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Abstract

Ocean science is of great significance1

given that oceans cover over 70% of our2

planet’s surface. Recently, advances in3

Large Language Models (LLMs) have4

transformed the paradigm in natural sci-5

ence. Despite the success in other do-6

mains, current LLMs often fall short7

in catering to the needs of domain ex-8

perts like oceanographers, and the po-9

tential of LLMs for ocean science is10

under-explored. The intrinsic reasons11

are the immense and intricate nature of12

ocean data as well as the necessity for13

higher granularity and richness in knowl-14

edge. To alleviate these issues, we in-15

troduce OCEANGPT, the first-ever large16

language model in the ocean domain,17

which is expert in various ocean science18

tasks. We also propose DOINSTRUCT, a19

novel framework to automatically obtain20

a large volume of ocean domain instruc-21

tion data, which generates instructions22

based on multi-agent collaboration. Ad-23

ditionally, we construct the first oceanog-24

raphy benchmark, OCEANBENCH, to25

evaluate the capabilities of LLMs in the26

ocean domain. Though comprehensive27

experiments, our OCEANGPT not only28

domontrates a higher level of knowledge29

expertise for oceans science tasks but also30

gains preliminary embodied intelligence31

capabilities in ocean technology.32

1 Introduction 33

How to lay a submarine cable in the Pacific Ocean?
Laying of Submarine Cable: 10-Step Procedure. The
actual steps vary depending on factors such as water
depth, geography, and specific project requirements. 1. 
Preparation  2.  Site Survey and Route Selection  3.
Environmental Impact Assessment  4.  Design and
Engineering Planning 5. Selection of …

What are the fishery resources in South China Sea?
The following species of commercial and recreational
importance can be found among ... south China sea: tuna,
mackerel sardines squid crabs shrimps lobsters oyster
shellfish pearls etc. In addition to these commercially ...

Why does the establishment of marine
standardization contribute to the development of
the marine industry?
The creation and implementation of maritime standards
can have numerous benefits for businesses in this field,
including increased safety at sea, better communication
between vessels, improved cargo handling procedures,
more efficient ship design, enhanced environmental
protection, reduced costs through streamlined operations,
enhanced global coordination among regulatory bodies,
promotion of best practices across the industry, facilitation
of international trade, assurance of compliance with
international laws and treaties, fostering innovation
through research and development incentives ....

OceanGPT

Figure 1: Capabilities of OCEANGPT. Our proposed
model not only shows a higher level of knowledge exper-
tise for oceans science tasks but also gains preliminary
embodied intelligence capabilities in ocean technology.

Ocean science, which delves into the intricacies 34

of oceans that cover over 70% of our planet’s sur- 35

face, is essential not only for understanding the rich 36

reservoirs of life and biodiversity but also for rec- 37

ognizing their pivotal role in regulating the global 38

climate and supporting economies [Esaias et al., 39

1998; Falkowski, 2012; Visbeck, 2018; Jin et al., 40

2023]. Recently, advances in Large Language Mod- 41

els (LLMs) [OpenAI, 2023; Jiang et al., 2023; Zha 42

et al., 2023; Yin et al., 2023; Zhao et al., 2023] have 43



transformed the paradigm in science domains such44

as medical science [Moor et al., 2023], molecular45

science [Fang et al., 2023], protein science [Lin et46

al., 2023] and geoscience [Deng et al., 2023]. How-47

ever, the potential for the large language model in48

ocean science is under-explored.49

Despite remarkable success in general domain,50

current LLMs still do not fully meet the specific de-51

mand of oceanographers. This inadequacy is pri-52

marily due to: (1) The immense volume and intri-53

cate nature of ocean data. As ocean science research54

progresses, acquiring data becomes increasingly55

challenging, which makes enhancing the oceanic56

understanding both a golden opportunity and a sig-57

nificant hurdle. (2) The necessity for higher granu-58

larity and richness in knowledge. Note that the data59

requirements faced by researchers are becoming in-60

creasingly intricate and diverse. Ocean science en-61

compasses various domains and subjects, each with62

its distinct data attributes and patterns.63

To alleviate these issues, we introduce64

OCEANGPT, the first-ever LLM in the ocean65

domain, which is expert in various ocean science66

tasks. Specifically, we propose DOINSTRUCT,67

an efficient ocean science instruction generation68

framework that capitalizes on multi-agent collab-69

oration. Each agent in our designed framework70

is considered as an expert in a specific domain71

(science and research, resources and development,72

ecology and environment etc.) and is responsible73

for generating the corresponding data. For the ad-74

vancement of ocean science research using LLMs,75

we also create a benchmark called OCEANBENCH76

to evaluate the capabilities in ocean science tasks.77

Through extensive experiments, OCEANGPT78

shows superiority for diverse ocean science tasks.79

Note that our benchmark data is based on criteria80

manually evaluated by ocean experts, and can accu-81

rately reflect the capabilities that LLMs possess in82

the field of ocean science. As depicted in Figure 1,83

our model can comprehensively answer questions84

according to the instructions of oceanographers,85

which demonstrates its expertise in oceanography.86

We further explore the potential of OCEANGPT87

from the perspectives of ocean engineering. Specif-88

ically, we integrate ocean robotics instructions into89

the training data and evaluate its ability via code or90

console commands. OCEANGPT not only demon-91

strates a higher level of knowledge expertise but92

also gains preliminary embodied intelligence capa-93

bilities in ocean technology. 94

Our contributions can be summarized as follows: 95

• We introduce OCEANGPT, the first ocean 96

LLM, which shows superiority for various 97

ocean science tasks. It can answer oceano- 98

graphic questions according to the instructions 99

of oceanographers, demonstrating expertise in 100

oceanography. 101

• We propose DOINSTRUCT, an automated do- 102

main instruction evolving framework that con- 103

structs the ocean instruction dataset by multi- 104

agent collaboration. Our framework effec- 105

tively alleviates the difficulty of obtaining 106

ocean domain data. 107

• Extensive experiments demonstrate the superi- 108

ority of OCEANGPT in the OCEANBENCH. 109

OCEANGPT not only demonstrates a higher 110

level of knowledge expertise for oceans sci- 111

ence tasks but also gains preliminary embodied 112

intelligence capabilities. 113

2 Related Work 114

Large Language Models. The landscape of LLM 115

[Brown et al., 2020; Chowdhery et al., 2022; 116

Touvron et al., 2023a,b] has rapidly evolved and 117

achieved a series breakthroughs. Rae et al. [2021]; 118

Zhang et al. [2022]; Thoppilan et al. [2022]; Scao et 119

al. [2022]; Zeng et al. [2023] have explored the per- 120

formance across a wide range of model scales and 121

broadened the application scope [Qiao et al., 2023a; 122

Zhang et al., 2023a; Qiao et al., 2023b; Wang et 123

al., 2023a; Xi et al., 2023]. Retrieval-Augmented 124

Generation (RAG) is a useful solution by incorpo- 125

rating knowledge from external databases [Gao et 126

al., 2023; Lewis et al., 2020; Schick et al., 2023; 127

Khandelwal et al., 2020]. To align LLMs, instruc- 128

tion tuning [Wei et al., 2022; Zhang et al., 2023b; 129

Ouyang et al., 2022; Taori et al., 2023; Wang et al., 130

2023d; Chiang et al., 2023; Xu et al., 2023] is a 131

crucial technique to alignment with user preferences 132

and desired outputs. Different from those, we train 133

a totally new ocean science large language model 134

and introduce an effective domain instruction gen- 135

eration framework via multi-agent collaboration. 136

Science Large Language Models. LLMs have 137

emerged as cornerstone models in addressing chal- 138

lenges within scientific research. Singhal et al. 139

[2022] explores the potential of clinical LLMs and 140



introduces a human evaluation framework and in-141

struction prompt tuning. Moor et al. [2023] pro-142

poses generalist medical AI that is capable of han-143

dling diverse medical tasks using self-supervised144

learning on large datasets. Kraljevic et al. [2021]145

introduces MedGPT, a model using EHR data and146

Named Entity Recognition tools for predicting fu-147

ture medical events. BioGPT [Luo et al., 2022]148

is a language model pre-trained on biomedical lit-149

erature for improved text generation and mining.150

Theodoris et al. [2023] describes Geneformer, a151

model pre-trained on single-cell transcriptomes for152

making predictions with limited data in network153

biology. Lin et al. [2023] demonstrates the pre-154

diction of atomic-level protein structure from pri-155

mary sequences using scaled-up language models.156

Deng et al. [2023] introduces the first LLM specif-157

ically designed for geoscience, including its train-158

ing and benchmarking protocols. Chen et al. [2023]159

presents tele-knowledge pre-training for fault anal-160

ysis. Different from previous works, we design the161

first large language model for ocean science tasks162

and explore its potential for ocean research.163

3 OCEANGPT164

To obtain OCEANGPT, we firstly construct the165

training corpus for ocean science and pre-train an166

ocean LLM based on LLaMA-2 Touvron et al.167

[2023b] in Section 3.1. Then we propose DOIN-168

STRUCT, an automated framework for domain in-169

struction generation to build an ocean domain-170

specific instruction dataset. Our framework lever-171

ages multi-agent collaboration and utilizes ocean172

literature to automatically generate a large volume173

of domain-specific instructions for ocean science174

tasks (Section 3.2). The overview training proce-175

dure of our OCEANGPT is shown in Figure 2.176

3.1 Pre-training Stage177

Ocean Corpus

Instruction
Data

Fine-tuning

Evaluation
OceanBenchPre-training

Data
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Domain Instruction 
Data Generation

OceanGPT

Figure 2: Overall framework of OCEANGPT.

To pre-train the foundation model for ocean sci-178

ence tasks, it is essential to construct the pre-179

training corpus specific to ocean science. Therefore, 180

we firstly collect a raw corpus of 67,633 documents 181

from open-access literature. For the specific vol- 182

umes we choose, we prefer to consider publications 183

from recent years to ensure the inclusion of the lat- 184

est research and developments. At the same time, 185

we select some historically significant literature to 186

help the LLM understand the developmental his- 187

tory of the field. For diversity, we choose articles 188

from different sources to ensure coverage of vari- 189

ous research perspectives and methods. Specif- 190

ically, we utilize the Python package pdfminer to 191

convert the content of literature files into plain text. 192

To ensure the quality and consistency of the data, 193

further processing of the collected dataset is neces- 194

sary. We apply regular expressions to filter out fig- 195

ures, tables, headers, footers, page numbers, URLs 196

and references. Additionally, any extra spaces, line 197

breaks, and other non-text characters are removed. 198

The processed documents cover various aspects of 199

ocean science such as ocean physics, ocean chem- 200

istry, ocean biology, geology, hydrology, etc. It is 201

important to note that special characters, emoticons, 202

and garbled characters are also replaced or elimi- 203

nated during this process. We also employ hash- 204

based methods to de-duplicate the data, which helps 205

reduce the risk of over-fitting during pre-training 206

and enhances its generalization capability. 207

3.2 Domain Instruction Data Generation 208

As ocean science research deepens, researchers are 209

facing increasingly complex and diversified data de- 210

mands. Ocean science corpus contains multiple 211

fields and topics, and each topic has its unique data 212

characteristics and patterns. To effectively simulate 213

and obtain those data, we propose a domain instruc- 214

tion generation framework DOINSTRUCT to obtain 215

ocean instructions H by multi-agent collaboration. 216

Each agent is considered as an expert in a specific 217

domain (topic) and is responsible for generating 218

the corresponding data. It not only ensures the pro- 219

fessionalism and accuracy of the data but also al- 220

lows for the parallel and efficient generation of a 221

large amount of data. Note that the proposed frame- 222

work also has greater flexibility, allowing us to in- 223

dependently optimize and adapt to different science 224

domains (e.g., astronomy). 225

Ocean Topic Definition. To provide researchers 226

with a clear and organized resources, we manually 227

categorize the data in ocean science into five major 228
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Figure 3: Procedure of our proposed DOINSTRUCT. We use agents (gpt-3.5-turbo) as experts for each ocean topic and
make them rapidly expand the instructions by collaboration. In this framework, we design three agent roles: evolving
generator, fine-tuned literature extractor and inspector with rule constraints.

ocean topics, which are based on the expertise of229

experts in oceanography. The definitions of these230

five topics comprehensively cover all the main ar-231

eas of ocean science and are relatively independent.232

The detailed explanation for the five major topics is233

described as follows:234

• Science and research focuses on the funda-235

mental scientific theories and research related236

to the ocean, such as ocean currents, sea tem-237

peratures and ocean biodiversity. This portion238

of data separately helps drive the advancement239

of pure scientific research and theories.240

• Resources and development includes fisheries,241

minerals, oil and gas, as well as other sustain-242

able development resources. It is set for a bet-243

ter examination and planning of the rational244

development of ocean resources.245

• Ecology and environment. Environmental pro-246

tection and ecological sustainability are cur-247

rently global hot topics. It helps to address is-248

sues such as ocean pollution, ecological degra-249

dation, and the impact of climate change on the250

oceans in a more focused manner. 251

• Technology and engineering encompasses as- 252

pects ranging from ocean measurements, ob- 253

servational equipment, and ship engineering 254

to ocean energy development. Such cat- 255

egorization aids in a more focused explo- 256

ration of ocean engineering and technological 257

needs, while also facilitating interdisciplinary 258

research with other engineering disciplines. 259

• Life, culture and others. The ocean is not only 260

a natural resource or a subject of scientific re- 261

search; it is also an integral part of culture 262

and lifestyle. This category consists of aspects 263

ranging from history and culture to the mutual 264

influences between the ocean and human soci- 265

etal activities, such as tourism, leisure. 266

While these five topics are distinct, there might be 267

some overlap as well. For instance, some issues re- 268

lated to ocean environmental protection might also 269

be associated with the technology of ocean engi- 270

neering. For the sake of convenience in data analy- 271

sis, in the actual construction of the dataset, we map 272



each sample to the most relevant category.273

Agents as Domain (Ocean) Experts. In Figure274

3, we use agents as domain experts for each ocean275

topic and make them rapidly expand the instructions276

by collaboration. We collect the seed instruction277

data and propose three strategies by using multiple278

agents acting as experts.279

To construct the seed dataset, we employ dozens280

of annotators with rich backgrounds in marine sci-281

ence. Each annotator is responsible for several top-282

ics and they first manually write some representa-283

tive example for each marine topic. Then we use284

LLMs to mimic the existing data to generate a large285

number of similar samples. All samples are ulti-286

mately manually checked by the annotators. The287

entire process is very time-consuming, with all the288

experts spending a total of four days to validate the289

seed data. The final seed instruction dataset in-290

cludes 5 major categories, over 500 sub-categories291

and a total of more than 10,000 data samples.292

• Evolving Agent as the Generator. We de-293

sign an evolving approach that selects samples294

from the seed dataset and simultaneously calls295

upon two agents (gpt-3.5-turbo) to evolve the296

selected samples. The evolution procedure in-297

cludes two aspects: (1) we enrich the content298

of the sample by having the agent automati-299

cally add relevant background knowledge to it;300

(2) we guide the agent to refine the sample by301

conducting a more in-depth analysis of specific302

concepts or entities. Through multiple rounds303

of iterative execution, our method can rapidly304

expand the existing seed dataset, which allows305

for the rapid expansion of both the breadth and306

depth of information.307

• Fine-Tuned Agent as the Literature Extrac-308

tor. As shown in Figure 3, we collect a309

smaller expert-annotated corpus and use the310

BM25 to retrieve high quality sentences in311

a larger ocean corpus. We regard the re-312

trieved texts as high-quality candidate samples.313

Meanwhile, we fine-tune gpt-3.5-turbo with314

the seed instruction dataset, regarding the fine-315

tuned agent as the literature extractor. In other316

words, it can automatically extract instructions317

(inst) from the unannotated ocean science cor-318

pus (output). Therefore, we utilize the agent319

to automatically build pairs of (inst, output) on320

external ocean science literature.321

Algorithm 1 Domain Instruction Data Generation
Require:
Seed dataset S with format (inst, output),
Ocean literature corpus O,
Pre-defined rules R for filtering
Ensure:
High-quality instruction dataset H

1: Initialize empty datasets.
Step1Data = ∅, Step2Data = ∅, H = ∅
{Agent Collaboration as Domain Experts.}

2: for each sample in S do
3: inst, output← sample
4: enriched sample← Enrich(inst, output)
5: refined sample← Refine(inst, output)
6: Step1Data ← Step1Data ∪

enriched sample ∪ refined sample
7: end for
8: { Fine-Tuned Agent as Literature Extractor.}
9: RetrievedTexts← BM25 Retrieve(O)

10: Model M ← FineTune(Sreverse)
11: for each document in RetrievedTexts do
12: output← document.content
13: inst←M(output)
14: Step2Data← Step2Data ∪ (inst, output)
15: end for
{ Agent as Inspector with Rule Constraints.}

16: MergedData ←
Inspector(Step1Data, Step2Data,R)
{ Quality Control by Debating.}

17: for each sample in MergedData do
18: inst, output← sample
19: debate result← Debate(inst, output)
20: if debate result is high-quality then
21: H ← H ∪ sample
22: end if
23: end for
24: return H

• Agent as the Inspector with Rule Constraints. 322

For the massively generated instructions, we 323

use the pre-defined rules as constraints and 324

perform filtering on the data. These rules 325

include syntactic and semantic constraints as 326

well as basic definitions in the ocean do- 327

main. We describe these rules using natural 328

language because many constraints and norms 329

related to ocean science cannot be directly 330

represented with expressions. Therefore, we 331

provide prompts to the gpt-3.5-turbo API as 332

demonstrations, letting it play the role of an in- 333

spector. Our method ensures that the generated 334



ocean instruction data is of higher quality. De-335

tailed prompt is shown in Table 5.336

Finally, we assign two extra gpt-3.5-turbo agents337

as roles to debate the quality of data and ob-338

tain high-quality instruction dataset. Our designed339

framework can rapidly constructing a ocean sci-340

ence dataset using multi-agents, and by incorpo-341

rating external knowledge from marine literature,342

it overcomes the limitations inherent to the agents343

themselves. Our framework can also be effec-344

tively applied to the instruction data construction345

in other scientific domains. It should be noted that346

we separately synthesize robot instructions to equip347

OCEANGPT with the capability to interact with the348

environment. The procedure is in Algorithm 1 and349

the statistics of dataset is in Figure 4.350

0 40,000
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Ecology and Environment

Resources and Development

Life, Culture and Others

Sample  numbers

Data-Seed Data-Evolving Data-Extracting

Figure 4: Statistics of our final instruction dataset. We use
DOINSTRUCT to expand more than 150,000 instructions
(data-evolving, data-extracting).

Quality Control for the Dateset. We ask domain351

experts to carefully review and check data to en-352

sure quality. Specifically, the human volunteers353

are first trained to make sure they have a compre-354

hensive understanding of the task. Then, we de-355

velop a platform that can help experts to randomly356

sample 10% instances from the generated instruc-357

tion dataset. Next, the trained domain experts are358

asked to validate if there are potential errors in the359

sampled instances. The final IAA (inter-annotator360

agreement) score for our dataset is 0.82, which sat-361

isfies the research purpose.362

4 Benchmarking Ocean Science Tasks363

We provide detailed explanations of the experimen-364

tal setup and the baseline models in Section 4.1. In365

Section 4.1, we construct an ocean-specific bench-366

mark OCEANBENCH to evaluate the capabilities of367

our OCEANGPT. We describe the automatic and368

human evaluation in Section 4.1.369

4.1 Implementation Details and Baselines 370

For the pre-training stage, we pre-train our 371

OCEANGPT based on the LLaMA-2 [Touvron et 372

al., 2023b] for seven days with six A800 Nvidia 373

GPUs. For the instruction-tuning stage, we em- 374

ploy the LoRA method [Hu et al., 2021] to fine- 375

tune the pre-trained model and choose three base- 376

line models for comparison. We use the chat ver- 377

sion of LLaMA-2 (Llama-2-7b-chat-hf ) , which 378

is a generative language model optimized for dia- 379

logue use cases. We also use Vicuna-1.5 [Chiang et 380

al., 2023], a chat model which fine-tunes LLaMA- 381

2 on dataset collected from ShareGPT. We further 382

use ChatGLM2-6B, the optimized version of GLM 383

[Zeng et al., 2023]. The detailed experimental set- 384

tings are shown in Table 2 (Appendix A). 385

OCEANBENCH. To evaluate the capabilities of 386

LLMs for oceanography tasks, we design a bench- 387

mark called OCEANBENCH. Our benchmark in- 388

cludes a total of 15 ocean-related tasks such as 389

question-answering, extraction, and description. 390

Our evaluation samples are automatically generated 391

from the seed dataset and have undergone dedupli- 392

cation 1 and manual verification by experts. 393

For the quality control, we further sample part of 394

data and ask domain experts to evaluate the quality 395

(those disagreed cases or bad cases will be manually 396

fixed by domain experts.). The distribution of our 397

desigend OCEANBENCH and the detailed statistics 398

can be found in Table 1 and Figure 11. 399

Task Num Task Num
Analysis 674 Classification 895
Judgment 655 Letter Writing 359
Open-ended Generation 930 Extraction 1,078
Recommendation 1,089 Description 1,246
Summary 149 Editing 1,075
Identification 464 Transformation 401
Question Answering 1,230 Others 157
Commonsense Reasoning 1,024

Table 1: The detailed statistics of OCEANBENCH.
Metrics. For the task-level calculation, we com- 400

pare the effectiveness of two models for each task. 401

When one model performs better on the majority of 402

test samples in a single task, it is considered to ’win’ 403

1We also perform deduplication between the bench-
mark and our training dataset to avoid the data leakage in
the training stage of OceanGPT. The detailed explanation
about the similarity calculating deduplication method is
in Appendix A.
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Figure 5: Ocean task-level results. Left: Automatic evaluation. Right: Human evaluation. Compared to baselines,
OCEANGPT performs better than llama2-chat-7b, vicuna-1.5-7b and chatglm2-6b in both two settings. The instance-
level result is in Figure 10 (Appendix A).

that task. For the instance-level computation pro-404

cess, we do not differentiate between specific tasks405

and instead calculate overall metrics.406

Automatic Evaluation. To evaluate the perfor-407

mance and reduce reliance on manual evaluation,408

we leverage GPT-4 as the evaluator. Inspired by409

Wang et al. [2023c,b], we utilize an effective cal-410

ibration method to evaluate the performance of two411

LLMs. For each testing question, we query the412

GPT4 to obtain the comparison result when given413

two outputs from two LLMs. We note that LLMs414

are sensitive to the position of responses, so allevi-415

ating the positional bias is very important. To bal-416

ance the position bias, we exchange the order of the417

responses to form the new prompt. The final evalu-418

ating result is the sum of the test results for the two419

prompts with their order swapped.420

Human Evaluation. To validate our proposed421

framework, we also collect the output data in dif-422

ferent settings and evaluate it by human evaluation.423

We employ 5 students with an ocean science back-424

ground as human annotators. For each evaluation425

setting, we sample a set of 200 examples and human426

annotators will rank the outputs they prefer. The to-427

tal expense is about 500 US dollars.428

5 Results429

5.1 Insights from Performance Results430

OCEANGPT can obtain better performance431

than previous open-sourced LLMs. In Figure432

5, we compare the performance of OCEANGPT433

with the three baseline models across 15 sub-tasks434

at the task-level in the ocean domain. We utilize435

both automatic and human evaluators, then com- 436

pute the win rate (%) with baseline models. Com- 437

pared to the baselines (llama2-chat-7b, vicuna-1.5- 438

7b, chatglm2-6b)2, OCEANGPT outperforms in 439

the majority of tasks, which demonstrates the effec- 440

tiveness of the proposed approach. 441

OCEANGPT excels in a range of ocean science 442

tasks. As shown in Figure 6, we present detailed 443

automatic evaluation experimental results in the 444

OCEANBENCH. It can be clearly seen that our 445

model is superior to baseline language models in 446

the vast majority of tasks. Note that previous open- 447

sourced LLMs even fail to handle several exper- 448

tise ocean tasks (e.g., Editing). While our designed 449

multi-agent data generation framework can effec- 450

tively act as experts in various subfields of the ocean 451

domain, which indicates that OCEANGPT is a bet- 452

ter expert in various ocean domains. 453

DOINSTRUCT are the effective ocean data gen- 454

erators by multi-agent collaboration. As shown 455

in Figure 7, we design three indicators to measure 456

the data generation effect of our proposed method 457

from the perspectives of knowledge quality, exper- 458

tise and diversity. We use manual evaluation to 459

calculate the scores of the three indicators from 1 to 460

5. The higher the score, the better the effect of the 461

testing model. It can be seen that the evolving gen- 462

erator agent can effectively enhance the richness of 463

ocean data. When the extraction agent is at work, 464

the expertise of the content is greatly improved. At 465

the same time, the inspector agent plays a signifi- 466

cant role in enhancing the quality of the generated 467

2We have trained OceanGPT-7B, thus we only com-
pare open-sourced LLMs around 7B.
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Figure 6: Evaluation results of OCEANGPT in the ocean science tasks in OCEANBENCH. The complete experimental
results are shown in Figure 12 (Appendix A).
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Figure 7: Performance analysis for different agents. We
design three indicators to measure the generation effect.

data. It shows that multi-agent collaboration is ef-468

fective for ocean instruction generation.469

5.2 Exploring the Potential of OceanGPT470

In this section, we explore the potential of471

OCEANGPT from the perspectives of ocean sci-472

ence and ocean engineering. For ocean science473

(Section 5.2), we focus on the key scientific is-474

sues of nuclear pollution in the ocean environ-475

ment. For ocean engineering (Section 5.2), we ex-476

plore the potential in robotics applications [Li et al.,477

2023]. Specifically, we use Gazebo 3 as the simu-478

lator [Manhães et al., 2016] to test OCEANGPT’s479

ability to control underwater robots.480

OceanGPT for Ocean Science481

In Figure 8, we compare the outputs of482

OCEANGPT and vicuna-1.5-7b. It shows483

3https://github.com/uuvsimulator/uuv simulator

that OCEANGPT shows a higher level of knowl- 484

edge expertise when describing the content of 485

radioactive nuclide research. Its textual content 486

is not only clear in structure and well-organized, 487

but also covers various aspects of radioactive 488

nuclide research, from experimental design to data 489

analysis, and then to risk assessment and disposal 490

guidelines. In contrast, although vicuna-1.5-7b 491

has clear expression and logicality, it lacks depth 492

and specific content related to radioactive nuclides. 493

Overall, OCEANGPT has advantages in terms of 494

knowledge expertise, quality, and richness. The 495

complete outputs are shown in the Table 6. 496

OceanGPT for Ocean Engineering 497

Ocean engineering focuses on the design, develop- 498

ment, and management of structures and systems 499

within the ocean environment. It plays an indis- 500

pensable role in harnessing the vast potential of the 501

oceans while ensuring sustainable and secure mar- 502

itime operations. To facilitate interaction between 503

OCEANGPT and the external world, we synthesize 504

robotic code data and integrate those machine code 505

instructions into the training data. 506

As depicted in Figure 9, OCEANGPT can in- 507

struct underwater robots via code or console com- 508

mands, allowing them to execute basic path-finding 509

operations. In this example, by using programming 510

language as a prompt, our OCEANGPT can auto- 511

matically generate code (the robot generate a double 512

helix path) for underwater robot to operate complex 513

tasks (based on human instructions). In fact, the ex- 514

https://github.com/uuvsimulator/uuv_simulator


Conducting research on interfacial chemistry and toxicological effects of key
radioactive nuclides requires a multidisciplinary approach, combining expertise in
chemistry, physics, biology, and environmental science. Here are some general
steps you can follow to conduct research in this area:
1.  Identify the key radioactive nuclides of interest… 2.  Develop a research
question… 3. Design experiments: Develop a set of experiments that will help you
answer your research question. This may involve conducting laboratory
experiments, field studies, or both. Be sure to choose experiments that are
appropriate for your research question and that use methods that are reliable and
valid. 4. Collect and analyze data… 5. Interpret results and draw conclusions: Use
your data to draw conclusions about the interfacial chemistry and toxicological
effects of the key radioactive nuclides. Be sure to consider any limitations of your
study and to consider how your findings may be generalized to other contexts.
6. Communicate your results: Finally, share your findings with others through
publication in academic journals, presentations at conferences, and other means.
Be sure to clearly communicate the importance of your work and its implications...

The study of interfacial chemistry and toxicological effects of key radioactive
nuclides is a complex research field that requires a multidisciplinary approach. It
involves multiple techniques such as experimental research, theoretical research,
and numerical simulations. The following is a detailed outline of the steps to
conduct research on the interface chemistry and toxicological effects of key
radioactive nuclides:
1. Determine the specific radioactive nuclides of interest …2. Conduct laboratory
experiments … 3. Develop computational models: Computational models can be
used to simulate the chemical and toxicological effects of radioactive nuclides. ... 
4.Analyze experimental data…5.Develop toxicological risk assessment methods:
Toxicological risk assessment methods are used to evaluate the potential
hazards of radioactive nuclides. This involves developing models that can predict
the toxicological effects of radioactive nuclides and assessing their risks to
human health. 6. Conduct field experiments: ...7. Develop guidelines for safe
disposal: Safe disposal of radioactive nuclides is critical for preventing
environmental contamination and protecting human health. This involves...

OceanGPT Vicuna-7b-1.5

Figure 8: Case analysis on ocean science task. We use blue font to represent the difference and the instruction is: How
to conduct research on interfacial chemistry and toxicological effects of key radioactive nuclides?

Target Object

𝒗

Start Point `roslaunch uuv_control_utils 
start_helical_trajectory.launch 
uuv_name:=rexrov n_turns:=2`

Command for Robot

OceanGPT

Figure 9: Our model can be instructed for underwater robot control in the simulation platform of Gazebo which shows
OCEANGPT gains preliminary embodied intelligence capabilities.

perimental result suggests that OCEANGPT has the515

potential to acquire embodied intelligence. Though516

we make preliminary attempts for ocean robot inter-517

action, it paves the way for advanced oceanic mod-518

els to undertake intricate robotic control and com-519

plex planning tasks.520

6 Conclusion521

In this paper, we introduce OCEANGPT, the first-522

ever oceanographic pre-trained language model,523

which is expert in various ocean science tasks. To524

alleviate the difficulties for obtaining ocean data, we525

propose an domain construction framework called526

DOINSTRUCT, which constructs the ocean instruc-527

tion dataset by multi-agent collaboration. Each528

agent in our designed framework is considered as 529

an expert in a specific topic and is responsible for 530

generating the corresponding data. Our generated 531

dataset consists of diverse instructions to align the 532

desired behaviors in ocean science issues. Addi- 533

tionally, we establish the first oceanography bench- 534

mark, OCEANBENCH, to evaluate the capabilities 535

of LLMs in ocean domain. Though comprehensive 536

analysis, we observe that OCEANGPT not only 537

demonstrates a higher level of knowledge expertise 538

for oceans science tasks but also gains preliminary 539

embodied intelligence capabilities in ocean engi- 540

neering. We will continue to improve OCEANGPT 541

by training on larger corpus with larger models 542

(e.g., 30B, 70B) and maintain OCEANBENCH by 543

adding new data and tasks. 544



Limitations545

Bias in Data Distribution In the realm of LLMs,546

the distribution of pre-training data and instruction547

data can be subject to substantial biases, which can548

shape the outputs of these models. Pre-training data549

for LLMs often comes from the internet, a vast and550

potentially biased source of information. The Inter-551

net content is inherently skewed, reflecting the bi-552

ases of its contributors, and hence may not represent553

a balanced global perspective. Similarly, instruction554

data can also carry the biases of the humans who555

create these instructions. For instance, instruction556

developed by individuals with a particular cultural,557

socioeconomic, or educational background may in-558

advertently favor specific perspectives, languages,559

or communication styles and marginalize others.560

This bias in data distribution can result in models561

that reinforce existing prejudices, lack cultural sen-562

sitivity, or fail to accurately understand and generate563

content in underrepresented languages or dialects.564

Hallucination in LLMs Although LLMs have565

shown tremendous success in general domains of566

NLP, there is a notable issue regarding their ten-567

dency to produce hallucinations. Hallucinations re-568

fer to instances where LLMs occasionally generate569

content that deviates from the user’s input, contra-570

dicts previously generated context, or conflicts with571

established world knowledge. By developing strate-572

gies to address the issue of hallucination, LLMs can573

better align their outputs with user intent, preserve574

coherence within generated content, and enhance575

their overall utility in real-world applications.576
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A Appendix993

Hyperparameter Setting
Fine-tuning method LoRA
Batch Size 512
Device† NVIDIA A800
GPU number 6
Learning Rate (LR) 1e− 4
LoRA r 8
LoRA α 16
LoRA Dropout 0.05
Epoch 10

Table 2: Detailed experimental settings.

The Cost for Fine-tuning GPT-3.5-Turbo994

For fine-tuning GPT-3.5-turbo, we use the refer-995

ence code provided by OpenAI to fine-tune their996

language model. Overall, during the actual debug-997

ging process, we train and test the model multiple998

times, spending a total of nearly 500 US dollars999

(with the number of high-quality training samples1000

being around 2000). Each time we run the script to1001

train the model, it takes several hours.1002

The training cost is 0.008 USD per 1K tokens, the1003

input cost during use is 0.012 USD per 1K tokens,1004

and the output cost is 0.016 USD per 1K tokens.1005

Assuming our prompt’s input and output for one1006

conversation is 1000 tokens, and if we have 20001007

training samples with actual testing on 10000 sam-1008

ples, our training cost would be approximately 16.81009

USD. The usage cost of the model after fine-tuning1010

is about 138.0 USD, making the total cost around1011

154.8 USD. Since we debugged multiple times in1012

the actual process, the real expenditure is greater.1013

Overall, the overall training cost is not high and is1014

affordable.1015

Comparison between Our Fine-tuning1016

Method and the Prefix Prompts1017

In the paper, we define 5 marine science topics,1018

but this is a very broad categorization. In real-1019

ity, each major topic contains many subtopics. For1020

example, the topic ’Ecology and Environment’ in-1021

cludes subtopics like marine meteorology, marine1022

pollution, and over a dozen others. Altogether,1023

these subtopics amount to over 500. Each of these1024

subtopics is relatively independent and very im- 1025

portant. Concatenating them as a prefix to GPT- 1026

3.5-turbo would exceed its maximum length limit 1027

and the actual usage cost would also be signifi- 1028

cant. Therefore, we believe that fine-tuning GPT- 1029

3.5-turbo is a better choice. The prompt examples 1030

are shown in Table 3 and Table 4. 1031

The Similarity Calculating Method in 1032

the Deduplication Procedure 1033

Because comparing pairs for similarity involves a 1034

significant number of calculations, we choose a sim- 1035

ple and effective method to address this challenge. 1036

We primarily use hash detection to compare two 1037

samples. First, we pre-extract keywords from the 1038

question part of each sample and then combine them 1039

into a new string. For example, the keywords for 1040

a data sample might be ’advice’, ’ocean’, and ’nu- 1041

clear leakage’. We then employ hash detection to 1042

compare the keywords of the two samples. This 1043

method can relatively accurately prevent data leak- 1044

age during the training process. It’s important to 1045

note that sometimes the extraction of keywords can 1046

lead to redundancy or repetition, so we sometimes 1047

process them multiple times. Additionally, we also 1048

randomly select some samples and use the GPT-3.5- 1049

turbo API for detection to check for any cases of 1050

incomplete processing. 1051

Additionally, regarding the deduplication process 1052

between the benchmark and our training dataset, 1053

we remove only a hundred or two hundred samples 1054

from the training set in the actual experiment, which 1055

is not a large number. 1056

Instruction: You are a helpful ocean assistant. You are
to extract the question from the provided content.
Input: Raw sentences in the marine literature (The in-
struction prompt will be concatenated with raw sen-
tences about seawater resources ).

Output:
Answer: Existing methods of seawater resource ex-
ploitation have many problems, such as causing soil
erosion and environmental pollution. Therefore, we
need to seek more sustainable development methods,
including water conservation, wastewater recycling,
and the development of new water resources.
Question: Please discuss your views on the current
methods of developing seawater resources.

Table 3: The prompt for fine-tuning GPT-3.5-turbo.
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Figure 10: Instance-level results (automatic evaluation)

Figure 11: Distribution of our OCEANBENCH.



Instruction:
You are a helpful ocean assistant. You are to extract the question from the provided content.
Input:
Raw sentences in the marine literature (The instruction prompt will be concatenated with raw
sentences about seawater resources ).

The demonstration and answer pairs:
I will first give you some typical examples to help you become a marine expert.
Demonstration 1: ... Answer 1: ...
Demonstration 2: ... Answer 2: ...
Demonstration 3: ... Answer 3: ...
Demonstration 4: ... Answer 4: ...
...
(The demonstration and answer pairs for each marine subtopics. over 500 sub-categories. Each
sub-categories has different task types )

Output:
Answer: ... Question: ...
(Concatenating them as a prefix to GPT-3.5-turbo would exceed its maximum length limit and
the actual usage cost is significant )

Table 4: The prefix prompt to GPT-3.5-turbo.
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Figure 12: Automatic evaluation results of OCEANGPT in all tasks in OCEANBENCH.



Prompt for ”Fine-Tuned Agent as the Literature Extractor”:
You are a helpful ocean assistant. You are to extract the question from each of the
answer provided.
Answer: This is a seahorse, belonging to the family Syngnathidae. Seahorses are
vertebrates commonly found in tropical and subtropical waters. They have unique
morphology and biological characteristics and are important organisms in marine
ecosystems.

Prompt for ”Evolving Agent as the Generator”:
Assuming you are an expert in marine engineering and resources, please keep the
meaning of the following sentences unchanged and provide as much professional
knowledge as possible.
Sentences:Please recommend some mineral resources found in the East China Sea.

Prompt for “Agent as the Inspector with Rule Constraints”:
Assuming you are an inspector in marine science, please filter and judge the sentences
in ’Sentences’ based on the constraints provided below:
Constraints: Keyword Filter: Focus on literature that prominently mentions the
terms ’coral reefs’, ’ocean acidification’, or ’deep-sea exploration’. Date Range:
Only consider articles published between 2010 and 2022. Author Filter: Prioritize
works by the Oceanic Research Institute. Type of Literature: Specifically look
for ’experimental studies’ and ’review articles’. Exclude ’conference papers’.
Geographical Focus: Highlight research that pertains to the Pacific Ocean region.
Language Constraint: Only select literature written in English. Abstract Inclusion:
Ensure the abstract contains the phrase ’climate impact’. Abstract Exclusion:
Exclude any literature whose abstract mentions ’laboratory simulation’.

Prompt for automatic evaluation using GPT4:
Please check if following sentences contain rich ocean related information. If so,
output "related". Otherwise, output "unrelated".
Sentences: Dissolved organic carbon (DOC) represents the largest pool of reduced
carbon in oceans and plays important roles in the ocean carbon cycle and food webs .
DOC comprises nearly half of the riverine organic carbon flux into oceans. Riverine
DOC is involved in numerous ecosystem functions, including key roles in chemical and
biological processes. Refractory and labile DOC are, respectively, important for
carbon sequestra-tion in the ocean and a vital food source for marine bacteria.

Table 5: The prompt example that we use in this work.



Instruction: How to conduct research on interfacial chemistry and toxicological effects of key radioactive nuclides?

OCEANGPT The study of interfacial chemistry and toxicological effects of key radioactive
nuclides is a complex research field that requires a multidisciplinary approach. It
involves multiple techniques such as experimental research, theoretical research,
and numerical simulations. The following is a detailed outline of the steps
to conduct research on the interface chemistry and toxicological effects of
key radioactive nuclides: 1. Determine the specific radioactive nuclides of
interest: Different radioactive nuclides have different chemical properties and
toxicological effects. Therefore, it is necessary to select specific radioactive
nuclides of interest and establish a research plan. 2. Conduct laboratory
experiments: Laboratory experiments are crucial for studying the chemical
properties and toxicological effects of radioactive nuclides. The experiments
involve measuring the chemical properties of radioactive nuclides, such as their
reactivity, stability, and chemical reactivity. 3. Develop computational models:
Computational models can be used to simulate the chemical and toxicological
effects of radioactive nuclides. This involves developing mathematical models
and algorithms to predict the behavior of radioactive nuclides under different
conditions. 4. Analyze experimental data: Experimental data obtained from
laboratory experiments need to be analyzed and interpreted. This involves studying
the experimental results and comparing them with theoretical predictions. 5.
Develop toxicological risk assessment methods: Toxicological risk assessment
methods are used to evaluate the potential hazards of radioactive nuclides.
This involves developing models that can predict the toxicological effects of
radioactive nuclides and assessing their risks to human health. 6. Conduct field
experiments: Field experiments are necessary to study the behavior of radioactive
nuclides in real-world environments. This involves measuring the chemical and
toxicological effects of radioactive nuclides in different ecosystems and studying
their distribution and transport. 7. Develop guidelines for safe disposal:
Safe disposal of radioactive nuclides is critical for preventing environmental
contamination and protecting human health. This involves developing guidelines for
the safe disposal of radioactive nuclides and their storage and transport.

vicuna-1.5-7b Conducting research on interfacial chemistry and toxicological effects of key
radioactive nuclides requires a multidisciplinary approach, combining expertise in
chemistry, physics, biology, and environmental science. Here are some general steps
you can follow to conduct research in this area: 1. Identify the key radioactive
nuclides of interest: Start by identifying the specific radioactive nuclides that
you want to study. This may include elements such as uranium, plutonium, and
cesium, among others. 2. Develop a research question: Once you have identified
the key radioactive nuclides, develop a research question that addresses an
important aspect of their interfacial chemistry and toxicological effects. This
question should be specific and focused, and should guide your research efforts.
3. Design experiments: Develop a set of experiments that will help you answer
your research question. This may involve conducting laboratory experiments, field
studies, or both. Be sure to choose experiments that are appropriate for your
research question and that use methods that are reliable and valid. 4. Collect
and analyze data: Once you have conducted your experiments, collect and analyze the
data you have generated. Be sure to carefully document your methods and results,
and to interpret your data in a clear and concise manner. 5. Interpret results and
draw conclusions: Use your data to draw conclusions about the interfacial chemistry
and toxicological effects of the key radioactive nuclides. Be sure to consider any
limitations of your study and to consider how your findings may be generalized to
other contexts. 6.Communicate your results: Finally, share your findings with
others through publication in academic journals, presentations at conferences, and
other means. Be sure to clearly communicate the importance of your work and its
implications for interfacial chemistry and toxicology.

Table 6: Detailed case analysis on ocean science task. The input prompt is How to conduct research on
interfacial chemistry and toxicological effects of key radioactive nuclides?



Task Type Example

Analysis Input: Analyze the impact of marine environmental dynamics processes on the wave environment. Output: The dynamic
processes of the oceanic environment have a significant influence on the wave conditions, such as the temperature of
seawater, salinity, and ocean current affecting the height and frequency of waves. Meanwhile, the wave conditions can
further impact the dynamics of ocean current and tides.

Classification Input: Classify the ships in the East China Sea according to their type. Output: Ships in the East China Sea can be
classified into categories such as merchant ships, fishing vessels, passenger ships, and warships, etc. Merchant ships are
primarily used for cargo transport, fishing vessels for fishery resources, passenger ships for tourism and personnel transport,
and warships for maritime security and defense. These diverse types of vessels are frequently active in the waters of the
East China Sea.

Commonsense Reasoning Input: Why are fish resources in the East China Sea gradually decreasing? Output: Fish resources in the East China
Sea are gradually decreasing, mainly due to the impact of factors such as overfishing and environmental pollution. With
the increase in population and economic development, fishing activities have been continuously strengthened, resulting in
over-exploitation of fish resources. In addition, marine environmental pollution also has adverse effects on the survival and
reproduction of fish resources. Therefore, protecting the marine environment and rationally developing fishing resources
are key to ensuring the sustainable development of fish resources in the East China Sea.

Description Input: Describe the classification and distribution areas of coral reefs. Output: Coral reefs are calcareous submarine
structures formed by coral entities and their attachments. According to their crescent characteristics, they can be cate-
gorized into large ring coral reefs, small ring coral reefs, crisscross serrated coral reefs, irregular shaped coral reefs, etc.
Approximately 70% of the world’s coral reefs are distributed in tropical and subtropical sea areas, with the most important
distribution areas being the western Indian Ocean, western Pacific Ocean, and eastern Pacific Ocean.

Editing Input: Edit a big data report used for analyzing marine ecosystems. Output: Important parameters that can be tracked in
marine ecosystems include water temperature, salinity, direction of waves, quantity and species of plankton, rate of ocean
acidification, etc. In marine big data analysis, we use these data to train machine learning algorithms to understand the
changes in the marine ecosystem, forecast potential environmental changes, etc. By utilizing these critical parameters, we
can perceive the panorama and pattern of the marine ecosystem and extract valuable information from it to support adaptive
and sustainable management practices in the ocean.

Extraction Input: Extract the definition of the greenhouse effect and its causes. Output: The greenhouse effect refers to a ẗhermal
blanketf̈ormed by the absorption and reflection of solar heat radiation by greenhouse gases (such as carbon dioxide,
methane, fluorocarbons, etc.) in the atmosphere, thereby raising the surface temperature of the earth. The sources of
greenhouse gases include human activities, natural gases, deforestation, etc., which leads to an intensification of the green-
house effect and global warming.

Judgment Input: Is active intervention suitable for maintaining the coral reef ecosystem? Output: Active intervention can protect
coral reef ecosystems, such as through artificial restoration, controlling sea water pollution, controlling carbon emissions,
and reasonable development of coral reefs. Therefore, the coral reef ecosystem is suitable for active intervention and
maintenance.

Letter Writing Input: Write a letter to the local environmental protection agency about the waste discharge and pollution recently dis-
covered in the sea area, proposing solutions. Output: Dear xx Environment Bureau: Recently, we have discovered a large
amount of waste emission and pollution in the sea area, which has caused serious damage to our marine environment.
We suggest that you take a series of measures to strengthen the monitoring and management of pollution sources in the
sea area, punish illegal emissions in accordance with the law, and educate illegal polluting enterprises to enhance their
environmental protection awareness. We hope that you can take action to effectively protect our marine environment.

Open-ended Generation Input: Briefly introduce the principle and method of wave energy generation. Output: The principle of wave power
generation is to convert wave energy into mechanical energy, and then turn the mechanical energy into electrical energy
through a generator. The methods of wave power generation include: floating system, wave influx system, wave reflux
system, and wave pressure system.

Question Answering Input: What is three-dimensional digital ocean modeling technology? Output: Three-dimensional marine digital mod-
eling technology involves the use of advanced remote sensing, lidar, sonar, and other detection technologies to acquire
surface and subsurface oceanographic topographic data. Through digital modeling methods, a three-dimensional mathe-
matical model of the ocean can be constructed. This type of model can provide information on topography, ocean currents,
hydrology and acoustics, which is beneficial for applications in ocean resource development, environmental protection,
and management, among others.

Recognition Input: Identify the following sea fish species: sea bream, codfish, saury, and shark. Output: Dorada is a common type
of sea fish, laterally compressed in form with a big mouth, and is known for its delicious meat. Cod is also a common sea
fish, slender in shape with a soft hanging lower jaw, and is also a delicacy. Saury is a type of fish that enters ports from
summer to autumn and can be made into a variety of dishes. Sharks are carnivorous marine animals with many species,
some of which are primarily used as food, while others may attack humans.

Recommendation Input: Recommend a desalination method suitable for deep-sea water resource development Output: The development
of deep-sea water resources is suitable for the adoption of low-temperature seawater desalination technology, which uses
cooling water to lower the seawater temperature below the ambient temperature, condensing out fresh water. Compared to
traditional seawater desalination technology, low-temperature seawater desalination can conserve energy and reduce costs,
while the resulting brine is also more concentrated.

Summary Input: Provide a summary of the current status and future development prospects of offshore wind power generation
technology. Output: Ocean wind power generation technology is one of the hot technologies in the field of renewable
energy, its power generation efficiency is becoming increasingly high, equipment is becoming increasingly advanced, and
the costs are gradually decreasing. It has a broad development prospect and can inject new development momentum into
China’s marine economy.

Transformation Input: How to transform marine plants into green products? Output: The conversion process of marine plants can
be divided into initial collection and extraction of effective parts, followed by processing to obtain the final product.
Among them, extraction and processing are critical steps, and they vary for different marine plants. Common processing
methods include alkali extraction, acid extraction, and enzyme extraction. The resulting green products also vary, such as
chlorophyll, peptide substances, polysaccharide substances, etc.

Table 7: Examples for tasks in OCEANBENCH.
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