs in our current experiments do not
correspond to existing physical hardware. An important next step will be to demonstrate GLSO on a
set of modular robotic hardware components. Furthermore, for the evaluation steps to take place in
real life, it will be necessary to further improve the sample efficiency of our methods, as 500 sample
evaluations will likely prove to be too many designs to prototype with real-world hardware.

Besides the limitations above, there are also a few potential extensions of this work. Firstly, the
learned latent representation of the designs may have other uses besides design automation. For
example, down-stream learning tasks that require outputting a robot design [18, 16] may benefit
from learning to output a continuous latent vector instead of a discrete graph. Secondly, recent
advancement on latent space optimization, such as leveraging decoder uncertainty [45] and weighted
retraining [23], may be beneficial to our optimization scheme. A future direction would be to explore
how these techniques can be adapted to improve the performance of GLSO.

8

Acknowledgments

We thank the anonymous reviewers for their helpful comments on improving the paper. We thank
the member of Biorobotics lab for their valuable feedback on idea formulation and manuscript.

References
[1] G. S. Hornby, H. Lipson, and J. B. Pollack. Evolution of generative design systems for modular

physical robots. In Proceedings 2001 ICRA. IEEE Int. Conf. on Robotics and Automation (Cat.
No. 01CH37164), volume 4, pages 4146–4151. IEEE, 2001.

[2] N. Cheney, R. MacCurdy, J. Clune, and H. Lipson. Unshackling evolution: evolving soft robots
with multiple materials and a powerful generative encoding. ACM SIGEVOlution, 7(1):11–23,
2014.

[3] H. Lipson. How to draw a straight line using a gp: Benchmarking evolutionary design against
19th century kinematic synthesis. In Late Breaking Papers at the 2004 Genetic and Evolution-
ary Computation Conference, Seattle, Washington, USA, volume 26, 2004.

[4] T. Wang, Y. Zhou, S. Fidler, and J. Ba. Neural graph evolution: Towards efficient automatic
robot design. In Int. Conf. on Learning Representations, 2018.

[5] A. Zhao, J. Xu, M. Konaković-Luković, J. Hughes, A. Spielberg, D. Rus, and W. Matusik.
Robogrammar: graph grammar for terrain-optimized robot design. ACM Transactions on
Graphics (TOG), 39(6):1–16, 2020.

[6] M. Pelikan, D. E. Goldberg, E. Cantú-Paz, et al. Boa: The bayesian optimization algorithm. In
Proceedings of the genetic and evolutionary computation conference GECCO-99, volume 1,
pages 525–532. Citeseer, 1999.

[7] M. J. Kusner, B. Paige, and J. M. Hernández-Lobato. Grammar variational autoencoder. In
Int. Conf. on machine learning, pages 1945–1954. PMLR, 2017.

[8] W. Jin, R. Barzilay, and T. Jaakkola. Junction tree variational autoencoder for molecular graph
generation. In Int. Conf. on machine learning, pages 2323–2332. PMLR, 2018.

[9] J. J. Irwin, T. Sterling, M. M. Mysinger, E. S. Bolstad, and R. G. Coleman. Zinc: a free
tool to discover chemistry for biology. Journal of chemical information and modeling, 52(7):
1757–1768, 2012.

[10] J. Xu, A. Spielberg, A. Zhao, D. Rus, and W. Matusik. Multi-objective graph heuristic search
for terrestrial robot design. In 2021 IEEE Int. Conf. on Robotics and Automation (ICRA), pages
9863–9869. IEEE, 2021.

[11] O. Chocron and P. Bidaud. Evolutionary algorithms in kinematic design of robotic systems.
In Proc. of the 1997 IEEE/RSJ Int’l Conf.on Intelligent Robots and Systems, volume 2, pages
1111–1117, 1997. doi:10.1109/IROS.1997.655148.

[12] C. Leger. Darwin2K: An evolutionary approach to automated design for robotics, volume 574.
Springer Science & Business Media, 2012.

[13] A. Gupta, S. Savarese, S. Ganguli, and L. Fei-Fei. Embodied intelligence via learning and
evolution. Nature communications, 12(1):1–12, 2021.

[14] J. Bhatia, H. Jackson, Y. Tian, J. Xu, and W. Matusik. Evolution gym: A large-scale benchmark
for evolving soft robots. Advances in Neural Information Processing Systems, 34:2201–2214,
2021.

[15] K. Sims. Evolving virtual creatures. In Proceedings of the 21st annual conference on Computer
graphics and interactive techniques, pages 15–22, 1994.

[16] J. Hu, J. Whitman, M. Travers, and H. Choset. Modular robot design optimization with gen-
erative adversarial networks. In Proceedings 2022 ICRA. IEEE Int. Conf. on Robotics and
Automation, 2022.

9

http://dx.doi.org/10.1109/IROS.1997.655148

[17] H. Ha, S. Agrawal, and S. Song. Fit2Form: 3D generative model for robot gripper form design.
In Conf. on Robotic Learning (CoRL), 2020.

[18] J. Whitman, R. Bhirangi, M. Travers, and H. Choset. Modular robot design synthesis with
deep reinforcement learning. In Proc. of the AAAI Conf. on Artificial Intelligence, 2020.

[19] M. Lau, A. Ohgawara, J. Mitani, and T. Igarashi. Converting 3d furniture models to fabricatable
parts and connectors. ACM Transactions on Graphics (TOG), 30(4):1–6, 2011.

[20] B. Smith, A. Howard, J.-M. McNew, J. Wang, and M. Egerstedt. Multi-robot deployment and
coordination with embedded graph grammars. Autonomous Robots, 26(1):79–98, 2009.

[21] E. Klavins, R. Ghrist, and D. Lipsky. Graph grammars for self assembling robotic systems. In
IEEE Int. Conf. on Robotics and Automation, 2004. Proceedings. ICRA’04. 2004, volume 5,
pages 5293–5300. IEEE, 2004.

[22] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip. A comprehensive survey on
graph neural networks. IEEE transactions on neural networks and learning systems, 32(1):
4–24, 2020.

[23] A. Tripp, E. Daxberger, and J. M. Hernández-Lobato. Sample-efficient optimization in the la-
tent space of deep generative models via weighted retraining. Advances in Neural Information
Processing Systems, 33:11259–11272, 2020.

[24] X. Pan, A. Garg, A. Anandkumar, and Y. Zhu. Emergent hand morphology and control
from optimizing robust grasps of diverse objects. In 2021 IEEE International Conference
on Robotics and Automation (ICRA), pages 7540–7547. IEEE, 2021.

[25] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[26] S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. Jozefowicz, and S. Bengio. Generating
sentences from a continuous space. arXiv preprint arXiv:1511.06349, 2015.

[27] H. Dai, Y. Tian, B. Dai, S. Skiena, and L. Song. Syntax-directed variational autoencoder for
structured data. arXiv preprint arXiv:1802.08786, 2018.

[28] R. Gómez-Bombarelli, J. N. Wei, D. Duvenaud, J. M. Hernández-Lobato, B. Sánchez-
Lengeling, D. Sheberla, J. Aguilera-Iparraguirre, T. D. Hirzel, R. P. Adams, and A. Aspuru-
Guzik. Automatic chemical design using a data-driven continuous representation of molecules.
ACS central science, 4(2):268–276, 2018.

[29] A. Spielberg, A. Zhao, Y. Hu, T. Du, W. Matusik, and D. Rus. Learning-in-the-loop optimiza-
tion: End-to-end control and co-design of soft robots through learned deep latent representa-
tions. Advances in Neural Information Processing Systems, 32, 2019.

[30] A. Spielberg, A. Amini, L. Chin, W. Matusik, and D. Rus. Co-learning of task and sensor
placement for soft robotics. IEEE Robotics and Automation Letters, 6(2):1208–1215, 2021.

[31] J. T. Kim, J. Park, S. Choi, and S. Ha. Learning robot structure and motion embeddings using
graph neural networks. arXiv preprint arXiv:2109.07543, 2021.

[32] Y. Yuan, Y. Song, Z. Luo, W. Sun, and K. Kitani. Transform2act: Learning a transform-and-
control policy for efficient agent design. arXiv preprint arXiv:2110.03659, 2021.

[33] D. Pathak, C. Lu, T. Darrell, P. Isola, and A. A. Efros. Learning to control self-assembling
morphologies: a study of generalization via modularity. Advances in Neural Information Pro-
cessing Systems, 32, 2019.

[34] T. Wang, R. Liao, J. Ba, and S. Fidler. Nervenet: Learning structured policy with graph neural
networks. In International conference on learning representations, 2018.

[35] W. Huang, I. Mordatch, and D. Pathak. One policy to control them all: Shared modular
policies for agent-agnostic control. In International Conference on Machine Learning, pages
4455–4464. PMLR, 2020.

10

[36] H. Dai, B. Dai, and L. Song. Discriminative embeddings of latent variable models for struc-
tured data. In Int. Conf. on machine learning, pages 2702–2711. PMLR, 2016.

[37] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrent neural
networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

[38] R. J. Williams and D. Zipser. A learning algorithm for continually running fully recurrent
neural networks. Neural computation, 1(2):270–280, 1989.

[39] C. E. Garcia, D. M. Prett, and M. Morari. Model predictive control: Theory and practice—a
survey. Automatica, 25(3):335–348, 1989.

[40] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou. Aggressive driving with
model predictive path integral control. In 2016 Int. Conf. on Robotics and Automation, 2016.

[41] E. Coumans. Bullet physics simulation. In ACM SIGGRAPH 2015 Courses, page 1. 2015.

[42] E. Schulz, M. Speekenbrink, and A. Krause. A tutorial on gaussian process regression: Mod-
elling, exploring, and exploiting functions. Journal of Mathematical Psychology, 2018.

[43] N. Stander and K. Craig. On the robustness of a simple domain reduction scheme for
simulation-based optimization. Engineering Computations, 2002.

[44] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen,
S. Tavener, D. Perez, S. Samothrakis, and S. Colton. A survey of monte carlo tree search
methods. IEEE Transactions on Computational Intelligence and AI in games, 4(1):1–43, 2012.

[45] P. Notin, J. M. Hernández-Lobato, and Y. Gal. Improving black-box optimization in vae latent
space using decoder uncertainty. Advances in Neural Information Processing Systems, 2021.

11

	Introduction
	Related Work
	Evolutionary Algorithms
	End-to-end Design Generation
	RoboGrammar
	Latent Space Optimization
	Graph Neural Networks for Robotics

	GLSO: Learning Latent Design Representation
	Data Collection via Graph Grammar
	Robot Encoder
	Robot Decoder
	Property Predictor

	GLSO: Optimization in the Learned Latent Space
	Controller & Evaluation
	Bayesian Optimization in Latent Space

	Experimental Results
	Comparisons and Baselines
	Ablation Studies.

	Limitations & Conclusions

