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Abstract

Modern classifiers, especially neural networks,
excel at leveraging faint and subtle signals com-
peting with many other signals in the data.
When such potentially noisy setups lead to high
accuracy rates (e.g., 90%+), it produces con-
cerns about the authenticity of the results, rais-
ing questions about potential spurious corre-
lations — a phenomenon often referred to as
"Clever Hans". We explore this phenomenon
in the context of translationese classification,
where previous work has found indirect and
episodic evidence that a high-performance
BERT classifier learns to use spurious topic in-
formation rather than just translationese signals.
In this paper, we first use probing to provide
direct evidence that high-performance transla-
tionese classifiers pick up unknown potentially
spurious topic correlations. We then introduce
adversarial training as a strategy to mitigate
any such potentially spurious topic correlations,
where previous work was only able to mitigate
specific known (episodic) Clever Hans. We
demonstrate the effectiveness of our approach
on translationese classification tasks on two
translation pairs.

1 Introduction

"Translationese" describes the systematic linguis-
tic differences between originally authored, non-
translated texts in a given language, and texts trans-
lated into the same language, in the same genre and
style (Gellerstam, 1986). Translationese effects can
be manifested at all levels of linguistic representa-
tion including vocabulary, syntax, semantics, and
discourse. Five factors have been identified in the
literature as the primary causes of translationese:
source language interference, over-adherence to
target language norms, explicitation, implicitation,
and simplification (Toury, 1980; Baker et al., 1993;
Teich, 2012; Volansky et al., 2013).

In this paper, we focus on translationese classi-
fication, which refers to classifying text in a given

language as Original (O) or Translated (T). Transla-
tionese signals can be very subtle, often competing
with many other signals in the data including genre,
style, topic, author, bias, and so on.

Current methods for translationese classification
are mostly based on representation learning neural
networks and large language models (Sominsky
and Wintner, 2019; Pylypenko et al., 2021). These
models perform exceedingly well on the task: Py-
lypenko et al. (2021) show that BERT-based ap-
proaches (Devlin et al., 2019) perform much better
than traditional manual feature engineering-based
classification models (e.g. SVMs) by as much as
15-20 accuracy points. Amponsah-Kaakyire et al.
(2022) show that the differences between these
methods are due to learned features rather than
classifier differences.

Using Integrated Gradients (Sundararajan et al.,
2017), (Amponsah-Kaakyire et al., 2022) also
found that BERT uses some spurious topic-based
correlations as short-cuts for translationese classifi-
cation instead of only proper translationese signals:
showing evidence of "Clever Hans" (Herndndez-
Orallo, 2019; Lapuschkin et al., 2019). Using a
subset of the MPDE dataset (Amponsah-Kaakyire
et al., 2021), containing half German original sen-
tences, and half translations from Spanish to Ger-
man, (Amponsah-Kaakyire et al., 2022) show that
some of the top tokens BERT uses for O/T clas-
sification are geographical place names: German-
based place names for O and Spanish-based place
names for T. These are clearly topic and not trans-
lationese signals.

Recently, (Borah et al., 2023) presented an ap-
proach to quantify and mitigate the impact of
“Clever Hans” in translationese classification. They
focus on quantifying potentially spurious but un-
known topic information in the data aligned with
O/T target labels and, using unsupervised topic
modeling techniques like LDA (Blei et al., 2001)
and Bertopic (Grootendorst, 2022), present the



topic floor, average weighted alignment of doc-
uments in topics with target classification labels, as
a worst-case upper bound to which a classifier may
exploit spurious topic information aligned with O/T
target labels. The topic floor provides a spurious
topic information-based baseline for classification
models. (Borah et al., 2023) also mitigated known
topic signals in the form of location-named enti-
ties (NEs) (Amponsah-Kaakyire et al., 2021) by
masking NEs in the training and test data.

However, (Borah et al., 2023) provided only in-
direct evidence that BERT uses topic signals in O/T
classification by showing that in principle a BERT
classifier can learn LDA/Bertopic clusters as tar-
get labels and that masking known spurious topics
such as location and other NEs in the data reduces
O/T classification accuracy. Showing that if told
to do so, BERT can learn topics is not the same
as showing that a BERT O/T classifier is learning
and using spurious topics as information in O/T
classification all by itself. Furthermore, masking
NEs in data changes the data (compared to the data
without masking) and this may be the reason for re-
duced classification accuracy. In sum, even though
it is likely that it does, evidence that BERT uses
Clever Hans in the form of spurious topic informa-
tion in O/T classification provided in (Borah et al.,
2023) is only indirect and at best episodic for place
NEs. In addition, (Borah et al., 2023) only address
known spurious topic mitigation (geographic place
and other NEs), even though spurious topics may
be manifest in lexical, morpho-syntactic, and se-
mantic information, and, more importantly, many
more of the (unknown) topics established by LDA
or BERTtopic (over and above geographic place
NEs) may carry spurious information with respect
to the O/T target label classification.

Two important questions regarding "Clever
Hans" in translationese classification remain unan-
swered. First, there is no direct evidence that spuri-
ous topic signals in translationese data are actually
learned and used by the target label O/T classifiers.
It is not clear whether the Clever Hans spurious
"topic floor" posited by (Borah et al., 2023) is real
in the sense that it is learned and used by the O/T
classifiers. How can we obtain direct evidence for
this? Second, how can we leverage unsupervised
topic information from LDA/BERTopic clusters to
mitigate the impact of all potentially spurious un-
known topic correlations with the desired target
label classification, beyond the potentially prob-
lematic and limited scope masking of specific NEs

for known spurious topic information in the data?
Resolving this will help mitigate "Clever Hans" in
translationese classification.

In this paper, we address the two questions us-
ing probing for the first and adversarial training
for the second. We probe BERT’s encoder layers
to test whether a high-performance BERT-based
O/T classifier can identify any potentially spurious
topic correlations with target classifications cap-
tured by LDA. We compare three BERTSs - one
fine-tuned on the MPDE translationese data with
O/T labels as a translationese classifier, another
fine-tuned on the same data but without O/T labels
as a simple masked language model (MLM, and
not a classifier), and an off-the-shelf BERT model
not fine-tuned on any further data. The logic is
that if BERT O/T classifiers learn and use spuri-
ous LDA topic correlations with O/T target labels,
then probing BERT O/T classifiers for LDA top-
ics should yield higher accuracy/F1 than an MLM
BERT and an off-the-shelf BERT. If this is ob-
served, this constitutes direct evidence that a BERT
O/T classifier learns and uses spurious unknown
topic information and that the "topic floor" pro-
posed by (Borah et al., 2023) is real. If not, then
it is unclear whether the classifier learns and uses
spurious unknown topic information and this raises
doubts about the "topic floor". For our second
research question of extending Clever Hans miti-
gation beyond known spurious correlations (such
as location NEs), we utilize adversarial training to
suppress LDA-based potentially spurious unknown
topic signals in translationese classification. If this
is successful, we should see adversarially-trained
O/T classifiers with high O/T prediction accuracy
and low LDA topic probing results. Additionally,
adversarially-trained classifiers should generalize
better to test data that differs in various ways from
what the classifier has seen in training.

Our contributions include:

1. We use probing to directly show that a BERT
O/T classifier learns and uses spurious topic
correlations in the data as represented by LDA
topics with the classification targets.

2. To the best of our knowledge, we are the first
to show that adversarial training mitigates un-
known Clever Hans signals across the board in
the form of LDA topics while ensuring strong
O/T classification performance.

3. We show that mitigating spurious topic-target



O/T label correlations using adversarial train-
ing leads to O/T classifiers with substantially
improved generalization (robustness) to test
data that differs markedly from training data
of the classifiers.

4. We present empirical results for Clever Hans
mitigation in translationese classification for
two different language pair settings from
(Amponsah-Kaakyire et al., 2021): de-es (half
German originals and half Spanish-German
translations), and de-en (half German orig-
inals and English-German translations), ex-
tending previous work on de-es only (Borah
et al., 2023).

5. We use Integrated Gradients (IG) based Ex-
plainable Al to compute the top tokens adver-
sarial BERT uses for translationese classifica-
tion, and show that topic reliance is mitigated.

Translationese classification is a prototypical in-
stance of classification using weak signals compet-
ing with many other signals in the data. We expect
our contributions to be useful in many similar clas-
sification scenarios where the possibility of Clever
Hans spurious correlations is at stake. !

2 Related Work

2.1 Clever Hans and Translationese
Classification

Previous work on identifying Clever Hans in
machine learning models includes (Lapuschkin
etal., 2019), who introduced Layer-wise Relevance
(LRA) to unmask Clever Hans behavior and under-
stand what machines can learn. (Hernandez-Orallo,
2019) presented limitations of LRA and issues with
evaluating the performance of explainability meth-
ods. Unmasking and mitigating Clever Hans is
an active area of research in explainable Al (XAI)
(Mohseni et al., 2021) but to date rarely addressed
in NLP (Heinzerling, 2020; Niven and Kao, 2019;
McCoy et al., 2019).

Early efforts in translationese classification fo-
cused on exploring hand-crafted, linguistically in-
spired features, manual feature engineering and
classical supervised machine learning classifiers
like Support Vector Machines (SVMs) and De-
cision Trees etc. (Ilisei et al., 2010; Baroni and
Bernardini, 2005; Volansky et al., 2013; Rubino
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et al., 2016; Avner et al., 2016). (Rabinovich and
Wintner, 2015) present an unsupervised clustering-
based approach.

More recent research uses feature and represen-
tation learning approaches (sometimes augmented
with hand-crafted features) based on neural net-
works (Sominsky and Wintner, 2019; Pylypenko
etal.,2021). (Pylypenko et al., 2021) show that rep-
resentation learning-based approaches like BERT
perform much better than handcrafted and fea-
ture engineering approaches and this is due to fea-
ture learning rather than the classifiers (Amponsah-
Kaakyire et al., 2022). Using Explainable Al (XAI)
approaches like IG (Sundararajan et al., 2017),
(Amponsah-Kaakyire et al., 2022) found that BERT
exploits spurious topic signals in the form of loca-
tion names correlated with the O/T classification
labels in the data.

Translationese signals are subtle and spurious
correlations between O and T classification targets
and topic signals in the data may impact (and in-
flate) the classification results of neural networks.
(Borah et al., 2023) use translationese classification
as a setting to measure and mitigate Clever Hans
in a classification task where signals are weak and
competing with many other signals. They consider
unknown and known spurious correlations in the
form of topic signals. The basic idea is simple:
when topic signals are unknown, they use unsuper-
vised topic clustering, LDA and BERTtopic, and
measure overlap between the documents in a given
topic and the target O/T classes, i.e. they count how
many of the documents in the topic are O and how
many are T. A topic that is perfectly aligned with O
and T is either 100% O or 100% T, and a topic that
is maximally undecided between O and T is 50%
O and 50% T. The "topic floor" of the topics in a
data set for classification targets O and T is then
simply the weighted average of the alignments of
the topics with O and T. The topic floor is defined
using an alignment measure. The alignment of a
topic top; with O and 7' is given by

max(|top; N O|, |top; N TY)
|top;|
The weighted average over n topics top is:

aligng r(top;) =

n
avg_aligng p(top) = Z w; X aligng 7 (top;)
i=1
where a weight w; = |top;|/|Datal is just the pro-
portion of paragraphs in topic fop; divided by the
total number of paragraphs in the data.



The "topic floor" is proposed as an upper bound
of what spurious topic correlations may contribute
to target classification results and as a baseline for
translationese classifiers. They also show that their
alignment measure is the same as cluster purity
(Zhao, 2005), although cluster purity was not in-
tended to quantify Clever Hans. (Borah et al., 2023)
propose Clever Hans mitigation, albeit only for
known topic spurious correlations: they mask lo-
cation NEs in the data as a known spurious topic
correlation signal from the work of (Amponsah-
Kaakyire et al., 2022) and similar to (Dutta Chowd-
hury et al., 2022) also experiment with full PoS-
based data masking. While the research presented
in (Borah et al., 2023) is thought-provoking and
makes an important contribution to an area that is
understudied, namely quantifying Clever Hans in
classification, it is lacking in two major respects:
first, it only shows indirectly that topic-based spuri-
ous correlations are indeed learned and used by O/T
classifiers by showing that BERT can be trained (i.e.
told) to learn LDA (and BERTopic) topics as target
classes. This, however, is not the same as showing
that a BERT O/T classifier on its own accord (all by
itself) picks up and uses any potentially spurious
topic information as represented by LDA topics.
Second, Clever Hans mitigation is only presented
for known spurious topic correlations and via data
masking. This is both limiting and unfortunate as
masking interferes with the data. In this paper, we
address both shortcomings.

Translationese is not just a topic in basic linguis-
tic research: many cross-lingual and multi-lingual
applications are affected by translationese (Zhang
and Toral, 2019; Singh et al., 2019; Artetxe et al.,
2020; Clark et al., 2020), and translationese is re-
garded as one of the final frontiers of high-resource
machine translation (Freitag et al., 2019, 2020; Ni
et al., 2022). The effects of translationese on ma-
chine translation (MT) training and evaluation were
studied in many prior works (Kurokawa et al., 2009;
Lembersky et al., 2012; Toral, 2019; Graham et al.,
2019; Freitag et al., 2019, 2020). Building bet-
ter translationese classifiers may lead to better MT
training and evaluation and improved flagging of
(human or machine) translated data while scraping
the web (Thompson et al., 2024).

2.2 Probing

Early work on probing neural networks focused on
extracting properties like gender, tense, and PoS
using linear classifiers (Hupkes et al., 2018). Prob-

ing into inner layers of deep neural networks in
NLP and Computer Vision was introduced by (Et-
tinger et al., 2016), (Shi et al., 2016) and (Alain
and Bengio, 2018). In our paper, we use probing
to find direct evidence that BERT learns and uses
spurious topic signals as provided by unsupervised
topic modeling approaches in translationese classi-
fication.

2.3 Domain-Adversarial Training

Domain Adversarial Training was introduced by
(Ganin and Lempitsky, 2015) for domain adapta-
tion where models learn features helpful for a target
task but invariant to changes in the domain. Train-
ing is jointly performed with two objectives: one
to predict target class labels and one to predict the
domain and then regularising the former model
to decrease the accuracy of the latter using a gra-
dient reversal layer (GRL). The GRL multiplies
the gradient by a certain negative constant during
backpropagation, so that the loss of the domain
classifier is maximized while training. If x is the
input to the GRL and y is the output, then during
backpropagation, if % is the gradient of the loss
function with respect to y, then:

- -
where g—{; is the gradient of the loss with the respect
to z, and X controls the amount of gradient reversal.
(Stacey et al., 2020) e.g. used an ensemble adver-
sarial technique to reduce hypothesis-only bias in
Natural Language Inference (NLI) appearing due
to spurious correlations between natural language
utterances and their respective entailment classes.
In our paper, we train our model adversarially to
the topic classifier to reduce the use of potentially
spurious topic signals by BERT in O/T target label
classification. To the best of our knowledge, this
is the first time adversarial training has been ex-
plored in Clever Hans mitigation in translationese
classification.

3 Data

We use the Multilingual Parallel Direct Europarl
(MPDE) corpus (Amponsah-Kaakyire et al., 2021),
which is a multilingual corpus with parallel data
from the Europarl proceedings where the transla-
tion direction is known and where all source data
are originally authored (i.e. not already the result of
translations from other languages themselves). We
utilize two language pairs from the MPDE corpus:



(1) de-es: a monolingual German dataset consist-
ing of half German (DE) originals and half transla-
tions from Spanish (ES) to German and (2) de-en:
a monolingual German dataset consisting of half
German (DE) originals and half translations from
English (EN) to German. Each of these datasets
consists of 42k paragraphs, half of which are O
and half are T. The average length (in terms of to-
kens) per training example (paragraph) is 80. The
MDPE subsets of the Europarl data we use here
contain only data from before 2004, since relay
translations were included in 2004, where it may
not be known whether or not the source language is
already the result of a translation (Bogaert, 2011).
For our experiments on how our adversarial and
our regular models generalize, we use the litera-
ture translationese corpus (Rabinovich et al., 2018),
which consists of literature classics (originals and
translations) originating in the 18th-20th centuries
authored by English or German writers. For this,
our O/T classification models fine-tuned on the
MPDE DE-EN translationese dataset are tested on
the test set of the literature translationese corpus,
which consists of 4.3k paragraphs with half Ger-
man originals and half translations from English to
German.

4 Unsupervised Clustering

We use Latent Dirichlet Allocation (LDA) (Blei
et al., 2001) as our unsupervised topic modeling
approach in our experiments. LDA performs topic
modeling using two assumptions: (1) documents
are a mixture of topics, and (2) topics are a mixture
of words. Using these assumptions, LDA generates
a document-term matrix that consists of documents
as rows and terms or words corresponding to each
document as columns. The parameters used in LDA
are o, which determines the per-document topic
distribution, and 5 which determines the per-topic
word distribution. LDA assigns a latent topic to
every word through iteration by computing a topic
word distribution (#) in the data. We need to specify
the number of topics n that we want LDA to output.
In our experiments we explore n = 2, 3, 5, 10, and
20, as these all show high topic floor scores in
the range [0.55,0.60] (Borah et al., 2023). After
performing LDA, we assign each data point (i.e.
paragraph) in our dataset to the topic to which it
belongs with the highest probability. We use the
topics as labels for our probing and adversarial
training experiments. We use the Gensim (Rehurek
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Figure 1: Probing Pipeline

and Sojka, 2011) implementation of LDA for our
experiments.

5 Probing for Topics in O/T Classification
5.1 Probing Experiment Design

In this section, we present our probing-based ap-
proach to show whether a high-performance BERT-
based translationese classifier learns to use spurious
correlations in the form of LDA-based topics.

We probe three different BERTS for topic classi-
fication:

1. [BERT+OTD+CL]: a BERTforSe-
quenceClassification  model fine-tuned
on MPDE translationese data containing orig-
inal/translated labels for an O/T classification
task.

2. [BERT+OTD]: a BERTforMaskedLM model
fine-tuned on the same MPDE data fora MLM
task but without O/T classification.

3. [BERT]: a BERTforSequenceClassification
off-the-shelf, without any fine-tuning on
MPDE or O/T classification.

Each of the three BERT models are pre-trained
on the same data. The logic behind our experiment
is the following: BERT finetuned on O/T data and
trained for O/T classification [BERT+OTD+CL]
will learn and use spurious topic information only
if this information is useful to O/T classification.
If this is the case, then this BERT should exhibit
better performance on topic probes compared to a
BERT fine-tuned on the same O/T data with the
regular BERT MLM objective but not trained for
O/T classification [BERT+OTD] and better than a
simple BERT out of the box [BERT] not fine-tuned
at all on the O/T data.

We perform topic classification probing using
BERT encoder activations as features and LDA
topics as the target labels of a simple logistic re-
gression probe. We take the [CLS] activations of



n | Model | Accuracy | Fl-score
[BERT+OTD+CL] 0.531 0.635
2 [BERT+OTD] 0.515 0.544
[BERT] 0.521 0.556
[BERT+OTD+CL] 0.412 0.563
3 [BERT+OTD] 0.392 0.457
[BERT] 0.389 0.468
[BERT+OTD+CL] 0.327 0.483
5 [BERT+OTD] 0.313 0.414
[BERT] 0.318 0.424
[BERT+OTD+CL] 0.242 0.387
10 [BERT+OTD] 0.224 0.320
[BERT] 0.229 0.331
[BERT+OTD+CL] 0.164 0.275
20 [BERT+OTD] 0.149 0.227
[BERT] 0.153 0.243

Table 1: Probing results (last encoder layer as features)
for Topics = n topic prediction on the de-es dataset

the last encoder layer output (768 dimensional).
For topics, we take the clusters found by LDA, and
assign each data point the topic it belongs to with
the highest probability. We perform experiments by
setting n = 2,3, 5, 10, and 20 identified by LDA.
Training and hyperparameter details are provided
in Appendix A.1. The probing pipeline is displayed
in Fig 1.

5.2 Probing Results

To account for the stochastic nature of LDA, we per-
form probing experiments on three different runs
of LDA on the data. The logistic regression model
in the probe is deterministic, hence for each single
LDA run probe results are deterministic.

Table 1 shows the probing results for all numbers
of LDA topics n averaged over 3 runs of LDA in
the data. Compared to [BERT+OTD] and [BERT],
probing [BERT+OTD+CL] yields the highest topic
scores in terms of accuracy and, even more pro-
nounced, F1 scores. This shows that O/T classifica-
tion makes BERT learn spurious topic information
and that this does not happen (to the same extent)
for BERT finetuned on the same O/T data with just
the MLM objective and without O/T classification
and similarly for BERT out of the box. Table 7
in Appendix D shows the same trend for probing
de-en.

6 Adversarial Training vs. Clever Hans

6.1 Adversarial Training Experiment Design

We employ Adversarial Training to utilize the spu-
rious topic signals as identified by the unsupervised
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topic clustering methods to mitigate "Clever Hans"
in translationese. Adversarial training (Ganin et al.,
2016) uses an additional objective function to pro-
vide model generalization for both adversarial data
and clean data.

In our experiments, we take topic labels as adver-
sarial data, and O/T translationese labels as clean
data. While training the model, we minimize the
loss for O/T signals, while maximizing the loss
for the topic signals. Our goal is to improve O/T
accuracy while minimizing topic accuracy. As a
consequence this should make BERT blind to spu-
rious topics and reduce "Clever Hans" identified by
unsupervised topic modeling techniques for transla-
tionese classification. Training and hyperparameter
details are provided in Appendix A.2. The adver-
sarial training pipeline is displayed in Fig 2

6.2 Adversarial Training Results

This section shows the results of our adversarial
training experiments. Results are averaged over
20 bootstrapped samples of the test data, and 95%
confidence scores of the F1 scores are displayed in
Table 2.

Table 2 shows a comparison of O/T accuracies
and F1, and topic accuracies and F1 for the adver-
sarial and non-adversarial BERT. Results show that
the accuracies and F1 scores for translationese clas-
sification are maintained at a high level while the
topic accuracies and F1 scores are reduced for the
adversarial model. This is expected as we maxi-
mize the loss of topic classification while minimiz-
ing the loss of the O/T label classification. Results
for n = 3 are the only exception to the general
pattern: while, as expected, topic accuracy for non-
adversarial (0.458) is greater than for the adversar-
ially trained model (0.399), the corresponding F1
scores are reversed (0.288 against 0.379). Table 5
in Appendix E displays the results for the de-en
pair and fully shows the expected pattern for both



Adversarial Non-Adversarial
n O/T acc, F1 (95% Topic acc, F1 (95% O/T acc, F1 (95% Topic acc, F1 (95%
confidence F1) confidence F1) confidence F1) confidence F1)
2 0.910, 0.910 ([0.90, 0.92])  0.516, 0.501 ([0.49, 0.51]) | 0.910,0.910 ([0.90, 0.92])  0.589, 0.583 ([0.57, 0.59])
3 0.905, 0.906 ([0.90,0.91])  0.399, 0.379 ([0.37,0.39]) | 0.910,0.910 ([0.90, 0.92])  0.458, 0.288 ([0.28, 0.29])
5 0.906, 0.906 ([0.90, 0.91])  0.101, 0.019 ([0.01, 0.02]) | 0.910,0.910 ([0.90,0.92])  0.316, 0.153 ([0.15, 0.15])
10 | 0.905, 0.906 ([0.90,0.91])  0.088, 0.018 ([0.01, 0.02]) | 0.910, 0.910 ([0.90, 0.92])  0.067, 0.011 ([0.01, 0.01])
20 | 0.906, 0.906 ([0.90, 0.91])  0.050, 0.005, ([0.00, 0.00]) | 0.910,0.910 ([0.90,0.92])  0.074, 0.015 ([0.01, 0.02])

Table 2: Adversarial and Non-Adversarial O/T classification and topic label classification results for de-es

accuracy and F1 scores. The topic accuracies and
F1 scores for the adversarial model are lower than
the non-adversarial model.

As expected, the topic label accuracies and F1
scores reduce overall as the number of topic labels
increases. In comparison, for the non-adversarial
BERT model finetuned on O/T data topic label
accuracies and F1 scores are higher than for the ad-
versarial model, while the O/T accuracies remain
almost consistent across both models. We note
the scores for O/T acc and F1 are constant across
all n (except n=3, discussed above) for the non-
adversarial BERT model since it is only fine-tuned
for translationese classification and not adversari-
ally "finetuned" against topic classification.

Adversarial training results for the de-en pair are
presented in the Table 5 in Appendix E.

7 Integrated Gradients and Topic Traces

7.1 1G Experiment Design

IG (Sundararajan et al., 2017) is an explainable
Al (XAI) technique that computes the gradient of
a model’s output to its input features and can be
applied to any differentiable model processing im-
ages, text, etc. and requires no modification to
the model to be explained. We use IG to compute
the tokens that have the highest attribution scores
during translationese classification of the test set,
in a similar fashion as (Amponsah-Kaakyire et al.,
2022; Borah et al., 2023). (Amponsah-Kaakyire
et al., 2022) used IG attribution scores to show that
BERT uses some spurious location name topic sig-
nals as short-cuts in the data for translationese clas-
sification. For example, German T data translated
from Spanish contain Spanish (or South American)
location NEs in the top tokens identified by IG, e.g.,
‘Nicaragua’, ‘Bilbao’, ‘Colombia’ etc. (Borah et al.,
2023) used IG on the BERT O/T model fine-tuned
on NE-masked data to show that the number of
location tokens in the top tokens was reduced, thus
resulting in some mitigation of Clever Hans. In our
paper, we use IG to compute the top tokens used

by the adversarial BERT model to investigate the
mitigation of topic signals in translationese clas-
sification. The expectation is to have a reduced
number of topic-related tokens, like named entities
(as found by (Amponsah-Kaakyire et al., 2022)) in
the top tokens computed by IG.

7.2 1G Results

Table 3 shows the top 20 tokens with the highest
1G attribution scores used by the adversarial and
non-adversarial models for the O and T-test sets for
the de-es dataset. There is only one South Amer-
ican Spanish language location token in the top
20 tokens in the test set for the adversarial case -
arequipa in the translated class. By contrast, in
the non-adversarial case, there are several German
location NEs in O (e.g. ##wald, stuttgart) and
Spanish in T (e.g., Nicaragua, Bilbao, Colombia).
We find one location NE in the O for the adversarial
model - monterrey, however, it is not a German-
dominated area, hence this cannot be considered
as a direct spurious correlation with the O set lan-
guage. Overall, there is mitigation of topic-related
NE cues in the adversarial model as expected.

Table 8 in Appendix F shows the same trend for
the de-en pair.

8 Model Generalization

8.1 Experiment Design Generalization

Mitigating "Clever Hans" using adversarial train-
ing should make our models generalize better to
unseen data that may not come with the same spu-
rious topic information as the training data our
O/T classifier was originally trained on. We test
the performance of our adversarially trained O/T
classification model finetuned on the MPDE cor-
pus translationese data (Amponsah-Kaakyire et al.,
2021) vs. a non-adversarially trained O/T classi-
fication model finetuned on the same data. To do
this, we deliberately use test data from a different
domain, the literature translationese corpus from
(Rabinovich et al., 2018). The corpus consists of



Adversarial Non-Adversarial
Original Translated | Original | Translated
ppm italo situations entstand
uks domino . virus
andersson ##unta ria inti
prosa ##inne ##lk sagte
monterrey arequipa #itiet entdeckte
prvni moliere golden gras
##ibe brachten sak buts
hang and turn nicaragua
##tero ##saka ##emeb rekord
plastik giorgio orange bilbao
domain fut hand verfugte
##istes olan ##wald bol
diri ##rennen 1732 colombia
rasa intra dobe nis
propose uga #i#pas och
Stevenson 850 profits vorkommen
versie ##izione stuttgart oecd
eingegliedert boyko soja ;
##ging errichteten T erklarte
siehe besuchte ruth clinton

Table 3: Top 20 tokens with highest attribution scores by
1G for adversarial model (n = 2) and non-adversarial
model fine-tuned on de-es dataset

Model O/T ace, 95% | O/T Fl1, 95%
conf.score conf.score

Adversarial 0.538,[0.53,0.54] | 0.526, [0.52, 0.53]

Non-Adversarial | 0.483,[0.47,0.49] | 0.461 [0.45,0.47]

Table 4: Test set results of the adversarial model vs non-
adversarial model on the de-en literature translationese
dataset

literature classics between the 18th and 20th cen-
turies authored by English and German writers. We
utilize the German originals and translations from
English to German texts, so that they align with
the translation direction of de-en corpus from the
MPDE corpus. The literature test set consists of
4.3k paragraphs (discarding paragraphs with less
than 20 words) with half of them being German
originals and the other half translations from En-
glish to German.

8.2 Results Generalization

Table 4 presents the test set performance of the
adversarial model and the non-adversarial model
(BERT O/T classifier finetuned on MPDE transla-
tionese data) on the literature translationese dataset.
Table 4 shows that accuracy and F1 scores for
the adversarial model are higher than for the non-
adversarial model. This shows that the adversar-
ial model finetuned to suppress spurious topic sig-
nals generalizes better to unseen data on O/T trans-
lationese classification. (Note that the adversar-

ial models considered here for comparison are
trained for maximizing n=2 topic labels). How-
ever, note that our adversarial classifier, although
clearly more robust under domain shift and better
than our non-adversarial classifier, still does not
perform well on the new dataset. The results still
show high dependence on the domain the classifier
was trained on with substantial further scope for
improvement in the generalization experiments.

9 Conclusion

In this paper, we focus on an under-researched area:
"Clever Hans", i.e. spurious correlations in the data
with target classification labels, in the form of topic
information in classification scenarios where target
signals are weak and competing with many other
signals in the data. We generalize previous work in
(i) providing direct evidence using prompting that
feature and representation learning-based neural
classifiers learn and use spurious topic correlations
in the data and (ii) that we can mitigate any (un-
known) spurious topic correlation using adversar-
ial training with LDA topic labels as adversarial
targets in classification. We show this in transla-
tionese classification, a prototypical example of a
classification setting where target signals are weak
and competing with many other signals in the data.
We conjecture that our contributions are generic in
the sense that they should be useful in many other
classification settings that are subject to similar
general constraints. Our research shows that the
topic floor proposed by (Borah et al., 2023) is real,
and that adversarial training maintains high target
classification accuracy while diminishing Clever
Hans. We present translationese classification ex-
periments on two language pairs, we use integrated
gradients to spot-check the effect of adversarial
training on known spurious correlations (location
NEs) and we show that adversarially trained transla-
tionese classifiers are more robust in the sense that
they generalize better to data in a domain different
from what the classifier saw in training. Future
research includes zooming in on specific LDA top-
ics that exhibit high alignment with target labels,
exploring other topic modeling approaches, and
building models with better generalization abilities
by further mitigating stronger spurious signals used
in classification tasks that require classifying subtle
signals like translationese.



10 Limitations

Our research on unknown spurious topics is based
on LDA. If a topic is not in LDA, it cannot be
probed nor mitigated by adversarial training. LDA
requires us to set the number of topics n. We ex-
plore n = 2,3, 5, 10, 20, based on findings by (Bo-
rah et al., 2023) that show high topic floor scores for
these settings. That said we should explore topic
models other than LDA, e.g. BERTtopic (Grooten-
dorst, 2022) etc. While our adversarially trained
models clearly generalize better to unseen data in a
different domain, overall O/T classification results
on the literature data set leave much to be desired
and present considerable scope for improvement.
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A Implementation Details

This section contains training and hyperparameter
details for probing and adversarial training experi-
ments.

A.1 Probing

For [BERT+OTD+CL], we use a BertForSequence-
Classification model fine-tuned on the O/T data for
O/T label classification. For [BERT+OTD], we use
a BertForMaskedLM model fine-tuned on the O/T
data for MLM task. For [BERT], we use BERT
out-of-the-box with pretrained weights from hug-
gingface. We use BERT-base-multilingual-uncased
for our experiments which is pretrained on 104
languages with the largest Wikipedia on an MLM
objective. We use a batch size of 16, a learning rate
of 4-107°, and an Adam optimizer with epsilon
1- 1078 to train our BERT models for 4 epochs.
For our LDA topic labels, we experiment with n =
2, 3,5, 10, and 20. For the probing experiments,
we use a simple logistic regression model using the
scikit-learn(Pedregosa et al., 2011) library, with an
’12° penalty.

A.2 Adversarial Training

We use the uncased version multilingual BERT
(Devlin et al., 2019) for our adversarial model by
specifying two classification objectives: one for
O/T classification and the other for topic label clas-
sification. We use a batch size of 16, a learning rate
of 4-107%, and an Adam optimizer with epsilon
11075 to train our adversarial BERT models for 4
epochs. For our LDA topic labels, we experiment
withn =2, 3,5, 10, and 20.

A.3 Computational resources

All experiments are run on NVIDIA RTX2080
GPUs. Each BERT (adversarial and non-
adversarial) training experiment takes 1.5 GPU
hours. We do not use GPU for our other experi-
ments, like, LDA, probing using logistic regression,
and BERT embedding extraction experiments.

B Reproducibility

We open-source our codes and datasets, which
are both uploaded to the submission system. We
include commands with hyperparameters in our
codes. This would help future work to reproduce
our results.
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Adversarial

Non-Adversarial

n O/T acc, F1 (95% Topic acc, F1 (95%

confidence F1) confidence F1)

O/T acc, F1 (95%
confidence F1)

Topic acc, F1 (95%
confidence F1)

2| 0.905, 0.903 ([0.90, 0.91])

0.489, 0.490 ([0.48. 0.50])

0.863, 0.872 ([0.86, 0.88])

0.572,0.575 ([0.57, 0.59])

3 | 0.897,0.897 ([0.89, 0.90])

0.365, 0.332 ([0.32, 0.34]) | 0.863, 0.872 ([0.86, 0.88])

0.379, 0.344 ([0.34, 0.35])

5 | 0.901, 0.899 ([0.89, 0.90])

0.138, 0.082 ([0.08, 0.09]) | 0.863, 0.872 ([0.86, 0.88])

0.159, 0.084 ([0.08, 0.09])

10 | 0.902, 0.901 ([0.89, 0.91])

0.054, 0.006 ([0.01,0.01]) | 0.863, 0.872 ([0.86, 0.88])

0.077, 0.022 ([0.02, 0.02])

20 | 0.904, 0.903 ([0.90, 0.91])

0.048, 0.005 ([0.00, 0.00]) | 0.863, 0.872 ([0.86, 0.88])

0.063, 0.015 ([0.01, 0.02])

Table 5: Adversarial training results for the de-en dataset

Language | O/T acc, 95% | O/TF1,95% con-
Pairs confidence score fidence score

de-es \ 0.910, [0.90, 0.91] \ 0.910, [0.90, 0.92]
de-en \ 0.863, [0.85, 0.87] \ 0.872, [0.86, 0.88]

Table 6: BERT fine-tuned on translationese data for
O/T classification for two language-pairs

C Translationese fine-tuned BERT results
for different language-pairs

Here, we present the accuracy and F1 scores
of BERT fine-tuned on the MPDE translationese
dataset for the two datasets (de-es and de-en). Note
that the results are for non-adversarial BERT which
is not trained to suppress any topic signals. Table
6

n Model Accuracy | Fl-score
[BERT+OTD+CL] 0.564 0.667
2 [BERT+OTD] 0.556 0.606
[BERT] 0.561 0.659
[BERT+OTD+CL] 0.409 0.538
3 [BERT+OTD] 0.397 0.483
[BERT] 0.397 0.479
[BERT+OTD+CL] 0.306 0.434
5 [BERT+OTD] 0.290 0.379
[BERT] 0.295 0.381
[BERT+OTD+CL] 0.254 0.405
10 [BERT+OTD] 0.252 0.393
[BERT] 0.256 0.392
[BERT+OTD+CL] 0.142 0.236
20 [BERT+OTD] 0.129 0.199
[BERT] 0.134 0.200

Table 7: Probing results (last encoder layer as features)
on the de-en datasets

D Probing on other language pairs

In this section, we present the results of probing
experiments on the de-en set. Table 7 displays
the probing experiments for different n values. As
observed in the de-es dataset in Section 5.2, we find

12

n ‘ de-es ‘ de-en
‘ Original Translated‘ Original | Translated
ppm italo acta osterreichs
uks domino unterstutzteparole
2 | andersson | ##unta ##oster | workshops
prosa ##inne ##ging | ungern
moonterrey arequipa asean !
. fue often !
I5; widmete nordlich | thessaloniki
3 | stamme | kraftwerk | ##sstrale| ansonsten
tras kirche ##ival willy
fet vendee #itke alfonso
started gerne nochmals| q
heading | mochte legales | schweizer
5 | angegeben| colombia | revanche | mochte
ernannt ##indi #i#lasse | ##poru
##gemeindebitter #ithier vieira
mochte veroffentlichtdeterminer quei
##ohe widmete bible cork
10| tunis berichtet skinner | ##shire
altar gelangte physik mosaik
pea #iftierte venezuela barone
venezuela | ##rennen | thuringen| ##mble
pakistan | ##list beaten roy
20| ##ids #Hverk philippine angels
italia hast ##beni | robert
00st quebec pohja earl

Table 8: Top 5 tokens for adversarial model trained on
de-es and de-en datasets for different n



that Model 1 finetuned on the O/T labels performs
the best among all the models. The differences are
more dominant in terms of F1 scores. The results
are consistent for de-en, with topic label accuracies
and F1 scores decreasing as we increase n.

E Adversarial Training on other language
pairs

Here, we present the results of adversarial training
on the de-en language-pair. Table 5 shows the

results of adversarial training for different n values.

Similar to the de-es language pair, we find the O/T
accuracies and F1 scores are high whereas the topic
accuracies and F1 scores are low and decrease with
an increase in the value of n.

F Integrated Gradients on other language
pairs

Table 8 presents the results of integrated gradients
given by the adversarial models for the two datasets
for different values of n. The top 5 tokens with the
highest average attribution for the test set data of
each dataset are displayed. Although we see some
location tokens, most of these are not related to
the location where that language is spoken, i.e. we
have Venezuela, Pakistan, and Monterrey in the
original set, where German is not predominantly
spoken. This may be an indicator that spurious
topic correlation signals using location NEs are
reduced in our adversarial model.
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