
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TEZO: EMPOWERING THE LOW-RANKNESS ON THE
TEMPORAL DIMENSION IN THE ZEROTH-ORDER OPTI-
MIZATION FOR FINE-TUNING LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Zeroth-order optimization (ZO) has demonstrated remarkable promise in effi-
cient fine-tuning tasks for Large Language Models (LLMs). In particular, recent
advances incorporate the low-rankness of gradients, introducing low-rank ZO es-
timators to further reduce GPU memory consumption. However, most existing
works focus solely on the low-rankness of each individual gradient, overlooking a
broader property shared by all gradients throughout the training, i.e., all gradients
approximately reside within a similar subspace. In this paper, we consider two
factors together and propose a novel low-rank ZO estimator, TeZO, which captures
the low-rankness across both the model and temporal dimension. Specifically,
we represent ZO perturbations along the temporal dimension as a 3D tensor and
employ Canonical Polyadic Decomposition (CPD) to extract each low-rank 2D
matrix, significantly reducing the training cost. TeZO can also be easily extended
to the Adam variant while consuming less memory than MeZO-SGD, and requiring
about only 35% memory of MeZO-Adam. Both comprehensive theoretical anal-
ysis and extensive experimental research have validated its efficiency, achieving
SOTA-comparable results with lower overhead of training time and memory.

1 INTRODUCTION

As the model size progresses at an extraordinary rate (Zhang et al., 2022; Touvron et al., 2023;
Achiam et al., 2023), memory and computational resources have become the primary bottleneck
limiting development. In response to this challenge, ZO has opened up new possibilities for efficient
training (Shen et al., 2023). Adopting gradient-free updates with a small amount of high-quality
data perfectly unlocks the knowledge of the entire domain, offering significant potential for several
practical applications. Since Spall (1992) introduced ZO as a promising alternative to FO in the
training process, it has been widely applied in gradient-computation-challenged scenarios (Wang
et al., 2018; Liu et al., 2020) and in black-box optimization (Chen et al., 2017; Tu et al., 2019).
Recent studies have also highlighted the great potential of ZO in fine-tuning LLMs. Malladi et al.
(2023) propose the MeZO method which adopts classical ZO-SGD (Ghadimi & Lan, 2013) for fine-
tuning. Furthermore, it reduces memory costs by only preserving random seeds instead of variables.
Compared to FO, it can achieve comparable performance while requiring approximately 10% of
memory in practice, greatly improving memory efficiency.

Although ZO has made significant progress, it still faces two challenges, i.e., i) lack of detailed
characterization of gradients; ii) the costs of optimization states to generate random variables
significantly increase as d grows. This also highlights the bottleneck of ZO methods in LLM
tasks. Recent advances learned the strong low-rank nature of gradients in LLMs (Wang et al., 2023;
Jaiswal et al., 2024), making low-rank representations in ZO methods as an ingenious solution to the
aforementioned issues. With barely compromising performance, low-rank ZO methods effectively
reduce the required memory for ZO estimations from O(d) to O(

√
dr) at most, where r is the

rankness constant (Chen et al., 2024; Yu et al., 2024). This implementation further endows the ZO
method with superior value in the tasks of fine-tuning LLMs.

Our Motivations. Existing methods only consider each individual gradient to be low-rank, which
cannot naturally extend memory efficiency to other advanced optimizers. In other words, isolated

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Iterations

To
p-

10
0 

Si
ng

ul
ar

 V
al

ue
s

10% of Top-1 Singular Value

(a) Low-rankness on gradients.

Layer ID

To
p-

10
0 

Si
ng

ul
ar

 V
al

ue
s

10% of Top-1 Singular Value

(b) Low-rankness on subspace.

-SGD -SGD-m -Adam
0

20

40

60

80

G
PU

 M
em

or
y 

(G
B

)

1.04×

2.01×

2.89×MeZO
TeZO

(c) Memory Efficiency.

Figure 1: (a) and (b) are test of the low-rankness of gradients. We finetune OPT-1.3B on SST-2 and
calculate top-100 singular values of gradients of layers.9.self_attn.out_proj.weight.
We then concatenate these singular value vectors and display them as a heat-map in (a). Then we
concatenate the normalized gradient of each layer over a total of T iterations into a matrix with the
size of dl × T , calculate the top-100 singular values corresponding to layers and display them as a
heat-map in (b). In (c), we record the GPU memory usage of MeZO, our TeZO, and corresponding
variants on training OPT-13B model. We also provide more interesting experiments on the low-
rankness and studies of subspace of gradients on LLaMA-7B in Appendix B.1.

gradient low-rankness cannot drive efficient storage and computation of optimizer states. This inspires
our contemplation: how can low-rankness be further incorporated into the ZO optimizer states?

To investigate an efficient approach to addressing this question, in this paper, we comprehensively
study the characteristics of the gradients in LLMs. As shown in Figure 1.(a) and (b), in the tasks
of fine-tuning LLMs, the gradients exhibit the following two properties simultaneously: i) the
individual gradient at each iteration is approximately low-rank; ii) all gradients along T iterations
lie almost within a similar subspace. Obviously, combining properties i) and ii) can lead to higher
efficiency. Inspired by this, we propose the TeZO estimator to empower the low-rankness on the
temporal dimension. Specifically, we estimate the ZO perturbations as a 3D tensor with the size of
m× n× T . By adopting the Canonical Polyadic Decomposition (CPD) (Hitchcock, 1927), the 3D
tensor can be estimated by the sum of r rank-1 tensors where r approximates its rank. The joint
low-rankness significantly reduces the cost of factor vectors during computation. At each iteration t,
we only need to generate temporal factor vector to extract a 2D matrix, further lowering the costs
from O(

√
dT ) to O(

√
d+ T ). We also introduce an auxiliary technique to dynamically select the

rank rl for each layer. TeZO naturally enables low-rank representations of various optimizer states,
thereby facilitating memory-efficient advanced zeroth-order optimizers. As shown in Figure 1.(c),
TeZO-Adam consumes less memory than MeZO-SGD, and requiring about only 35% memory of
MeZO-Adam. Both comprehensive theoretical analysis and extensive experimental research are
conducted to validate its efficiency. TeZO-Adam achieves SOTA-comparable performance while
requiring only the memory overhead of general ZO-SGD. We summarize our contributions as follows:

• By jointly considering low-rankness of gradients and their similarity on LLMs, we propose
a novel low-rank ZO estimator, TeZO, which constructs the ZO perturbations via CPD to
reduce the training overhead, which can be naturally extended to various optimizer states.

• We introduce an auxiliary technique to dynamically select the rank for each layer to further
reduce storage requirements. The dynamic rank assigns different rank coefficients to each
layer based on the low-rank characteristics of its parameters, providing a fine-grained
allocation scheme and effectively avoiding performance degradation caused by improper r.

• We prove that TeZO is an unbiased estimator of FO gradient, maintaining the comparable
variance and convergence rate as existing ZO methods with less memory requirements.
Extensive experiments are conducted to validate its efficiency and performance on LLMs.

2 RELATED WORK

Zero-Order Optimization. Since Spall (1992) proposed the ZO method, it has been extensively
studied and practically incorporated in various domains (Chen et al., 2017; Tu et al., 2019; Vemula

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

et al., 2019; Hajinezhad et al., 2019; Gratton et al., 2021). By avoiding the massive computation
and memory requirements of BP, it significantly reduces the training cost while maintaining high
performance. As an alternative to FO, it has also been widely explored from several optimization
perspectives, e.g. convergence for convex and non-convex (Wang et al., 2018; Golovin et al., 2019;
Cheng et al., 2021), non-smooth (Liu et al., 2018a; Kazemi & Wang, 2024; Rando et al., 2024),
variance reduction (Liu et al., 2018b; Ji et al., 2019) and primal dual methods (Liu et al., 2018a;
Yi et al., 2021; Huang et al., 2024). It has also demonstrated strong potential for applications in
certain practical scenarios, e.g. attack and defense (Zhao et al., 2020; Kariyappa et al., 2021), privacy
protection (Gratton et al., 2021; Zhang et al., 2023; Gupta et al.), fairness (Chen et al., 2023; Wang
et al., 2024b), multi-agent (Tang et al., 2020; Maritan & Schenato, 2023), and efficient training
(Nikolakakis et al., 2022; Fang et al., 2022; Mukhoty et al., 2023). These developments highlight the
powerful potential of ZO methods in deep learning and artificial intelligence.

Fine-tuning LLMs with ZO. In this paper, we focus on the tasks of fine-tuning LLMs. Recent
research on LLMs has demonstrated their immense value (Brown et al., 2020; Kojima et al., 2022).
However, expensive time and memory costs in the training have become a significant barrier and
hinder the research and application (Zhao et al., 2023; Naveed et al., 2023). To unlock the tremendous
potential of LLMs, researchers focus more on the training efficiency, leading to significant progress.
The application of ZO optimizers has become a shining star from an optimization perspective. Since
Malladi et al. (2023) introduce the MeZO method, a series of ZO optimizer variants have been widely
developed. Jiang et al. (2024); Yang et al. (2024); Zhao et al. (2024c;a) focus on incorporating
adaptivity and curvature information to accelerate ZO optimizers for LLMs. Liu et al. (2024);
Guo et al. (2024); Wang et al. (2024a) incorporate the sparsity to further reduce the calculations.
Gautam et al. (2024) expand the variance reduction ZO estimator and evaluate its improvements in
fine-tuning LLMs. These methods improve ZO methods from the general optimization perspective,
yield additional computational and memory overhead. Recently, Yu et al. (2024); Chen et al. (2024)
further learn the low-rankness of each single gradient and propose different low-rank ZO estimators.
These insightful works have advanced the application of ZO in fine-tuning LLMs.

3 PRELIMINARIES

In this section, we introduce notations and review developments of ZO and its recent advances in
fine-tuning LLMs. By default and unless stated otherwise, we use lowercase letters to represent
1D vectors, e.g. z, uppercase letters to represent 2D matrices, e.g. Z, and bold uppercase letters to
represent 3D tensors, e.g. Z. Scalars are represented as lowercase Greek letters, e.g. α. Other special
computation symbols will be introduced in detail when they are first mentioned.

ZO Optimizer. We consider the general and classical minimization problem:

min
w

f(w) ≜ Eξ∼D [f(w, ξ)] , (1)

where w ∈ Rd is the learnable parameters and ξ is the fine-tuning dataset sampled from the distribution
D. In this paper, we focus on a classical and widely adopted ZO estimator, Simultaneous Perturbation
Stochastic Approximation (SPSA) (Spall, 1992). Specifically, SPSA estimates ZO gradient as:

∇0f(w, ξ) =
f(w + ρz, ξ)− f(w − ρz, ξ)

2ρ
z, (2)

where z ∼ N (0, Id) is a random variable and ρ is the perturbation rate. Through two forward passes,
it measures the projection component of the true gradient in the direction of the random variable z.

Fine-tuning LLMs with ZO. MeZO (Malladi et al., 2023) explores the tremendous potential of ZO
methods in fine-tuning LLMs. Moreover, to reduce memory usage, it leverages PyTorch’s permutation
feature in random libs, replacing the storage of all random variables by recording the initial random
seed for each iteration, namely the resampling technique. This implementation enables the ZO
method to achieve up to a 12× memory saving in fine-tuning LLMs. The simple ZO-SGD method is
sufficient to achieve performance comparable to FO methods in most tasks.

Low-rank ZO. Generally, the parameter dimension of LLMs is extremely large, which constitutes
a new bottleneck for the further development of MeZO: training costs of the ZO gradients increase
linearly with the model dimension d. Furthermore, an important fact in fine-tuning LLMs is also

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

≈

𝑽𝒕
⊤𝑼𝒕

𝑽𝒕
⊤𝑼𝒕 𝜮𝒕

𝐋𝐎𝐙𝐎

𝐒𝐮𝐛𝐙𝐎

≈ + …

𝐓𝐞𝐙𝐎

𝒎

𝒏

𝑻 𝑻

𝒎

𝒏

𝒁𝒕 {𝒁𝒕}

Figure 2: The ZO diagrams for LOZO, SubZO, and our TeZO method. LOZO and SubZO focus on
estimating a single perturbation Zt as the product of low-rank matrices. TeZO construct the entire
perturbation set Z = {Zt} via the CPD in the 3D tensor.

ignored: the low-rankness of the gradients. Therefore, the applications of low-rank ZO techniques
have emerged. Chen et al. (2024) propose to apply matrix factorization as Z = UV ⊤ (Z ∈
Rm×n, U ∈ Rm×r, V ∈ Rn×r). Additionally, Yu et al. (2024) adopt the form Z = UΣV ⊤ where
Σ ∈ Rr×r, as shown in Figure 2. These techniques estimate the low-rank form of each individual
perturbation per iteration, reducing the training cost of the ZO method in fine-tuning LLMs. Inspired
by these insightful works, we examine another important aspect that is overlooked in the designs of
previous works, i.e., low-rankness on the temporal dimension. Through the joint low-rank estimation,
we propose the TeZO method which can further improve the efficiency of the ZO method in fine-
tuning LLMs. Further discussions are provided in the next section.

4 METHODOLOGY

In this section, we introduce our proposed TeZO method. Then we introduce the adaptive selection
of the rank of layer-wise gradients. Finally, we demonstrate how TeZO, as a structured ZO gradient
representation, enables memory-efficient updates of optimizer states.

4.1 CANONICAL POLYADIC DECOMPOSITION AND TEZO

Canonical Polyadic Decomposition (Hitchcock, 1927), also known as Parallel Factor Analysis, is
the tensor decomposition technique widely used in data analysis, signal processing, and machine
learning. It is a generalization of matrix factorization to higher-order tensors (multi-dimensional
arrays). CPD aims to decompose a 3D tensor Z ∈ Rm×n×T into a sum of rank-one tensors and each
rank-one tensor is expressed as the outer product of vectors:

Z ≈
r∑

s=1

χs ◦ us ◦ vs, (3)

where χs ∈ RT , us ∈ Rm, vs ∈ Rn are three factor vectors and ◦ denotes the outer product. Based
on understanding the low-rank nature along the temporal dimension, we propose a novel low-rank
estimation approach to represent the gradient perturbation variables at each iteration, as outlined in
Eq.(3). In LLMs, the proportion of 2D model parameters is much larger than that of 1D parameters,
so we primarily consider the 2D cases. Specifically, in addition to the conventional factor vectors u
and v for the model dimensions, we introduce the factor vectors χ for the temporal dimension. These
three dimensions are independent of each other. Both u and v can be initialized at the beginning of
training. Therefore, in the t-th iteration, we only need information related to the variable τs without

Table 1: Comparison of MeZO, SubZO, LOZO and TeZO on sampling and storage on W ∈ Rm×n.

Method Number of Total Sampling Number of Storage at Each Iteration

MeZO mnT mn
SubZO (m+ n+ r)rT mr + nr
LOZO (m+ n)rT mr / nr

TeZO (m+ n+ T )r r

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

any additional redundant variables, which can still significantly reduce training costs. Compared to
existing studies, we summarize the results in Table 1.

4.2 LAYER-WISE SELECTION OF THE RANK r

The selection of rank r remains an open challenge. Since ZO methods are typically employed in
scenarios where FO gradients are unavailable, it is difficult to directly determine the precise rank of
gradients. Recent studies have emphasized the feasibility of low-rank structures, and the rank r is
empirically treated as a constant hyperparameter. In fact, r essentially represents a trade-off between
performance and efficiency, and selecting an appropriate value for r can significantly enhance the
balance between these two factors. Although the constant selection can yield reliable performance,
our goal is to identify a more refined solution.

To comprehensively study the rank selection, we learn its connection to the parameters. We dynami-
cally select the rank on different layers in the TeZO method. We consider the general cascade layer
as: Xl = σl(Al), Al = WlXl−1 + bl, where σl(·) is activation function, l ≤ L is the index of each
layer, Wl and bl are the weight and bias of the l-th layer. Therefore, we have:

∂f

∂Wl
=

 L∏
p=l+1

Wp

⊤

∂Φ(σL, σL−1, · · · , σl), (4)

where ∂Φ(·) are the joint gradients for all activations from the total mini-batch data samples, whose
rank is closely related to the similarity of the input data. In this paper, we focus on the impact from
model parameters. According to the rank propagation, the rankness of each gradient satisfies:

Rank
(

∂f

∂Wl

)
≤ Rank

 L∏
p=l+1

Wp

 ≤ min (Rank (Wl+1) , · · · ,Rank (WL)) . (5)

Typically, during training, due to the use of weight decay regularization, the model parameters tend to
maintain a high degree of low-rankness. Therefore, the gradients also inherit this property, meaning
that the low-rankness of the gradients originates from the low-rankness of the model parameters. We
adaptively determine the rank of different layers based on the insight from Eq.(5). In LLMs, there is a
natural cascade block structure, where each block contains components such as the attention module
and the feed-forward network module. We adopt the truncated Eq.(5) to estimate the rankness of each
layer within a block. Specifically, we split L into B blocks as [{l0}, {l1}, · · · , {lB}]. The rankness
of the gradient of the l-th layer will be estimated as follows:

rl = min
(
{Rank

(
W{lb}

)
}, rmax

)
, (6)

where l ∈ {lb} and rmax is a constant to prevent the rank selection from becoming excessively
large. Rank(W ) = rW is defined as the largest rW singular values of the matrix W . Generally, in
our experiments, we uniformly set a specific threshold to determine rW that those singular values
are larger than the threshold, e.g. approximately 25% of the top-1 singular value. Due to the page
limitation, we show the ablation studies in Appendix B.1.4.

4.3 TEZO AND ITS EXTENSIONS ON MEMORY EFFICIENT OPTIMIZATION STATES

TeZO. In its implementation, we adopt the resampling technique proposed by MeZO to reduce
memory usage. Before each iteration, the random seed is reset to ensure sampling the same variables.
Through three perturbations, we can calculate the positive and negative terms, i.e., f+ = f(w+ρz, ξ)
and f− = f(w − ρz, ξ), and update the projected coefficient κ = (f+ − f−)/2ρ. At each iteration t,
we only need to sample the component of the temporal factor vector τ ∈ Rrl . Then, it updates via
the perturbation Gt = κtZt where Zt can be calculated according to the t-th dimension of Eq.(3).

Memory-Efficient First-order Momentum. Momentum-based methods typically offer greater
stability. However, its drawback lies in the requirement of doubling the storage to maintain the
first-order momentum variables in the optimizer state. In contrast, our proposed TeZO zeroth-order
representation can avoid this issue. When focusing on the first-order momentum of the l-th layer:

Mt = (1− β1)

t∑
k=0

rl∑
s=1

βk−t
1 κk(τk)s (us ◦ vs) =

rl∑
s=1

(
(1− β1)

t∑
k=0

βk−t
1 κkτk

)
s

(us ◦ vs) . (7)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Pipeline of ZO
1: Initialize the rank list [r1, · · · , rL] via Eq.(6)
2: Initialize the factor vectors {us} and {vs}
3: for t = 0, 1, 2, · · · , T − 1 do
4: sample the minibatch ξt and seed ζt
5: W = Perturbation(W,ρ, ζt, [rl])
6: f+ = f(W, ξ)
7: W = Perturbation(W,−2ρ, ζt, [rl])
8: f− = f(W, ξ)
9: W = Perturbation(W,ρ, ζt, [rl])

10: κt = (f+ − f−)/2ρ
11: W = Update(κt, ζt, {us}, {vs}, [rl])
12: end for
13:
14: Func Perturbation(W,ρ, ζ, [rl]):
15: reset the random seed as ζ
16: for Wl ∈ W do
17: sample τ ∼ N (0, Irl)
18: Zt =

∑rl
s=1 τs (us ◦ vs)

19: Wl = Wl + ρZt

20: end for

Algorithm 2 Update of TeZO-SGD/M/ADAM
1: Func Update(κ, ζ, {us}, {vs}, [rl]):
2: reset the random seed as ζ
3: for Wl ∈ W do
4: sample factor vector τ ∼ N (0, Irl)
5: (TeZO-SGD)
6: Gt =

∑rl
s=1 κτs (us ◦ vs)

7:
8: (TeZO-M)
9: τM = β1τM + (1− β1)κτ

10: Gt =
∑rl

s=1(τM )s (us ◦ vs)
11:
12: (TeZO-ADAM)
13: τM = β1τM + (1− β1)κτ
14: τV = β2τV + (1− β2)κ

2τ2

15: Mt =
∑rl

s=1(τM )s (us ◦ vs)
16: Vt =

∑rl
s=1(τV )s

(
u2
s ◦ v2s

)
17: Gt = Mt/

√
Vt + ϵ

18:
19: Wl = Wl − ηlGt

20: end for

According to the above equation, the computation of the first-order momentum term can be reformu-
lated by exchanging the order of summation—first performing momentum accumulation on the factor
vector τ , and then computing the momentum term via the outer product. As a result, the storage
requirement for the optimizer state variable is reduced to O(r).

Memory-Efficient Second-order Momentum. Adaptive optimizer is the mainstream optimization
for training LLMs, but its expensive storage requirements impose significant memory pressure.
Especially in zeroth-order optimizers, where activations are not stored for gradient computation, the
optimizer states become the dominant memory consumption. In contrast, our proposed TeZO method
can easily overcome this challenge. When focusing on the second-order momentum of the l-th layer:

(
∇0f(Wl)

)2
= κ2

t

(
rl∑

s=1

τs(us ◦ vs)

)2

=

rl∑
s=1

κ2
t τ

2
s (u

2
s ◦ v2s)︸ ︷︷ ︸

Separable Term

+κ2
t

rl∑
p̸=q

τpτq(upuq ◦ vpvq)︸ ︷︷ ︸
≈0

.
(8)

The second term, i.e., the cross term, has an overall zero expectation on each coordinate. In practice,
this term is approximately zero and negligible. Due to page limitation, we provide more experiments
in Appendix B.2. Therefore, TeZO enables nearly lossless second-order momentum computation
solely through the update of the separable term. Its accumulation can be viewed as a first-order
momentum form applied to the squared factor vectors, and can therefore be computed in a memory-
efficient manner using Eq.(7), which reduce the memory overhead from O(d) to O(r).

In fact, advanced optimizers that applies first-order and second-order moments can be efficiently
computed through the TeZO structure. In the main text, we present comparisons across three
commonly used optimizers, and in Appendix B.1.5, we provide further experiments on TeZO-LION.

5 THEORETICAL ANALYSIS

In this section, we mainly introduce the theoretical analysis of TeZO, including fundamental proper-
ties, convergence guarantees and the memory comparisons in the application of various optimizers.

Theorem 1 (Expectation and Variance) We consider the 2D parameters W ∈ Rm×n. Its FO
gradient is denoted as ∇f and ZO gradient is denoted as ∇0f . When using the TeZO method to

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Theoretical memory usage for the computation of the corresponding variables in Adam.

Method Weights Gradients First-order Mome. Second-order Mome.

MeZO mn mn mn mn
MeZO+LoRA mn+ (m+ n)r (m+ n)r (m+ n)r (m+ n)r

SubZO mn (m+ n+ r)r mn mn
LOZO mn (m+ n)r mr mn

TeZO mn (m+ n+ 1)r r r

estimate the ZO gradient with rank r and a sufficiently small perturbation rate ρ, the following holds:

Eτ,u,v

[
1

r
lim
ρ→0

∇0f

]
= ∇f, Eτ,u,v∥

1

r
lim
ρ→0

∇0f −∇f∥2 = δ∥∇f∥2, (9)

where δ = 1 +mn+ 2mn
r + 6(m+n)

r + 10
r .

Remark 1.1 TeZO is an unbiased zero-order estimator and its variance is linearly correlated with
the norm of the FO gradient. Moreover, we provide detailed relationships between the variance
coefficient δl and the matrix sizes ml, nl as well as rank rl. Previous work (Yu et al., 2024) focuses
on the impact of low-rankness on variance from the perspective of the subspace for the quadratic
objective. We provide the formal expression under the low-rank representation for a general smooth
objective. The variance for low-rank representation is slightly larger than that of the MeZO method,
i.e. mn, remaining within the same order. This indicates that TeZO has comparable ability to MeZO
in practice while requiring significantly less training costs.

Then we consider the convergence. In this paper, we consider the general non-convex objective with:
Assumption 1 f(·) is a smooth objective, i.e., for ∀x, y ∈ Rd, ∥∇f(x, ξ)−∇f(y, ξ)∥ ≤ λ∥x− y∥.

Assumption 2 The stochastic gradient is an unbiased estimator with bounded variance, i.e., for
each data sample ξ, Eξ [∇f(x, ξ)] = ∇f(x), Eξ∥∇f(x, ξ)−∇f(x)∥2 ≤ σ2.

These are two commonly adopted assumptions in ZO optimization. Prior works (Chen et al., 2024;
Yu et al., 2024) consistently impose the requirement that some or all factor vectors exhibit column
orthogonality. In contrast, our proof does not rely on the need for such additional constraints.
Theorem 2 (Convergence) Without loss of generality, we consider the 2D parameters W ∈ Rm×n.
Under Assumption 1 and 2, let η = O

(√
D0

λT (ρ2λ2δρ+δσ2)

)
≤ 1

λ(δ+1) where D0 = f(W0)− f(W⋆)

is the initialized bias, the sequence {Wt}T−1
t=0 generated by TeZO converges as:

1

T

T−1∑
t=0

E∥∇f(Wt)∥2 = O

(√
λD0 (ρ2λ2δρ + δσ2)

T

)
, (10)

where δρ = 15r2(m+3)3(n+3)3+36r3m3n3+r4m3n3

4 and δ is defined in Theorem 1.

Remark 2.1 This convergence result maintains the same rate of recent ZO advances. By substituting
the total parameters for d, we have δ = O(d) and δρ = O(d3). Let the perturbation rate ρ =

O(σλd
−1), we have the final rate as O(

√
λD0dσ2

T ) which recovers the general rate of the recent ZO
methods. This also demonstrates the advantages of the TeZO method, as it reduces the complexity of
random sample generation from O(d · T ) to O(

√
d+ T ) and effectively decreases memory usage,

while theoretically maintaining the similar convergence rate.

Theoretical Memory Overhead. We compare the memory requirements to demonstrate the advan-
tage of the TeZO in terms of memory efficiency. We mainly focus on the theoretical memory of
MeZO, MeZO+LoRA, LOZO, SubZO with Adam. By considering a 2D weight W ∈ Rm×n(m ≤ n),
we show the results in Table 2. Previous methods solely adopt low-rankness from the perspective of
gradients, and thus fail to effectively extend memory efficiency to optimizer states. TeZO introduces
temporal low-rankness, which can effectively reduces the storage requirements of optimizer states.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

SST-5 SNLI TREC
0

20

40

60

80

100

A
cc

ur
ac

y 
(%

)

SST-5 SNLI TREC

FT
Zero-Shot

MeZO
SubZO

LOZO
TeZO

MeZO-Adam
SubZO-Adam

LOZO-Adam
TeZO-Adam

Figure 3: Fine-tuning RoBERTa-large for 80k iterations under k = 16 (left) and k = 512 (right).

Table 3: Performance and averaged memory usage of fine-tuning OPT-13B for 15k iterations.

SST-2 CB BoolQ WIC M-RC SQAD DROP Memory

FT 93.5 84.0 76.4 70.0 71.1 84.7 31.5 247.26 G
ZERO-SHOT 58.5 46.4 59.1 55.2 46.7 46.6 14.4 26.17 G

MEZO 90.1(0.5) 67.9(0.8) 66.1(0.6) 54.7(0.5) 57.7(0.9) 79.6(1.0) 30.4(0.3) 28.22 G
SUBZO 91.3(0.7) 67.9(0.8) 66.1(0.5) 55.9(0.4) 57.3(0.8) 80.7(1.2) 30.5(0.4) 28.65 G
LOZO 90.3(0.6) 67.9(0.8) 65.6(0.5) 55.3(0.5) 56.9(0.9) 80.5(0.9) 30.1(0.8) 27.39 G
TEZO 90.2(0.7) 69.6(0.8) 65.1(0.4) 54.3(0.4) 56.8(0.7) 80.7(0.7) 29.6(0.4) 27.41 G

MEZO-M 90.6(0.5) 67.9(0.8) 65.5(0.5) 54.6(0.3) 57.9(0.9) 79.5(1.1) 30.4(0.6) 53.07 G
SUBZO-M 91.3(0.5) 67.9(0.8) 65.2(0.7) 54.9(0.7) 57.5(0.8) 80.5(1.3) 30.1(0.7) 55.44 G
LOZO-M 90.7(0.4) 67.1(0.6) 65.7(0.8) 55.7(0.5) 57.7(0.8) 80.7(1.1) 29.9(0.5) 27.44 G
TEZO-M 91.1(0.4) 69.6(0.6) 65.6(0.6) 55.6(0.5) 57.9(0.9) 80.9(0.9) 30.4(0.5) 27.43 G

ZO-ADAMU 92.0(0.8) 67.9(0.6) 71.0(0.7) 59.7(0.4) 59.4(0.6) 82.4(0.9) 31.1(0.6) 77.12 G
MEZO-ADAM 92.4(0.5) 67.9(0.6) 70.0(0.7) 58.7(1.1) 58.9(0.5) 81.8(0.8) 30.7(0.4) 78.16 G
SUBZO-ADAM 92.8(0.5) 67.9(0.8) 70.3(0.6) 60.3(0.5) 59.9(0.5) 81.3(0.8) 30.5(0.3) 78.85 G
LOZO-ADAM 93.2(0.4) 69.6(0.8) 70.0(0.6) 59.7(0.6) 59.7(0.6) 82.6(0.6) 30.3(0.2) 53.31 G
TEZO-ADAM 93.3(0.5) 69.6(0.8) 71.8(0.8) 60.5(0.7) 60.3(0.5) 84.0(1.1) 30.8(0.3) 28.04 G

6 EXPERIMENTS

In this section, we mainly show the empirical studies. We follow the recent studies of fine-tuning
LLMs tasks with ZO methods (Malladi et al., 2023; Yu et al., 2024; Chen et al., 2024; Jiang et al.,
2024) and adopt the similar setups to validate the efficiency. The main text primarily introduces
baselines, performance evaluations, and training costs. Due to page limitations, other contents,
including experimental details, hyperparameter selections, have been stated in Appendix B.

Baselines and setups. We select recent advances of ZO and low-rank ZO methods on fine-tuning
LLM tasks as baselines, including MeZO (Malladi et al., 2023), LOZO (Chen et al., 2024), SubZO
(Yu et al., 2024), and their variants of momentum-based and Adam-based extensions in their works.
We also compare ZO-AdaMU (Jiang et al., 2024) which focuses on adaptivity. Similar to these works,
we conducted tests on different models, including RoBERTa-large (Liu et al., 1907), OPT (Zhang
et al., 2022), and LLaMA (Touvron et al., 2023). We select a total of 16 datasets for testing and
compute the final average performance to fairly compare the overall efficiency of each method.

Medium-sized Models. We conduct the experiments on the RoBERTa-large model for the general
sentiment classification, natural language inference and text retrieval tasks, as shown in Figure 3.
To eliminate experimental randomness, the reported results are the averages of 5 runs with different
random seeds. It clearly demonstrates the efficiency of the ZO method on medium-sized models. In
fact, for medium-sized models, MeZO remains the most accurate ZO method.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Fine-tuning LLaMA-7B and LLaMA-30B for 20k iterations.

LLAMA-7B LLAMA-30B

SST-2 RTE WIC AVG. SST-2 RTE WIC AVG.

FT 95.6 86.3 70.4 +0 95.9 88.2 71.1 +0
ZERO-SHOT 59.7 49.8 50.6 -30.7 63.5 55.9 58.4 -25.8

MEZO 93.7(0.7) 69.0(0.8) 60.5(0.4) -9.7 93.5(0.6) 69.7(0.3) 63.5(0.3) -9.5
SUBZO 93.1(0.8) 67.9(0.8) 59.3(0.5) -10.6 92.8(0.6) 68.4(0.4) 63.0(0.4) -10.3
LOZO 93.6(0.4) 69.5(0.7) 60.2(0.4) -9.7 93.8(0.5) 69.6(0.2) 63.2(0.3) -9.4
TEZO 92.9(0.6) 67.0(0.9) 59.9(0.6) -10.8 94.0(0.5) 69.5(0.3) 64.2(0.6) -9.2

MEZO-ADAM 94.4(0.5) 71.4(0.9) 61.9(0.5) -8.2 94.8(0.9) 72.2(0.7) 64.1(0.3) -8.0
SUBZO-ADAM 93.8(0.7) 72.4(1.1) 60.5(0.4) -8.5 94.0(0.4) 74.1(0.6) 63.0(0.3) -8.0
LOZO-ADAM 94.6(0.5) 73.4(0.8) 60.6(0.7) -7.9 94.8(0.5) 74.6(0.8) 63.9(0.3) -7.3
TEZO-ADAM 94.6(0.4) 75.0(1.2) 60.8(0.3) -7.3 94.7(0.3) 76.5(0.9) 64.3(0.5) -6.5

26.43G 80G
TeZO-Adam
LOZO-Adam

SubZO-Adam
MeZO-Adam

TeZO-m
LOZO-m

SubZO-m
MeZO-m

TeZO
LOZO

SubZO
MeZO

Zero-Shot

2.89×

Base
Parameters
Opt States

(a) Memory breakdown on fine-tuning OPT-13B.

388.1ms
TeZO-Adam
LOZO-Adam

SubZO-Adam
MeZO-Adam

TeZO-m
LOZO-m

SubZO-m
MeZO-m

TeZO
LOZO

SubZO
MeZO

Zero-Shot

1.63×

Sampling Zt

Perturbate
Forward
Update Wt

(b) Wall-time breakdown on fine-tuning OPT-13B.

Figure 4: GPU memory usage (a) and wall-clock time (b) for fine-tuning OPT-13B on the SST-2
dataset on a single H100 device. More experiments are stated in Appendix B.4.

Large-sized Models. We conduct experiments on OPT-13B and LLaMA-7B, as shown in Table 3 4.
The reported results are the averages of 3 runs with different random seeds. The low-rank ZO methods
and their variants generally perform better than the vanilla MeZO method. MeZO-m and MeZO-Adam
can achieve about 0.2% and 2.1% improvements. Due to the strong low-rank nature of TeZO, the
alignment of factor vectors used in adaptivity still retains strong subspace properties. In practical
training, the benefit of this advantage is that it constantly enforces the adaptive learning rate to stay
synchronized within the subspace. Therefore, TeZO-Adam can still achieve the SOTA-comparable
performance, about 2.2% improvement on LLaMA-7B and 2.8% improvement on OPT-13B.

Memory Usage and Wall-clock Time. We evaluate the GPU memory usage and wall-clock time for
different methods. Figure 4. (a) shows the memory cost of ZO mainly consists of two parts, parameters
and optimizer states. For the MeZO baseline, -Adam variant typically consumes 3× the storage.
However, our proposed TeZO-Adam method requires less storage than MeZO, and is significantly
lower than MeZO-Adam (∼34.6%). Figure 4. (b) shows the wall-clock time comparisons, primarily
including sampling, perturbations, forward pass, and update parameters. our TeZO-Adam maintains
a speed comparable to the MeZO and is 1.63× faster than MeZO-Adam.

7 CONCLUSION

Inspired by the similarity in the gradient subspace, in this paper, we combine the low-rank properties
in both the model and the temporal dimension and propose a novel low-rank ZO method, named
TeZO. Moreover, TeZO can easily implement memory-efficient variants of momentum and Adam,
maintaining the same resource consumption as standard ZO-SGD, but with better performance. We
prove that TeZO maintains the same convergence rate as previous low-rank ZO methods while
requiring fewer training costs. Furthermore, we conduct extensive evaluations of TeZO and its
variants in fine-tuning tasks of LLMs, which demonstrates the significant potential of low-rank ZO.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Aochuan Chen, Yimeng Zhang, Jinghan Jia, James Diffenderfer, Jiancheng Liu, Konstantinos
Parasyris, Yihua Zhang, Zheng Zhang, Bhavya Kailkhura, and Sijia Liu. Deepzero: Scaling up
zeroth-order optimization for deep model training. arXiv preprint arXiv:2310.02025, 2023.

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order
optimization based black-box attacks to deep neural networks without training substitute models.
In Proceedings of the 10th ACM workshop on artificial intelligence and security, pp. 15–26, 2017.

Yiming Chen, Yuan Zhang, Liyuan Cao, Kun Yuan, and Zaiwen Wen. Enhancing zeroth-order
fine-tuning for language models with low-rank structures. arXiv preprint arXiv:2410.07698, 2024.

Shuyu Cheng, Guoqiang Wu, and Jun Zhu. On the convergence of prior-guided zeroth-order
optimization algorithms. Advances in Neural Information Processing Systems, 34:14620–14631,
2021.

Wenzhi Fang, Ziyi Yu, Yuning Jiang, Yuanming Shi, Colin N Jones, and Yong Zhou. Communication-
efficient stochastic zeroth-order optimization for federated learning. IEEE Transactions on Signal
Processing, 70:5058–5073, 2022.

Tanmay Gautam, Youngsuk Park, Hao Zhou, Parameswaran Raman, and Wooseok Ha. Variance-
reduced zeroth-order methods for fine-tuning language models. arXiv preprint arXiv:2404.08080,
2024.

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic
programming. SIAM journal on optimization, 23(4):2341–2368, 2013.

Daniel Golovin, John Karro, Greg Kochanski, Chansoo Lee, Xingyou Song, and Qiuyi Zhang. Gradi-
entless descent: High-dimensional zeroth-order optimization. arXiv preprint arXiv:1911.06317,
2019.

Cristiano Gratton, Naveen KD Venkategowda, Reza Arablouei, and Stefan Werner. Privacy-preserved
distributed learning with zeroth-order optimization. IEEE Transactions on Information Forensics
and Security, 17:265–279, 2021.

Wentao Guo, Jikai Long, Yimeng Zeng, Zirui Liu, Xinyu Yang, Yide Ran, Jacob R Gardner, Osbert
Bastani, Christopher De Sa, Xiaodong Yu, et al. Zeroth-order fine-tuning of llms with extreme
sparsity. arXiv preprint arXiv:2406.02913, 2024.

Devansh Gupta, Meisam Razaviyayn, and Vatsal Sharan. On the inherent privacy of two point zeroth
order projected gradient descent. In OPT 2024: Optimization for Machine Learning.

Davood Hajinezhad, Mingyi Hong, and Alfredo Garcia. Zone: Zeroth-order nonconvex multiagent
optimization over networks. IEEE transactions on automatic control, 64(10):3995–4010, 2019.

Frank L Hitchcock. The expression of a tensor or a polyadic as a sum of products. Journal of
Mathematics and Physics, 6(1-4):164–189, 1927.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Feihu Huang, Shangqian Gao, Jian Pei, and Heng Huang. Nonconvex zeroth-order stochastic admm
methods with lower function query complexity. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2024.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ajay Jaiswal, Lu Yin, Zhenyu Zhang, Shiwei Liu, Jiawei Zhao, Yuandong Tian, and Zhangyang Wang.
From galore to welore: How low-rank weights non-uniformly emerge from low-rank gradients.
arXiv preprint arXiv:2407.11239, 2024.

Kaiyi Ji, Zhe Wang, Yi Zhou, and Yingbin Liang. Improved zeroth-order variance reduced algorithms
and analysis for nonconvex optimization. In International conference on machine learning, pp.
3100–3109. PMLR, 2019.

Shuoran Jiang, Qingcai Chen, Youcheng Pan, Yang Xiang, Yukang Lin, Xiangping Wu, Chuanyi Liu,
and Xiaobao Song. Zo-adamu optimizer: Adapting perturbation by the momentum and uncertainty
in zeroth-order optimization. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 18363–18371, 2024.

Sanjay Kariyappa, Atul Prakash, and Moinuddin K Qureshi. Maze: Data-free model stealing attack
using zeroth-order gradient estimation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 13814–13823, 2021.

Ehsan Kazemi and Liqiang Wang. Efficient zeroth-order proximal stochastic method for nonconvex
nonsmooth black-box problems. Machine Learning, 113(1):97–120, 2024.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems, 35:
22199–22213, 2022.

Sijia Liu, Jie Chen, Pin-Yu Chen, and Alfred Hero. Zeroth-order online alternating direction method
of multipliers: Convergence analysis and applications. In International Conference on Artificial
Intelligence and Statistics, pp. 288–297. PMLR, 2018a.

Sijia Liu, Bhavya Kailkhura, Pin-Yu Chen, Paishun Ting, Shiyu Chang, and Lisa Amini. Zeroth-
order stochastic variance reduction for nonconvex optimization. Advances in Neural Information
Processing Systems, 31, 2018b.

Sijia Liu, Pin-Yu Chen, Bhavya Kailkhura, Gaoyuan Zhang, Alfred O Hero III, and Pramod K
Varshney. A primer on zeroth-order optimization in signal processing and machine learning:
Principals, recent advances, and applications. IEEE Signal Processing Magazine, 37(5):43–54,
2020.

Y Liu, M Ott, N Goyal, J Du, M Joshi, D Chen, O Levy, M Lewis, L Zettlemoyer, and V Stoyanov.
Roberta: A robustly optimized bert pretraining approach. arxiv [preprint](2019). arXiv preprint
arXiv:1907.11692, 1907.

Yong Liu, Zirui Zhu, Chaoyu Gong, Minhao Cheng, Cho-Jui Hsieh, and Yang You. Sparse mezo: Less
parameters for better performance in zeroth-order llm fine-tuning. arXiv preprint arXiv:2402.15751,
2024.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen, and Sanjeev
Arora. Fine-tuning language models with just forward passes. Advances in Neural Information
Processing Systems, 36:53038–53075, 2023.

Alessio Maritan and Luca Schenato. Zo-jade: Zeroth-order curvature-aware distributed multi-agent
convex optimization. IEEE Control Systems Letters, 7:1813–1818, 2023.

Bhaskar Mukhoty, Velibor Bojkovic, William de Vazelhes, Xiaohan Zhao, Giulia De Masi, Huan
Xiong, and Bin Gu. Direct training of snn using local zeroth order method. Advances in Neural
Information Processing Systems, 36:18994–19014, 2023.

Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar, Muhammad Usman,
Naveed Akhtar, Nick Barnes, and Ajmal Mian. A comprehensive overview of large language
models. arXiv preprint arXiv:2307.06435, 2023.

Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions.
Foundations of Computational Mathematics, 17(2):527–566, 2017.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Konstantinos Nikolakakis, Farzin Haddadpour, Dionysis Kalogerias, and Amin Karbasi. Black-box
generalization: Stability of zeroth-order learning. Advances in neural information processing
systems, 35:31525–31541, 2022.

Marco Rando, Cesare Molinari, Lorenzo Rosasco, and Silvia Villa. An optimal structured zeroth-
order algorithm for non-smooth optimization. Advances in Neural Information Processing Systems,
36, 2024.

Li Shen, Yan Sun, Zhiyuan Yu, Liang Ding, Xinmei Tian, and Dacheng Tao. On efficient training of
large-scale deep learning models: A literature review. arXiv preprint arXiv:2304.03589, 2023.

James C Spall. Multivariate stochastic approximation using a simultaneous perturbation gradient
approximation. IEEE transactions on automatic control, 37(3):332–341, 1992.

Yujie Tang, Junshan Zhang, and Na Li. Distributed zero-order algorithms for nonconvex multiagent
optimization. IEEE Transactions on Control of Network Systems, 8(1):269–281, 2020.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Chun-Chen Tu, Paishun Ting, Pin-Yu Chen, Sijia Liu, Huan Zhang, Jinfeng Yi, Cho-Jui Hsieh, and
Shin-Ming Cheng. Autozoom: Autoencoder-based zeroth order optimization method for attacking
black-box neural networks. In Proceedings of the AAAI conference on artificial intelligence,
volume 33, pp. 742–749, 2019.

Anirudh Vemula, Wen Sun, and J Bagnell. Contrasting exploration in parameter and action space:
A zeroth-order optimization perspective. In The 22nd International Conference on Artificial
Intelligence and Statistics, pp. 2926–2935. PMLR, 2019.

Fei Wang, Li Shen, Liang Ding, Chao Xue, Ye Liu, and Changxing Ding. Simultaneous computation
and memory efficient zeroth-order optimizer for fine-tuning large language models. arXiv preprint
arXiv:2410.09823, 2024a.

Hongyi Wang, Saurabh Agarwal, Yoshiki Tanaka, Eric Xing, Dimitris Papailiopoulos, et al. Cuttlefish:
Low-rank model training without all the tuning. Proceedings of Machine Learning and Systems, 5:
578–605, 2023.

Yining Wang, Simon Du, Sivaraman Balakrishnan, and Aarti Singh. Stochastic zeroth-order opti-
mization in high dimensions. In International conference on artificial intelligence and statistics,
pp. 1356–1365. PMLR, 2018.

Zhaohui Wang, Min Zhang, Jingran Yang, Bojie Shao, and Min Zhang. Maft: Efficient model-
agnostic fairness testing for deep neural networks via zero-order gradient search. In Proceedings
of the IEEE/ACM 46th International Conference on Software Engineering, pp. 1–12, 2024b.

Yifan Yang, Kai Zhen, Ershad Banijamal, Athanasios Mouchtaris, and Zheng Zhang. Adazeta:
Adaptive zeroth-order tensor-train adaption for memory-efficient large language models fine-
tuning. arXiv preprint arXiv:2406.18060, 2024.

Xinlei Yi, Shengjun Zhang, Tao Yang, Tianyou Chai, and Karl H Johansson. Linear convergence
of first-and zeroth-order primal–dual algorithms for distributed nonconvex optimization. IEEE
Transactions on Automatic Control, 67(8):4194–4201, 2021.

Ziming Yu, Pan Zhou, Sike Wang, Jia Li, and Hua Huang. Subzero: Random subspace zeroth-order
optimization for memory-efficient llm fine-tuning. arXiv preprint arXiv:2410.08989, 2024.

Liang Zhang, Kiran Koshy Thekumparampil, Sewoong Oh, and Niao He. Dpzero: dimension-
independent and differentially private zeroth-order optimization. In International Workshop on
Federated Learning in the Age of Foundation Models in Conjunction with NeurIPS 2023, 2023.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Huaqin Zhao, Jiaxi Li, Yi Pan, Shizhe Liang, Xiaofeng Yang, Wei Liu, Xiang Li, Fei Dou, Tianming
Liu, and Jin Lu. Helene: Hessian layer-wise clipping and gradient annealing for accelerating
fine-tuning llm with zeroth-order optimization. arXiv preprint arXiv:2411.10696, 2024a.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. arXiv preprint
arXiv:2403.03507, 2024b.

Pu Zhao, Pin-Yu Chen, Siyue Wang, and Xue Lin. Towards query-efficient black-box adversary
with zeroth-order natural gradient descent. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pp. 6909–6916, 2020.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

Yanjun Zhao, Sizhe Dang, Haishan Ye, Guang Dai, Yi Qian, and Ivor W Tsang. Second-order
fine-tuning without pain for llms: A hessian informed zeroth-order optimizer. arXiv preprint
arXiv:2402.15173, 2024c.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A DECLARATION

In the preparation of this manuscript, large language models were used solely for spelling and
grammar correction. Beyond this purpose, no other large-model-based tools were employed. We
include a code demo in the supplementary material and provide detailed tables of hyperparameter
choices in the main text to support the reproducibility of this work. Moreover, our work focuses
purely on algorithmic research, relying solely on commonly used public datasets and models from
the research community, and does not involve any other ethical concerns.

B EXPERIMENT MATERIALS

B.1 LOW RANKNESS IN LLMS

This property has been well studied and validated by several works. Especially in large models,
the low-rank nature of parameters, gradients, and the FO optimizer states have triggered a series of
studies. The most representative works include LoRA low-rank structure (Hu et al., 2021), GaLore
low-rank optimization (Zhao et al., 2024b), and so on. In the main text, we study the low-rankness on
the OPT-1.3B model. Here, we also show tests of the low-rankness on the LLaMA-7B.

B.1.1 LOW RANKNESS OF EACH SINGLE GRADIENT

We first learn the low rankness of each single gradient. Similarly, we consider the 2D parameters
Wl ∈ Rm×n. Then we calculate the top-100 singular values of its gradients ∇Wl

f ∈ Rm×n to test
the low-rankness, As shown in Figure 5.

IterationsTo
p-

10
0 

Si
ng

ul
ar

 V
al

ue
s

2% of Top-1 Singular Value

0.005

0.010

0.015

0.020

0.025

0.030

(a) layers.6.self_attn.k_proj

IterationsTo
p-

10
0 

Si
ng

ul
ar

 V
al

ue
s

2% of Top-1 Singular Value

0.02

0.04

0.06

0.08

0.10

(b) layers.12.self_attn.v_proj

IterationsTo
p-

10
0 

Si
ng

ul
ar

 V
al

ue
s

2% of Top-1 Singular Value

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

(c) layers.18.self_attn.q_proj

IterationsTo
p-

10
0 

Si
ng

ul
ar

 V
al

ue
s

2% of Top-1 Singular Value

0.005

0.010

0.015

0.020

(d) layers.24.self_attn.o_proj

Figure 5: We finetune LLaMA-7B on SST-2 to test low-rankness of gradients. We set the batchsize
as 16 and train 500 steps with 8000 samples on a H200 device. The training loss decreases from 1.04
to 0.13. We analyze the low-rank properties of the WK , WV , WQ and WO parameters in the 6-th,
12-th, 18-th, and 24-th modules at each iteration (WK ,WV ,WQ,WO ∈ R4096×4096). The white
lines represent the indices where the singular values are 2% of the maximum singular value.

It is clear that gradients are low-rank on LLaMA-7B model and the low-rankness is even greater than
that of OPT-1.3B. After around index-20, the singular value is almost completely lost. It is worth
noting that in our tests, the data samples used for each gradient computation are completely
different, which further emphasizes the universality of gradient low-rankness in LLMs.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B.1.2 LOW RANKNESS OF GRADIENT SUBSPACE

The low-rankness of each individual gradient has already been widely acknowledged. In this
part, we continue to explore the low-rank subspace of all gradients in the LLaMA-7B model.
The same, we consider the 2D parameters Wl ∈ Rm×n trained for T iterations. We normalize
each flattened gradient and concatenate them along the T dimension to form a new matrix as
G = [gwl,0, gwl,1, · · · , gwl,T ] ∈ Rmn×T where gwl,t = ∇wl

ft/∥∇wl
ft∥ ∈ Rmn. And then we

calculate the cosine value by G⊤G. It is important to note that without normalization, the low-
rankness of this matrix naturally holds. This is because when the loss is large, the gradients are
naturally large. As training progresses and the loss becomes smaller, the gradients will be much
smaller. If these gradients are concatenated directly, although it still forms a low-rank matrix, this
low-rank nature is inconsistent with the motivation behind our proposed TeZO method. TeZO expects
similarity across the entire gradient space. Since we are always more concerned with whether the
gradient direction is similar, we study the properties of each normalized gradient, specifically whether
all gradients lie in the same subspace, as shown in Figure 6.

Iterations

It
er

at
io

ns

0.0

0.2

0.4

0.6

0.8

1.0

(a) layers.15.self_attn.v_proj

Iterations

It
er

at
io

ns

0.0

0.2

0.4

0.6

0.8

1.0

(b) layers.28.self_attn.o_proj

Figure 6: We finetune LLaMA-7B on SST-2 to test the similarity between gradients at different
iterations. Similarly, we set the batchsize as 16 and train 500 steps with 8000 samples on a H200
device. The training loss decreases from 1.04 to 0.13. We calculate the cosine value of each gradient
pair (∇Wl

ft1 ,∇Wl
ft2) where t1, t2 ∈ [0, 1, 2, · · · , 499] and show their values as the heat maps

above.

It can be seen that the similarity between gradients is generally high, and the distribution of cosine
distances is relatively concentrated. This also highlights the low-rankness of the gradient space in
training LLMs, where gradients from different samples exhibit strong similarity.

B.1.3 LOW-RANKNESS BETWEEN WEIGHTS AND GRADIENTS

In this part, we explore the close relationship between the low-rankness of gradients and that of model
parameters.

0 100 200 300 400 500
Iterations

0

20

40

60

80

100

In
de

x 
of

 S
in

gu
la

r 
Va

lu
es

5% of Top-1 Singular Value in Grads
30% of Top-1 Singular Value in Params
35% of Top-1 Singular Value in Params
40% of Top-1 Singular Value in Params

(a) layers.6.self_attn.k_proj

0 100 200 300 400 500
Iterations

0

20

40

60

80

100

In
de

x 
of

 S
in

gu
la

r 
Va

lu
es

5% of Top-1 Singular Value in Grads
30% of Top-1 Singular Value in Params
35% of Top-1 Singular Value in Params
40% of Top-1 Singular Value in Params

(b) layers.18.self_attn.q_proj

Figure 7: We finetune LLaMA-7B on SST-2 to test the similarity between gradients at different
iterations. We compared the relationship between the low-rank properties of parameters and gradients,
and demonstrat the rank levels of parameters.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

We can observe that, although the degree of low-rankness in gradients and parameters is not strictly
aligned, they still exhibit a high degree of correlation within a certain fluctuation range. In fact,
due to the very small learning rate, the gradient updates for individual parameters are negligible,
which allows the low-rank nature of the model to remain relatively stable. This also validates the
effectiveness of our dynamic selection method within a certain range. The dynamic selection method
eliminates the need for additional hyperparameter tuning while ensuring experimental stability.

B.1.4 COMPARISON BETWEEN DYNAMIC RANKING AND STATIC RANKING

In this section, we mainly compare the differences between dynamic ranking and static ranking. By
examining these two approaches, we aim to highlight their respective strengths and limitations, and
emphasize that dynamic ranking offers superior adaptability and personalization. We conducted
ablation studies on TeZO-Adam for training OPT-13B, 15K iterations.

Table 5: Comparison between dynamic ranking and static ranking.

SST2 MultiRC BoolQ WIC Averaged r

r = 8 89.7 (0.3) 57.1 (0.2) 69.4 (0.6) 59.2 (0.5) 8
r = 256 92.9 (0.6) 59.7 (0.3) 71.3 (0.6) 60.1 (0.6) 256
r = 1024 92.8 (0.5) 59.5 (0.7) 71.2 (0.7) 60.3 (0.5) 1024
dynamic 93.3 (0.5) 60.3 (0.5) 71.8 (0.8) 60.9 (0.7) 31.52

As shown in Table 5, the results above present our evaluations under various fixed ranks, where
we observe that relatively large fixed ranks are often required to achieve competitive performance.
Although the overall trend suggests the existence of an optimal rank choice, such a selection is
difficult to determine in practice and may vary considerably across different datasets. As discussed in
the paper, different layers and parameters demonstrate varying degrees of low-rank characteristics. To
better capture this layer-wise heterogeneity, we propose a dynamic, layer-wise rank selection strategy.
This adaptive mechanism aligns rank allocation more closely with the model’s intrinsic structure,
leading to improved efficiency and enhanced performance.

More importantly, compared with static settings, dynamic rank selection can substantially reduce
computational complexity. This is because most layers do not require a large rank, and only a subset
of critical layers need higher ranks to maintain strong performance.

B.1.5 APPLICABILITY TO OTHER ADVANCED OPTIMIZERS

Advanced optimizers typically rely on low-rank accumulation of gradients or their squared values. For
example, the recently proposed LION optimizer applies the sign function after first-order momentum
updates. This structure aligns well with our theoretical formulation, and TeZO can be directly
extended to such optimizers by applying the same low-rank estimation principles. We evaluated the
fine-tuning performance of the ZO-LION optimizer corresponding to the baseline.

Table 6: Applicability to ZO-LION optimizer.

SST2 RTE WIC

MeZO-LION 92.1 (0.2) 72.4 (0.4) 59.2 (0.6)
SubZO-LION 90.2 (0.3) 72.7 (0.5) 60.3 (0.2)
LOZO-LION 92.1 (0.2) 73.1 (0.6) 59.9 (0.3)
TeZO-LION 92.5 (0.2) 73.4 (0.4) 60.5 (0.5)

As shown in Table 6, Tezo exhibits consistently stable performance under low-rank settings, bene-
fiting from substantially reduced memory consumption. Furthermore, its dynamic rank adaptation
effectively preserves model accuracy across diverse training scenarios. we also find Tezo delivers
strong and reliable improvements when combined with the recent LION optimizer. These results
indicate that the effectiveness of TeZO is not restricted to a particular optimization algorithm, but
generalizes well across a wide range of optimizers, further underscoring its practicality and versatility.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B.2 THE EFFICIENCY OF LIGHTWEIGHT SECOND-ORDER MOMENTUM IN TEZO-ADAM

In this paper, we propose a lightweight variant to address the storage issue of second-order momentum
in the TeZO-Adam variant:[

∇0f(wt)
]2

= κ2
t

(
rl∑

s=1

τs · (us ◦ vs)

)2

=

rl∑
s=1

κ2
t τ

2
s · (u2

s ◦ v2s)︸ ︷︷ ︸
Separable Term

+κ2
t

rl∑
p̸=q

τpτq · (upuq ◦ vpvq)︸ ︷︷ ︸
Eτ,u,v[τpτq·(upuq◦vpvq)]=0

.

(11)
The separable term is memory-efficient which can be calculated by the accumulation of the factor
vector τ .

B.2.1 ERRORS IN ONE STEP

By the definitions, we consider the decomposition of Z ∈ Rm×n by the factor vectors us ∈ Rm,
vs ∈ Rn, and τ ∈ Rr. And we consider an example comparable in scale to the LLaMA-7B model
and set m = n = 4096. And we select r = 64 to evaluate the error. Since we consider the parameters
at time t where κt can be treated as a constant. Without loss of generality, we set κt = 1 directly and
examine the error by randomly sampling τ, u, v, as shown in the following figure.

︸ ︷︷ ︸
(
∑rl

s=1 τs·(us◦vs))
2

=

︸ ︷︷ ︸∑r
s=1 τ2

s ·(u2
s◦v2

s)

+

0

10

20

30

40

50

60

70

80

︸ ︷︷ ︸∑r
p̸=q τpτq·(upuq◦vpvq)≈0

This clearly demonstrates the precision of our lightweight estimation. The second term is almost
zero, and the cost of calculating it is very high, including both storage and computation. Therefore,
we eliminate the second term directly and accumulate the second-order momentum of the first term
as the second-order momentum of Adam for updates. This significantly reduces the training cost,
making the training overhead of our TeZO-Adam method almost consistent with that of MeZO-SGD,
significantly lower than the MeZO-Adam method.

B.2.2 ACCUMULATED ERRORS AFTER T STEPS

Then we learn the accumulated errors in the training process. We define the update of standard second-
order momentum as Vt+1 = β2Vt + (1 − β2) (

∑r
s=1 τs,t · (us ◦ vs))

2, and that of TeZO-Adam
as V̂t+1 = β2V̂t + (1 − β2)

∑r
s=1 τ

2
s,t · (u2

s ◦ v2s). We report the averaged accumulated errors
Et = (Vt − V̂t)/mn over 1000 steps under β2 = 0.99, as shown in Figure 8.

0 200 400 600 800 1000
Iteration

0.00000
0.00002
0.00004
0.00006
0.00008
0.00010
0.00012
0.00014

E t

m × n = 768 × 768
m × n = 2048 × 2048
m × n = 4096 × 4096

Figure 8: ∥Et∥ under different m,n and r = 64. It can be observed that the averaged accumu-
lated errors decrease as the model size increases, which highlights the practicality of our proposed
lightweight second-order moment estimation on LLMs.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.3 SETUPS AND HYPERPARAMETERS

We follow previous works (Malladi et al., 2023; Chen et al., 2024; Yu et al., 2024) and summarized
the range of hyperparameter selections, as shown in Table 7. Although certain hyperparameters, such
as batchsize and perturbation rate, may introduce subtle variations, we fix these hyperparameters
across all methods to ensure fairness. The primary search hyperparameter is the learning rate across
models of different scales.

Table 7: Hyperparameter recommendations for different models. bs: batchsize; lr: learning rate; ρ:
perturbation rate; r: rank; fu: lazy update interval; rth: threshold for r; rmax: upper bound of r.

Method Search Range RoBERTa-large OPT-13B LLaMA-7B

MeZO
MeZO-m

bs {16,32,64} 64 16

lr {1e-4, 1e-5, 1e-6, 1e-7} 1e-6 1e-7 1e-6

ρ 1e-3 1e-3

MeZO-Adam

bs {16,32,64} 64 16

lr {1e-4, 3e-5, 1e-5, 3e-6} - 1e-5 3e-5 / 1e-5

ρ 1e-3 1e-3

SubZO

bs {16,32,64} 64 16

lr {1e-4, 1e-5, 1e-6, 1e-7} 1e-6 1e-7 1e-6

ρ 1e-3 1e-3

r {32, 64, 128} 64

fu {50, 100, 500} 500

LOZO
LOZO-m

bs {16,32,64} 64 16

lr {1e-4, 1e-5, 1e-6, 1e-7} 1e-6 1e-7 1e-6

ρ 1e-3 1e-3

r {8, 16, 32} 8

fu {50, 100, 500} 100

TeZO
TeZO-m

bs {16,32,64} 64 16

lr {1e-4, 1e-5, 1e-6, 1e-7} 1e-6 1e-7 1e-6

ρ 1e-3 1e-3

rth {20%, 25%, 30%, 35%} 25% / 30%

rmax {32, 64, 128, 256} depend on tasks

TeZO-Adam

bs {16,32,64} 64 16

lr {1e-4, 3e-5, 1e-5, 3e-6} - 1e-5 3e-5 / 1e-5

ρ 1e-3 1e-3

rth {20%, 25%, 30%, 35%} 25% / 30%

rmax {32, 64, 128, 256} depend on tasks

We refer to the selections reported in previous works and grid search each hyperparameter. Although
further fine-tuning of hyperparameters for specific tasks could yield greater benefits, we fix the
hyperparameter selections for fairness. The recommended value reported in the table above is
provided only as a reference on which most tasks work well.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B.4 MEMORY USAGE AND WALL-CLOCK TIME ON DIFFERENT MODEL SIZES

We extensively test the training efficiency of the OPT and LLaMA models across different model
sizes, as shown in Table 8 and Table 9.

Table 8: GPU memory usage (max memory reserved) for fine-tuning LLMs on RTE dataset on a
single H100 device.

OPT LLaMA

1.3B 2.7B 6.7B 13B 30B 7B 13B 30B

Zero-Shot 2.90 G 5.44 G 12.73 G 24.39 G 56.46 G 12.92 G 24.89 G 61.86 G

MeZO 3.48 G 6.40 G 14.40 G 26.43 G 60.31 G 13.91 G 26.12 G 63.77 G
SubZO 3.28 G 5.92 G 14.91 G 26.97 G 61.18 G 14.28 G 26.67 G 64.45 G
LOZO 3.31 G 5.95 G 13.66 G 25.50 G 57.93 G 13.44 G 25.77 G 62.38 G
TeZO 3.28 G 5.92 G 13.68 G 25.52 G 57.95 G 13.47 G 25.79 G 62.40 G

MeZO-m 6.31 G 11.77 G 27.19 G 51.32 G >80 G 26.85 G 51.31 G >80 G
LOZO-m 3.32 G 5.97 G 13.68 G 25.53 G 57.99 G 13.47 G 25.80 G 62.44 G
TeZO-m 3.29 G 5.93 G 13.69 G 25.52 G 57.96 G 13.48 G 25.79 G 62.40 G

MeZO-Adam 9.15 G 16.90 G 39.98 G 75.27 G >80 G 39.50 G 75.69 G >80 G
TeZO-Adam 3.48 G 6.16 G 14.07 G 26.01 G 58.64 G 13.71 G 26.16 G 62.80 G

Table 9: Wall-clock time per iteration for fine-tuning LLMs on RTE dataset on a single H100 device.

OPT LLaMA

1.3B 2.7B 6.7B 13B 30B 7B 13B 30B

Zero-Shot - - - - - - - -

MeZO 69 ms 111 ms 212 ms 388 ms 871 ms 212 ms 372 ms 942 ms
SubZO 75 ms 121 ms 211 ms 373 ms 939 ms 218 ms 385 ms 988 ms
LOZO 71 ms 109 ms 191 ms 341 ms 745 ms 195 ms 350 ms 832 ms
TeZO 67 ms 106 ms 178 ms 316 ms 680 ms 186 ms 325 ms 775 ms

MeZO-m 76 ms 123 ms 236 ms 437 ms - 236 ms 422 ms -
LOZO-m 78 ms 104 ms 181 ms 312 ms 677 ms 180 ms 316 ms 759 ms
TeZO-m 70 ms 100 ms 172 ms 303 ms 653 ms 176 ms 308 ms 738 ms

MeZO-Adam 104 ms 173 ms 348 ms 642 ms - 342 ms 624 ms -
TeZO-Adam 92 ms 134 ms 224 ms 394 ms 841 ms 227 ms 397 ms 937 ms

From the perspective of memory, low-rank methods have consistently been effective in reducing
memory usage. Whether on the OPT or LLaMA models, our TeZO-Adam method consistently
incurs lower loss compared to the standard MeZO method, and uses approximately 30% of the
memory consumed by the MeZO-Adam method.

From the perspective of wall-clock time, low-rank methods show a significant efficiency improvement
on large models, while they perform poorly or even slower on smaller models. On the 125M
model, low-rank methods is slower and on the 1.3B models, low-rank methods performs the same
as MeZO. Since the model parameters are relatively small, the additional overhead of low-rank
computation offsets the training cost. However, when the model size exceeds 3B, the efficiency
improvement of low-rank methods becomes significant. Tests on both OPT and LLaMA models
show that TeZO-Adam can achieve the same speed as MeZO, while being more than 1.5× faster
than MeZO-Adam.

These results are consistent with the Figure 4 in the main text. From the perspective of computational
efficiency, we recommend: it is better to adopt low-rank ZO methods on models larger than 3B to
achieve valid improvements.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

B.5 LOW-RANK PARAMETERS V.S. LOW-RANK ZO METHODS

Gradient low-rank approximation and model low-rank factorization are two key techniques for
efficient training, as we mentioned earlier. Techniques like LoRA (Hu et al., 2021) and GaLore (Zhao
et al., 2024b), they reduce the number of trainable model parameters and optimizer states through
low-rank mapping and subspace mapping, respectively, thereby accelerating the training process. We
want to emphasize that these two methods are orthogonal because they target different parameters,
addressing the efficient training of different parts of the models during training. Recent works (Yu
et al., 2024; Chen et al., 2024) apply low-rank ZO methods to train LoRA models, achieving some
success. Here, we would like to emphasize that, according to the experimental records in Appendix
B.4, when the size of trainable parameters is too small, low-rank ZO methods provide almost no
benefits. For instance, the LoRA model for the 13B model has approximately 300M parameters,
and applying low-rank ZO at this parameter scale is clearly unnecessary. Therefore, in this part, we
consider these two techniques as independent methods for comparisons, as shown in Table 10. The
other setups are the same as above.

Table 10: GPU memory usage (max memory reserved) for full fine-tuning, fine-tuning LoRA, fine-
tuning prefix, and ZO methods.

OPT-6.7B OPT-13B

Memory Ratio Memory Ratio

ft 105.24 G 8.27× 238.26 G 9.77×
FO ft-LoRA 37.96 G 2.98× 73.19 G 3.00×

ft-prefix 38.23 G 3.00× 73.13 G 3.00×

ZO

MeZO 14.40 G 1.13× 26.43 G 1.08×
MeZO-LoRA 13.04 G 1.02× 24.82 G 1.02×

MeZO-prefix 13.06 G 1.03× 24.81 G 1.02×
MeZO-Adam 39.98 G 3.14× 75.27 G 3.09×
TeZO-Adam 14.07 G 1.10× 26.01 G 1.06×
Zero-Shot 12.73 G 1× 24.39 G 1×

Compared to FO methods, the advantages of ZO methods remain significant. Even with methods
of low-rank parameters, the memory usage is still nearly three times higher than ZO methods.
Additionally, we want to emphasize that while “ZO + LoRA" can further reduce training costs, the
gains of memory-efficiency are negligible. Moreover, based on the experiments in existing studies,
the performance of these approaches will significantly degrade on large models. “ZO + fine-tuning
full parameters" has already achieved to the comparable memory usage of zero-shot (inference only),
and combining ZO with LoRA can only save very limited memory. Therefore, we do not advocate
directly combining ZO methods with PEFT approaches. From the perspective of memory usage, the
benefits of such a combination are indeed limited.

Table 11: Performance and efficiency of full parameter v.s. LoRA on LLaMA-7B.

Model Optimizer SST-2 Memory WIC Memory

Full FO+Adam 95.6 115.33 G 70.4 127.20 G
LoRA FO+Adam 93.2 38.25 G 61.0 43.18 G
Full MeZO+Adam 94.4 39.50 G 61.9 44.60 G

LoRA MeZO+Adam 92.9 17.15 G 59.7 20.33 G
Full TeZO+Adam 94.6 13.71 G 60.8 15.67 G

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C PROOFS OF MAIN THEOREMS.

C.1 PROOFS OF THEOREM 1

We consider the mean at first. According to Proposition A.1 proposed by Chen et al. (2024), we have:

lim
ρ→0

f(W + ρZ, ξ)− f(W, ξ)− ⟨∇f(W, ξ), ρZ⟩
ρ

= 0.

Without loss of generality, we consider the case where the parameters are 2D matrix. On each step, we
sample τ ∼ N (0, Ir) and compute the perturbation Z =

∑r
s=1 τs · (us ◦ vs). By directly expanding

the ZO gradient in TeZO, we have:

lim
ρ→0

∇0f(w, ξ) = lim
ρ→0

f(W + ρZ, ξ)− f(W − ρZ, ξ)

2ρ
· Z

= lim
ρ→0

f(W + ρZ, ξ)− f(W, ξ)− ⟨∇f(W, ξ), ρZ⟩
2ρ

· Z

− lim
ρ→0

f(W − ρZ, ξ)− f(W, ξ)− ⟨∇f(W, ξ),−ρZ⟩
2ρ

· Z

+ lim
ρ→0

⟨∇f(W, ξ), ρZ⟩
ρ

· Z = ⟨∇f(W, ξ), Z⟩ · Z,

where the inner product performs as the calculation in vectors. With Z substituted, the following
holds:

lim
ρ→0

∇0f(W, ξ) =

〈
∇f(W, ξ),

r∑
s=1

τs · (us ◦ vs)

〉
·

r∑
s=1

τs · (us ◦ vs).

Specifically, we consider the element
[
limρ→0 ∇0f(w, ξ)

]
i⋆,j⋆

. To simplify the expression, we have
slightly abused the notation us,i and vs,j , which means the i-th element in vector us and j-th element
in vector vs. By taking the expectation,

E
[
lim
ρ→0

∇0f(W, ξ)

]
i⋆,j⋆

= E

〈
∇f(W, ξ),

r∑
s=1

τs · (us ◦ vs)

〉
·

r∑
s=1

τsus,i⋆vs,j⋆

= E
∑
i,j

(
∇f(W, ξ)i,j

r∑
s=1

τsus,ivs,j

)
·

r∑
s=1

τsus,i⋆vs,j⋆

= E
∑

i̸=i⋆,j ̸=j⋆

∇f(W, ξ)i,j

r∑
s,s′

τsτs′us,ius′,i⋆vs,jvs′,j⋆︸ ︷︷ ︸
Eu,v[us,ius′,i⋆vs,jvs′,j⋆ ]=0

+E
∑

i=i⋆,j ̸=j⋆

∇f(W, ξ)i,j

r∑
s,s′

τsτs′us,ius′,ivs,jvs′,j⋆︸ ︷︷ ︸
Ev[vs,jvs′,j⋆ ]=0

+ E
∑

i̸=i⋆,j=j⋆

∇f(W, ξ)i,j

r∑
s,s′

τsτs′us,ius′,i⋆vs,jvs′,j︸ ︷︷ ︸
Eu[us,ius′,i⋆ ]=0

+∇f(W, ξ)i⋆,j⋆E
r∑

s,s′

τsτs′us,i⋆us′,i⋆vs,j⋆vs′,j⋆

= ∇f(W, ξ)i⋆,j⋆ E
r∑

s̸=s′

τsτs′us,i⋆us′,i⋆vs,j⋆vs′,j⋆︸ ︷︷ ︸
Eτ [τsτs′ ]=0

+∇f(W, ξ)i⋆,j⋆ E
r∑

s=1

τ2s u
2
s,i⋆v

2
s,j⋆︸ ︷︷ ︸

=r

= r∇f(W, ξ)i⋆,j⋆ .

Clearly, when the SPSA form is directly applied, the expectation of the TeZO gradient becomes r
times the FO gradient. Therefore, by dividing r, TeZO is an unbiased estimation of the FO gradient.

Then we consider the variance. We have the following term:

E∥1
r
lim
ρ→0

∇0f(w, ξ)−∇f(W, ξ)∥2 =
1

r2
E∥ lim

ρ→0
∇0f(w, ξ)∥2 − E∥∇f(W, ξ)∥2

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

=
1

r2
E∥

〈
∇f(W, ξ),

r∑
s=1

τs · (us ◦ vs)

〉
·

r∑
s=1

τs · (us ◦ vs)∥2 − E∥∇f(W, ξ)∥2

=
1

r2
E

〈
∇f(W, ξ),

r∑
s=1

τs · (us ◦ vs)

〉2

︸ ︷︷ ︸
A

·

〈
r∑

s=1

τs · (us ◦ vs),
r∑

s=1

τs · (us ◦ vs)

〉
︸ ︷︷ ︸

B

−E∥∇f(W, ξ)∥2.

Let gij = ∇f(W, ξ)i,j for convenience, we have:

A =

〈
∇f(W, ξ),

r∑
s=1

τs · (us ◦ vs)

〉2

=
∑
i,i′

∑
j,j′

∑
s,s′

gi,jgi′,j′τsτs′us,ius′,i′vs,jvs′,j′

=
∑
i̸=i′

∑
j ̸=j′

∑
s̸=s′

gi,jgi′,j′τsτs′us,ius′,i′vs,jvs′,j′︸ ︷︷ ︸
A1

+
∑
i̸=i′

∑
j ̸=j′

∑
s

gi,jgi′,j′τ
2
s us,ius,i′vs,jvs,j′︸ ︷︷ ︸

A2

+
∑
i̸=i′

∑
j

∑
s̸=s′

gi,jgi′,jτsτs′us,ius′,i′vs,jvs′,j︸ ︷︷ ︸
A3

+
∑
i̸=i′

∑
j

∑
s

gi,jgi′,jτ
2
s us,ius,i′vs,jvs,j︸ ︷︷ ︸

A4

+
∑
i

∑
j ̸=j′

∑
s̸=s′

gi,jgi,j′τsτs′us,ius′,ivs,jvs′,j′︸ ︷︷ ︸
A5

+
∑
i

∑
j ̸=j′

∑
s

gi,jgi,j′τ
2
s us,ius,ivs,jvs,j′︸ ︷︷ ︸

A6

+
∑
i

∑
j

∑
s̸=s′

g2i,jτsτs′us,ius′,ivs,jvs′,j︸ ︷︷ ︸
A7

+
∑
i

∑
j

∑
s

g2i,jτ
2
s u

2
s,iv

2
s,j︸ ︷︷ ︸

A8

.

B =

〈
r∑

s=1

τs · (us ◦ vs),
r∑

s=1

τs · (us ◦ vs)

〉
=
∑
i

∑
j

∑
s,s′

τsτs′us,ius′,ivs,jvs′,j

=
∑
i

∑
j

∑
s̸=s′

τsτs′us,ius′,ivs,jvs′,j︸ ︷︷ ︸
B1

+
∑
i

∑
j

∑
s

τ2s u
2
s,iv

2
s,j︸ ︷︷ ︸

B2

.

Similar to the way of computing expectations for the mean above, When there are cross terms like
us,i or vs,j in the product of Ai and Bj , then Eu,v [AiBj ] = 0. Therefore, it is easy to check that
Eu,v [A1B] = Eu,v [A2B] = Eu,v [A3B] = Eu,v [A4B] = Eu,v [A5B] = Eu,v [A6B] = 0 and
we have Eu,v [AB] = Eu,v [(A7 +A8)(B1 +B2)]. Then we consider the cross terms on τs. In
A8B1 and A7B2, there exist the independent τs term, that is, Eτ [A8B1] = Eτ [A7B2] = 0, and the
expectation of AB is Eτ,u,v [AB] = Eτ,u,v [A7B1 +A8B2]. For the first term, we have:

E [A7B1] = E

2∑
i

∑
j

∑
s̸=s′

g2i,jτ
2
s τ

2
s′u

2
s,iu

2
s′,iv

2
s,jv

2
s′,j

 = 2
∑
i

∑
j

∑
s̸=s′

g2i,j = 2r(r − 1)
∑
i

∑
j

g2i,j .

For the second term, we have:

E [A8B2] = E

∑
i,i′

∑
j,j′

∑
s,s′

g2i,jτ
2
s τ

2
s′u

2
s,iu

2
s′,i′v

2
s,jv

2
s′,j′


= E

∑
i̸=i′

∑
j ̸=j′

∑
s̸=s′

g2i,jτ
2
s τ

2
s′u

2
s,iu

2
s′,i′v

2
s,jv

2
s′,j′

+ E

∑
i̸=i′

∑
j ̸=j′

∑
s

g2i,jτ
4
s u

2
s,iu

2
s,i′v

2
s,jv

2
s,j′


+ E

∑
i̸=i′

∑
j

∑
s̸=s′

g2i,jτ
2
s τ

2
s′u

2
s,iu

2
s′,i′v

2
s,jv

2
s′,j

+ E

∑
i̸=i′

∑
j

∑
s

g2i,jτ
4
s u

2
s,iu

2
s,i′v

4
s,j


22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

+ E

∑
i

∑
j ̸=j′

∑
s̸=s′

g2i,jτ
2
s τ

2
s′u

2
s,iu

2
s′,iv

2
s,jv

2
s′,j′

+ E

∑
i

∑
j ̸=j′

∑
s

g2i,jτ
4
s u

4
s,iv

2
s,jv

2
s,j′


+ E

∑
i

∑
j

∑
s̸=s′

g2i,jτ
2
s τ

2
s′u

2
s,iu

2
s′,iv

2
s,jv

2
s′,j

+ E

∑
i

∑
j

∑
s

g2i,jτ
4
s u

4
s,iv

4
s,j


=
∑
i̸=i′

∑
j ̸=j′

∑
s̸=s′

g2i,j +
∑
i̸=i′

∑
j ̸=j′

∑
s

3g2i,j +
∑
i̸=i′

∑
j

∑
s̸=s′

g2i,j +
∑
i̸=i′

∑
j

∑
s

9g2i,j

+
∑
i

∑
j ̸=j′

∑
s̸=s′

g2i,j +
∑
i

∑
j ̸=j′

∑
s

9g2i,j +
∑
i

∑
j

∑
s̸=s′

g2i,j +
∑
i

∑
j

∑
s

27g2i,j

=
(
mnr2 + 2mnr + 6mr + 6nr + 12r

)∑
i

∑
j

g2i,j .

Thus, we can consolidate all the results as follows:

E∥1
r
lim
ρ→0

∇0f(w, ξ)−∇f(W, ξ)∥2 =
1

r2
E [A ·B]− ∥∇f(W, ξ)∥2

=
1

r2
E [A7B1 +A8B2]− ∥∇f(W, ξ)∥2 =

(
1 +mn+

2mn

r
+

6(m+ n)

r
+

10

r

)
∥∇f(W, ξ)∥2.

This completes the proofs.

C.2 PROOFS OF THEOREM 2

We first introduce some basic lemmas for the subsequent proofs. In fact, when considering the
properties of the function at each layer, we treat the parameters and gradients as a 2D matrices.
However, to consider its general property, we treat them as a flattened parameter vector concatenation
across layers. Therefore, in our proof, we slightly abuse both uppercase and lowercase letters, e.g.,
∇f(Z) and ∇f(z), to express the specific properties of the gradient.
Lemma 1 Under Assumption 1 and 2, ZO gradient of TeZO is an unbiased estimator of the full FO
gradient ∇f(W ) with the variance:

E∥1
r
∇0f(W, ξ)−∇f(W )∥2 ≤ ρ2λ2δρ + (δ + 1)σ2 + δE∥∇f(W )∥2, (12)

where δ = 1 + mn + 2mn
r + 6(m+n)

r + 10
r and δρ =

15r2(m+3)3(n+3)3+36r2(r−1)m3n3+r2(r−1)(r−2)m3n3

4 are two constants.

Proof. According to the studies of Nesterov & Spokoiny (2017); Chen et al. (2024); Yu et al. (2024),
we first consider the smoothness property as follows:

f(W + ρZ, ξ)− f(W, ξ)− ⟨∇f(W, ξ), ρZ⟩ ≤ λ

2
∥ρZ∥2 =

ρ2λ

2
∥Z∥2.

Then we learn the distance between ∇0f(W ) and the limρ→0 ∇0f(W ). Specifically, we consider
the unbiased form as:

∥1
r
∇0f(W, ξ)− 1

r
lim
ρ→0

∇0f(W, ξ)∥2

=
1

r2
∥f(W + ρZ, ξ)− f(W − ρZ, ξ)

2ρ
· Z − ⟨∇f(W, ξ), Z⟩ · Z∥2

=
1

r2
∥f(W + ρZ, ξ)− f(W, ξ) + f(W, ξ)− f(W − ρZ, ξ)− 2⟨∇f(W, ξ), ρz⟩

2ρ
· Z∥2

=
1

r2

∣∣∣∣ (f(W + ρZ, ξ)− f(W, ξ)− ⟨∇f(W, ξ), ρZ⟩)− (f(W − ρZ, ξ)− f(W, ξ)− ⟨∇f(W, ξ),−ρZ⟩)
2ρ

∣∣∣∣2 · ∥Z∥2

≤ ρ2λ2

4r2
∥Z∥6.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Substituting Z =
∑r

s=1 τs · us ◦ vs and taking the expectation, we have:

E∥1
r
∇0f(W, ξ)− 1

r
lim
ρ→0

∇0f(W, ξ)∥2 ≤ ρ2λ2

4r2
E∥Z∥6 =

ρ2λ2

4r2
E∥

r∑
s=1

τs · us ◦ vs∥6

=
ρ2λ2

4r2
E

(
∥

r∑
s=1

τs · us ◦ vs∥2
)3

≤ ρ2λ2

4r2
E

(
r

r∑
s=1

τ2s ∥us ◦ vs∥2
)3

=
rρ2λ2

4
E

(
r∑

s=1

τ2s ∥us∥2∥vs∥2
)3

.

Similarly, we can expand the term as:

E

(
r∑

s=1

τ2s ∥us∥2∥vs∥2
)3

= E
∑
s

∑
s′

∑
s′′

τ2s τ
2
s′τ

2
s′′∥us∥2∥us′∥2∥us′′∥2∥vs∥2∥vs′∥2∥vs′′∥2

= E
∑
s

∑
s′=s

∑
s′′=s′

τ6s ∥us∥6∥vs∥6 + E
∑
s

∑
s′=s

∑
s′′ ̸=s′

τ4s τ
2
s′′∥us∥4∥us′′∥2∥vs∥4∥vs′′∥2

+ E
∑
s

∑
s′ ̸=s

∑
s′′=s

τ4s τ
2
s′∥us∥4∥us′∥2∥vs∥4∥vs′∥2 + E

∑
s

∑
s′ ̸=s

∑
s′′=s′

τ2s τ
4
s′∥us∥2∥us′∥4∥vs∥2∥vs′∥4

+ E
∑
s

∑
s′ ̸=s

∑
s′′ ̸=s,s′

τ2s τ
2
s′τ

2
s′′∥us∥2∥us′∥2∥us′′∥2∥vs∥2∥vs′∥2∥vs′′∥2.

Then we will discuss each term one by one. Actually, since τ, u, v are independent from each
other, the expectation can be separated term by term. Since us ∼ N (0, Im), vs ∼ N (0, In) and
τs ∼ N (0, 1), we have: E∥us∥2 = m, E∥us∥4 = m(2m − 1) ≤ 2m2, E∥us∥6 = m(15 + 3(m −
1) + (m − 1)(m − 2)) ≤ (m + 3)3, E∥vs∥2 = n, E∥vs∥4 = n(2n − 1) ≤ 2n2, E∥vs∥6 =
n(15+3(n−1)+(n−1)(n−2)) ≤ (n+3)3, E

[
τ2s
]
= 1, E

[
τ4s
]
= 3 and E

[
τ6s
]
= 15. Therefore,

we can provide the upper bound:

E

(
r∑

s=1

τ2s ∥us∥2∥vs∥2
)3

≤ 15r(m+ 3)3(n+ 3)3 + 36r2m3n3 + r3m3n3.

Let δρ = 15r2(m+3)3(n+3)3+36r3m3n3+r4m3n3

4 , then we have:

E∥1
r
∇0f(W, ξ)− 1

r
lim
ρ→0

∇0f(W, ξ)∥2 ≤ rρ2λ2

4
E

(
r∑

s=1

τ2s ∥us∥2∥vs∥2
)3

≤ ρ2λ2δρ.

Combining it with the variance in Theorem 1, we can finish the proofs.

Then we can easily solve the convergence for TeZO. Similarly, without loss of generality, we still
consider the 2D parameters. Let η ≤ 1

λ(δ+1) By expanding the smoothness inequality, we have:

Et [f(Wt+1)] ≤ f(Wt) + Et⟨∇f(Wt),Wt+1 −Wt⟩+
λ

2
Et∥Wt+1 −Wt∥2

= f(Wt) + ηEt⟨∇f(Wt),−Gt⟩+
λη2

2
Et∥Gt∥2

= f(Wt)− ηEt∥∇f(Wt)∥2 +
λη2

2
Et∥Gt∥2

≤ f(Wt)− ηEt∥∇f(Wt)∥2 +
λη2

2
Et∥

1

r
∇0f(Wt, ξ)−∇f(Wt)∥2 +

λη2

2
Et∥∇f(Wt)∥2

≤ f(Wt)− η

(
1− λ(1 + δ)η

2

)
Et∥∇f(Wt)∥2 + η2ρ2

λ3δρ
2

+ η2
λ(δ + 1)σ2

2

≤ f(Wt)−
η

2
Et∥∇f(Wt)∥2 + η2ρ2

λ3δρ
2

+ η2
λ(δ + 1)σ2

2
.

Therefore, let D0 = f(W0) − f(W⋆) be the initialized bias where W⋆ is the optimal solution, by
accumulating it from t = 0 to T − 1 and taking the full expectation, we have:

1

T

T−1∑
t=0

E∥∇f(Wt)∥2 ≤ 2D0

ηT
+ ηλ

(
ρ2λ2δρ + (δ + 1)σ2

)
.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

By simply selecting the learning rate η = O
(√

D0

λT (ρ2λ2δρ+δσ2)

)
≤ 1

λ(δ+1) , we have:

1

T

T−1∑
t=0

E∥∇f(Wt)∥2 = O

(√
λD0 (ρ2λ2δρ + δσ2)

T

)
.

25


	Introduction
	Related Work
	Preliminaries
	Methodology
	Canonical Polyadic Decomposition and TeZO
	Layer-wise Selection of the Rank r
	TeZO and Its Extensions on Memory Efficient Optimization States

	Theoretical Analysis
	Experiments
	Conclusion
	Declaration
	Experiment Materials
	Low Rankness in LLMs
	Low Rankness of Each Single Gradient
	Low Rankness of Gradient Subspace
	Low-rankness between Weights and Gradients
	Comparison between Dynamic Ranking and Static Ranking
	Applicability to Other Advanced Optimizers

	The Efficiency of Lightweight Second-order Momentum in TeZO-Adam
	Errors in One Step
	Accumulated Errors after T Steps

	Setups and Hyperparameters
	Memory Usage and Wall-clock Time on Different Model Sizes
	Low-rank Parameters v.s. Low-rank ZO Methods

	Proofs of Main Theorems.
	Proofs of Theorem 1
	Proofs of Theorem 2


