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Abstract

Long-tailed object detection (LTOD) aims to handle the extreme data imbalance in
real-world datasets, where many tail classes have scarce instances. One popular
strategy is to explore extra data with image-level labels, yet it produces limited
results due to (1) semantic ambiguity—an image-level label only captures a salient
part of the image, ignoring the remaining rich semantics within the image; and (2)
location sensitivity—the label highly depends on the locations and crops of the
original image, which may change after data transformations like random cropping.
To remedy this, we propose RichSem, a simple but effective method, which is
robust to learn rich semantics from coarse locations without the need of accurate
bounding boxes. RichSem leverages rich semantics from images, which are then
served as additional “soft supervision” for training detectors. Specifically, we
add a semantic branch to our detector to learn these soft semantics and enhance
feature representations for long-tailed object detection. The semantic branch is only
used for training and is removed during inference. RichSem achieves consistent
improvements on both overall and rare-category of LVIS under different backbones
and detectors. Our method achieves state-of-the-art performance without requiring
complex training and testing procedures. Moreover, we show the effectiveness
of our method on other long-tailed datasets with additional experiments. Code is
available at https://github. com/Menglcool/RichSem.

1 Introduction

Object detection for complex scenes has advanced significantly [10, 9, 40, 3, 65] thanks to large-scale
datasets [5, 22, 32, 12, 24, 4, 42]. However, current deep models depend on relatively balanced
large-scale datasets, where different classes have similar numbers of images and samples, to learn
diverse semantics and enough locations. This limits their performance on real-world data, which are
often long-tailed, i.e., only a few head classes have plenty of training samples while most classes
have very few training samples, making detection more challenging and less effective for rare classes.

A simple and effective way to improve long-tailed object detection (LTOD) is to use extra data
to increase the training samples for tail classes. However, collecting bounding box annotations,
especially for rare categories, is costly and tedious. Therefore, previous studies resort to datasets
with image-level labels to enrich the amount of samples for rare classes by exploring image-level
semantics (as shown in Figure 1 (a)). While appealing, directly learning from such data to benefit
detection is challenging since they lack bounding box annotations that are essential for object
detection. To remedy this, many works [66, 25, 60, 63] focus on estimating bounding boxes for

t Corresponding author.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).


https://github.com/MengLcool/RichSem

(a) (b) “Ball” in ImageNet

“sugar =
bow!” g g

toy
frisbee
pet

P ball
plgg); puppy
bank dog

a Nt
8- soft semantics
Image count ® ImageNet-21k o

10M 4 & |

ong i »m‘ S A W SN o I

w0 I

I
10m |

1000 |

frequent common rare sorted id I

Figure 1: (a) Category occurrences in the long-tail detection data (LVIS) and the extra classification
data (ImageNet-21k). The green bars show the number of images that each category occurs in LVIS [12]; the
blue dots show the number in ImagetNet-21k [5]. Evidently, the classification dataset exhibits a more evenly
balanced distribution of occurrences. Moreover, the classification dataset offers a broader range of instances,
thereby enhancing the diversity of instances for each category. (b) A sample from ImageNet [5]. This sample
is annotated as “ball” while ignoring another main object “dog”. After a random crop during training, the “ball”
may be inaccurate on some crops. The class with the highest CLIP confidence score is shown above each crop.

objects in images. They typically consider image-level tags (in the form of one-hot labels) as the
ground-truth classes and match with best estimated boxes as pseudo labels for training.

We argue that image-level labels are not well-suited for detection due to their semantics ambiguity and
location sensitivity. On one hand, an image-level label can not sufficiently reflect all the semantics
within the image. On the other hand, the label mainly focuses on the iconic object; thus, using a
different crop might shift the semantics to a different object. Take Figure 1 (b) as an example: the
top image is labeled as “ball” in ImageNet [5], which only depicts part of information in the image.
The panel below in Figure 1 (b) shows that the provided image-level label is no longer accurate
after data augmentations. Inspired by the recent success of visual-language contrastive models that
align a large number of image-text pairs [37, 62, 11, 54, 13], we aim to leverage such models to
extract rich semantics that are more informative than the image-level labels in classification datasets.
However, naively converting one-shot labels in image classification tasks to a distribution of soft
labels is still not optimal and accurate after data augmentation. As shown in Figure 1 (b), based on
different locations (i.e., random crops) of the image, the semantics extracted by CLIP [37] incur more
noise than the original image.

To address this, we introduce RichSem, a one-stage training framework that leverages additional
image data to boost the detector through learning from rich semantics and coarse locations for
long-tailed object detection. In particular, we treat a whole-image box as coarse locations (i.e., the
coarse bounding box shares the same size as the image) and group multiple images together to build
a mosaic. We then use CLIP to extract the semantics according to such coarse bounding boxes. The
extracted semantics can serve as “soft labels” to enrich the amount of training data and are more
robust to random cropping. We further introduce a new branch named as “semantic branch” to object
detectors so that it can learn from the derived semantics during training. This allows the detector to
fully leverage the rich semantics in classification datasets with minimal modifications. Once trained,
this branch is discarded during inference, and RichSem can be used readily as a standard detector.

Our contributions are summarized as follows: (1) We point out that using image-level labels from
extra classification datasets as supervision is challenging due to semantics ambiguity and location
sensitivity, which can be alleviated with a distribution of semantics serving as “soft labels”. We show
that semantics provided by CLIP are not only rich and but also robust to locations, providing better
guidance than original image-level labels. (2) We introduce a novel semantics learning framework
named RichSem, which uses an additional branch to learn from rich semantics and coarse locations
for long-tailed object detection without the need to compute pseudo labels. Once trained, the
additional branch can be discarded during inference. (3) Our method demonstrates strong results on
long-tailed datasets, e.g. LVIS, highlighting that it is a low-cost way to boost the detector performance
for long-tailed object detection by only complementing extra classification data.



2 Related Work

Long-tailed object detection (LTOD) has attracted more and more attention. The performance of
rare categories is drastically low compared to frequent categories due to the unbalanced distribution
and the lack of training samples. Existing works can broadly be divided into two directions: 1) one
direction aims to improve the training scheme for balanced learning, including data re-sampling [12],
loss re-weighting [46, 45, 51], data augmentations [8] and decoupled training [23, 21]; 2) Another
direction leverages extra data to compensate for the data starvation [63, 60]. These methods often trust
image-level labels to boost the classification capability. We find that it is far from optimal to naively
treat image-level labels as golden labels and supervision for the classifier. Unlike existing methods,
we study a new solution that leverages the rich semantics within the images from classification
data with only coarse locations provided by regular augmentations. We leverage CLIP to provide
semantics as soft targets on classification data to guide our detector to learn semantics explicitly. In
this embarrassingly simple but effective way, we can better leverage classification data for LTOD.

Weakly-supervised object detection aims to train a detector using image-level labels without
bounding boxes. Many studies [1, 47, 36] train a model using only image-level labels without any
bounding box supervision. Another line of work [39, 60] takes the bounding boxes supervision with
the whole-image labels together under a semi-supervised framework. Unlike prior works, we focus
on mining rich semantics within the images instead of bounding box estimation. Thus, we no longer
need to estimate precise bounding boxes on classification data.

Language supervision for object detection is a recent topic that aims to leverage linguistic semantics.
Since language supervision has rich semantics, each category is related rather than independent in
one-hot labels. Thanks to this property, recent works [6, 59, 57, 20, 35, 55] show benefits by pre-
training backbones on vision-language tasks. With the rapid progress in contrastive language-image
pre-training [37, 18], many recent approaches [28, 11, 62] apply large-scale pre-training for object
detection. VILD [11] and RegionCLIP [62] attempt to align the visual-semantic space of a pre-trained
CLIP model for open-vocabulary detection. Similar to RegionCLIP and ViLD, our method leverages
the visual-semantic space learned from pre-trained CLIP models. In contrast, our goal is to leverage
object semantics to boost object classification, especially for rare categories. Since CLIPs are used to
generate “soft labels”, our backbone is free of CLIP initialization compared with RegionCLIP [62].

Knowledge distillation and soft label. Knowledge distillation (KD) [17] is a powerful tool to
boost the student model with prior knowledge of the teacher model. Recent follow-ups extended
and developed many variants, e.g., feature distillation [19, 41], hard distillation [50], contrastive
distillation [48], etc. To improve the training efficiency of KD, Re-label [58] and FKD [44] use a
strong teacher model to generate soft labels and store them for efficient image recognition training.
Recently, many studies [11, 34, 62, 38] introduce knowledge from CLIP [37] into the KD framework
to boost open-vocabulary object detection. Due to the strong semantics capturing capability of CLIP,
those methods show encouraging performance on open-vocabulary detection. Similar to those works,
our approach leverages the semantic knowledge of pre-trained CLIP models. In contrast, our goal is
to boost the long-tailed detection, especially for the tailed classes, with the help of rich semantics of
classification and detection datasets. Moreover, we introduce a simpler but more effective way to
learn visual semantics with an extra semantic branch during training. Unlike [62, 11], our one-stage
training scheme needs no fine-tuning after pre-training. Besides, our approach is more effective since
there are no redundant pre-computed boxes [11] and boxes estimation [34, 38].

3 Method

Given a detection dataset denoted as D¢ = {(I°¢, {(b°?, c°?)})}, where each image 1°¢ is associated
with bounding boxes °¢ and class labels ¢ respectively. Our goal is to leverage an additional
classification dataset D¢*'"@ = {(I?™9 ¢"™9)}, of which each image is only labeled with an image-
level label ¢™™9, to improve long-tailed object detection, particularly for rare classes.

In long-tailed object detection, previous approaches typically rely on image-level labels and compute
pseudo boxes for corresponding objects. On one hand, the semantic information provided by such
labels is limited, (i.e., one one-hot label per image). On the other hand, augmentation strategies like
randomized cropping might generate regions that do not contain the annotated class, thus making
the provided labels no longer accurate. Motivated by the fact that CLIP has strong capabilities of



capturing visual semantics conditioned on only coarse locations ' [62], we build upon CLIP to explore
image classification datasets to guide the training of object detectors. Below, we first introduce how
to obtain rich semantics from CLIP in Section 3.1, and the resulting semantics are then used to guide
the training of our detector, as will be described in Section 3.2. Then we describe how we unify the
training objective and extend RichSem to different types of extra datasets in Section 3.3.
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Figure 2: Our RichSem framework. V; and £; indicate vision encoder and text encoder of the CLIP model.
We leverage rich semantics in extra data with image-level labels by pre-trained CLIP. Then semantics behave
like “soft labels” for our proposed semantic branch (H,,s; followed by Contrast). Blue parts indicate the
components for traditional object detection and indicate those for semantics learning.

3.1 Image and Object Semantics

We aim to use image-level labels in classification datasets together with detection datasets to improve
long-tailed object detection. This requires processing these two types of data within the same
framework. As a result, we treat images from detection and classification datasets equally and we
not only derive semantic information at the image-level for classification datasets but also at the
object-level for detection datasets, as will be elaborated below.

Image-level semantics. We denote the pre-trained CLIP visual encoder and the language encoder as
V, and L, respectively. Consider an image [ after random cropping, its semantics s can be obtained
by computing the similarity between its visual features f¥™9 extracted by the visual extractor and
the linguistic categories features f°**¢ produced by the language encoder. Formally, we compute the
visual and linguistic features as follows:

fimg _ Vt(Iimg); fcats — Et(fp(cod))

59 = Contrast(f™9, feots),
Here, P is the prompt engineering function to convert class names into prompts; Contrast is
the contrasting paradigm [37] to calculate the similarity between two features, and s*™9 contains
semantics information in which each element indicates the likelihood for the corresponding class.

Following [37, 62], we use a set of prompts to convert the categories in the target vocabulary C°? into
sentences then use the CLIP text encoder £; to obtain the linguistic features of categories in C°%.

ey

Object-level semantics. As mentioned above, to unify the training process with classification and
detection data, we also obtain object-level semantics from CLIP as well. To this end, we obtain an
object-level representation by pooling from image-level features [9, 15] rather than cropping in the
original images, following [62]. More formally, object-level semantics are obtained as:

ft = Pooler(Vy(I),b)

2
s' = Contrast(f*, f°*'*) @

"Please refer to our supplementary material for the verification of coarse location



where Pooler is RolAlign [15] that pools region features according to their locations from the entire
feature maps, and b is the location of the object, which could be ground-truth, predicted, or predefined
whole-image bounding boxes.

It is worth pointing out with such a formula both detection and classification datasets can now
be unified, as objects in detection datasets are essentially regions of images, while images from
classification datasets are cropped regions from original images. Consequently, the b in Equation (2)
indicate tight ground-truth bounding boxes b°¢ for objects in detection datasets, while b corresponds to
the entire image, i.e., coarse whole-image boxes pimg = (0,0, h,w), for samples from classification
datasets, where h, w is the height and width of the augmented image.

Furthermore, unlike previous approaches that use fixed and static semantics provided by image-level
labels, we obtain image-level and object-level semantics which dynamically change conditioned
on different locations ( i.e., bounding boxes) in an online fashion. This is particularly useful when
location information is not accurate—the location could be a very loose bounding box for the object
of interest or even contains part of the objects. As as result, the rich and location-robust semantics
can be used to guide the detector.

3.2 Semantics as Soft Labels

Now that we obtain both image-level and object-level semantics with CLIP, the main challenge is
how to make our detector learn from them effectively. Traditional detection models [40, 31, 2, 3, 65]
usually obtain object features from whole-image features according to locations [9, 40, 31, 49] or
cross-attention [3, 65]. Then object features are refined with a classification branch to classify the
region into predefined categories, and a location branch to compute the bounding box, separately. To
unify the notations, we denote the object features as O, which are fed to different branches to obtain
features tailored for each sub-task to generate final outputs with a projection layer. More formally,

floc’ fClS = Hloc(0)7 Hcls(O)

3
Oloc’ Ocls — Wloc(floc); Wcls(fds)>

where H denotes the sub-task branch for feature refinement, specifically H,.. is for localization and
H ;s is for classification; W; denotes the projection layer to produce final results; f;, and o; denotes
the features and outputs for the corresponding task, i.e., t € {loc, cls}.

Now we discuss how to use the obtained semantics to guide the training of detectors. As 0°* are
logits that are generally used for classification, a straightforward way is, on top of a cross-entropy
loss, to use 0°"* to predict the object semantics s* in a similar spirit to knowledge distillation [17, 41].
However, this makes the training of detectors challenging as the cross-entropy loss and distillation
loss have conflicting purposes: a cross-entropy loss is generally optimized to produce hard prediction
results while the distillation loss aims to borrow knowledge from a distribution of semantic scores
that serve as “soft labels”. As a result, jointly performing hard predictions and soft distillations
conditioned on 0°!* produce unsatisfactory results, as will be shown empirically.

To mitigate the challenge, we introduce an additional branch named as “semantic branch”, independent
of the classification and localization branches in current detectors, to learn the soft semantics obtained
by CLIP. The semantic branch also includes a feature refinement branch H,,y; then feed the refined
feature f°/* to Contrast function to obtain the semantic prediction 0°°/*. Such a strategy ensures
that semantics from image classification datasets can be explored without interfering with the original
training process of detectors. This is essentially using semantics as soft teachers to implicitly refine
object features for detection. Formally, to train the semantic branch, we use a KL divergence loss as:

Osoft _ CODtI‘aSt(fsoft, fcat)’ fsoft — Hsoft(O)

N
1 so 4)
Lsoft = N E LKL(OZ‘ ftasﬁ)
=1

where ofof " is the semantics prediction of the i-th object feature, while st is the corresponding

semantic target; [V is the number of matched proposals/ queries during training. It is worth noting
that we only use the semantic branch for distilling semantics into the detector during training. And
once trained, the semantic branch is no longer needed for inference.



3.3 Unified Objective Functions

We aim to incorporate semantic learning from classification datasets into an end-to-end learning
scheme instead of fine-tuning after pre-training [62], without redundant pre-computed boxes [11] and
box estimation [34, 38]. Thus, we unify the objective functions and treat datasets of classification
and detection equally in a unified way.

In our training scheme, we use a unified classification loss Ly;.1s, the combination of a hard
classification loss and a soft semantics loss, to boost the capability of object classification. The hard
classification loss L;s best works when bounding boxes and class labels are available and sufficient
for training. In contrast, the soft semantic learning loss L, s works well for those categories with
few samples, requiring only coarse locations.

L= )\loc : Lloc + )\cls . Lcls + )\soft ' Lsoft (5)

Lynicts

where Ajoc, Acis and Ao+ means the weight of each loss.

Furthermore, the vocabularies of target detection datasets and extra classification datasets often differ.
To handle the taxonomy difference between detection and classification datasets, we further unify the
supervision for hard classification as follows.

Handling taxonomy differences. To leverage image-level labels in extra data, we need to map
the vocabulary of extra data C°*'"® to the vocabulary of our target detection dataset C°¢, which is a
function M : C**"® — C°¢. One could derive better mapping functions M, yet this is orthogonal to
our current direction. For convenience, we can use a manual label mapper or leverage the CLIP text
encoder to map the class according to their category semantics automatically.

COd —_ M(Cimg) (6)

Handling data without any labels. We also consider a broader case, in which even image-level
labels are not available. Inspired by DeiT [50], we treat the class of highest logits in each semantics
target as the label for classification. We also filter ¢"%" with a threshold to filter out those images
relevant to the vocabulary of the target set.

(N

hard arg max(s') if conf > th
C =
@ else

hard

where ¢ is the generated class label for hard classification.

4 Experiments

We conduct experiments and analysis on the task of long-tailed object detection. We mainly evaluate
our method on LVIS [12] val 1.0 for our main experiments and ablations. We also conduct experiments
on other datasets of long-tail distribution to further prove the effectiveness. We use DINO [61], a
advanced DETR-based detector due to the training efficiency and high performance.

4.1 Datasets and evaluation metrics.

Long-tail detection dataset. We mainly conduct experiments on LVIS [12], which contains 1203
classes with ~100K images. The classes are divided into rare, common, and frequent groups based
on the number of training images. The category distribution is extremely long-tailed since instances
in rare categories are usually less than 10. Moreover, we experiment on other datasets, e.g. Visual
Genome [22] and Openlmages [24], please refer to our supplementary material.

Extra data. We mainly use ImageNet-21k [5] as additional classification data. ImageNet-21k
consists of ~14M images for 21K classes, and there are 997 classes that overlap with the vocabulary
in LVIS. We follow the label mapping used in Detic [63] and denote the subset of overlapped classes
as ImageNet-LVIS, which contains ~1.5M images with 997 LVIS classes. For the full set, we treat
the data as unlabeled images and leverage our learning scheme to learn from it. We also treat the



Method Backbone Schedule | AP APs50 AP75 AP, AP, APy
DINO*[61] R50[16] I1x 28.8 38.4 30.3 18.2 26.5 36.1
MosaicOST [60] R50[16] I1x 25.0 40.8 26.5 20.2 23.9 28.3
Detic-DDETR [65] R50[16] 4x 31.7 - - 21.4 30.7 375
Detic-DDETRT [63, 65] R50[16] 4x 325 - - 26.2 31.3 36.6
Detic-CenterNet2 [63] R50% [16] 4x 353 48.7 37.2 28.2 338 40.0
Detic-CenterNet2} [63] R50% [16] 4x 36.8 50.7 38.6 314 36.0 40.1
RichSem (Ours) R50[16] Ix 322 423 339 24.1 29.9 38.3
RichSem (Ours) R50[16] 2% 34.9 455 36.6 26.4 325 413
RichSem (Ours) R50[16] 3x 35.1 45.8 36.8 26.0 32.6 41.8
RichSem i (Ours) R50[16] 1x 35.072.8 46.0 36.7 30.476.3  33.1 39.0
RichSem i (Ours) R50[16] 2X 37.172.2 482 39.0 29.913.5 356 42.0
RichSem i (Ours) R50x [16] 2X 40.115.2 519 42.3 36.2711.8 38.2 44.0
RichSem (Ours) Swin-T [33] I1x 34.9 455 36.9 26.0 32.6 413
RichSem i (Ours) Swin-T [33] 1x 3837134 49.8 404 34.118.1 363 423
RichSem (Ours) Swin-T [33] 2x 38.8 49.9 41.0 30.8 36.4 45.0
RichSem i (Ours) Swin-T [33] 2% 41.612.8 533 43.8 37.376.5  39.7 455
Detic-CenterNet2 [63] Swin-B [33] 4x 454 59.9 47.9 39.9 445 48.9
Detic-CenterNet21[63] Swin-B [33] 4x 46.9 62.2 494 45.8 455 49.0
RichSem (Ours) Swin-B [33] 2x 46.4 59.2 48.9 38.5 45.1 51.3
RichSem # (Ours) Swin-B [33] 2x 48.211.8  61.6 51.0 46.518.0  46.5 51.0
ViTDet [29] VIiT-L-MAE [14] | ~8X 51.2/49.2 - - - - -

ViTDet [29] ViT-H-MAE [14] | ~8X% 53.4/51.5 - - - - -

RichSem (Ours) Swin-L [33] 1x 47.0 59.9 49.6 412 459 50.7
RichSem i (Ours) Swin-L [33] 1x 49.812.8  63.7 52.5 48.617.4  49.7 50.5
RichSem (Ours) Swin-L [33] 2X 49.7 62.9 524 42.8 49.2 534
RichSem % (Ours) Swin-L [33] 2X 52.012.3 657 54.8 502174 515 53.3
RichSem (Ours) Focal-L [56] 1x 49.5 62.5 52.2 473 47.7 52.4
RichSem i (Ours) Focal-L [56] 1x 51.572.0 652 54.4 52.375.0 507 52.0
RichSem (Ours) Focal-L [56] 3% 51.4 64.8 54.2 47.6 49.8 54.9
RichSem i (Ours) Focal-L [56] 3x 53.612.2 672 56.7 52.815.2 526 55.2

Table 1: Results on LVIS val v1.0. * indicates that we train the model on LVIS using their official hyper-
parameters best trained on COCO; R50 indicates ResNet50 [16] pre-trained on ImageNet-1k, while R50%
indicates pre-trained on ImageNet-21k; RichSem (Ours) indicates that we train our baseline model under the
original object detection dataset with traditional loss; RichSem ¥ (Ours) indicates using additional extra data
under our training scheme. Besides, findicates that the model is trained with extra data. In this table, our models
use the subset of ImageNet-21k, of which categories overlap with LVIS vocabulary as extra dataset. The AP of
ViTDet includes the AP reported paper (the former) and the AP reported in their official repo (the later).

full set as unlabeled dataset ignoring the image-level labels, denoted as INet-Unl. Furthermore, we
explore an additional detection dataset Object365 [42] and an image-text pair dataset CC3M [43].

Evaluation metric. We report box AP on LVIS with the LVIS official evaluator, which also
contains AP,, AP., AP, for rare, common and frequent class, respectively. We mainly focus on the
performance gain on overall AP and AP of rare categories.

4.2 Implementation details

Baseline model. We take DINO [61], a powerful DETR-based detector with advanced query
denoising [27] as our baseline. Differently, we convert the object classification into vision-language
contrasting using the text features of categories.

Mixed dataset training. For experiments with extra data, we combine both detection datasets and
extra datasets together to train our detector. We sample images from detection and classification
datasets in a 1:1 ratio regardless of the original size of each dataset. Images in the same batch are
sampled from the same dataset for high training efficiency. For mixed dataset training, we denote the
schedule as the number of iterations on the target dataset for fair comparisons.

Training details. We adopt PyTorch for implementation and use 8 x V100 GPUs. We set the initial
learning rate as le-4 and multiply 0.1 at the 11-th, 20-th and 30-th epoch for 1x, 2x and 3x,
respectively, and set A\s;or+ = 0.5 for the soft semantics learning loss. Following [63], we use a
federated loss [64] and repeat factor sampling [12] for LVIS; we use category aware sampling for
Openlmages. We randomly resize an input image with its shorter side between 480 and 800, limiting



the longer size below 1333. Unlike training large models with larger scale images [29, 61], we use
the same recipe for all models without any tricks or test time augmentation (TTA). For training
with extra data, we use CLIP-RN50 to extract the semantic guidance for most models, while we use
CLIP-RN50x 16 [37] for Swin-L [33] and Focal-L [56] for better performance.

4.3 Main Results

Results on LVIS. Tab. 1 shows the result on LVIS. As shown in the table, detectors trained with
our framework outperforms those trained with regular training recipes, especially for rare categories.
When using a ResNet50 [16] as backbone networks,

our baseline model is fully converged under 3X  \ethod AP | AP, |AP. AP
schedule. Our RichSem under 2 x still outperforms Faster R-CNN [40] 241 147 222 305
the fully converged baseline, which demonstrates the — EQL-v2 [45] 255 |17.5 239 312
effectiveness of our proposed method. Moreover, the ~ BAGS [30] 260 | 172|249 3L1
experiments with Swin [33] backbones show consis- ~ Seesaw Loss [51] 264 1175 1253 315
tent gains. Our model with a Swin-L as backbone E/IFL Fzgs - ;Z; ?22 ig'j‘ ;z;‘
achieves 52.0 AP and 50.2 AP,., which outperforms CLOIS;‘; HIeal 295 |44 |26 319
the previous SoTA [29] by a large margin only under s~ Gurs) 306 1276 (207 320

1/4 training schedule. Overall, our RichSem makes

the detector better on tailed categories and achieves Table 2: Results on LVIS val v1.0 with Faster R-
significant gains on the corresponding AP, e.g. rare CNN as detector. All models use R50 as backbone.
and common categories. Moreover, with better back- § indicates using extra classification data.
bones, our RichSem achieves even balanced perfor-

mance on rare, common and frequent categories. Notably, with a much smaller model size and
standard data augmentations for training and testing, our method rivals the ViTDet [29] that uses huge-
sized model and sophisticated training recipes. We also compare compare the models with Faster
R-CNN [40] as detector shown in Table 2. We further compare with large-scale vision foundation
models [7, 53], please refer to our supplementary material.

4.4 Ablation Study

Comparisons with CLIP initialization. We replace the ResNet50 backbone with pre-trained CLIP
visual encoder to study whether it can lead to balanced learning. As shown in Table 3a, although
pre-trained CLIP has a strong ability to capture visual semantics, the detection performance even
drops after finetuning on LVIS. The low AP, of CLIP backbone indicates that it is still biased towards
the long-tailed distribution of downstream datasets. Therefore, using a frozen pre-trained CLIP
to extract visual semantics as extra “soft supervision” can keep the generalization capability than
building upon CLIP as initialization.

Effectiveness of the semantics branch. We study the importance of the proposed semantics branch
by sharing the parameters of two heads instead of using two independent heads. As shown in Table 3b,
when two heads share the parameters, the performance drops drastically and is even worse than
the baseline model. This suggests that the objective of semantics learning differs from object
classification. Therefore, semantics should be learned independently with the semantics branch.

Effectiveness of rich semantics of classification data. We conduct experiments using different types
of extra data. Initially, we utilized Object365 [42], a detection dataset, and utilized its box annotations
irrespective of the class labels. However, the performance gain was limited, as shown in Table 3c.
This further verifies the assumption that the localization capability is not the primary bottleneck
for long-tailed object detection [11]. Next, we experiment with ImageNet [5] and CC3M [43], two
datasets with whole-image labels. We treat these datasets as unlabeled data and generate pseudo
labels using Equation (7), denoted as INet-Unl and CC3M-Unl, respectively. As shown in Table 3c,
utilizing these two datasets as extra data significantly outperformed the baseline, particularly for the
rare categories. Furthermore, we employed ImageNet-LVIS, taxonomy mapped using Equation (6),
as extra data, which yields the best performance. Overall, the experiments demonstrate that long-
tailed object detection is primarily affected by object classification. Consequently, introducing rich
semantics within classification data effectively alleviates this limitation. It is worth noting that this
showcases our potential for further extension to unlabeled data.



Method AP AP, Extra branch | AP AP, AP, APy
baseline 322 24.1 baseline 322 24.1 29.9 38.3
CLIP init backbone | 30.6/1.6  22.2]1.9 X 311011 |24.670.5 283|1.6 37.2]1.1
RichSem 35.012.8  30.416.3 v 35.012.8 |30476.3  33.113.2  39.010.7
(a) Compared with CLIP initialized baseline. (b) Ablations on the semantic branch.
pertre AP AP, CLIP models |AP AP, Extradata | Lsoz¢ AP AP,
None 322 24.1 None 322 24.1 None 322 24.1
0365-Box  (33.070.8 24.810.7 RN50 35.012.8 30.476.3 INET.LVIS X 338116 269128
CC3M-Unl  [34.071.8 28.714.6 RN50x4 36.013.8 33.078.9 v 350128 304763
INet-Unl 34712.5 28.614.5 RN50x16  |36.274.0 31.917.8 INET-Unl X 329107 237004
INet-LVIS ~ [35.072.8 30.416.3 V' 347125 28.614.5
(c) Different extra datasets. (d) Soft semantics provided by (e) Soft semantics loss L, y;.
different CLIP models.
phackbone pod | AP |ap, AP, AP Method | AP |ap, AP, AP
IN-1K LVIS 322|241 299 383 wlo De®tre 322|241 299 383
IN-21K LVIS 357 |259 350 407 +Lsoft 336 |28.614.5 324 372
IN-1K LVIS+IN-21K | 350 |304 331 39.0 +Lioe 350 [30411.8 33.1 390
IN-21K LVIS+IN-21K | 375 |324 360 415
(f) Ablations on backbone pre-training data and down- (g) Lsost and L. on extra data.
stream detection data.
Nsoft AP | AP, AP, AP; AP | AP, AP, AP
# Only on LVIS # with Image-LVIS
0 322|241 29.9 383 338 269128 315716  39.411.1
0.2 324 (23803 30570.6 38.570.2 350 290149 333734  39.411.1
0.5 324 250109 30570.6 37.700.6 350 304163  33.173.2  39.010.7
1.0 32.1 27.012.9  29.8/0.1 36.9|1.4 348 295154 334735  38.710.4

(h) Ablations on the weight of soft semantics loss.
Table 3: RichSem ablations. All ablations are performed with RN50 as backbone under 1x schedule.

Stronger semantics lead to better detectors. We study the impact of CLIP with different backbones.
The results are shown in Table 3d. With the capability increased, the model achieves better perfor-
mance on overall AP. Besides, built upon a RN50x 16, our detector obtains significant improvements
on all metrics.

Semantic learning is effective to leverage extra data. Due to the data overlap between backbone pre-
training and detector training, we conduct an ablation on them to further demonstrate the effectiveness
of our method. As shown in the Table 3f, pre-training on large-scale data (ImageNet-21k) can
provide strong perception capability for the downstream detection task, with overall performance
gain. However, the performance on rare categories is still relatively low, indicating that this approach
does not well alleviate the long-tail effects in detection. In contrast, our method is more effective than
pre-training to handle long-tailed detection, especially for the tail categories. Notably, our approach
is still effective with strong pre-trained backbones, further improving performance on long-tailed
object detection.

Semantics as soft targets leads to balanced learning. The effectiveness of soft labels for low-shot
categories can be reaffirmed in Table 3e: when using extra data, detectors trained with the soft
semantics learning loss achieve better performance than those trained without the loss, especially for
rare categories and unlabeled extra data. Besides, our semantic learning on extra classification boosts
detection and classification at the same time thanks to our unified objective functions ( Section 3.3).
As shown in Table 3g, both rich semantics and coarse locations play significant roles in boosting
long-tail object detection. We further study the impact of soft classification objectives. We first
experiment without using extra data. As shown in the Table 3h, with distillation weight set to 1, the
performance of rare categories increases by ~3AP, while the results of frequent categories decrease
by 1.4. This suggests that semantics learning benefits those low-shot categories rather than overfitting
frequent categories. As the distillation weight decreases, the performance of rare classes also drops
but the results of frequent categories improve. After exploring additional data, the performance is no
longer sensitive to the distillation weight. Thanks to the additional data, semantics learning leads to
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Figure 4: Feature visualization between baseline and RichSem. We randomly sample two classes each from
the categories of rare, common, and frequent for visualization. Our RichSem shows well-clustered result across
different categories.

consistent performance gains for all categories. We further visualize the object features of our method.
Specifically, we normalize the features and employ Gaussian Kernel Density Estimation (KDE) in
R, following [52] to compare the distribution of object features across categories. As shown in the
Figure 4, the visualization indeed shows a clear distinction between the baseline and our RichSem.
Regarding the baseline, the distribution of object features lacks differentiation, often resulting in
overlapping patterns among categories, especially between rare and frequent categories. In contrast,
in RichSem, features belonging to each category, even rare categories, are well-clustered. This clear
intra-class and inter-class distribution indicate that our approach effectively enhances the region
classification capability of diverse categories. Therefore, our method effectively leads balanced
learning among classes with varying frequencies.

5 Conclusions and Future Work

We presented RichSem, a simple but effective way, to leverage extra data by learning rich semantics
and coarse locations to boost long-tailed object detection, alleviating the semantics insufficiency
and location sensitivity caused by taking image-level labels as supervision. Through extensive
experiments, we demonstrate our approach achieves state-of-the-art performance, without requiring
complex training and testing procedures. One possible limitation is that we treat the detection data
and classification data equally and use the same unified classification loss, which may be sub-optimal
for the categories with sufficient samples.

For future work, we believe our framework can be extended to semi-supervised object detec-
tion (SSOD) where golden labels are not annotated on the unlabeled data, since our method is
found to be robust when annotations are partially given. Moreover, the soft semantics learning for
classification data can be naturally applied for open-vocabulary and multi-dataset detection tasks.

Acknowledgement This project was supported by National Key R&D Program of China (No. 2021ZD0112805)
and National Natural Science Foundation of China (No. 62102092).
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