
Published in Transactions on Machine Learning Research (12/2023)

Proximal Mean Field Learning in Shallow Neural Networks

Alexis M.H. Teter amteter@ucsc.edu
Department of Applied Mathematics
University of California, Santa Cruz

Iman Nodozi inodozi@ucsc.edu
Department of Electrical and Computer Engineering
University of California, Santa Cruz

Abhishek Halder ahalder@iastate.edu
Department of Aerospace Engineering
Iowa State University

Reviewed on OpenReview: https: // openreview. net/ forum? id= vyRBsqj5iG

Abstract

We propose a custom learning algorithm for shallow over-parameterized neural networks,
i.e., networks with single hidden layer having infinite width. The infinite width of the hidden
layer serves as an abstraction for the over-parameterization. Building on the recent mean
field interpretations of learning dynamics in shallow neural networks, we realize mean field
learning as a computational algorithm, rather than as an analytical tool. Specifically, we
design a Sinkhorn regularized proximal algorithm to approximate the distributional flow for
the learning dynamics over weighted point clouds. In this setting, a contractive fixed point
recursion computes the time-varying weights, numerically realizing the interacting Wasser-
stein gradient flow of the parameter distribution supported over the neuronal ensemble.
An appealing aspect of the proposed algorithm is that the measure-valued recursions allow
meshless computation. We demonstrate the proposed computational framework of inter-
acting weighted particle evolution on binary and multi-class classification. Our algorithm
performs gradient descent of the free energy associated with the risk functional.

1 Introduction

While universal function approximation theorems for neural networks have long been known (Cybenko, 1989;
Barron, 1993; Hornik et al., 1989), such guarantees do not account for the dynamics of the learning algorithms.
Starting in 2018, several works (Mei et al., 2018; Chizat & Bach, 2018; Rotskoff & Vanden-Eijnden, 2018;
Sirignano & Spiliopoulos, 2020; Rotskoff & Vanden-Eijnden, 2022; Boursier et al., 2022) pointed out that
the first order learning dynamics for shallow (i.e., single hidden layer) neural networks in the infinite width
(i.e., over-parameterization) limit leads to a nonlinear partial differential equation (PDE) that depends on a
pair of advection and interaction potentials.

The Cauchy initial value problem associated with the PDE describes the evolution of neuronal parameter
ensemble induced by the learning dynamics. This result can be interpreted as a dynamical version of the
universal approximation theorem. In particular, the potentials depend on both the loss function as well as
the activation functions of the neural network.

The advection potential in this nonlinear PDE induces a drift, while the interaction potential induces a
nonlocal force. Remarkably, this PDE can be interpreted as an infinite dimensional gradient flow of the
population risk w.r.t. the Wasserstein metric arising from the theory of optimal mass transport (Villani,
2009; 2021).

1

https://openreview.net/forum?id=vyRBsqj5iG

Published in Transactions on Machine Learning Research (12/2023)

The nonlocal nonlinear PDE interpretation makes connection with the so-called “propagation of chaos”–a
term due to Kac (Kac, 1956) that has grown into a substantial literature in statistical physics (McKean Jr,
1966; Sznitman, 1991; Carmona & Delarue, 2018). From this viewpoint, the first order algorithmic dynamics
makes the individual neurons in the hidden layer behave as interacting particles. These particle-level or
microscopic interactions manifest as a population-level or macroscopic gradient flow.

As an analytic tool, the mean field Wasserstein gradient flow interpretation helps shed light on the conver-
gence of first order learning dynamics in over-parameterized networks. In this work, we propose Wasserstein
proximal recursions to realize the mean field learning dynamics as a meshless computational algorithm.

1.1 Computational challenges

Transcribing the mean field Wasserstein gradient flow PDE from an analytical tool to a computational
algorithm is particularly challenging in the neural network context. This is because the derivation of the PDE
in (Mei et al., 2018; Chizat & Bach, 2018; Rotskoff & Vanden-Eijnden, 2018; Sirignano & Spiliopoulos, 2020),
and the corresponding infinite dimensional gradient descent interpretation, is an asymptotic consistency
result. Specifically, the PDE describes the time evolution of the joint population density (or population
measure in general) for the hidden layer neuronal ensemble. By definition, this interpretation is valid in the
mean field (infinite width) limit of the single hidden layer. In other words, to leverage the gradient flow PDE
perspective in computation, the number of neurons in the hidden layer must be large.

However, from a numerical perspective, explicitly evolving the joint population in the large width regime
is problematic. This is because the large width implies that the time-varying joint neuronal population
distributions have high dimensional supports. Even though existing software tools routinely deploy stochas-
tic gradient descent (SGD) algorithms at the microscopic (i.e., particle) level, it is practically infeasible to
estimate the time-varying population distributions using Monte Carlo or other a posteriori function approx-
imation algorithms near this limit. One also cannot resort to standard finite difference-type discretization
approach for solving this gradient flow PDE because the large width limit brings the curse of dimensionality.
Therefore, it is not obvious whether the mean field dynamics can lead to a learning algorithm in practice.

1.2 Related works

Beyond mean field learning, Wasserstein gradient flows appear in many other scientific (Ambrosio et al., 2005;
Santambrogio, 2017) and engineering (Halder & Georgiou, 2017; Caluya & Halder, 2021b; Halder et al., 2022)
contexts. Thus, there exists a substantial literature on numerically implementing the Wasserstein gradient
flows – both with grid (Peyré, 2015; Benamou et al., 2016; Carlier et al., 2017; Carrillo et al., 2022) and
without grid (Liu et al., 2019; Caluya & Halder, 2019a; Halder et al., 2020). The latter class of algorithms
are more relevant for the mean field learning context since the underlying parameter space (i.e., the support)
is high dimensional. The proximal recursion we consider is closely related to the forward or backward
discretization (Salim et al., 2020; Frogner & Poggio, 2020) of the Jordan-Kinderlehrer-Otto (JKO) scheme
(Jordan et al., 1998).

To bypass numerical optimization over the manifold of measures or densities, recent works (Mokrov et al.,
2021; Alvarez-Melis et al., 2021; Bunne et al., 2022) propose using input convex neural networks (Amos
et al., 2017) to perform the Wasserstein proximal time-stepping by learning the convex potentials (Brenier,
1991) associated with the respective pushforward maps. To alleviate the computational difficulties in high
dimensions, Bonet et al. (2021) proposes replacing the Wasserstein distance with the sliced-Wasserstein
distance (Rabin et al., 2011) scaled by the ambient dimension.

We note here that there exists extensive literature on the mean field limit of learning in neural networks from
other perspectives, including the Neural Tangent Kernel (NTK) and the Gaussian process viewpoints, see
e.g., (Jacot et al., 2018; Lee et al., 2019; Novak et al., 2019; Xiao et al., 2018; Li & Nguyen, 2018; Matthews
et al., 2018). Roughly speaking, the key observation is that in the infinite width limit, the learning evolves
as a suitably defined Gaussian process with network architecture-dependent kernel. We mention this in the
passing since in this work, we will only focus on the Wasserstein gradient flow viewpoint. We point out that

2

Published in Transactions on Machine Learning Research (12/2023)

unlike the NTK, the mean field limit in Wasserstein gradient flow viewpoint does not approximate dynamical
nonlinearity. In particular, the associated initial value problem involves a nonlinear PDE (see (14)).

1.3 Contributions

With respect to the related works referenced above, the main contribution of the present work is that
we propose a meshless Wasserstein proximal algorithm that directly implements the macroscopic learning
dynamics in a fully connected shallow network. We do so by evolving population densities as weighted
scattered particles.

Different from Monte Carlo-type algorithms, the weight updates in our setting are done explicitly by solving
a regularized dual ascent. This computation occurs within the dashed box highlighted in Fig. 1. The
particles’ location updates are done via nonlocal Euler-Maruyama. These two updates interact with each
other (see Fig. 1), and together set up a discrete time-stepping scheme.

The discrete time-stepping procedure we propose, is a novel interacting particle system in the form of a
meshless algorithm. Our contribution advances the state-of-the-art as it allows for evolving the neuronal
population distribution in an online manner, as needed in mean field learning. This is in contrast to a
posteriori function approximation in existing Monte Carlo methods (cf. Sec. 1.1). Explicit proximal weight
updates allows us to bypass offline high dimensional function approximation, thereby realizing mean field
learning at an algorithm level.

With respect to the computational challenges mentioned in Sec. 1.1, it is perhaps surprising that we are able
to design an algorithm for explicitly evolving the population densities without directly discretizing the spatial
domain of the underlying PDE. Our main idea to circumvent the computational difficulty is to solve the
gradient flow PDE not as a PDE, but to instead direct the algorithmic development for a proximal recursion
associated with the gradient flow PDE. This allows us to implement the associated proximal recursion over
a suitably discrete time without directly discretizing the parameter space (the latter is what makes the
computation otherwise problematic in the mean field regime).

For specificity, we illustrate the proposed framework on two numerical experiments involving binary and
multi-class classification with quadratic risk. The proposed methodology should be of broad interest to
other problems such as the policy optimization (Zhang et al., 2018; Chu et al., 2019; Zhang et al., 2020) and
the adversarial learning (Domingo-Enrich et al., 2020; Mroueh & Nguyen, 2021; Lu, 2023).

We emphasize that the perspective taken in this work is somewhat non-standard w.r.t. the existing literature
in that our main intent is to explore the possibility of designing a new class of algorithms by leveraging the
connection between the mean field PDE and the Wasserstein proximal operator. This is a new line of idea
for learning algorithm design that we show is feasible. As such, we do not aim to immediately surpass the
carefully engineered existing state-of-the-art in experiments. Instead, this study demonstrates a proof-of-
concept which should inspire follow up works.

1.4 Notations and preliminaries

We use the standard convention where the boldfaced lowercase letters denote vectors, boldfaced uppercase
letters denote matrices, and non-boldfaced letters denote scalars. We use the symbols ∇ and ∆ to denote the
Euclidean gradient and Laplacian operators, respectively. In case of potential confusion, we attach subscripts
to these symbols to clarify the differential operator is taken w.r.t. which variable. The symbols ⊙,⊘, exp,
and tanh denote elementwise multiplication, division, exponential, and hyperbolic tangent, respectively.
Furthermore, rand and randn denote draw of the uniform and standard normal distributed random vector
of appropriate dimension. In addition, 111 represents a vector of ones of appropriate dimension.

Let Z1,Z2 ⊆ Rd. The squared 2-Wasserstein metric W2 (with standard Euclidean ground cost) between two
probability measures π1(dzzz1) and π2(dzzz2) (or between the corresponding densities when the measures are

3

Published in Transactions on Machine Learning Research (12/2023)

absolutely continuous), where zzz1 ∈ Z1, zzz2 ∈ Z2, is defined as

W 2
2 (π1, π2) := inf

π∈Π(π1,π2)

∫
Z1×Z2

∥zzz1 − zzz2∥2
2 dπ(zzz1, zzz2). (1)

In (1), the symbol Π (π1, π2) denotes the collection of joint measures (couplings) with finite second moments,
whose first marginal is π1, and the second marginal is π2.

1.5 Organization

The remainder of this paper is organized as follows. In Sec. 2, we provide the necessary background for the
empirical risk minimization and for the corresponding mean field limit. The proposed proximal algorithm
(including its derivation, convergence guarantee and implementation) is detailed in Sec. 3. We then report
numerical case studies in Sec. 4 and Sec. 5 for binary and multi-class classifications, respectively. Sec. 6
concludes the paper. Supporting proofs and derivations are provided in Appendices A, B and C. Numerical
results for a synthetic one dimensional case study of learning a sinusoid using the proposed proximal algorithm
is provided in Appendix D.

2 From empirical risk minimization to proximal mean field learning

To motivate the mean field learning formulation, we start by discussing the more familiar empirical risk
minimization set up. We then explain the infinite width limit for the same.

2.1 Empirical risk minimization

We consider a supervised learning problem where the dataset comprises of the features xxx ∈ X ⊆ Rnx , and
the labels y ∈ Y ⊆ R, i.e., the samples of the dataset are tuples of the form

(xxx, y) ∈ X × Y ⊆ Rnx × R.

The objective of the supervised learning problem is to find the parameter vector θθθ ∈ Rp such that y ≈ f(xxx,θθθ)
where f is some function class parameterized by θθθ. In other words, f maps from the feature space X to
the label space Y. To this end, we consider a shallow neural network with a single hidden layer having nH
neurons. Then, the parameterized function f admits representation

f(xxx,θθθ) := 1
nH

nH∑
i=1

Φ (xxx,θθθi) , (2)

where Φ (xxx,θθθi) := aiσ(⟨wwwi,xxx⟩+bi) for all i ∈ [nH] := {1, 2, . . . , nH}, and σ(·) is a smooth activation function.
The parameters ai,wwwi and bi are the scaling, weights, and bias of the ith hidden neuron, respectively, and
together comprise the specific parameter realization θθθi ∈ Rp, i ∈ [nH].

We stack the parameter vectors of all hidden neurons as

θθθ :=
(
θθθ1, θθθ2, . . . , θθθnH

)⊤ ∈ RpnH

and consider minimizing the following quadratic loss:

l(y,xxx,θθθ) ≡ l(y, f(xxx,θθθ)) :=
(

y − f(xxx,θθθ)
)2

︸ ︷︷ ︸
quadratic loss

. (3)

We suppose that the training data follows the joint probability distribution γ, i.e., (xxx, y) ∼ γ. Define the
population risk R as the expected loss given by

R(f) := E(xxx,y)∼γ [l(y,xxx,θθθ)]. (4)

4

Published in Transactions on Machine Learning Research (12/2023)

In practice, γ is unknown, so we approximate the population risk with the empirical risk

R(f) ≈ 1
ndata

ndata∑
j=1

l
(

yj ,xxxj , θθθ
)

(5)

where ndata is the number of data samples. Then, the supervised learning problem reduces to the empirical
risk minimization problem

min
θθθ∈RpnH

R(f). (6)

Problem (6) is a large but finite dimensional optimization problem that is nonconvex in the decision variable
θθθ. The standard approach is to employ first or second order search algorithms such as the variants of SGD
or ADAM (Kingma & Ba, 2014).

2.2 Mean field limit

The mean field limit concerns with a continuum of hidden layer neuronal population by letting nH → ∞.
Then, we view (2) as the empirical average associated with the ensemble average

fMeanField :=
∫
Rp

Φ(xxx,θθθ) dµ(θθθ)︸ ︷︷ ︸
hidden neuronal population mass

= Eθθθ[Φ(xxx,θθθ)], (7)

where µ denotes the joint population measure supported on the hidden neuronal parameter space in Rp.
Assuming the absolute continuity of µ for all times, we write dµ(θθθ) = ρ(θθθ)dθθθ where ρ denotes the joint
population density function (PDF).

Thus, the risk functional R, now viewed as a function of the joint PDF ρ, takes the form

F (ρ) := R(fMeanField(xxx, ρ)) = E(xxx,y)

(
y −

∫
Rp

Φ(xxx,θθθ)ρ(θθθ)dθθθ

)2

= F0 +
∫
Rp

V (θθθ)ρ(θθθ)dθθθ +
∫
R2p

U(θθθ, θ̃θθ)ρ(θθθ)ρ(θ̃θθ)dθθθdθ̃θθ, (8)

where
F0 := E(xxx,y)

[
y2]

, V (θθθ) := E(xxx,y)[−2yΦ(xxx,θθθ)], U(θθθ, θ̃θθ) := E(xxx,y)[Φ(xxx,θθθ)Φ(xxx, θ̃θθ)]. (9)

Therefore, the supervised learning problem, in this mean field limit, becomes an infinite dimensional varia-
tional problem:

min
ρ

F (ρ) (10)

where F is a sum of three functionals. The first summand F0 is independent of ρ. The second summand is
a potential energy given by expected value of “drift potential” V and is linear in ρ. The last summand is a
bilinear interaction energy involving an “interaction potential” U and is nonlinear in ρ.

The main result in Mei et al. (2018) was that using first order SGD learning dynamics induces a gradient
flow of the functional F w.r.t. the 2-Wasserstein metric W2, i.e., the mean field learning dynamics results
in a joint PDF trajectory ρ(t, θθθ). Then, the minimizer in (10) can be obtained from the large t limit of the
following nonlinear PDE:

∂ρ

∂t
= −∇W2F (ρ), (11)

where the 2-Wasserstein gradient (Villani, 2021, Ch. 9.1) (Ambrosio et al., 2005, Ch. 8) of F is

∇W2F (ρ) := −∇ ·
(

ρ∇δF

∂ρ

)
,

and δ
δρ denotes the functional derivative w.r.t. ρ.

5

Published in Transactions on Machine Learning Research (12/2023)

In particular, Mei et al. (2018) considered the regularized risk functional1

Fβ(ρ) := F (ρ) + β−1
∫
Rp

ρ log ρ dθθθ, β > 0, (12)

by adding a strictly convex regularizer (scaled negative entropy) to the unregularized risk F . In that case, the
sample path dynamics corresponding to the macroscopic dynamics (11) precisely becomes the noisy SGD:

dθθθ =−∇θθθ

(
V (θθθ) +

∫
Rp

U(θθθ, θ̃θθ)ρ(θ̃θθ)dθ̃θθ

)
dt +

√
2β−1 dηηη, θθθ(t = 0) ∼ ρ0, (13)

where ηηη is the standard Wiener process in Rp, and the random initial condition θθθ(t = 0) follows the law of
a suitable PDF ρ0 supported over Rp.

In this regularized case, (11) results in the following nonlinear PDE initial value problem (IVP):

∂ρ

∂t
=∇θθθ ·

(
ρ

(
V (θθθ) +

∫
Rp

U(θθθ, θ̃θθ)ρ(θ̃θθ)dθ̃θθ

))
+ β−1∆θθθρ, ρ(t = 0, θθθ) = ρ0. (14)

In other words, the noisy SGD induces evolution of a PDF-valued trajectory governed by the advection,
nonlocal interaction, and diffusion–the latter originating from regularization. Notice that a large value of
β > 0 implies a small entropic regularization in (12), hence a small additive process noise in (13), and
consequently, a small diffusion term in the PDE (14).

The regularized risk functional Fβ in (12) can be interpreted as a free energy wherein F contributes a sum
of the advection potential energy and interaction energy. The term β−1 ∫

Rp ρ log ρ dθθθ contributes an internal
energy due to the noisy fluctuations induced by the additive Wiener process noise

√
2β−1dηηη in (13).

In Mei et al. (2018), asymptotic guarantees were obtained for the solution of (14) to converge to the minimizer
of Fβ . Our idea, outlined next, is to solve the minimization of Fβ using measure-valued proximal recursions.

2.3 Proximal mean field learning

For numerically computing the solution of the PDE IVP (14), we propose proximal recursions over P2 (Rp),
defined as the manifold of joint PDFs supported over Rp having finite second moments. Symbolically,

P2 (Rp) :=
{

Lebesgue integrable ρ over Rp | ρ ≥ 0,

∫
Rp

ρ dθθθ = 1,

∫
Rp

θθθ⊤θθθρ dθθθ <∞
}

.

Proximal updates generalize the concept of gradient steps, and are of significant interest in both finite and
infinite dimensional optimization (Rockafellar, 1976a;b; Bauschke et al., 2011; Teboulle, 1992; Bertsekas
et al., 2011; Parikh et al., 2014). For a given input, these updates take the form of a structured optimization
problem:

proximal update

= arg inf
decision variable

{
1
2dist2 (decision variable, input) + time step× functional (decision variable)

}
, (15)

for some suitable notion of distance dist (·, ·) on the space of decision variables, and some associated func-
tional. It is usual to view (15) as an operator mapping input 7→ proximal update, thus motivating the term
proximal operator.

The connection between (15) and the gradient flow comes from recursively evaluating (15) with some initial
choice for the input. For suitably designed pair (dist (·, ·) , functional), in the small time step limit, the
sequence of proximal updates generated by (15) converge to the infimum of the functional. In other words,
the gradient descent of the functional w.r.t. dist may be computed as the fixed point of the proximal operator

1The parameter β > 0 is referred to as the inverse temperature.

6

Published in Transactions on Machine Learning Research (12/2023)

(15). For a parallel between gradient descent and proximal recursions in finite and infinite dimensional
gradient descent, see e.g., (Halder & Georgiou, 2017, Sec. I). Infinite dimensional proximal recursions over
the manifold of PDFs have recently appeared in uncertainty propagation (Caluya & Halder, 2019b; Halder
et al., 2022), stochastic filtering (Halder & Georgiou, 2017; 2018; 2019), and stochastic optimal control
(Caluya & Halder, 2021b;a).

In our context, the decision variable ρ ∈ P2 (Rp) and the distance metric dist ≡W2. Specifically, we propose
recursions over discrete time tk−1 := (k − 1)h where the index k ∈ N, and h > 0 is a constant time step-
size. Leveraging that (14) describes gradient flow of the functional Fβ w.r.t. the W2 distance metric, the
associated proximal recursion is of the form

ϱk = proxW2
hFβ

(ϱk−1) := arg inf
ϱ∈P2(Rp)

{
1
2 (W2 (ϱ, ϱk−1))2 + h Fβ (ϱ)

}
(16)

where ϱk−1(·) := ϱ (·, tk−1), and ϱ0 ≡ ρ0. The notation proxW2
hFβ

(ϱk−1) can be parsed as “the proximal
operator of the scaled functional hFβ w.r.t. the distance W2, acting on the input ϱk−1 ∈ P2 (Rp)”. Our idea
is to evaluate the recursion in the small h limit, i.e., for h ↓ 0.

To account for the nonconvex bilinear term appearing in (12), following (Benamou et al., 2016, Sec. 4), we
employ the approximation:∫

R2p

U(θθθ, θ̃θθ)ϱ(θθθ)ϱ(θ̃θθ)dθθθdθ̃θθ ≈
∫
R2p

U(θθθ, θ̃θθ)ϱ(θθθ)ϱk−1(θ̃θθ)dθθθdθ̃θθ ∀k ∈ N.

We refer to the resulting approximation of Fβ as F̂β , i.e.,

F̂β (ϱ, ϱk−1) :=
∫
Rp

(
F0 + V (θθθ) +

(∫
Rp

U(θθθ, θ̃θθ)ϱk−1(θ̃θθ)dθ̃θθ

)
+ β−1 log ϱ(θθθ)

)
ϱ(θθθ)dθθθ.

Notice in particular that F̂β depends on both ϱ, ϱk−1, k ∈ N. Consequently, this approximation results in a
semi-implicit variant of (16), given by

ϱk := arg inf
ϱ∈P2(Rp)

{
1
2 (W2 (ϱ, ϱk−1))2+hF̂β (ϱ, ϱk−1)

}
. (17)

We have the following consistency guarantee, stated informally, among the solution of the PDE IVP (14)
and that of the variational recursions (17). The rigorous statement and proof are provided in Appendix A.
Theorem 1. (Informal) Consider the regularized risk functional (12) wherein F is given by (8)-(9). In
the small time step (h ↓ 0) limit, the proximal updates (17) with ϱ0 ≡ ρ0 converge to the solution for the
PDE IVP (14).

We next detail the proposed algorithmic approach to numerically solve (17).

3 ProxLearn: proposed proximal algorithm

The overall workflow of our proposed proximal mean field learning framework is shown in Fig. 1. We generate
N samples from the known initial joint PDF ϱ0 and store them as a weighted point cloud

{
θθθi

0, ϱi
0
}N

i=1. Here,
ϱi

0 := ϱ0
(
θθθi

0
)

for all i ∈ [N]. In other words, the weights of the samples are the joint PDF values evaluated
at those samples.

For each k ∈ N, the weighted point clouds
{
θθθi

k, ϱi
k

}N

i=1 are updated through the two-step process outlined in
our proposed Algorithm 1, referred to as ProxLearn. At a high level, lines 9–18 in Algorithm 1 perform
nonlinear block co-ordinate recursion on internally defined vectors zzz,qqq whose converged values yield the
proximal update (line 19). We next explain where these recursions come from detailing both the derivation
of ProxLearn and its convergence guarantee.

7

Published in Transactions on Machine Learning Research (12/2023)

3.1 Derivation of ProxLearn

The main idea behind our derivation that follows, is to regularize and dualize the discrete version of the
optimization problem in (17). This allows us to leverage certain structure of the optimal solution that emerges
from the first order conditions for optimality, which in turn helps design a custom numerical recursion.

Specifically, to derive the recursion given in ProxLearn, we first write the discrete version of (17) as

ϱϱϱk = arg min
ϱϱϱ

{
min

MMM∈Π(ϱϱϱk−1,ϱϱϱ)

1
2 ⟨C

CCk,MMM⟩+ h
〈
vvvk−1 + UUUk−1ϱϱϱk−1 + β−1 logϱϱϱ,ϱϱϱ

〉 }
, k ∈ N, (18)

where

Π (ϱϱϱk−1, ϱϱϱ) := {MMM ∈ RN×N |MMM ≥ 000 (elementwise),MMM111 = ϱϱϱk−1, MMM⊤111 = ϱϱϱ}, (19)
vvvk−1 ≡ V (θθθk−1) , (20)

UUUk−1 ≡ U
(
θθθk−1, θ̃θθk−1

)
, (21)

and CCCk ∈ RN×N denotes the squared Euclidean distance matrix, i.e.,

CCCk(i, j) := ∥θθθi
k − θθθj

k−1∥
2
2 ∀(i, j) ∈ [N]× [N].

We next follow a “regularize-then-dualize” approach. In particular, we regularize (18) by adding the entropic
regularization H(MMM) := ⟨MMM, logMMM⟩, and write

ϱϱϱk = arg min
ϱϱϱ

{
min

MMM∈Π(ϱϱϱk−1,ϱϱϱ)

1
2 ⟨C

CCk,MMM⟩+ ϵH(MMM) + h
〈
vvvk−1 + UUUk−1ϱϱϱk−1 + β−1 logϱϱϱ,ϱϱϱ

〉}
, k ∈ N (22)

where ϵ > 0 is a regularization parameter.

Following Karlsson & Ringh (2017, Lemma 3.5), Caluya & Halder (2019a, Sec. III), the Lagrange dual
problem associated with (22) is

(
λλλopt

0 ,λλλopt
1

)
= arg max

λλλ0,λλλ1∈RN

{
⟨λλλ0, ϱϱϱk−1⟩ − F̂ ⋆

β (−λλλ1)− ϵ

h

(
exp

(
λλλ⊤

0 h/ϵ
)

exp (−CCCk/2ϵ) exp (λλλ1h/ϵ)
)}

(23)

where

F̂ ⋆
β (·) := sup

ϑ
{⟨·, ϑ⟩ − F̂β(ϑ)} (24)

is the Legendre-Fenchel conjugate of the free energy F̂β in (17), and the optimal coupling matrix MMMopt :=
[mopt(i, j)]Ni,j=1 in (22) has the Sinkhorn form

mopt(i, j) = exp (λλλ0(i)h/ϵ) exp (−CCCk(i, j)/(2ϵ)) exp (λλλ1(j)h/ϵ) . (25)

To solve (23), considering (12), we write the “discrete free energy” as

F̂β(ϱϱϱ) =
〈
vvvk−1 + UUUk−1ϱϱϱk−1 + β−1 logϱϱϱ,ϱϱϱ

〉
. (26)

Its Legendre-Fenchel conjugate, by (24), is

F̂ ⋆
β (λ) := sup

ϑ
{λλλ⊤ϱϱϱ− vvv⊤

k−1ϱϱϱ− ϱϱϱ⊤UUUk−1ϱϱϱk−1 − β−1ϱϱϱ⊤ logϱϱϱ}. (27)

Setting the gradient of the objective in (27) w.r.t. ϱϱϱ to zero, and solving for ϱϱϱ gives the maximizer

ϱϱϱmax = exp
(
β

(
λλλ− vvvk−1 − β−1111−UUUk−1ϱϱϱk−1

))
. (28)

8

Published in Transactions on Machine Learning Research (12/2023)

Substituting (28) back into (27), we obtain

F̂ ⋆
β (λ) = β−1111 exp (β (λλλ− vvvk−1 −UUUk−1ϱϱϱk−1)− 111) . (29)

Fixing λλλ0, and taking the gradient of the objective in (23) w.r.t. λλλ1 gives

exp (λλλ1h/ϵ)⊙
(

exp (−CCCk/2ϵ)⊤ exp (λλλ0h/ϵ)
)

= exp(−βvvvk−1 − βUUUk−1ϱϱϱk−1 − 111)⊙ (exp (λλλ1h/ϵ))− βϵ
h . (30)

Likewise, fixing λλλ1, and taking the gradient of the objective in (23) w.r.t. λλλ0, gives

exp (λλλ0h/ϵ)⊙ (exp (−CCCk/2ϵ) exp (λλλ1h/ϵ)) =ϱϱϱk−1. (31)

Next, letting ΓΓΓk := exp (−CCCk/2ϵ), qqq := exp (λλλ0h/ϵ), zzz := exp (λλλ1h/ϵ), and ξξξk−1 := exp(−βvvvk−1 −
βUUUk−1ϱϱϱk−1 − 111), we express (30) as

zzz ⊙
(
ΓΓΓ⊤

k qqq
)

=ξξξk−1 ⊙ zzz− βϵ
h , (32)

and (31) as

qqq ⊙ (ΓΓΓkzzz) =ϱϱϱk−1. (33)

Finally using (19), we obtain

ϱϱϱk =
(
MMMopt)⊤ 1 =

N∑
j=1

mopt(j, i) = zzz(i)
N∑

j=1
ΓΓΓk(j, i)qqq(j) = zzz ⊙ΓΓΓ⊤

k qqq. (34)

In summary, (34) allows us to numerically perform the proximal update.
Remark 1. Note that in Algorithm 1 (i.e., ProxLearn) presented in Sec. 3, the lines 11, 12, and 19
correspond to (32), (33) and (34), respectively.

3.2 Convergence of ProxLearn

Our next result provides the convergence guarantee for our proposed ProxLearn algorithm derived in Sec.
3.1.
Proposition 1. The recursions given in lines 7–18 in Algorithm 1 ProxLearn, converge to a unique fixed
point (qqqopt, zzzopt) ∈ RN

>0 × RN
>0. Consequently, the proximal update (34) (i.e., the evaluation at line 19 in

Algorithm 1) is unique.

Proof. Notice that the mappings (qqq(:, ℓ), zzz(:, ℓ)) 7→ (qqq(:, ℓ+1), zzz(:, ℓ+1)) given in lines 11 and 12 in Algorithm
1, are cone preserving since these mappings preserve the product orthant RN

>0 × RN
>0. This is a direct

consequence of the definition of qqq,zzz in terms of λλλ0,λ1λ1λ1.

Now the idea is to show that the recursions in lines 11 and 12 in Algorithm 1, as composite nonlinear maps,
are in fact contractive w.r.t. a suitable metric on this cone. Following Caluya & Halder (2019a, Theorem
3), the zzz iteration given in line 11 in Algorithm 1, ProxLearn, for ℓ = 1, 2, . . ., is strictly contractive in
the Thompson’s part metric (Thompson, 1963) and thanks to the Banach contraction mapping theorem,
converges to a unique fixed point zzzopt ∈ RN

>0.

We note that our definition of ξξξk−1 is slightly different compared to the same in Caluya & Halder (2019a,
Theorem 3), but this does not affect the proof. From definition of CCCk, we have CCCk ∈ [0,∞) which implies
ΓΓΓk(i, j) ∈ (0, 1]. Therefore, ΓΓΓk is a positive linear map for each k ∈ N. Thus, by (linear) Perron-Frobenius
theorem, the linear maps ΓΓΓk are contractive. Consequently the qqq iterates also converge to unique fixed point
qqqopt ∈ RN

>0.

Since converged pair (qqqopt, zzzopt) ∈ RN
>0 × RN

>0 is unique, so is the proximal update (34), i.e., the evaluation
at line 19 in Algorithm 1.

We next discuss the implementation details for the proposed ProxLearn algorithm.

9

Published in Transactions on Machine Learning Research (12/2023)

Figure 1: Schematic of the proposed proximal algorithm for mean field learning, updating scattered point
cloud

{
θθθi

k−1, ϱi
k−1

}N

i=1 for k ∈ N. The location of the points
{
θθθi

k−1
}N

i=1 are updated via the Euler-Maruyama
scheme; the corresponding probability weights are computed via proximal updates highlighted within the
dashed box. Explicitly performing the proximal updates via the proposed algorithm, and thereby enabling
mean filed learning as an interacting weighted particle system, is our novel contribution

.

3.3 Implementation of ProxLearn

We start by emphasizing that ProxLearn updates both the parameter sample locations θθθi
k and the joint

PDF values ϱi
k evaluated at those locations, without gridding the parameter space. In particular, the PDF

values are updated online, not as an offline a posteriori function approximation as in traditional Monte Carlo
algorithms.

We will apply ProxLearn, as outlined here, in Sec. 4. In Sec. 5, we will detail additional modifications of
ProxLearn to showcase its flexibility.

Required inputs of ProxLearn are the inverse temperature β, the time step-size h, a regularization
parameter ε, and the number of samples N . Additional required inputs are the training feature data
XXX := [xxx1 . . .xxxndata]⊤ ∈ Rndata×nx and the corresponding training labels yyy := [y1 . . . yndata]⊤ ∈ Rndata , as
well the weighted point cloud {θθθi

k−1, ϱi
k−1}N

i=1 for each k ∈ N. Furthermore, ProxLearn requires two
internal parameters as user input: the numerical tolerance δ, and the maximum number of iterations L.

For k ∈ N, let

ΘΘΘk−1 :=


(θθθ1

k−1)⊤

(θθθ2
k−1)⊤

...
(θθθN

k−1)⊤

∈ RN×p, ϱϱϱk−1 :=


ϱ1

k−1
ϱ2

k−1
...

ϱN
k−1

∈ RN
>0.

In line 2 of Algorithm 1, ProxLearn updates the locations of the parameter vector samples θθθi
k in Rp via

Algorithm 2, EulerMaruyama. This location update takes the form:

θθθi
k = θθθi

k−1 − h∇
(
V

(
θθθi

k−1
)

+ ω
(
θθθi

k−1
))

+
√

2β−1
(
ηηηi

k − ηηηi
k−1

)
, (35)

10

Published in Transactions on Machine Learning Research (12/2023)

Algorithm 1 Proximal Algorithm
1: procedure ProxLearn(ϱϱϱk−1,ΘΘΘk−1, β, h, ε, N,XXX,yyy, δ, L)
2: vvvk−1, UUUk−1, ΘΘΘk ← EulerMaruyama(h, β,ΘΘΘk−1,XXX,yyy,ϱϱϱk−1) ▷ Update the location of the samples
3: CCCk(i, j)←

∥∥∥θθθk
i − θθθj

k−1

∥∥∥2

2
4: ΓΓΓk ← exp(−CCCk/2ε) ▷ Lines 4-8 define the terms needed in re-expressing (30) as (32)
5: ξξξk−1 ← exp(−βvvvk−1 − βUUUk−1ϱϱϱk−1 − 111)
6: zzz0 ← randN×1
7: zzz ← [zzz0,000N×(L−1)]
8: qqq ← [ϱϱϱk−1 ⊘ (ΓkΓkΓkz0z0z0),000N×(L−1)]
9: ℓ = 1

10: while ℓ ≤ L do
11: zzz(:, ℓ + 1)← (ξξξk−1 ⊘ (ΓΓΓ⊤

k qqq(:, ℓ))
1

1+βε/h ▷ Following (32)
12: qqq(:, ℓ + 1)← ϱϱϱk−1 ⊘ (ΓΓΓkzzz(:, ℓ + 1)) ▷ Following (33)
13: if ||qqq(:, ℓ + 1)− qqq(:, ℓ)|| < δ and ||zzz(:, ℓ + 1)− zzz(:, ℓ)|| < δ then
14: Break
15: else
16: ℓ← ℓ + 1
17: end if
18: end while
19: return ϱϱϱk ← zzz(:, ℓ)⊙ (ΓΓΓ⊤

k qqq(:, ℓ)) ▷ Use (34) to map ϱϱϱk−1 to ϱϱϱk

20: end procedure

Algorithm 2 Euler-Maruyama Algorithm
1: procedure EulerMaruyama(h, β,ΘΘΘk−1,XXX,yyy,ϱϱϱk−1)
2: PPP k−1 ← ΦΦΦ(ΘΘΘk−1,XXX) ▷ Lines 2-4 construct the argument of the gradient in (35)
3: UUUk−1 ← 1/ndataPPP k−1PPP ⊤

k−1
4: uuuk−1 ← UUUk−1ϱϱϱk−1
5: vvvk−1 ← −2/ndataPPP k−1yyy
6: DDD ← Backward (uuuk−1 + vvvk−1) ▷ Approximate the gradient of (35) using PyTorch library

Backward (Paszke et al., 2017)
7: GGG←

√
2h/β × randnN×p

8: ΘΘΘk ← ΘΘΘk−1 + h×DDD + GGG ▷ Complete the location update via (35)
9: end procedure

where ω(·) :=
∫

U(·, θ̃θθ)ϱ(θ̃θθ)dθ̃θθ, and ηηηi
k−1 := ηηηi(t = (k − 1)h), ∀k ∈ N.

To perform this update, EulerMaruyama constructs a matrix PPP k−1 whose (i, j)th element is PPP k−1(i, j) =
Φ(xxxj , θθθi

k−1). From PPP k−1, we construct vvvk−1 and UUUk−1 as in lines 3 and 5. In line 6 of Algorithm 2,
EulerMaruyama uses the automatic differentiation module of PyTorch Library, Backward (Paszke et al.,
2017), to calculate the gradients needed to update ΘΘΘk−1 to ΘΘΘk ∀k ∈ N.

Once ΘΘΘk, vvvk−1, and UUUk−1 have been constructed via EulerMaruyama, ProxLearn maps the N×1 vector
ϱϱϱk−1 to the proximal update ϱϱϱk.

We next illustrate the implementation of ProxLearn for binary and multi-class classification case studies.
A GitHub repository containing our code for the implementation of these applications can be found at
https://github.com/zalexis12/Proximal-Mean-Field-Learning.git. Please refer to the Readme file
therein for an outline of the structure of our code.

11

https://github.com/zalexis12/Proximal-Mean-Field-Learning.git

Published in Transactions on Machine Learning Research (12/2023)

4 Case study: binary classification

In this Section, we report numerical results for our first case study, where we apply the proposed ProxLearn
algorithm for binary classification.

For this case study, we perform two implementations on different computing platforms. Our first implemen-
tation is on a PC with 3.4 GHz 6-Core Intel Core i5 processor, and 8 GB RAM. For runtime improvement,
we then use a Jetson TX2 with a NVIDIA Pascal GPU with 256 CUDA cores, 64-bit NVIDIA Denver and
ARM Cortex-A57 CPUs.

4.1 WDBC data set

We apply the proposed algorithm to perform a binary classification on the Wisconsin Diagnostic Breast
Cancer (henceforth, WDBC) data set available at the UC Irvine machine learning repository (Dua & Graff,
2017). This data set consists of the data of scans from 569 patients. There are nx = 30 features from each
scan. Scans are classified as “benign” (which we label as −1) or “malignant” (labeled as +1).

In (2), we define Φ
(
xxx,θθθi

k−1
)

:= ai
k−1 tanh(⟨wwwi

k−1,xxx⟩+ bi
k−1) ∀i ∈ [N] after (k− 1) updates. The parameters

ai
k−1,wwwi

k−1 and bi
k−1 are the scaling, weight and bias of the ith sample after (k − 1) updates, respectively.

Letting p := nx + 2, the parameter vector of the ith sample after (k − 1) updates is

θθθi
k−1 :=

 ai
k−1

bi
k−1

wwwi
k−1

 ∈ Rp, ∀ i ∈ [N].

We set ϱ0 ≡ Unif ([0.9, 1.1]× [−0.1, 0.1]× [−1, 1]nx), a uniform joint PDF supported over np = nx + 2 = 32
dimensional mean field parameter space.

We use 70% of the entire data set as training data. As discussed in Sec. 3, we learn the mean field parameter
distribution via weighted scattered point cloud evolution using ProxLearn. We then use the confusion
matrix method (Visa et al., 2011) to evaluate the accuracy of the obtained model over the test data, which
is the remaining 30% of the full data set, containing ntest points.

For each test point xxxtest ∈ Rnx , we construct

φφφ(xxxtest) :=


Φ(xxxtest, θθθ

1
k−1)

Φ(xxxtest, θθθ
2
k−1)

...
Φ(xxxtest, θθθ

N
k−1)

 ∈ RN

where θθθi
k−1 is obtained from the training process. We estimate fMeanField in (7) in two ways. First, we

estimate fMeanField as a sample average of the elements of φφφ. Second, we estimate fMeanField by numerically
approximating the integral in (7) using the propagated samples {θθθi

k−1, ϱi
k−1}N

i=1 for k ∈ N. We refer to
these as the “unweighted estimate” and “weighted estimate,” respectively. While the first estimate is an
empirical average, the second uses the weights {ϱi

k−1}N
i=1 obtained from the proposed proximal algorithm.

The fMeanField “unweighted estimate” and “weighted estimate” are then passed through the softmax and
argmax functions respectively, to produce the predicted labels.

4.2 Numerical experiments

We set the number of samples N = 1000, numerical tolerance δ = 10−3, the maximum number of iterations
L = 300, and the regularizing parameter ε = 1. Additionally, we set the time step to h = 10−3. We run
the simulation for different values of the inverse temperature β, and list the corresponding classification
accuracy in Table 1. The “weighted estimate,” the ensemble average using proximal updates, produces more
accurate results, whereas the “unweighted estimate,” the empirical average, is found to be more sensitive to
the inverse temperature β.

12

Published in Transactions on Machine Learning Research (12/2023)

Unweighted Weighted

(a) Regularized risk calculated via CPU.

Unweighted Weighted

(b) Regularized risk calculated via GPU.

Figure 2: The solid line shows the regularized risk functional Fβ versus the number of proximal recursions
shown for the WDBC dataset with β = 0.05. The shadow shows the Fβ variation range for different values
of β ∈ {0.03, 0.05, 0.07}.

Table 1: Classification accuracy of the proposed computational framework for the WDBC Dataset

β Unweighted Weighted
0.03 91.17% 92.35%
0.05 92.94% 92.94%
0.07 78.23% 92.94%

For each fixed β, we perform 106 proximal recursions incurring approx. 33 hours of computational time.
Fig. 2a shows the risk functional, computed as the averaged loss over the test data using each of the two
estimates described above.

To improve the runtime of our algorithm, we run our code on a Jetson TX2 module, converting data and
variables to PyTorch variables.

We begin calculations in Float32, switching to Float64 only when needed to avoid not-a-number (NaN)
errors. This switch typically occurs after 2 × 105 to 3 × 105 iterations. As shown in Table 2, we train the
neural network to a comparable accuracy in only 2.5 × 105 iterations. The new runtime is around 6% of
the original runtime for the CPU-based computation. Fig. 2b shows the risk functional calculated via this
updated code. We parallelize these calculations, taking advantage of the GPU capacity of the Jetson TX2.

We utilize these improvements in runtime to additionally experiment with our choice of ε. Table 3 reports
the final values of the regularized risk functional F̂β and corresponding runtimes for varying ε. As expected,
larger ε entails more smoothing and lowers runtime. The corresponding final regularized risk values show
no significant variations, suggesting numerical stability.

4.3 Computational complexity

In this case study, we determine the computational complexity of ProxLearn as follows. Letting aaak−1 :=(
a1

k−1 . . . aN
k−1

)⊤, bbbk−1 :=
(
b1

k−1 . . . bN
k−1

)⊤, WWW k−1 :=
(
www1

k−1 . . . wwwN
k−1

)⊤, we create the N × ndata
matrix

PPP k−1 :=
(
aaak−1111⊤)

⊙tanh(WWW k−1XXX⊤ + bbbk−1111⊤), (36)

which has complexity O(ndataNnx). The subsequent creation of matrix UUUk−1 in line 3 of Algorithm 2 has
complexity O(ndataN2), and creating vvvk−1 and uuuk−1 takes complexity O(Nndata) and O(N2) respectively.

13

Published in Transactions on Machine Learning Research (12/2023)

Table 2: Classification accuracy on Jetson Tx2, after 2.5× 105 iterations

β Unweighted Weighted Runtime (hr)
0.03 91.18% 91.18% 1.415
0.05 91.18% 92.94% 1.533
0.07 90.59% 91.76% 1.704

Table 3: Comparing final F̂β and runtimes for various ε

ε Unweighted Final F̂β Runtime (s)
0.1 1.4348× 10−2 32863
0.5 1.3740× 10−2 11026
1 1.0412× 10−2 5022
5 1.1293× 10−2 4731
10 9.8849× 10−3 4766

The complexity in calculating the relevant derivatives of vvvk−1 and uuuk−1 is O(N2ndatanx) (these derivatives are
calculated in Appendices B and C). Updating ΘΘΘk−1 using these results has complexity of O(Np) = O(Nnx).
Therefore, the process of updating ΘΘΘk−1 via EulerMaruyama is O(N2ndatanx).

The significant complexity in the remainder of ProxLearn arises in the construction of matrix CCCk in line
3 and the matrix-vector multiplications within the while loop in lines 11, 12.

The creation of the N × N matrix CCCk, in which each element is the vector norm of a nx × 1 vector, is
O(nxN2). In a worst-case scenario, the while loop runs L times. The operations of leading complexity
within the while loop are the multiplications of the ΓΓΓk matrix of size N ×N with the N × 1 vectors, which
have a complexity of O(N2). Therefore, the while loop has a complexity of O(LN2).

Updating ϱϱϱk−1 thus has a complexity of O((nx + L)N2). In practice, the while loop typically ends far before
reaching the maximum number of iterations L.

From this analysis, we find that the overall complexity of ProxLearn is O(N2(ndatanx+L)). In comparison,
the per iteration complexity for JKO-ICNN is O

(
Ninner (N + 1) Nbatch + N3)

where Ninner denotes the
number of inner optimization steps, and Nbatch denotes the batch size. The per iteration complexity for
SWGF is O (NinnerNprojNbatch log Nbatch) where Nproj denotes the number of projections to approximate the
sliced Wasserstein distance.

4.4 Comparisons to existing results

From Fig. 2, we observe that there is a significant burn in period for the risk functional curves. These trends
in learning curves agree with those reported in (Mei et al., 2018). In particular, (Mei et al., 2018, Fig. 3)
and Fig. 7.3 in that reference’s Supporting Information, show convergence trends very similar to our Fig.
2: slow decay until approx. 105 iterations and then a significant speed up. The unusual convergence trend
was explicitly noted in (Mei et al., 2018): “We observe that SGD converges to a network with very small
risk, but this convergence has a nontrivial structure and presents long flat regions”. It is interesting to note
that (Mei et al., 2018) considered an experiment that allowed rotational symmetry and simulated the radial
(i.e., with one spatial dimension) discretized PDE, while we used the proposed proximal recursion directly
in the neuron population ensemble to solve the PDE IVP, i.e., similar convergence trends were observed
using different numerical methods applied to the same mean field PDE IVP. This makes us speculate that
the convergence trend is specific to the mean field PDE dynamics itself, and is less about the particular
numerical algorithm. This observation is consistent with recent works such as (Wojtowytsch & Weinan,
2020) which investigate the mean field learning dynamics in two layer ReLU networks and in that setting,
show that the learning can indeed be slow depending on the target function.

14

Published in Transactions on Machine Learning Research (12/2023)

Table 4: Comparison of average classification accuracy from Bonet et al. (2022, Table 1) to our algorithm,
ProxLearn

Dataset JKO-ICNN SWGF + RealNVP ProxLearn, Weighted ProxLearn, Unweighted
Banana 0.550± 10−2 0.559± 10−2 0.551± 10−2 0.535± 5 · 10−2

Diabetes 0.777± 7 · 10−3 0.778± 2 · 10−3 0.736± 2 · 10−2 0.731± 10−2

Twonorm 0.981± 2 · 10−4 0.981± 6 · 10−4 0.972± 2 · 10−3 0.972± 2 · 10−3

As a first study, our numerical results achieve reasonable classification accuracy compared to the state-of-art,
even though our proposed meshless proximal algorithm is very different from the existing implementations.
We next compare the numerical performance with existing methods as in Mokrov et al. (2021) and Bonet
et al. (2022). We apply our proximal algorithm for binary classification to three datasets also considered in
Mokrov et al. (2021) and Bonet et al. (2022): the banana, diabetes, and twonorm datasets.

The banana dataset consists of 5300 data points, each with nx = 2 features, which we rescale to lie between
0 and 8. We set β = 0.05, draw our initial weights www from Unif ([−2, 2]nx) and bias b from Unif ([−0.3, 0.3]),
and set ϱϱϱ0 ≡ Unif (0, 1000). We run our code for 3500 iterations, splitting the data evenly between test and
training data.

The diabetes dataset consists of nx = 8 features from each of 768 patients. Based on our experimental
results, we make the following adjustments to our algorithm: we redefine β = 0.65, ϱϱϱ0 ≡ Unif (0, 1000), and
draw our initial weights www from Unif ([−2, 2]nx). We rescale the data to lie between 0 and 1, and use half of
the dataset for training purposes, and the remainder as test data. In this case, we run our code for 4.99×105

iterations.

The twonorm dataset consists of 7,400 samples drawn from two different normal distributions, with nx = 20
features. We again consider 50% of the same as training data and used the remaining 50% as test data, and
rescale the given data by a factor of 8. Based on our empirical observations, we redefine β = 1.95, and once
more draw our initial weights www from Unif ([−2, 2]nx) and set ϱϱϱ0 ≡ Unif (0, 1000). In this case, we perform
104 proximal recursions in each separate run.

We run our code five times for each of the three datasets under consideration and compute “unweighted
estimates” and “weighted estimates” in each case, as described above. These estimates assign each data
point a value: negative values predict the label as 0, while positive values predict the label as 1. From these
results, we calculate the weighted and unweighted accuracy by finding the percentage of predicted test labels
that match the actual test labels. The average accuracy over all five runs is reported in Table 4, alongside
the results reported in Bonet et al. (2022, Table 1). We achieve comparable accuracy to these recent results.

5 Case study: multi-class classification

We next apply the proposed proximal algorithm to a ten-class classification problem using the Semeion
Handwritten Digit (hereafter SHD) Data Set (Dua & Graff, 2017). This numerical experiment is performed
on the aforementioned Jetson TX2.

5.1 SHD data set

The SHD Data Set consists of 1593 handwritten digits. By viewing each digit as 16× 16 pixel image, each
image is represented by nx = 162 = 256 features. Each feature is a boolean value indicating whether a
particular pixel is filled. We subsequently re-scale these features such that xxxi ∈ {−1, 1}nx .

15

Published in Transactions on Machine Learning Research (12/2023)

5.2 Adaptations to ProxLearn for multi-class case

To apply ProxLearn for a multi-class case, we make several adaptations. For instance, rather than at-
tempting to determine f(xxx) ≈ y, we redefine f(xxx) to represent a mapping of input data to the predicted
likelihood of the correct label. We therefore redefine the variables, parameters, and risk function as follows.

Each label is represented by a 1 × 10 vector of booleans, stored in a ndata × 10 matrix YYY where Yi,j = 1 if
the ith data point xxxi has label j, and Yi,j = 0 otherwise.

We construct the N × ndata matrix PPP k−1 by defining the (j, i) element of PPP k−1 as

PPP k−1(j, i) := ΦΦΦ(θθθj
k−1,XXX(i, :),YYY (i, :))

:=
〈

softmax(XXX(i, :)(θθθj
k−1)⊤), (YYY (i, :))⊤

〉
(37)

where ⟨·, ·⟩ denotes the standard Euclidean inner product. The softmax function in (37) produces a 10× 1
vector of non-negative entries that sum to 1. By taking the inner product of this vector with the Boolean
vector YYY (i, :), we define PPP k−1(j, i) = ΦΦΦ(θθθj

k−1,XXX(i, :),YYY (i, :)) as the perceived likelihood that the data point i
is labeled correctly by sample j. As our model improves, this value approaches 1, which causes the probability
of an incorrect label to drop.

As this newly defined PPP k−1 does not call for bias or scaling, the weights alone are stored in the N ×p matrix
ΘΘΘk−1. In this case, p := 10nx, as each of the nx features requires a distinct weight for each of the ten labels.
For convenience, we reshape ΘΘΘk−1 = (θθθ1

k−1, ..., θθθN
k−1), where each θθθi

k−1 is a 10× nx matrix. Therefore, ΘΘΘk−1
is a 10× nx ×N tensor.

We redefine the unregularized risk to reflect our new ΦΦΦ as follows:

F (ρ) := E(xxx,yyy)

(
1−

∫
Rp

Φ(xxx,yyy,θθθ)ρ(θθθ)dθθθ

)2
. (38)

Expanding the above, we arrive at a form that resembles (8), now with the following adjusted definitions:

F0 := 1, (39)
V (θθθ) := E(xxx,yyy)[−2Φ(θθθ,xxx,yyy)], (40)

U(θθθ, θ̃θθ) := E(xxx,yyy)[Φ(θθθ,xxx,yyy)Φ(θ̃θθ,xxx,yyy)]. (41)

We use the regularized risk functional Fβ as in (12) where F now is given by (38). Due to the described
changes in the structure of ΘΘΘk−1, the creation of CCCk in line 3 of ProxLearn results in a 10×N ×N tensor,
which we then sum along the ten element axis, returning an N ×N matrix.

Finally, we add a scaling in line 7 of EulerMaruyama, scaling the noise by a factor of 1/100.

5.3 Numerical experiments

With the adaptations mentioned above, we set the inverse temperature β = 0.5, ϵ = 10, the step size
h = 10−3, and N = 100. We draw the initial weights from Unif

(
[−1, 1]10nx

)
. We take the first ndata = 1000

images as training data, reserving the remaining ntest = 593 images as test data, and execute 30 independent
runs of our code, each for 106 proximal recursions.

To evaluate the training process, we create a matrix PPP test
k−1 ∈ RN×ntest , using test data rather than training

data, but otherwise defined as in (37). We then calculate a weighted approximation of Fβ :

Fβ ≈
1

ntest

∥∥∥∥111− (PPP test
k−1)⊤ϱϱϱ

∥∥∥∥2

2
, (42)

and an unweighted approximation:

Fβ ≈
1

ntest

∥∥∥∥111− 1
N

(PPP test
k−1)⊤111

∥∥∥∥2

2
, (43)

16

Published in Transactions on Machine Learning Research (12/2023)

Figure 3: The solid line shows the average regularized risk functional Fβ versus the number of proximal
recursions shown for the Semeion dataset with β = 0.5. The narrow shadow shows the Fβ variation range
with the same β using the results of 30 independent runs, each starting from the same initial point cloud{
θθθi

0, ϱi
0
}N

i=1.

which we use to produce the risk and weighted risk log-log plots shown in Fig. 3.

Notably, despite the new activation function and the adaptations described above, our algorithm produces
similar risk plots in the binary and multi-class cases. The run time for 106 iterations is approximately 5.3
hours.

To evaluate our multi-class model, we calculate the percentage of accurately labeled test data by first taking
argmax (XXXtestΘΘΘk−1) along the ten dimensional axis, to determine the predicted labels for each test data
point using each sample of ΘΘΘk−1. We then compare these predicted labels with the actual labels. We achieved
61.079% accuracy for the test data, and 75.330% accuracy for the training data.

5.4 Updated computational complexity of ProxLearn

In the binary case, the creation of matrix CCCk requires O(nxN2) flops. In the case of multi-class classification
concerning m classes, CCCk is redefined as the sum of m such matrices. Therefore, creating the updated matrix
CCCk takes O(mnxN2) flops. Thus, updating ϱϱϱk−1 is of complexity O((mnx + L)N2). The complexity of
EulerMaruyama can be generalized from the discussion in Sec. 4.

6 Conclusions

6.1 Summary

This work presents a proximal mean field learning algorithm to train a shallow neural network in the over-
parameterized regime. The proposed algorithm is meshless, non-parametric and implements the Wasserstein
proximal recursions realizing the gradient descent of entropic-regularized risk. Numerical case studies in
binary and multi-class classification demonstrate that the ideas of mean field learning can be attractive as
computational framework, beyond purely theoretical interests. Our contribution should be of interest to
other learning and variational inference tasks such as the policy optimization and adversarial learning.

17

Published in Transactions on Machine Learning Research (12/2023)

We clarify that the proposed algorithm is specifically designed for a neural network with single hidden layer
in large width regime. For multi-hidden layer neural networks, the mean field limit in the sense of width
as pursued here, is relatively less explored for the training dynamics. In the multiple hidden layer setting,
theoretical understanding of the limits is a frontier of current research; see e.g., Fang et al. (2021); Sirignano
& Spiliopoulos (2022). Extending these ideas to design variants of proximal algorithms requires new lines
of thought, and as such, is out-of-scope of this paper. In the following, we outline the scope for such future
work.

6.2 Scope for future work

Existing efforts to generalize the theoretical results for the mean field limit as in this work, from single to
multi-hidden layer networks, have been pursued in two different limiting sense. One line of investigations
(Sirignano & Spiliopoulos, 2020; 2022; Yu & Spiliopoulos, 2023) take the infinite width limit one hidden layer
at a time while holding the (variable) widths of other hidden layers fixed. More precisely, if the ith hidden
layer has Ni neurons, then the limit is taken by first normalizing that layer’s output by Nγi

i for some fixed
γi ∈ [1/2, 1] and then letting Ni →∞ for an index i while holding other Nj ’s fixed and finite, j ̸= i.

A different line of investigations (Araújo et al., 2019; Nguyen, 2019) consider the limit where the widths of all
hidden layers simultaneously go to infinity. In this setting, the population distribution over the joint (across
hidden layers) parameter space is shown to evolve under SGD as per a McKean-Vlasov type nonlinear IVP;
see (Araújo et al., 2019, Def. 4.4 and Sec. 5). We anticipate that the proximal recursions proposed herein can
be extended to this setting by effectively lifting the Wasserstein gradient flow to the space of measure-valued
paths. Though not quite the same, but this is similar in spirit to how classical bi-mariginal Schrödinger
bridge problems (Léonard, 2012; Chen et al., 2021) have been generalized to multi-marginal settings over
the path space and have led to significant algorithmic advances in recent years (Haasler et al., 2021; Carlier,
2022; Chen et al., 2023). Pursuing such ideas for designing proximal algorithms in the multiple hidden layer
case will comprise our future work.

Acknowledgment

This work was supported by NSF award 2112755. The authors acknowledge the reviewers’ perceptive feed-
back to help improve this paper.

References
David Alvarez-Melis, Yair Schiff, and Youssef Mroueh. Optimizing functionals on the space of probabilities

with input convex neural network. In Annual Conference on Neural Information Processing Systems, 2021.

Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient flows: in metric spaces and in the space of
probability measures. Springer Science & Business Media, 2005.

Brandon Amos, Lei Xu, and J Zico Kolter. Input convex neural networks. In International Conference on
Machine Learning, pp. 146–155. PMLR, 2017.

Dyego Araújo, Roberto I Oliveira, and Daniel Yukimura. A mean-field limit for certain deep neural networks.
arXiv preprint arXiv:1906.00193, 2019.

Andrew R Barron. Universal approximation bounds for superpositions of a sigmoidal function. IEEE
Transactions on Information theory, 39(3):930–945, 1993.

Heinz H Bauschke, Patrick L Combettes, et al. Convex analysis and monotone operator theory in Hilbert
spaces, volume 408. Springer, 2011.

Jean-David Benamou, Guillaume Carlier, and Maxime Laborde. An augmented Lagrangian approach to
Wasserstein gradient flows and applications. ESAIM: Proceedings and surveys, 54:1–17, 2016.

18

Published in Transactions on Machine Learning Research (12/2023)

Dimitri P Bertsekas et al. Incremental gradient, subgradient, and proximal methods for convex optimization:
A survey. Optimization for Machine Learning, 2010(1-38):3, 2011.

Clément Bonet, Nicolas Courty, François Septier, and Lucas Drumetz. Sliced-Wasserstein gradient flows.
arXiv preprint arXiv:2110.10972, 2021.

Clément Bonet, Nicolas Courty, François Septier, and Lucas Drumetz. Efficient gradient flows in sliced-
wasserstein space. arXiv preprint arxiv:2110.10972, 2022.

Etienne Boursier, Loucas Pillaud-Vivien, and Nicolas Flammarion. Gradient flow dynamics of shallow relu
networks for square loss and orthogonal inputs. Advances in Neural Information Processing Systems, 35:
20105–20118, 2022.

Yann Brenier. Polar factorization and monotone rearrangement of vector-valued functions. Communications
on pure and applied mathematics, 44(4):375–417, 1991.

Charlotte Bunne, Laetitia Papaxanthos, Andreas Krause, and Marco Cuturi. Proximal optimal transport
modeling of population dynamics. In International Conference on Artificial Intelligence and Statistics,
pp. 6511–6528. PMLR, 2022.

Kenneth F Caluya and Abhishek Halder. Gradient flow algorithms for density propagation in stochastic
systems. IEEE Transactions on Automatic Control, 65(10):3991–4004, 2019a.

Kenneth F Caluya and Abhishek Halder. Proximal recursion for solving the Fokker-Planck equation. In
2019 American Control Conference (ACC), pp. 4098–4103. IEEE, 2019b.

Kenneth F Caluya and Abhishek Halder. Reflected Schrödinger bridge: Density control with path constraints.
In 2021 American Control Conference (ACC), pp. 1137–1142. IEEE, 2021a.

Kenneth F Caluya and Abhishek Halder. Wasserstein proximal algorithms for the Schrödinger bridge prob-
lem: Density control with nonlinear drift. IEEE Transactions on Automatic Control, 67(3):1163–1178,
2021b.

Guillaume Carlier. On the linear convergence of the multimarginal sinkhorn algorithm. SIAM Journal on
Optimization, 32(2):786–794, 2022.

Guillaume Carlier, Vincent Duval, Gabriel Peyré, and BeSchrnhard SchmitzeSchr. Convergence of entropic
schemes for optimal transport and gradient flows. SIAM Journal on Mathematical Analysis, 49(2):1385–
1418, 2017.

René Carmona and François Delarue. Probabilistic theory of mean field games with applications I-II. Springer,
2018.

José A Carrillo, Katy Craig, Li Wang, and Chaozhen Wei. Primal dual methods for Wasserstein gradient
flows. Foundations of Computational Mathematics, 22(2):389–443, 2022.

Tianrong Chen, Guan-Horng Liu, Molei Tao, and Evangelos A Theodorou. Deep momentum multi-marginal
schr\" odinger bridge. arXiv preprint arXiv:2303.01751, 2023.

Yongxin Chen, Tryphon T Georgiou, and Michele Pavon. Stochastic control liaisons: Richard sinkhorn meets
gaspard monge on a schrodinger bridge. Siam Review, 63(2):249–313, 2021.

Lenaic Chizat and Francis Bach. On the global convergence of gradient descent for over-parameterized
models using optimal transport. Advances in neural information processing systems, 31, 2018.

Casey Chu, Jose Blanchet, and Peter Glynn. Probability functional descent: A unifying perspective on
GANS, variational inference, and reinforcement learning. In International Conference on Machine Learn-
ing, pp. 1213–1222. PMLR, 2019.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control, signals
and systems, 2(4):303–314, 1989.

19

Published in Transactions on Machine Learning Research (12/2023)

Carles Domingo-Enrich, Samy Jelassi, Arthur Mensch, Grant Rotskoff, and Joan Bruna. A mean-field
analysis of two-player zero-sum games. Advances in neural information processing systems, 33:20215–
20226, 2020.

Dheeru Dua and Casey Graff. UCI machine learning machine learning repository. 2017. URL "http:
//archive.ics.uci.edu/ml".

Cong Fang, Jason Lee, Pengkun Yang, and Tong Zhang. Modeling from features: a mean-field framework
for over-parameterized deep neural networks. In Conference on learning theory, pp. 1887–1936. PMLR,
2021.

Charlie Frogner and Tomaso Poggio. Approximate inference with Wasserstein gradient flows. In International
Conference on Artificial Intelligence and Statistics, pp. 2581–2590. PMLR, 2020.

Isabel Haasler, Axel Ringh, Yongxin Chen, and Johan Karlsson. Multimarginal optimal transport with a
tree-structured cost and the schrodinger bridge problem. SIAM Journal on Control and Optimization, 59
(4):2428–2453, 2021.

Abhishek Halder and Tryphon T Georgiou. Gradient flows in uncertainty propagation and filtering of linear
gaussian systems. In 2017 IEEE 56th Annual Conference on Decision and Control (CDC), pp. 3081–3088.
IEEE, 2017.

Abhishek Halder and Tryphon T Georgiou. Gradient flows in filtering and Fisher-Rao geometry. In 2018
Annual American Control Conference (ACC), pp. 4281–4286. IEEE, 2018.

Abhishek Halder and Tryphon T Georgiou. Proximal recursion for the Wonham filter. In 2019 IEEE 58th
Conference on Decision and Control (CDC), pp. 660–665. IEEE, 2019.

Abhishek Halder, Kenneth F Caluya, Bertrand Travacca, and Scott J Moura. Hopfield neural network flow:
A geometric viewpoint. IEEE Transactions on Neural Networks and Learning Systems, 31(11):4869–4880,
2020.

Abhishek Halder, Kenneth F Caluya, Pegah Ojaghi, and Xinbo Geng. Stochastic uncertainty propagation in
power system dynamics using measure-valued proximal recursions. IEEE Transactions on Power Systems,
2022.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are universal
approximators. Neural networks, 2(5):359–366, 1989.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and generalization
in neural networks. Advances in neural information processing systems, 31, 2018.

Richard Jordan, David Kinderlehrer, and Felix Otto. The variational formulation of the Fokker–Planck
equation. SIAM journal on mathematical analysis, 29(1):1–17, 1998.

Mark Kac. Foundations of kinetic theory. In Proceedings of The third Berkeley symposium on mathematical
statistics and probability, volume 3, pp. 171–197, 1956.

Johan Karlsson and Axel Ringh. Generalized Sinkhorn iterations for regularizing inverse problems using
optimal mass transport. SIAM Journal on Imaging Sciences, 10(4):1935–1962, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Maxime Laborde. On some nonlinear evolution systems which are perturbations of Wasserstein gradient
flows. Topological Optimization and Optimal Transport: In the Applied Sciences, 17:304–332, 2017.

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-Dickstein, and
Jeffrey Pennington. Wide neural networks of any depth evolve as linear models under gradient descent.
Advances in neural information processing systems, 32, 2019.

20

"http://archive.ics.uci.edu/ml"
"http://archive.ics.uci.edu/ml"

Published in Transactions on Machine Learning Research (12/2023)

Christian Léonard. From the schrödinger problem to the monge–kantorovich problem. Journal of Functional
Analysis, 262(4):1879–1920, 2012.

Ping Li and Phan-Minh Nguyen. On random deep weight-tied autoencoders: Exact asymptotic analysis,
phase transitions, and implications to training. In International Conference on Learning Representations,
2018.

Chang Liu, Jingwei Zhuo, Pengyu Cheng, Ruiyi Zhang, and Jun Zhu. Understanding and accelerating
particle-based variational inference. In International Conference on Machine Learning, pp. 4082–4092.
PMLR, 2019.

Yulong Lu. Two-scale gradient descent ascent dynamics finds mixed nash equilibria of continuous games: A
mean-field perspective. In International Conference on Machine Learning, pp. 22790–22811. PMLR, 2023.

Alexander G de G Matthews, Jiri Hron, Mark Rowland, Richard E Turner, and Zoubin Ghahramani. Gaus-
sian process behaviour in wide deep neural networks. In International Conference on Learning Represen-
tations, 2018.

Henry P McKean Jr. A class of Markov processes associated with nonlinear parabolic equations. Proceedings
of the National Academy of Sciences, 56(6):1907–1911, 1966.

Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape of two-layer
neural networks. Proceedings of the National Academy of Sciences, 115(33):E7665–E7671, 2018.

Petr Mokrov, Alexander Korotin, Lingxiao Li, Aude Genevay, Justin M Solomon, and Evgeny Burnaev.
Large-scale Wasserstein gradient flows. Advances in Neural Information Processing Systems, 34:15243–
15256, 2021.

Youssef Mroueh and Truyen Nguyen. On the convergence of gradient descent in GANs: MMD GAN as a
gradient flow. In International Conference on Artificial Intelligence and Statistics, pp. 1720–1728. PMLR,
2021.

Phan-Minh Nguyen. Mean field limit of the learning dynamics of multilayer neural networks. arXiv preprint
arXiv:1902.02880, 2019.

Roman Novak, Lechao Xiao, Jiri Hron, Jaehoon Lee, Alexander A Alemi, Jascha Sohl-Dickstein, and
Samuel S Schoenholz. Neural tangents: Fast and easy infinite neural networks in python. In Interna-
tional Conference on Learning Representations, 2019.

Neal Parikh, Stephen Boyd, et al. Proximal algorithms. Foundations and trends® in Optimization, 1(3):
127–239, 2014.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. 2017.

Gabriel Peyré. Entropic approximation of Wasserstein gradient flows. SIAM Journal on Imaging Sciences,
8(4):2323–2351, 2015.

Julien Rabin, Gabriel Peyré, Julie Delon, and Marc Bernot. Wasserstein barycenter and its application to
texture mixing. In International Conference on Scale Space and Variational Methods in Computer Vision,
pp. 435–446. Springer, 2011.

R. Tyrrell Rockafellar. Augmented Lagrangians and applications of the proximal point algorithm in convex
programming. Mathematics of operations research, 1(2):97–116, 1976a.

R Tyrrell Rockafellar. Monotone operators and the proximal point algorithm. SIAM journal on control and
optimization, 14(5):877–898, 1976b.

Grant Rotskoff and Eric Vanden-Eijnden. Trainability and accuracy of artificial neural networks: An inter-
acting particle system approach. Communications on Pure and Applied Mathematics, 75(9):1889–1935,
2022.

21

Published in Transactions on Machine Learning Research (12/2023)

Grant M Rotskoff and Eric Vanden-Eijnden. Neural networks as interacting particle systems: Asymptotic
convexity of the loss landscape and universal scaling of the approximation error. stat, 1050:22, 2018.

Adil Salim, Anna Korba, and Giulia Luise. The Wasserstein proximal gradient algorithm. Advances in
Neural Information Processing Systems, 33:12356–12366, 2020.

Filippo Santambrogio. {Euclidean, metric, and Wasserstein} gradient flows: an overview. Bulletin of Math-
ematical Sciences, 7(1):87–154, 2017.

Justin Sirignano and Konstantinos Spiliopoulos. Mean field analysis of neural networks: A central limit
theorem. Stochastic Processes and their Applications, 130(3):1820–1852, 2020.

Justin Sirignano and Konstantinos Spiliopoulos. Mean field analysis of deep neural networks. Mathematics
of Operations Research, 47(1):120–152, 2022.

Alain-Sol Sznitman. Topics in propagation of chaos. In Ecole d’été de probabilités de Saint-Flour XIX—1989,
pp. 165–251. Springer, 1991.

Marc Teboulle. Entropic proximal mappings with applications to nonlinear programming. Mathematics of
Operations Research, 17(3):670–690, 1992.

Anthony C Thompson. On certain contraction mappings in a partially ordered vector space. Proceedings of
the American Mathematical Society, 14(3):438–443, 1963.

Cédric Villani. Optimal transport: old and new, volume 338. Springer, 2009.

Cédric Villani. Topics in optimal transportation, volume 58. American Mathematical Soc., 2021.

Sofia Visa, Brian Ramsay, Anca L Ralescu, and Esther Van Der Knaap. Confusion matrix-based feature
selection. MAICS, 710:120–127, 2011.

Stephan Wojtowytsch and E Weinan. Can shallow neural networks beat the curse of dimensionality? a mean
field training perspective. IEEE Transactions on Artificial Intelligence, 1(2):121–129, 2020.

Lechao Xiao, Yasaman Bahri, Jascha Sohl-Dickstein, Samuel Schoenholz, and Jeffrey Pennington. Dynamical
isometry and a mean field theory of CNNs: How to train 10,000-layer vanilla convolutional neural networks.
In International Conference on Machine Learning, pp. 5393–5402. PMLR, 2018.

Jiahui Yu and Konstantinos Spiliopoulos. Normalization effects on deep neural networks. Foundations of
Data Science, 5(3):389–465, 2023.

Junyu Zhang, Alec Koppel, Amrit Singh Bedi, Csaba Szepesvari, and Mengdi Wang. Variational policy gra-
dient method for reinforcement learning with general utilities. Advances in Neural Information Processing
Systems, 33:4572–4583, 2020.

Ruiyi Zhang, Changyou Chen, Chunyuan Li, and Lawrence Carin. Policy optimization as Wasserstein
gradient flows. In International Conference on Machine Learning, pp. 5737–5746. PMLR, 2018.

A Proof of Theorem 1

We provide the formal statement followed by the proof.
Theorem 1. Consider the regularized risk functional (12) wherein F is given by (8)-(9). Let ρ(t, θθθ) solve
the IVP (14), and let {ϱk−1}k∈N be the sequence generated by (17) with ϱ0 ≡ ρ0. Define the interpolation
ϱh : [0,∞)× Rp 7→ [0,∞) as

ϱh(t, θθθ) := ϱk−1(h,θθθ) ∀t ∈ [(k − 1)h, kh), k ∈ N.

Then ϱh(t, θθθ) h↓0−−→ ρ(t, θθθ) in L1(Rp).

22

Published in Transactions on Machine Learning Research (12/2023)

Proof. Our proof follows the general development in Laborde (2017, Sec. 12.3). In the following, we sketch
the main ideas.

We have the semi-implicit free energy

F̂β(ϱ, ϱk−1) = Eϱ

[
F0 + V (θθθ) +

∫
Rp

U(θθθ, θ̃θθ)ϱk−1(θ̃θθ)dθ̃θθ

]
︸ ︷︷ ︸

=:Vadvec(ϱ)

+β−1Eϱ [log ϱ] , k ∈ N,

wherein the summand
Vadvec(ϱ) := Eϱ

[
F0 + V (θθθ) +

∫
Rp

U(θθθ, θ̃θθ)ϱk−1(θ̃θθ)dθ̃θθ

]
is linear in ϱ, and contributes as an effective advection potential energy. The remaining summand
β−1Eϱ [log ϱ] results in from diffusion regularization and contributes as an internal energy term.

We note from equation 9 that the functional Vadvec(ϱ) is lower bounded for all ϱ ∈ P2 (Rp). Furthermore,
Vadvec(ϱ) and ∇Vadvec(ϱ) are uniformly Lipschitz continuous, i.e., there exists C1 > 0 such that

∥∇Vadvec(ϱ)∥L∞(Rp) + ∥∇2Vadvec(ϱ)∥L∞(Rp) ≤ C1

for all ϱ ∈ P2 (Rp) where the constant C1 > 0 is independent of ϱ, and ∇2 denotes the Euclidean Hessian
operator.

Moreover, there exists C2 > 0 such that for all ϱ, ϱ̃ ∈ P2(Rp), we have

∥∇Vadvec(ϱ)−∇Vadvec(ϱ̃)∥L∞(Rp) ≤ C2W2 (ϱ, ϱ̃) .

Thus, Vadvec(ϱ) satisfy the hypotheses in Laborde (2017, Sec. 12.2).

For t ∈ [0, T], we say that ρ(t, θθθ) ∈ C ([0, T],P2 (Rp)) is a weak solution of the IVP equation 14 if for any
smooth compactly supported test function φ ∈ C∞

c ([0,∞)× Rp), we have∫ ∞

0

∫
Rp

((
∂φ

∂t
− ⟨∇φ,∇Vadvec(ϱ)⟩

)
ρ + β−1ρ∆φ

)
dθθθdt = −

∫
Rp

φ(t = 0, θθθ)ρ0(θθθ). (44)

Following Laborde (2017, Sec. 12.2), under the stated hypotheses on Vadvec(ϱ), there exists weak solution of
the IVP equation 14 that is continuous w.r.t. the W2 metric.

The remaining of the proof follows the outline below.

• Using the Dunford-Pettis’ theorem, establish that the sequence of functions {ϱk(h,θθθ)}k∈N solving
equation 17 is unique.

• Define the interpolation ϱh(t) := ϱk(h,θθθ) if t ∈ ((k−1)h, kh] for all k ∈ N. Then establish that ϱh(t)
solves a discrete approximation of equation 44.

• Finally combine the gradient estimates and pass to the limit h ↓ 0, to conclude that ρh(t) in this
limit solves converges to the weak solution of equation 44 in strong L1(Rp) sense.

For the detailed calculations on the passage to the limit, we refer the readers to Laborde (2017, Sec. 12.5).

B Expressions involving the derivatives of vvv

We define matrices

TTT := tanh
(
WXWXWX⊤ + bbb111⊤)

,

SSS := sech2 (
WXWXWX⊤ + bbb111⊤)

,

23

Published in Transactions on Machine Learning Research (12/2023)

where 111 is a vector of all ones of size ndata×1, and the functions tanh(·) and sech2(·) are elementwise. Notice
that TTT ,SSS ∈ RN×ndata . Then

vvv = − 2
ndata

aaa⊙
(
tanh(WWWXXX⊤ + bbb111⊤)yyy

)
= − 2

ndata
aaa⊙ (TyTyTy) .

Proposition 2. With the above notations in place, we have

∂vvv

∂aaa
111 =

N∑
k=1

∂vvvk

∂aaa
= − 2

ndata
TyTyTy, (45)

and

∂vvv

∂bbb
111 =

N∑
k=1

∂vvvk

∂bbb
= − 2

ndata
aaa⊙SySySy. (46)

Furthermore,

N∑
k=1

∂vvvk

∂WWW
= − 2

ndata

[(
aaa111⊤)

⊙
(
SSS

(
XXX ⊙ yyy111⊤))]

. (47)

Proof. The kth element of vvv is vvvk = − 2
ndata

aaak

∑ndata
i=1 [TTT k,iyyyi]. Thus,

∂vvvk

∂aaaj
=

{
0 for k ̸= j,

− 2
ndata

∑ndata
i=1 [TTT k,iyyyi] for k = j.

So the matrix ∂vvv
∂aaa is diagonal, and[

∂vvv

∂aaa
111
]

k

= − 2
ndata

ndata∑
i=1

[TTT k,iyyyi] = − 2
ndata

[TyTyTy]k .

Hence, we obtain

∂vvv

∂aaa
111 = − 2

ndata
TyTyTy,

which is (45).

On the other hand,

∂vvvk

∂bbbk
= ∂

∂bbbk

[
− 2

ndata
aaak

ndata∑
i=1

[TTT k,iyyyi]
]

= − 2
ndata

aaak

ndata∑
i=1

∂

∂bbbk
[TTT k,iyyyi] .

Note that

∂

∂bbbk
[TTT k,iyyyi] = ∂

∂bbbk
tanh

 nx∑
j=1

(WWW k,jXXXi,j) + bbbk

yyyi

= sech2

 nx∑
j=1

(WWW k,jXXXi,j) + bbbk

yyyi = SSSk,iyyyi.

24

Published in Transactions on Machine Learning Research (12/2023)

Therefore,

∂vvvk

∂bbbj
=

{
0 for k ̸= j,

− 2
ndata

aaak

∑ndata
i=1 [SSSk,iyyyi] for k = j.

As the matrix ∂vvv
∂bbb is diagonal, we get[

∂vvv

∂bbb
111
]

k

= − 2
ndata

aaak

ndata∑
i=1

[SSSk,iyyyi] = − 2
ndata

aaak [SSSyyy]k ,

and so
∂vvv

∂bbb
111 = − 2

ndata
aaa⊙SySySy,

which is indeed (46).

Likewise, we take an element-wise approach to the derivatives with respect to weights WWW k,m. Note that such
a weight WWW k,m will only appear in the kth element of vvv, and so we only need to compute

∂vvvk

∂WWW k,m
= − 2

ndata
aaak

ndata∑
i=1

∂

∂WWW k,m
[TTT k,iyyyi] .

Since

∂

∂WWW k,m
[TTT k,iyyyi] = ∂

∂WWW k,m
tanh

 nx∑
j=1

(WWW k,jXXXj,i) + bbbk

yyyi

= sech2

 nx∑
j=1

(WWW k,jXXXi,j) + bbbk

XXXi,myyyi = SSSk,iXXXi,myyyi,

we have

∂vvvk

∂WWW m,j
=

{
0 for k ̸= m,

− 2
ndata

aaak

∑ndata
i=1 [SSSk,iXXXi,myyyi] for k = m.

Thus,
N∑

k=1

∂vvvk

∂WWW m,j
= − 2

ndata
aaam

ndata∑
i=1

[SSSm,iXXXi,myyyi]

= − 2
ndata

aaam

[
SSS

(
XXX ⊙

(
yyy111⊤))]

m,j
.

Therefore, considering 111 ∈ Rnx , we write
N∑

k=1

∂vvvk

∂WWW
= − 2

ndata

[(
aaa111⊤)

⊙
(
SSS

(
XXX ⊙ yyy111⊤))]

,

thus arriving at (47). This completes the proof.

C Expressions involving the derivatives of uuu

Expressions involving the derivatives of uuu, are summarized in the Proposition next. These results find use
in Sec. 4. We start by noting that

uuu = 1
ndata

(111⊤aaa⊙ TTT)(111⊤aaa⊙ TTT)⊤ρρρ

= 1
ndata

(111⊤aaa⊙ TTT)(aaa⊤111⊙ TTT ⊤)ρρρ.

25

Published in Transactions on Machine Learning Research (12/2023)

Proposition 3. With the above notations in place, we have

∂uuu

∂aaa︸︷︷︸
N×N

111︸︷︷︸
N×1

= 1
ndata

[((
ϱϱϱaaa⊤)

⊙
(
TTTTTT ⊤))

111 + 111 (aaa⊙ ϱϱϱ)⊤
TTTTTT ⊤111

]
, (48)

and
∂uuu

∂bbb︸︷︷︸
N×N

111︸︷︷︸
N×1

= 1
ndata

[((
a1a1a1⊤)

⊙
(
STSTST ⊤)

⊙
(
111 (aaa⊙ ϱϱϱ)⊤

))
111

+
((

1a1a1a⊤)
⊙

(
STSTST ⊤)

⊙
(
(aaa⊙ ϱϱϱ)111⊤))

111
]

. (49)

Furthermore,

N∑
k=1

∂uuu

∂WWW i,j
= 1

ndata

N∑
k=1

ndata∑
m=1

aiak(ϱi + ϱk)Tk,mSi,mXm,j . (50)

Proof. Letting ttt⊤
i denote the ith row of TTT , we rewrite uuu as follows:

uuu = 1
ndata

 a1ttt⊤
1

...
aNttt⊤

N

 [
ρ1a1ttt1 + . . . + ρN aNtttN

]

= 1
ndata

 a1ttt⊤
1 (ρ1a1ttt1 + . . . + ρN aNtttN)

...
aNttt⊤

N (ρ1a1ttt1 + . . . + ρN aNtttN)

 .

For i ̸= k, we thus have

∂uuui

∂aaak
= 1

ndata
aittt

⊤
i (ρktttk) = 1

ndata
aiρkttt⊤

i tttk.

Likewise, for i = k, we have

∂uuuk

∂aaak
= 1

ndata
akρkttt⊤

k tttk + 1
ndata

ttt⊤
k (ρ1a1ttt1 + . . . + ρN aNtttN).

Combining the above, we obtain ∂uuu
∂aaa , and hence (48) follows.

On the other hand, for i ̸= k, we have

∂uuui

∂bbbk
= 1

ndata
aittt

⊤
i ρkak

∂tttk

∂bbbk
= 1

ndata
aittt

⊤
i ρkaksssk,

and for i = k, we obtain

∂uuui

∂bbbk
= 1

ndata
ai

(
∂tttk

∂bbbk

)⊤

(ρ1a1ttt1 + . . . + ρN aNtttN)

+ 1
ndata

akttt⊤
k ρkak

∂tttk

∂bbbk

= 1
ndata

ai(sssk)⊤(ρ1a1ttt1 + . . . + ρN aNtttN)

+ 1
ndata

akttt⊤
k ρkaksssk.

Combining the above, we obtain ∂uuu
∂bbb , and hence (49) follows.

26

Published in Transactions on Machine Learning Research (12/2023)

Iteration#1 Iteration#1000 Iteration#5000

Figure 4: The evolution of the regularized risk F̂β versus iteration index k for the proposed ProxLearn.
Inset plots compare the ground truth (sinusoid) with the output from the network at three specific iterations.

Finally, noting that WWW i,j is in the ith row of TTT , for i ̸= k, we obtain

∂uuuk

∂WWW i,j
= 1

ndata
akttt⊤

k ρiai
∂ttti

∂WWW i,j
= 1

ndata
akttt⊤

k ρiai(sssi ⊙ xxxj),

where xxxj is the jth column of XXX. Likewise, for i = k, we get

∂uuuk

∂WWW i,j
= 1

ndata
ak

(
∂tttk

∂WWW i,j

)⊤

(ρ1a1ttt1 + . . . + ρN aNtttN)

+ 1
ndata

akttt⊤
k ρkak

∂tttk

∂WWW i,j

= 1
ndata

ak(sssi ⊙ xxxj)⊤(ρ1a1ttt1 + . . . + ρN aNtttN)

+ 1
ndata

akttt⊤
k ρkak(sssi ⊙ xxxj).

Combining the above, we obtain ∂uuu
∂WWW i,j

, thereby arriving at (50).

D Learning sinusoid

To better visualize the functionality of the proposed algorithm, we perform a synthetic case study of
learning a sinusoid following the set up as in (Novak et al., 2019, Sec. 2.1). We performed 5000 itera-
tions of ProxLearn with N = 1000 samples (no mini-batch) from the initial PDF ϱ0(θ ≡ (a, b, w)) =
Unif ([−1, 1]× [−1, 1]× [−1.5, 1.5]), and used algorithm parameters β = 0.3, h = 10−4, δ = 10−3, ε = 10−3,
L = 10. The evolution of the associated regularized risk functional and the learnt functions are shown in Fig.
4. Fig. 5 shows the function approximations learnt by our proposed algorithm at the end of 3200 iterations
for 20 randomized runs with the same initial PDF and parameters as reported here.

27

Published in Transactions on Machine Learning Research (12/2023)

Figure 5: Comparison of the ground truth (here sin(x)) with the learnt approximants obtained from the
proposed ProxLearn after 3200 iterations for 20 randomized runs. All randomized runs use the same initial
PDF and parameters as reported here.

Table 5: Comparing final F̂β for varying N

N Final F̂β

500 0.01241931
700 0.01075817
1000 0.00806645
2000 0.00762518

To illustrate the effect of finite N on the algorithm’s performance, we report the effect of varying N on the
final regularized risk value F̂β for a specific synthetic experiment. We observe that increasing N improves
the final regularized risk, as expected intuitively.

28

	Introduction
	Computational challenges
	Related works
	Contributions
	Notations and preliminaries
	Organization

	From empirical risk minimization to proximal mean field learning
	Empirical risk minimization
	Mean field limit
	Proximal mean field learning

	ProxLearn: proposed proximal algorithm
	Derivation of ProxLearn
	Convergence of ProxLearn
	Implementation of ProxLearn

	Case study: binary classification
	WDBC data set
	Numerical experiments
	Computational complexity
	Comparisons to existing results

	Case study: multi-class classification
	SHD data set
	Adaptations to ProxLearn for multi-class case
	Numerical experiments
	Updated computational complexity of ProxLearn

	Conclusions
	Summary
	Scope for future work

	Proof of Theorem 1
	Expressions involving the derivatives of v- .4
	Expressions involving the derivatives of u- .4
	Learning sinusoid

