Under review as a conference paper at ICLR 2026

TEZO: EMPOWERING THE LOW-RANKNESS ON THE
TEMPORAL DIMENSION IN THE ZEROTH-ORDER OPTI-
MIZATION FOR FINE-TUNING LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Zeroth-order optimization (ZO) has demonstrated remarkable promise in effi-
cient fine-tuning tasks for Large Language Models (LLMs). In particular, recent
advances incorporate the low-rankness of gradients, introducing low-rank ZO es-
timators to further reduce GPU memory consumption. However, most existing
works focus solely on the low-rankness of each individual gradient, overlooking a
broader property shared by all gradients throughout the training, i.e., all gradients
approximately reside within a similar subspace. In this paper, we consider two
factors together and propose a novel low-rank ZO estimator, TeZO, which captures
the low-rankness across both the model and temporal dimension. Specifically,
we represent ZO perturbations along the temporal dimension as a 3D tensor and
employ Canonical Polyadic Decomposition (CPD) to extract each low-rank 2D
matrix, significantly reducing the training cost. TeZO can also be easily extended
to the Adam variant while consuming less memory than MeZO-SGD, and requiring
about only 35% memory of MeZO-Adam. Both comprehensive theoretical anal-
ysis and extensive experimental research have validated its efficiency, achieving
SOTA-comparable results with lower overhead of training time and memory.

1 INTRODUCTION

As the model size progresses at an extraordinary rate (Zhang et al., 2022; Touvron et al., 2023;
Achiam et al., 2023), memory and computational resources have become the primary bottleneck
limiting development. In response to this challenge, ZO has opened up new possibilities for efficient
training (Shen et al., 2023). Adopting gradient-free updates with a small amount of high-quality
data perfectly unlocks the knowledge of the entire domain, offering significant potential for several
practical applications. Since Spall (1992) introduced ZO as a promising alternative to FO in the
training process, it has been widely applied in gradient-computation-challenged scenarios (Wang
et al., 2018; Liu et al., 2020) and in black-box optimization (Chen et al., 2017; Tu et al., 2019).
Recent studies have also highlighted the great potential of ZO in fine-tuning LLMs. Malladi et al.
(2023) propose the Me z0O method which adopts classical ZO—-SGD (Ghadimi & Lan, 2013) for fine-
tuning. Furthermore, it reduces memory costs by only preserving random seeds instead of variables.
Compared to FO, it can achieve comparable performance while requiring approximately 10% of
memory in practice, greatly improving memory efficiency.

Although ZO has made significant progress, it still faces two challenges, i.e., 1) lack of detailed
characterization of gradients; ii) the costs of optimization states to generate random variables
significantly increase as d grows. This also highlights the bottleneck of ZO methods in LLM
tasks. Recent advances learned the strong low-rank nature of gradients in LLMs (Wang et al., 2023;
Jaiswal et al., 2024), making low-rank representations in ZO methods as an ingenious solution to the
aforementioned issues. With barely compromising performance, low-rank ZO methods effectively
reduce the required memory for ZO estimations from O(d) to O(v/dr) at most, where 7 is the
rankness constant (Chen et al., 2024; Yu et al., 2024). This implementation further endows the ZO
method with superior value in the tasks of fine-tuning LLM:s.

Our Motivations. Existing methods only consider each individual gradient to be low-rank, which
cannot naturally extend memory efficiency to other advanced optimizers. In other words, isolated

Under review as a conference paper at ICLR 2026

1% w
;g 10% of Top-1 Singular Value E 10% of Top-1 Singular Value a o 771 MeZO 2.89x%
g S ¢ | =N Tezo
5 § 260
= = 5 2.01x
g g G
@ @ O 10
S ° = 1.04x
S S 2 50 7 -
5 & &
=]
Iterations Layer ID -SGD -SGD-m -Adam
(a) Low-rankness on gradients. (b) Low-rankness on subspace. (c) Memory Efficiency.

Figure 1: (a) and (b) are test of the low-rankness of gradients. We finetune OPT-1.3B on SST-2 and
calculate top-100 singular values of gradients of layers.9.self_attn.out_proj.weight.
We then concatenate these singular value vectors and display them as a heat-map in (a). Then we
concatenate the normalized gradient of each layer over a total of T iterations into a matrix with the
size of d; x T, calculate the top-100 singular values corresponding to layers and display them as a
heat-map in (b). In (c), we record the GPU memory usage of MeZO, our TeZO, and corresponding
variants on training OPT-13B model. We also provide more interesting experiments on the low-
rankness and studies of subspace of gradients on LLaMA-7B in Appendix B.1.

gradient low-rankness cannot drive efficient storage and computation of optimizer states. This inspires
our contemplation: how can low-rankness be further incorporated into the ZO optimizer states?

To investigate an efficient approach to addressing this question, in this paper, we comprehensively
study the characteristics of the gradients in LLMs. As shown in Figure 1.(a) and (b), in the tasks
of fine-tuning LLMs, the gradients exhibit the following two properties simultaneously: i) the
individual gradient at each iteration is approximately low-rank; ii) all gradients along 7" iterations
lie almost within a similar subspace. Obviously, combining properties i) and ii) can lead to higher
efficiency. Inspired by this, we propose the TeZO estimator to empower the low-rankness on the
temporal dimension. Specifically, we estimate the ZO perturbations as a 3D tensor with the size of
m x n x T. By adopting the Canonical Polyadic Decomposition (CPD) (Hitchcock, 1927), the 3D
tensor can be estimated by the sum of r rank-1 tensors where r approximates its rank. The joint
low-rankness significantly reduces the cost of factor vectors during computation. At each iteration ¢,
we only need to generate temporal factor vector to extract a 2D matrix, further lowering the costs
from O(VdT) to O(v/d + T). We also introduce an auxiliary technique to dynamically select the
rank r; for each layer. TeZO naturally enables low-rank representations of various optimizer states,
thereby facilitating memory-efficient advanced zeroth-order optimizers. As shown in Figure 1.(c),
TeZO-Adam consumes less memory than Me ZO—SGD, and requiring about only 35% memory of
MeZO-Adam. Both comprehensive theoretical analysis and extensive experimental research are
conducted to validate its efficiency. TeZO-Adam achieves SOTA-comparable performance while
requiring only the memory overhead of general ZO—-SGD. We summarize our contributions as follows:

* By jointly considering low-rankness of gradients and their similarity on LLMs, we propose
a novel low-rank ZO estimator, Te ZO, which constructs the ZO perturbations via CPD to
reduce the training overhead, which can be naturally extended to various optimizer states.

* We introduce an auxiliary technique to dynamically select the rank for each layer to further
reduce storage requirements. The dynamic rank assigns different rank coefficients to each
layer based on the low-rank characteristics of its parameters, providing a fine-grained
allocation scheme and effectively avoiding performance degradation caused by improper 7.

* We prove that TeZO is an unbiased estimator of FO gradient, maintaining the comparable
variance and convergence rate as existing ZO methods with less memory requirements.
Extensive experiments are conducted to validate its efficiency and performance on LLM:s.

2 RELATED WORK

Zero-Order Optimization. Since Spall (1992) proposed the ZO method, it has been extensively
studied and practically incorporated in various domains (Chen et al., 2017; Tu et al., 2019; Vemula

Under review as a conference paper at ICLR 2026

et al., 2019; Hajinezhad et al., 2019; Gratton et al., 2021). By avoiding the massive computation
and memory requirements of BP, it significantly reduces the training cost while maintaining high
performance. As an alternative to FO, it has also been widely explored from several optimization
perspectives, e.g. convergence for convex and non-convex (Wang et al., 2018; Golovin et al., 2019;
Cheng et al., 2021), non-smooth (Liu et al., 2018a; Kazemi & Wang, 2024; Rando et al., 2024),
variance reduction (Liu et al., 2018b; Ji et al., 2019) and primal dual methods (Liu et al., 2018a;
Yi et al., 2021; Huang et al., 2024). It has also demonstrated strong potential for applications in
certain practical scenarios, e.g. attack and defense (Zhao et al., 2020; Kariyappa et al., 2021), privacy
protection (Gratton et al., 2021; Zhang et al., 2023; Gupta et al.), fairness (Chen et al., 2023; Wang
et al., 2024b), multi-agent (Tang et al., 2020; Maritan & Schenato, 2023), and efficient training
(Nikolakakis et al., 2022; Fang et al., 2022; Mukhoty et al., 2023). These developments highlight the
powerful potential of ZO methods in deep learning and artificial intelligence.

Fine-tuning LLLMs with ZO. In this paper, we focus on the tasks of fine-tuning LLMs. Recent
research on LLMs has demonstrated their immense value (Brown et al., 2020; Kojima et al., 2022).
However, expensive time and memory costs in the training have become a significant barrier and
hinder the research and application (Zhao et al., 2023; Naveed et al., 2023). To unlock the tremendous
potential of LLMs, researchers focus more on the training efficiency, leading to significant progress.
The application of ZO optimizers has become a shining star from an optimization perspective. Since
Malladi et al. (2023) introduce the Me ZO method, a series of ZO optimizer variants have been widely
developed. Jiang et al. (2024); Yang et al. (2024); Zhao et al. (2024c;a) focus on incorporating
adaptivity and curvature information to accelerate ZO optimizers for LLMs. Liu et al. (2024);
Guo et al. (2024); Wang et al. (2024a) incorporate the sparsity to further reduce the calculations.
Gautam et al. (2024) expand the variance reduction ZO estimator and evaluate its improvements in
fine-tuning LLMs. These methods improve ZO methods from the general optimization perspective,
yield additional computational and memory overhead. Recently, Yu et al. (2024); Chen et al. (2024)
further learn the low-rankness of each single gradient and propose different low-rank ZO estimators.
These insightful works have advanced the application of ZO in fine-tuning LLMs.

3 PRELIMINARIES

In this section, we introduce notations and review developments of ZO and its recent advances in
fine-tuning LLMs. By default and unless stated otherwise, we use lowercase letters to represent
1D vectors, e.g. z, uppercase letters to represent 2D matrices, e.g. Z, and bold uppercase letters to
represent 3D tensors, e.g. Z. Scalars are represented as lowercase Greek letters, e.g. a.. Other special
computation symbols will be introduced in detail when they are first mentioned.

7.0 Optimizer. We consider the general and classical minimization problem:
min f(w) = Eeup [f(w,)], (1

where w € R is the learnable parameters and ¢ is the fine-tuning dataset sampled from the distribution

D. In this paper, we focus on a classical and widely adopted ZO estimator, Simultaneous Perturbation

Stochastic Approximation (SPSA) (Spall, 1992). Specifically, SPSA estimates ZO gradient as:

flw+pz,§) = f(w = pz,§)
2p

where z ~ N(0, I) is a random variable and p is the perturbation rate. Through two forward passes,

it measures the projection component of the true gradient in the direction of the random variable z.

VO f(w,€) =

2, @

Fine-tuning LLMs with ZO. Me Z0 (Malladi et al., 2023) explores the tremendous potential of ZO
methods in fine-tuning LLMs. Moreover, to reduce memory usage, it leverages PyTorch’s permutation
feature in random libs, replacing the storage of all random variables by recording the initial random
seed for each iteration, namely the resampling technique. This implementation enables the ZO
method to achieve up to a 12x memory saving in fine-tuning LLMs. The simple ZO—-SGD method is
sufficient to achieve performance comparable to FO methods in most tasks.

Low-rank ZO. Generally, the parameter dimension of LLMs is extremely large, which constitutes
a new bottleneck for the further development of MeZO: training costs of the ZO gradients increase
linearly with the model dimension d. Furthermore, an important fact in fine-tuning LLMs is also

Under review as a conference paper at ICLR 2026

Ug || V¢
T LOZO T /
ya 5= . =~ |_|+ —) N
m| = m|
c Z, U Z: || Vi c (Z, I] [I [I
n n
SubZO TeZO

Figure 2: The ZO diagrams for LOZO, SubZ0, and our TeZO method. LOZO and SubZO0 focus on
estimating a single perturbation Z; as the product of low-rank matrices. TeZO construct the entire
perturbation set Z = {Z;} via the CPD in the 3D tensor.

ignored: the low-rankness of the gradients. Therefore, the applications of low-rank ZO techniques
have emerged. Chen et al. (2024) propose to apply matrix factorization as Z = UV ' (Z €
R™*" [€ R™X" V € R™*"). Additionally, Yu et al. (2024) adopt the form Z = UXV T where
> € R™7", as shown in Figure 2. These techniques estimate the low-rank form of each individual
perturbation per iteration, reducing the training cost of the ZO method in fine-tuning LLMs. Inspired
by these insightful works, we examine another important aspect that is overlooked in the designs of
previous works, i.e., low-rankness on the temporal dimension. Through the joint low-rank estimation,
we propose the TeZ0O method which can further improve the efficiency of the ZO method in fine-
tuning LLMs. Further discussions are provided in the next section.

4 METHODOLOGY

In this section, we introduce our proposed TeZO method. Then we introduce the adaptive selection
of the rank of layer-wise gradients. Finally, we demonstrate how TeZO, as a structured ZO gradient
representation, enables memory-efficient updates of optimizer states.

4.1 CANONICAL POLYADIC DECOMPOSITION AND TEZO

Canonical Polyadic Decomposition (Hitchcock, 1927), also known as Parallel Factor Analysis, is
the tensor decomposition technique widely used in data analysis, signal processing, and machine
learning. It is a generalization of matrix factorization to higher-order tensors (multi-dimensional
arrays). CPD aims to decompose a 3D tensor Z € R™*"*T into a sum of rank-one tensors and each
rank-one tensor is expressed as the outer product of vectors:

Z%ZXSOUSOUS, 3)
s=1

where ys € RT, u, € R™, v, € R™ are three factor vectors and o denotes the outer product. Based
on understanding the low-rank nature along the temporal dimension, we propose a novel low-rank
estimation approach to represent the gradient perturbation variables at each iteration, as outlined in
Eq.(3). In LLMs, the proportion of 2D model parameters is much larger than that of 1D parameters,
so we primarily consider the 2D cases. Specifically, in addition to the conventional factor vectors u
and v for the model dimensions, we introduce the factor vectors x for the temporal dimension. These
three dimensions are independent of each other. Both u and v can be initialized at the beginning of
training. Therefore, in the ¢-th iteration, we only need information related to the variable 7, without

Table 1: Comparison of MeZ0, SubZ0, LOZO and TeZzO on sampling and storage on W € R™*™,

Method Number of Total Sampling Number of Storage at Each Iteration

MeZO mnT’ mn
Subz0 (m+n+r)rT mr +nr
L0z0 (m+n)rT mr /[nr
TeZO (m+n+T)r r

Under review as a conference paper at ICLR 2026

any additional redundant variables, which can still significantly reduce training costs. Compared to
existing studies, we summarize the results in Table 1.

4.2 LAYER-WISE SELECTION OF THE RANK r

The selection of rank r remains an open challenge. Since ZO methods are typically employed in
scenarios where FO gradients are unavailable, it is difficult to directly determine the precise rank of
gradients. Recent studies have emphasized the feasibility of low-rank structures, and the rank r is
empirically treated as a constant hyperparameter. In fact, r essentially represents a trade-off between
performance and efficiency, and selecting an appropriate value for 7 can significantly enhance the
balance between these two factors. Although the constant selection can yield reliable performance,
our goal is to identify a more refined solution.

To comprehensively study the rank selection, we learn its connection to the parameters. We dynami-
cally select the rank on different layers in the Te ZO method. We consider the general cascade layer
as: X; = 0y(4;), A = Wi X;_1 + b;, where oy(+) is activation function, [< L is the index of each
layer, WW; and b; are the weight and bias of the [-th layer. Therefore, we have:

T

L
II wo| 0®(or,00-1,-,00),)
p=Il+1

of _
oW

where O®(-) are the joint gradients for all activations from the total mini-batch data samples, whose
rank is closely related to the similarity of the input data. In this paper, we focus on the impact from
model parameters. According to the rank propagation, the rankness of each gradient satisfies:

L
Rank (8]") < Rank H W, | < min (Rank (Wj4q),--- ,Rank (W7)).)
oW,
p=Il+1

Typically, during training, due to the use of weight decay regularization, the model parameters tend to
maintain a high degree of low-rankness. Therefore, the gradients also inherit this property, meaning
that the low-rankness of the gradients originates from the low-rankness of the model parameters. We
adaptively determine the rank of different layers based on the insight from Eq.(5). In LLMs, there is a
natural cascade block structure, where each block contains components such as the attention module
and the feed-forward network module. We adopt the truncated Eq.(5) to estimate the rankness of each
layer within a block. Specifically, we split L into B blocks as [{lo}, {l1}, - , {{s}]. The rankness
of the gradient of the [-th layer will be estimated as follows:

T = min ({Rank (W{lb}>}’ rmaz) ’ (6)

where [€ {l,} and 7,4, is a constant to prevent the rank selection from becoming excessively
large. Rank(W) = ry is defined as the largest ry singular values of the matrix . Generally, in
our experiments, we uniformly set a specific threshold to determine 7y that those singular values
are larger than the threshold, e.g. approximately 25% of the top-1 singular value. Due to the page
limitation, we show the ablation studies in Appendix B.1.4.

4.3 TEZO AND ITS EXTENSIONS ON MEMORY EFFICIENT OPTIMIZATION STATES

TeZO. In its implementation, we adopt the resampling technique proposed by MeZO to reduce
memory usage. Before each iteration, the random seed is reset to ensure sampling the same variables.
Through three perturbations, we can calculate the positive and negative terms, i.e., f = f(w+ pz, &)
and f_ = f(w — pz,), and update the projected coefficient £ = (f — f_)/2p. Ateach iteration ¢,
we only need to sample the component of the temporal factor vector 7 € R"™. Then, it updates via
the perturbation G; = k¢ Z; where Z; can be calculated according to the ¢-th dimension of Eq.(3).

Memory-Efficient First-order Momentum. Momentum-based methods typically offer greater
stability. However, its drawback lies in the requirement of doubling the storage to maintain the
first-order momentum variables in the optimizer state. In contrast, our proposed TeZO zeroth-order
representation can avoid this issue. When focusing on the first-order momentum of the [-th layer:

t Tl

Mt = (]- - ﬂl) Z Zﬂfitﬁﬁk(ﬂc)s (Us o vs) = Z ((1 - ﬂl) Zﬁftﬁk7k> (us o Us) . (7)
k=0 s

k=0 s=1 s=1

Under review as a conference paper at ICLR 2026

Algorithm 1 Pipeline of z0 Algorithm 2 Update of TeZ0-SGD/M/ADAM
1: Initialize the rank list [r1, - - - , 7] viaEq.(6) ~ 1: Func Update(x, ¢, {us}, {vs}, [r]):
2: Initialize the factor vectors {u} and {v,} 2: reset the random seed as ¢
3: fort=0,1,2,--- , T — 1do 3: for W; € W do
4: sample the mlmbatch & and seed (; 4: sample factor vector 7 ~ N (0, I,,,)
5: W = Perturbation(W, p, (;, [r1]) 5 (Tez0-SGD)

6: fr=fW¢ 6: Gy=> 1" KTs (usovy)
7: W = Perturbation(W, —2p, {;, [r1]) 7

8 fo=f(WE 8 (Tez0-M)

9: W = Perturbation(W, p, {, [r1]) 9 v =P+ (1= By)kT

10 wke=(fr—f-)/2p 10: Ge=Y 1L (Tar)s (us 0 vy)

1 W = Update(rr, G {us), (v} [r]) 11

12: end for 12: (TeZO-ADAM)

13: 13: 1 =Bt + (1 — Br)kT

14: Func Perturbation(W, p, ¢, [r/]): 14: 7y = Boty + (1 — Bo)K272

15: reset the random seed as ¢ 150 My =>"" (Ta)s (us 0 vg)

16: for W; € W do 16: V= Z:lzl(ﬁ/)s (ug o v?)

17 sample 7 ~ N(0, I,,) 17 Gi= M, /VV, T e

18 Z, = ZS 1 Ts (us 0 V) 18

19: Wi =Wi+pZ 19: Wy =W, —nGy

20: end for 20: end for

According to the above equation, the computation of the first-order momentum term can be reformu-
lated by exchanging the order of summation—first performing momentum accumulation on the factor
vector 7, and then computing the momentum term via the outer product. As a result, the storage
requirement for the optimizer state variable is reduced to O(r).

Memory-Efficient Second-order Momentum. Adaptive optimizer is the mainstream optimization
for training LLMs, but its expensive storage requirements impose significant memory pressure.
Especially in zeroth-order optimizers, where activations are not stored for gradient computation, the
optimizer states become the dominant memory consumption. In contrast, our proposed Te ZO method
can easily overcome this challenge. When focusing on the second-order momentum of the [-th layer:

Tl

(Vof(Wl))2 = K? (Z Ts(us 0 v) Zn (u? 0 v?) 4+ K? ZTqu Uply © VpUy) - ®
s=1

PF#q

Separable Term ~0

The second term, i.e., the cross term, has an overall zero expectation on each coordinate. In practice,
this term is approximately zero and negligible. Due to page limitation, we provide more experiments
in Appendix B.2. Therefore, TeZO enables nearly lossless second-order momentum computation
solely through the update of the separable term. Its accumulation can be viewed as a first-order
momentum form applied to the squared factor vectors, and can therefore be computed in a memory-
efficient manner using Eq.(7), which reduce the memory overhead from O(d) to O(r).

In fact, advanced optimizers that applies first-order and second-order moments can be efficiently
computed through the TeZO structure. In the main text, we present comparisons across three
commonly used optimizers, and in Appendix B.1.5, we provide further experiments on TeZO—-LION.

5 THEORETICAL ANALYSIS

In this section, we mainly introduce the theoretical analysis of TeZO, including fundamental proper-
ties, convergence guarantees and the memory comparisons in the application of various optimizers.

Theorem 1 (Expectation and Variance) We consider the 2D parameters W € R™*™. [ts FO
gradient is denoted as V f and ZO gradient is denoted as V° f. When using the TeZ0 method to

Under review as a conference paper at ICLR 2026

Table 2: Theoretical memory usage for the computation of the corresponding variables in Adam.

Method Weights Gradients First-order Mome. Second-order Mome.
MeZO mn mn mn mn
MeZO+LoRA mn+ (m+n)r (m+n)r (m+n)r (m+n)r
Subz0 mn (m+n+7r)r mn mn
L0ZO mn (m+n)r mr mn
TezO mn (m+n+1)r r r

estimate the ZO gradient with rank v and a sufficiently small perturbation rate p, the following holds:

1 1
IIE‘r,u,v |: lim Vof} = Vf7 E‘r.u,vH* lim Vof — VfHQ = (S||Vf”27 (9)
r p—=0 ’ r p—0
where5:1+mn+%7"+w+170.

Remark 1.1 TeZO is an unbiased zero-order estimator and its variance is linearly correlated with
the norm of the FO gradient. Moreover, we provide detailed relationships between the variance
coefficient §; and the matrix sizes my, n; as well as rank r;. Previous work (Yu et al., 2024) focuses
on the impact of low-rankness on variance from the perspective of the subspace for the quadratic
objective. We provide the formal expression under the low-rank representation for a general smooth
objective. The variance for low-rank representation is slightly larger than that of the Me ZO method,
i.e. mn, remaining within the same order. This indicates that TeZ0 has comparable ability to MeZ0
in practice while requiring significantly less training costs.

Then we consider the convergence. In this paper, we consider the general non-convex objective with:

Vi(@,8) = VIOl <Az -yl

Assumption 2 The stochastic gradient is an unbiased estimator with bounded variance, i.e., for
each data sample &, B¢ [V f(x,€)] = Vf(x), E¢||[V f(2,&) — Vf(z)||* < o2

Assumption 1 f(-) is a smooth objective, i.e., for Vx,y € R?,

These are two commonly adopted assumptions in ZO optimization. Prior works (Chen et al., 2024;
Yu et al., 2024) consistently impose the requirement that some or all factor vectors exhibit column
orthogonality. In contrast, our proof does not rely on the need for such additional constraints.

Theorem 2 (Convergence) Without loss of generality, we consider the 2D parameters W € R™*™,

Under Assumption 1 and 2, let n = O <\/mp2£—§p+éaz)> <)\(514_1) where Do = f(Wo) — f(W)

is the initialized bias, the sequence {Wt}f:_ol generated by TeZO converges as:

1= Dy (92725, + 02
7 2 EIVIW)P =0 <\/ o (e e 107)> , (10)
t=0

2 3 213 3,33 4 3,3
where §, = 1or" (m+3)" (n+3) ZSGT MY M and § is defined in Theorem |.

Remark 2.1 This convergence result maintains the same rate of recent ZO advances. By substituting
the total parameters for d, we have 6 = O(d) and 6, = O(d®). Let the perturbation rate p =

(’)(%d_l), we have the final rate as O(4/ %) which recovers the general rate of the recent ZO
methods. This also demonstrates the advantages of the TeZO method, as it reduces the complexity of

random sample generation from O(d - T') to O(\/ﬁ + T) and effectively decreases memory usage,
while theoretically maintaining the similar convergence rate.

Theoretical Memory Overhead. We compare the memory requirements to demonstrate the advan-
tage of the TeZO in terms of memory efficiency. We mainly focus on the theoretical memory of
MeZz0, MeZ0O+LoRA, LOZO, Subz0 with Adam. By considering a 2D weight W € R™*"™(m < n),
we show the results in Table 2. Previous methods solely adopt low-rankness from the perspective of
gradients, and thus fail to effectively extend memory efficiency to optimizer states. TeZO introduces
temporal low-rankness, which can effectively reduces the storage requirements of optimizer states.

Under review as a conference paper at ICLR 2026

I FT
3 Zero-Shot

B MeZO
I SubZO

m LOZO
I TeZO

[MeZO-Adam
B SubZO-Adam

[LOZO-Adam
[TeZO-Adam

100

Accuracy (%)

SST-5

SNLI

TREC

SST-5

SNLI

TREC

Figure 3: Fine-tuning RoBERTa-large for 80k iterations under & = 16 (left) and k£ = 512 (right).

Table 3: Performance and averaged memory usage of fine-tuning OPT-13B for 15k iterations.

SST-2 CB BoolQ WIC M-RC SQAD DROP Memory
FT 93.5 84.0 76.4 70.0 71.1 84.7 31.5 247.26 G
ZERO-SHOT 58.5 46.4 59.1 55.2 46.7 46.6 14.4 26.17 G
MEZO 90.10.5 67905 66.106 54705 57700 79.60.0 30403 | 28.22G
SUBZO 91.3(0'7) 67-9(0.8) 66.1(0'5) 55.9(0_4) 57-3(0.8) 80.7(1_2) 30.5(0'4) 28.65 G
L.0Z0 90.30.6) 67.905 65605 55305 356909 80.509 30.10s | 27.39G
TEZO 90.2(0'7) 69.6(0_8) 65.1(0'4) 54.3(0_4) 56.8(0'7) 80.7(0_7) 29.6(0'4) 27.41G
MEZO-M 90.6(0'5) 67.9(0‘8) 65.5(0,5) 54.6(0‘3) 57.9(0,9) 79.5(1‘1) 30-4(0.6) 53.07 G
SUBZO—M 91.3(()‘5) 67-9(0.8) 65.2(()‘7) 54.9(0.7) 57-5(08) 80.5(1.3) 30.1(()‘7) 55.44 G
L0z0-u | 90704 67.1we 65708 55705 57708 80.701) 29905 | 27.44G
TEZO—-M 91.1(04) 69-6(0.6) 65.6(()‘6) 55.6(0.5) 57.9(()‘9) 80.9(0,9) 30.4(()‘5) 27.43 G
ZO—-ApaMU 92-0(0.8) 67-9(0.6) 71.0(0,7) 59.7(0'4) 59-4(0.6) 82.4(0'9) 31'1(0.6) 77.12 G
MEZO-ADAM 92.4(0_5) 67.9(0‘6) 70.0(0_7) 58.7(1‘1) 58.9(0_5) 81.8(0‘3) 30.7(0.4) 78.16 G
SUBZO—ADAM 92.8(0'5) 67-9(0.8) 70-3(0.6) 60.3(0'5) 59.9(0'5) 81-3(0.8) 30.5(0'3) 78.85 G
LOZO—-ADAM 93-2(0_4) 69.6(0‘3) 70'0(0.6) 59-7(046) 59~7(0.6) 82.6(0‘6) 30.3(0.2) 53.31G
TEZO-ADAM 93.3(0'5) 69.6(0'8) 71-8(0.8) 60.5(0_7) 60.3(0'5) 84.0(1_1) 30.8(0'3) 28.04 G

6 EXPERIMENTS

In this section, we mainly show the empirical studies. We follow the recent studies of fine-tuning
LLMs tasks with ZO methods (Malladi et al., 2023; Yu et al., 2024; Chen et al., 2024; Jiang et al.,
2024) and adopt the similar setups to validate the efficiency. The main text primarily introduces
baselines, performance evaluations, and training costs. Due to page limitations, other contents,
including experimental details, hyperparameter selections, have been stated in Appendix B.

Baselines and setups. We select recent advances of ZO and low-rank ZO methods on fine-tuning
LLM tasks as baselines, including Me ZO (Malladi et al., 2023), LOZO (Chen et al., 2024), SubZ0O
(Yu et al., 2024), and their variants of momentum-based and Adam-based extensions in their works.
We also compare ZO-AdaMU (Jiang et al., 2024) which focuses on adaptivity. Similar to these works,
we conducted tests on different models, including RoBERTa-large (Liu et al., 1907), OPT (Zhang
et al., 2022), and LLaMA (Touvron et al., 2023). We select a total of 16 datasets for testing and
compute the final average performance to fairly compare the overall efficiency of each method.

Medium-sized Models. We conduct the experiments on the RoOBERTa-large model for the general
sentiment classification, natural language inference and text retrieval tasks, as shown in Figure 3.
To eliminate experimental randomness, the reported results are the averages of 5 runs with different
random seeds. It clearly demonstrates the efficiency of the ZO method on medium-sized models. In
fact, for medium-sized models, Me Z0O remains the most accurate ZO method.

Under review as a conference paper at ICLR 2026

Table 4: Fine-tuning LLaMA-7B and LLaMA-30B for 20k iterations.

LLAMA-7B LLAMA-30B
SST-2 RTE WIC AVG. SST-2 RTE WIC AVG.
FT 95.6 86.3 70.4 +0 95.9 88.2 71.1 +0

ZERO-SHOT 59.7 49.8 50.6 -30.7 63.5 55.9 58.4 -25.8
MEZO 93.7(0.7) 69.0(0‘8) 60.5(044) -9.7 93'5(046) 69.7(0‘3) 63.5(0‘3) -9.5
SuBZO 93-1(0,8) 67-9(0,8) 59.3(05) -10.6 92-8(0,6) 68.4(04) 63.0(04) -10.3
LOZO 93.6(0.4) 69.5(0‘7) 60.2(044) -9.7 93.8(0‘5) 69-6(042) 63.2(0‘3) -9.4
TEZO 92906 67.000) 59906 | -10.8 | 94.005 69.50s 64.20¢ | -9.2

MEZO-ADAM 94.4(0‘5) 71.4(09) 61.9(05) -8.2 94.8(0‘9) 72.2(07) 64.1(03) -8.0
SUBZO—-ADAM 93.8(0‘7) 72.4(1‘1) 60.5(044) -8.5 94.0(044) 74-1(046) 63.0(0‘3) -8.0
LOZO-ADAM 94.6(0.5) 73-4(048) 60.6(07) -7.9 94.8(05) 74-6(048) 63.9(0‘3) -7.3
TEZO-ADAM 94-6(044) 75-0(1‘2) 60.8(0‘3) -7.3 94.7(0‘3) 76.5(0‘9) 64.3(0‘5) -6.5

Zer(;[Sel;)(: 3 Base Zert‘;\-/IS‘;th:;; = Sampling Z;
SubZO I Parameters SubZO I Perturbate
LOZO I Opt States LOZO [Forward

I Update W,

1

1

1

1

1

1

1

|
TeZO | TeZO
MeZO-m ! MeZO-m
SubZO-m H SubZO-m
LOZO-m i LOZO-m
TeZO-m ! TeZO-m
MeZO-Adam H MeZO-Adam
SubZ0O-Adam | SubZO-Adam

LOZO-Adam | LOZO-Adam 1.63x
TeZO-Adam ! TeZO-Adam :
26.43G 2.89x% 80G 388.1ms

(a) Memory breakdown on fine-tuning OPT-13B. (b) Wall-time breakdown on fine-tuning OPT-13B.

Figure 4: GPU memory usage (a) and wall-clock time (b) for fine-tuning OPT-13B on the SST-2
dataset on a single H100 device. More experiments are stated in Appendix B.4.

Large-sized Models. We conduct experiments on OPT-13B and LLaMA-7B, as shown in Table 3 4.
The reported results are the averages of 3 runs with different random seeds. The low-rank ZO methods
and their variants generally perform better than the vanilla Me ZO method. Me ZO—m and Me ZO—-Adam
can achieve about 0.2% and 2.1% improvements. Due to the strong low-rank nature of TeZO, the
alignment of factor vectors used in adaptivity still retains strong subspace properties. In practical
training, the benefit of this advantage is that it constantly enforces the adaptive learning rate to stay
synchronized within the subspace. Therefore, TeZO-Adam can still achieve the SOTA-comparable
performance, about 2.2% improvement on LLaMA-7B and 2.8% improvement on OPT-13B.

Memory Usage and Wall-clock Time. We evaluate the GPU memory usage and wall-clock time for
different methods. Figure 4. (a) shows the memory cost of ZO mainly consists of two parts, parameters
and optimizer states. For the MeZO baseline, ~Adam variant typically consumes 3 x the storage.
However, our proposed TeZO-Adam method requires less storage than Me Z0, and is significantly
lower than Me ZO—Adam (~34.6%). Figure 4. (b) shows the wall-clock time comparisons, primarily
including sampling, perturbations, forward pass, and update parameters. our Te ZO—Adam maintains
a speed comparable to the MeZO and is 1.63 x faster than MeZO-Adam.

7 CONCLUSION

Inspired by the similarity in the gradient subspace, in this paper, we combine the low-rank properties
in both the model and the temporal dimension and propose a novel low-rank ZO method, named
TeZO. Moreover, TeZO can easily implement memory-efficient variants of momentum and Adam,
maintaining the same resource consumption as standard ZO—SGD, but with better performance. We
prove that TeZO maintains the same convergence rate as previous low-rank ZO methods while
requiring fewer training costs. Furthermore, we conduct extensive evaluations of TeZO and its
variants in fine-tuning tasks of LLMs, which demonstrates the significant potential of low-rank ZO.

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Aochuan Chen, Yimeng Zhang, Jinghan Jia, James Diffenderfer, Jiancheng Liu, Konstantinos
Parasyris, Yihua Zhang, Zheng Zhang, Bhavya Kailkhura, and Sijia Liu. Deepzero: Scaling up
zeroth-order optimization for deep model training. arXiv preprint arXiv:2310.02025, 2023.

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order
optimization based black-box attacks to deep neural networks without training substitute models.
In Proceedings of the 10th ACM workshop on artificial intelligence and security, pp. 15-26, 2017.

Yiming Chen, Yuan Zhang, Liyuan Cao, Kun Yuan, and Zaiwen Wen. Enhancing zeroth-order
fine-tuning for language models with low-rank structures. arXiv preprint arXiv:2410.07698, 2024.

Shuyu Cheng, Guogiang Wu, and Jun Zhu. On the convergence of prior-guided zeroth-order
optimization algorithms. Advances in Neural Information Processing Systems, 34:14620-14631,
2021.

Wenzhi Fang, Ziyi Yu, Yuning Jiang, Yuanming Shi, Colin N Jones, and Yong Zhou. Communication-
efficient stochastic zeroth-order optimization for federated learning. IEEE Transactions on Signal
Processing, 70:5058-5073, 2022.

Tanmay Gautam, Youngsuk Park, Hao Zhou, Parameswaran Raman, and Wooseok Ha. Variance-
reduced zeroth-order methods for fine-tuning language models. arXiv preprint arXiv:2404.08080,
2024.

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic
programming. SIAM journal on optimization, 23(4):2341-2368, 2013.

Daniel Golovin, John Karro, Greg Kochanski, Chansoo Lee, Xingyou Song, and Qiuyi Zhang. Gradi-
entless descent: High-dimensional zeroth-order optimization. arXiv preprint arXiv:1911.06317,
2019.

Cristiano Gratton, Naveen KD Venkategowda, Reza Arablouei, and Stefan Werner. Privacy-preserved
distributed learning with zeroth-order optimization. IEEE Transactions on Information Forensics
and Security, 17:265-279, 2021.

Wentao Guo, Jikai Long, Yimeng Zeng, Zirui Liu, Xinyu Yang, Yide Ran, Jacob R Gardner, Osbert
Bastani, Christopher De Sa, Xiaodong Yu, et al. Zeroth-order fine-tuning of llms with extreme
sparsity. arXiv preprint arXiv:2406.02913, 2024.

Devansh Gupta, Meisam Razaviyayn, and Vatsal Sharan. On the inherent privacy of two point zeroth
order projected gradient descent. In OPT 2024: Optimization for Machine Learning.

Davood Hajinezhad, Mingyi Hong, and Alfredo Garcia. Zone: Zeroth-order nonconvex multiagent
optimization over networks. IEEE transactions on automatic control, 64(10):3995-4010, 2019.

Frank L Hitchcock. The expression of a tensor or a polyadic as a sum of products. Journal of
Mathematics and Physics, 6(1-4):164—189, 1927.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Feihu Huang, Shangqgian Gao, Jian Pei, and Heng Huang. Nonconvex zeroth-order stochastic admm
methods with lower function query complexity. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2024.

10

Under review as a conference paper at ICLR 2026

Ajay Jaiswal, Lu Yin, Zhenyu Zhang, Shiwei Liu, Jiawei Zhao, Yuandong Tian, and Zhangyang Wang.
From galore to welore: How low-rank weights non-uniformly emerge from low-rank gradients.
arXiv preprint arXiv:2407.11239, 2024.

Kaiyi Ji, Zhe Wang, Yi Zhou, and Yingbin Liang. Improved zeroth-order variance reduced algorithms
and analysis for nonconvex optimization. In International conference on machine learning, pp.
3100-3109. PMLR, 2019.

Shuoran Jiang, Qingcai Chen, Youcheng Pan, Yang Xiang, Yukang Lin, Xiangping Wu, Chuanyi Liu,
and Xiaobao Song. Zo-adamu optimizer: Adapting perturbation by the momentum and uncertainty
in zeroth-order optimization. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 18363-18371, 2024.

Sanjay Kariyappa, Atul Prakash, and Moinuddin K Qureshi. Maze: Data-free model stealing attack
using zeroth-order gradient estimation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 13814-13823, 2021.

Ehsan Kazemi and Ligiang Wang. Efficient zeroth-order proximal stochastic method for nonconvex
nonsmooth black-box problems. Machine Learning, 113(1):97-120, 2024.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems, 35:
22199-22213, 2022.

Sijia Liu, Jie Chen, Pin-Yu Chen, and Alfred Hero. Zeroth-order online alternating direction method
of multipliers: Convergence analysis and applications. In International Conference on Artificial
Intelligence and Statistics, pp. 288-297. PMLR, 2018a.

Sijia Liu, Bhavya Kailkhura, Pin-Yu Chen, Paishun Ting, Shiyu Chang, and Lisa Amini. Zeroth-
order stochastic variance reduction for nonconvex optimization. Advances in Neural Information
Processing Systems, 31, 2018b.

Sijia Liu, Pin-Yu Chen, Bhavya Kailkhura, Gaoyuan Zhang, Alfred O Hero III, and Pramod K
Varshney. A primer on zeroth-order optimization in signal processing and machine learning:
Principals, recent advances, and applications. /EEE Signal Processing Magazine, 37(5):43-54,
2020.

Y Liu, M Ott, N Goyal, J Du, M Joshi, D Chen, O Levy, M Lewis, L Zettlemoyer, and V Stoyanov.
Roberta: A robustly optimized bert pretraining approach. arxiv [preprint](2019). arXiv preprint
arXiv:1907.11692, 1907.

Yong Liu, Zirui Zhu, Chaoyu Gong, Minhao Cheng, Cho-Jui Hsieh, and Yang You. Sparse mezo: Less
parameters for better performance in zeroth-order 1lm fine-tuning. arXiv preprint arXiv:2402.15751,
2024.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Dangi Chen, and Sanjeev
Arora. Fine-tuning language models with just forward passes. Advances in Neural Information
Processing Systems, 36:53038-53075, 2023.

Alessio Maritan and Luca Schenato. Zo-jade: Zeroth-order curvature-aware distributed multi-agent
convex optimization. IEEE Control Systems Letters, 7:1813—-1818, 2023.

Bhaskar Mukhoty, Velibor Bojkovic, William de Vazelhes, Xiaohan Zhao, Giulia De Masi, Huan
Xiong, and Bin Gu. Direct training of snn using local zeroth order method. Advances in Neural
Information Processing Systems, 36:18994—-19014, 2023.

Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Sagqib, Saeed Anwar, Muhammad Usman,
Naveed Akhtar, Nick Barnes, and Ajmal Mian. A comprehensive overview of large language
models. arXiv preprint arXiv:2307.06435, 2023.

Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions.
Foundations of Computational Mathematics, 17(2):527-566, 2017.

11

Under review as a conference paper at ICLR 2026

Konstantinos Nikolakakis, Farzin Haddadpour, Dionysis Kalogerias, and Amin Karbasi. Black-box
generalization: Stability of zeroth-order learning. Advances in neural information processing
systems, 35:31525-31541, 2022.

Marco Rando, Cesare Molinari, Lorenzo Rosasco, and Silvia Villa. An optimal structured zeroth-
order algorithm for non-smooth optimization. Advances in Neural Information Processing Systems,
36, 2024.

Li Shen, Yan Sun, Zhiyuan Yu, Liang Ding, Xinmei Tian, and Dacheng Tao. On efficient training of
large-scale deep learning models: A literature review. arXiv preprint arXiv:2304.03589, 2023.

James C Spall. Multivariate stochastic approximation using a simultaneous perturbation gradient
approximation. /[EEE transactions on automatic control, 37(3):332-341, 1992.

Yujie Tang, Junshan Zhang, and Na Li. Distributed zero-order algorithms for nonconvex multiagent
optimization. IEEE Transactions on Control of Network Systems, 8(1):269-281, 2020.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Chun-Chen Tu, Paishun Ting, Pin-Yu Chen, Sijia Liu, Huan Zhang, Jinfeng Yi, Cho-Jui Hsieh, and
Shin-Ming Cheng. Autozoom: Autoencoder-based zeroth order optimization method for attacking
black-box neural networks. In Proceedings of the AAAI conference on artificial intelligence,
volume 33, pp. 742-749, 2019.

Anirudh Vemula, Wen Sun, and J Bagnell. Contrasting exploration in parameter and action space:
A zeroth-order optimization perspective. In The 22nd International Conference on Artificial
Intelligence and Statistics, pp. 2926-2935. PMLR, 2019.

Fei Wang, Li Shen, Liang Ding, Chao Xue, Ye Liu, and Changxing Ding. Simultaneous computation
and memory efficient zeroth-order optimizer for fine-tuning large language models. arXiv preprint
arXiv:2410.09823, 2024a.

Hongyi Wang, Saurabh Agarwal, Yoshiki Tanaka, Eric Xing, Dimitris Papailiopoulos, et al. Cuttlefish:
Low-rank model training without all the tuning. Proceedings of Machine Learning and Systems, 5:
578-605, 2023.

Yining Wang, Simon Du, Sivaraman Balakrishnan, and Aarti Singh. Stochastic zeroth-order opti-
mization in high dimensions. In International conference on artificial intelligence and statistics,
pp. 1356-1365. PMLR, 2018.

Zhaohui Wang, Min Zhang, Jingran Yang, Bojie Shao, and Min Zhang. Maft: Efficient model-
agnostic fairness testing for deep neural networks via zero-order gradient search. In Proceedings
of the IEEE/ACM 46th International Conference on Software Engineering, pp. 1-12, 2024b.

Yifan Yang, Kai Zhen, Ershad Banijamal, Athanasios Mouchtaris, and Zheng Zhang. Adazeta:
Adaptive zeroth-order tensor-train adaption for memory-efficient large language models fine-
tuning. arXiv preprint arXiv:2406.18060, 2024.

Xinlei Yi, Shengjun Zhang, Tao Yang, Tianyou Chai, and Karl H Johansson. Linear convergence
of first-and zeroth-order primal—dual algorithms for distributed nonconvex optimization. /EEE
Transactions on Automatic Control, 67(8):4194-4201, 2021.

Ziming Yu, Pan Zhou, Sike Wang, Jia Li, and Hua Huang. Subzero: Random subspace zeroth-order
optimization for memory-efficient llm fine-tuning. arXiv preprint arXiv:2410.08989, 2024.

Liang Zhang, Kiran Koshy Thekumparampil, Sewoong Oh, and Niao He. Dpzero: dimension-
independent and differentially private zeroth-order optimization. In International Workshop on
Federated Learning in the Age of Foundation Models in Conjunction with NeurlPS 2023, 2023.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

12

Under review as a conference paper at ICLR 2026

Huaqin Zhao, Jiaxi Li, Yi Pan, Shizhe Liang, Xiaofeng Yang, Wei Liu, Xiang Li, Fei Dou, Tianming
Liu, and Jin Lu. Helene: Hessian layer-wise clipping and gradient annealing for accelerating
fine-tuning 1lm with zeroth-order optimization. arXiv preprint arXiv:2411.10696, 2024a.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. arXiv preprint
arXiv:2403.03507, 2024b.

Pu Zhao, Pin-Yu Chen, Siyue Wang, and Xue Lin. Towards query-efficient black-box adversary
with zeroth-order natural gradient descent. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pp. 6909-6916, 2020.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yinggian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

Yanjun Zhao, Sizhe Dang, Haishan Ye, Guang Dai, Yi Qian, and Ivor W Tsang. Second-order
fine-tuning without pain for llms: A hessian informed zeroth-order optimizer. arXiv preprint
arXiv:2402.15173, 2024c.

13

Under review as a conference paper at ICLR 2026

A DECLARATION

In the preparation of this manuscript, large language models were used solely for spelling and
grammar correction. Beyond this purpose, no other large-model-based tools were employed. We
include a code demo in the supplementary material and provide detailed tables of hyperparameter
choices in the main text to support the reproducibility of this work. Moreover, our work focuses
purely on algorithmic research, relying solely on commonly used public datasets and models from
the research community, and does not involve any other ethical concerns.

B EXPERIMENT MATERIALS

B.1 Low RANKNESS IN LLMs

This property has been well studied and validated by several works. Especially in large models,
the low-rank nature of parameters, gradients, and the FO optimizer states have triggered a series of
studies. The most representative works include LoRA low-rank structure (Hu et al., 2021), GaLore
low-rank optimization (Zhao et al., 2024b), and so on. In the main text, we study the low-rankness on
the OPT-1.3B model. Here, we also show tests of the low-rankness on the LLaMA-7B.

B.1.1 Low RANKNESS OF EACH SINGLE GRADIENT

We first learn the low rankness of each single gradient. Similarly, we consider the 2D parameters
W; € R™*™. Then we calculate the top-100 singular values of its gradients Vyy, f € R™*™ to test
the low-rankness, As shown in Figure 5.

0.030

2% of Top-1 Singular Value 010

0.08

2% of Top-1 Singular Value
0.025
0.020
0.06
0.015
0.04
0.010

0.005 0.02

Top-100 Singular Values
Top-100 Singular Values

~ Iterations Iterations

(a) layers.6.self_attn.k_proj (b) layers.12.self_attn.v_proj

2% of Top-1 Singular Value 0.020

0.015

0.0175

2% of Top-1 Singular Value 0.0150

0.0125

0.0100
0.010

Iterations

0.0075

0.0050
0.0025

Top-100 Singular Values
Top-100 Singular Values

(c) layers.18.self_attn.qg proj (d) layers.24.self_attn.o_proj

Figure 5: We finetune LLaMA-7B on SST-2 to test low-rankness of gradients. We set the batchsize
as 16 and train 500 steps with 8000 samples on a H200 device. The training loss decreases from 1.04
to 0.13. We analyze the low-rank properties of the Wy, Wy, W and Wo parameters in the 6-th,
12-th, 18-th, and 24-th modules at each iteration (Wg, Wy, Wo, Wo € R4096x4096y - The white
lines represent the indices where the singular values are 2% of the maximum singular value.

It is clear that gradients are low-rank on LLaMA-7B model and the low-rankness is even greater than
that of OPT-1.3B. After around index-20, the singular value is almost completely lost. It is worth
noting that in our tests, the data samples used for each gradient computation are completely
different, which further emphasizes the universality of gradient low-rankness in LLMs.

14

Under review as a conference paper at ICLR 2026

B.1.2 LoOw RANKNESS OF GRADIENT SUBSPACE

The low-rankness of each individual gradient has already been widely acknowledged. In this
part, we continue to explore the low-rank subspace of all gradients in the LLaMA-7B model.
The same, we consider the 2D parameters W; € R™*" trained for 7 iterations. We normalize
each flattened gradient and concatenate them along the 7' dimension to form a new matrix as
G = [Gur.05Guwi1s s Gurw] € R™XT where gy, + = Vi, ft/|| Vo, fi]| € R™. And then we
calculate the cosine value by G T G. It is important to note that without normalization, the low-
rankness of this matrix naturally holds. This is because when the loss is large, the gradients are
naturally large. As training progresses and the loss becomes smaller, the gradients will be much
smaller. If these gradients are concatenated directly, although it still forms a low-rank matrix, this
low-rank nature is inconsistent with the motivation behind our proposed TeZ0O method. Te ZO expects
similarity across the entire gradient space. Since we are always more concerned with whether the
gradient direction is similar, we study the properties of each normalized gradient, specifically whether
all gradients lie in the same subspace, as shown in Figure 6.

1.0 3 1.0
i L i“‘ﬁj”l 1y In,:!‘
=R BT BUIR IEH it
L B L P 3 H
0.8 = ainp 0.8
2 g ' ¥y uﬁl.
0.6 0.6
2 Sk v
b= = ik i s
- - x A
@ 04 Q SF RiRE S 541 REE 04
= =~ B i 'l
ot
0.2 E 0.2
= 1
I
0.0 A den s 0.0
’ Iterations

(a) layers.15.self_attn.v_prdb) layers.28.self_attn.o_proj

Figure 6: We finetune LLaMA-7B on SST-2 to test the similarity between gradients at different
iterations. Similarly, we set the batchsize as 16 and train 500 steps with 8000 samples on a H200
device. The training loss decreases from 1.04 to 0.13. We calculate the cosine value of each gradient
pair (Vw, ft,, Vw, ft,) where t1,t2 € [0,1,2,---,499] and show their values as the heat maps
above.

It can be seen that the similarity between gradients is generally high, and the distribution of cosine
distances is relatively concentrated. This also highlights the low-rankness of the gradient space in
training LLMs, where gradients from different samples exhibit strong similarity.

B.1.3 LOW-RANKNESS BETWEEN WEIGHTS AND GRADIENTS

In this part, we explore the close relationship between the low-rankness of gradients and that of model
parameters.

2
8

5% of Top-1 Singular Value in Grads
30% of Top-1 Singular Value in Params
35% of Top-1 Singular Value in Params .
40% of Top-1 Singular Value in Params

5% of Top-1 Singular Value in Grads

30% of Top-1 Singular Value in Params
35% of Top-1 Singular Value in Params
40% of Top-1 Singular Value in Params

houlindd s LTI T

100 200 300 400 500 100 200 300 400 500
Iterations Iterations

®
g

N
3

Index of Singular Value:
2

Index of Singular Value:
2
2

e

(a) layers.6.self_attn.k_proj (b) layers.18.self_attn.q _proj

Figure 7: We finetune LLaMA-7B on SST-2 to test the similarity between gradients at different
iterations. We compared the relationship between the low-rank properties of parameters and gradients,
and demonstrat the rank levels of parameters.

15

Under review as a conference paper at ICLR 2026

We can observe that, although the degree of low-rankness in gradients and parameters is not strictly
aligned, they still exhibit a high degree of correlation within a certain fluctuation range. In fact,
due to the very small learning rate, the gradient updates for individual parameters are negligible,
which allows the low-rank nature of the model to remain relatively stable. This also validates the
effectiveness of our dynamic selection method within a certain range. The dynamic selection method
eliminates the need for additional hyperparameter tuning while ensuring experimental stability.

B.1.4 COMPARISON BETWEEN DYNAMIC RANKING AND STATIC RANKING

In this section, we mainly compare the differences between dynamic ranking and static ranking. By
examining these two approaches, we aim to highlight their respective strengths and limitations, and
emphasize that dynamic ranking offers superior adaptability and personalization. We conducted
ablation studies on TeZO-Adam for training OPT-13B, 15K iterations.

Table 5: Comparison between dynamic ranking and static ranking.

| SST2 MultiRC BoolQ WIC Averaged r
r=8 |89.7(03) 57.1(02) 69.4(0.6) 59.2(0.5) 8
r=256 | 92.9(0.6) 59.7(0.3) 71.3(0.6) 60.1(0.6) 256

r=1024 | 928 (0.5) 59.5(0.7) 712(0.7) 60.3(0.5) 1024
dynamic | 93.3(0.5) 60.3(0.5) 71.8(0.8) 60.9(0.7) 31.52

As shown in Table 5, the results above present our evaluations under various fixed ranks, where
we observe that relatively large fixed ranks are often required to achieve competitive performance.
Although the overall trend suggests the existence of an optimal rank choice, such a selection is
difficult to determine in practice and may vary considerably across different datasets. As discussed in
the paper, different layers and parameters demonstrate varying degrees of low-rank characteristics. To
better capture this layer-wise heterogeneity, we propose a dynamic, layer-wise rank selection strategy.
This adaptive mechanism aligns rank allocation more closely with the model’s intrinsic structure,
leading to improved efficiency and enhanced performance.

More importantly, compared with static settings, dynamic rank selection can substantially reduce
computational complexity. This is because most layers do not require a large rank, and only a subset
of critical layers need higher ranks to maintain strong performance.

B.1.5 APPLICABILITY TO OTHER ADVANCED OPTIMIZERS

Advanced optimizers typically rely on low-rank accumulation of gradients or their squared values. For
example, the recently proposed LION optimizer applies the sign function after first-order momentum
updates. This structure aligns well with our theoretical formulation, and TeZO can be directly
extended to such optimizers by applying the same low-rank estimation principles. We evaluated the
fine-tuning performance of the ZO—~LION optimizer corresponding to the baseline.

Table 6: Applicability to ZO-LION optimizer.
| SST2 RTE WIC

MeZO-LION | 92.1(0.2) 72.4(0.4) 59.2(0.6)
SubZO-LION | 90.2(0.3) 72.7(0.5) 60.3(0.2)
LOZO-LION | 92.1(0.2) 73.1(0.6) 59.9(0.3)
TezO-LION | 92.5(0.2) 73.4(04) 60.5(0.5)

As shown in Table 6, Tezo exhibits consistently stable performance under low-rank settings, bene-
fiting from substantially reduced memory consumption. Furthermore, its dynamic rank adaptation
effectively preserves model accuracy across diverse training scenarios. we also find Tezo delivers
strong and reliable improvements when combined with the recent LION optimizer. These results
indicate that the effectiveness of TeZO is not restricted to a particular optimization algorithm, but
generalizes well across a wide range of optimizers, further underscoring its practicality and versatility.

16

Under review as a conference paper at ICLR 2026

B.2 THE EFFICIENCY OF LIGHTWEIGHT SECOND-ORDER MOMENTUM IN TEZO-ADAM

In this paper, we propose a lightweight variant to address the storage issue of second-order momentum
in the TeZO-Adam variant:
Ty

[Vof(wt)]2 = K? (i Ts - (us 0 v > Z kiT2 - (u? 0 v?) + K? ZTqu (uptig © VyV,) -
s=1

PF#q

Separable Term Er w0 [TpTq-(upugovpvg)]=0
(11)

The separable term is memory-efficient which can be calculated by the accumulation of the factor
vector 7.

B.2.1 ERRORS IN ONE STEP

By the definitions, we consider the decomposition of Z € R™*™ by the factor vectors u, € R™,
vs € R, and 7 € R". And we consider an example comparable in scale to the LLaMA-7B model
and set m = n = 4096. And we select r = 64 to evaluate the error. Since we consider the parameters
at time ¢ where k. can be treated as a constant. Without loss of generality, we set x; = 1 directly and
examine the error by randomly samphng T, u, v, as shown in the following figure.

80
70
60
50
40
30
20
10
0

(L, Ts'(u.so'Us))2 a=1 73 (uovd) P htq TpTar (Uptiqovpvg) =0
This clearly demonstrates the precision of our lightweight estimation. The second term is almost
zero, and the cost of calculating it is very high, including both storage and computation. Therefore,
we eliminate the second term directly and accumulate the second-order momentum of the first term
as the second-order momentum of Adam for updates. This significantly reduces the training cost,
making the training overhead of our TeZO-Adam method almost consistent with that of Me ZO—-SGD,
significantly lower than the Me ZO-Adam method.

B.2.2 ACCUMULATED ERRORS AFTER T STEPS

Then we learn the accumulated errors in the training process. We define the update of standard second-

order momentum as Viy1 = BoV; + (1 — B2) (Ooh_; 7ot - (us o vs))z, and that of TeZO—-Adam

as Vigr = BoVi + (1 — B2) 30_, 72, - (u? o v2). We report the averaged accumulated errors
E,=(V,— Vt)/mn over 1000 steps under S = 0.99, as shown in Figure 8.

0.00014
0.00012 / v “oAns '\
0.00010

—0.00008! — mxn=768x768

——m x n=2048 x 2048
=0.000061 e 117 x 1 = 4096 x 4096

0.00004
0.00002

0.00000
0 200 400 600 800 1000
Iteration

L e

Figure 8: ||E:|| under different m,n and r = 64. It can be observed that the averaged accumu-
lated errors decrease as the model size increases, which highlights the practicality of our proposed
lightweight second-order moment estimation on LLM:s.

17

Under review as a conference paper at ICLR 2026

B.3 SETUPS AND HYPERPARAMETERS

We follow previous works (Malladi et al., 2023; Chen et al., 2024; Yu et al., 2024) and summarized
the range of hyperparameter selections, as shown in Table 7. Although certain hyperparameters, such
as batchsize and perturbation rate, may introduce subtle variations, we fix these hyperparameters
across all methods to ensure fairness. The primary search hyperparameter is the learning rate across

models of different scales.

Table 7: Hyperparameter recommendations for different models. bs: batchsize; Ir: learning rate; p:

perturbation rate; r: rank; f,: lazy update interval; ry,: threshold for r; ry,,x: upper bound of r.
Method Search Range | RoBERTa-large | OPT-13B | LLaMA-7B
| bs 116,32,64} | 64 | 16
MeZO
Mezo-m | Ir {le-4, 1e-5, le-6, le-7} | le-6 | le-7 | le-6
| p le-3 \ le-3
| bs [16,32,64} | 64 | 16
MeZO-Adam | I {le-4, 3e-5, le-5, 3e-6} | - | le-5 | 3e-5/1e-5
| p le-3 \ le-3
| bs [16,32,64) | 64 | 16
| Ir {le-4, 1e-5, le-6, le-7} | le-6 | le-7 | le-6
Subz0 | »p le-3 \ le-3
| (32, 64, 128} | 64
|t (50, 100, 500} | 500
| bs [16,32,64} | 64 | 16
| I {le-4, le-5, 1e-6, le-7} | le-6 | le7 | le-6
LOzZO
Lozo-m | _P le-3 | le-3
| (8,16, 32} | 8
‘ fu {50, 100, 500} ‘ 100
| bs (16,32,64) | 64 | 16
| I {le-4, le-5, 1e-6, le-7} | le-6 | le-7 | le-6
TeZO
TezO-m ‘ P le-3 ‘ le-3
‘ T'th {20%, 25%, 30%, 35%} ‘ 25% 1 30%
| Tmax (32, 64, 128, 256} \ depend on tasks
| bs 116,32,64} | 64 | 16
| I {le-4, 3e-5, le-5, 3e-6} | - | le-5 | 3e-5/1e-5
TezO-Adam | p le-3 \ le-3
‘ T'th {20%, 25%, 30%, 35%} ‘ 25% 1 30%
\ T'max {32, 64, 128, 256} \ depend on tasks

We refer to the selections reported in previous works and grid search each hyperparameter. Although
further fine-tuning of hyperparameters for specific tasks could yield greater benefits, we fix the
hyperparameter selections for fairness. The recommended value reported in the table above is

provided only as a reference on which most tasks work well.

18

Under review as a conference paper at ICLR 2026

B.4 MEMORY USAGE AND WALL-CLOCK TIME ON DIFFERENT MODEL SIZES

We extensively test the training efficiency of the OPT and LLaMA models across different model
sizes, as shown in Table 8 and Tuble 9.

Table 8: GPU memory usage (max memory reserved) for fine-tuning LLMs on RTE dataset on a
single H100 device.

OPT LLaMA
1.3B 2.7B 6.7B 13B 30B | 7B 13B 30B
Zero-Shot | 290G 544G 1273G 2439G 5646G | 1292G 2489G 61.86G
MeZO 348G 640G 1440G 2643G 6031G | 1391G 26.12G 63.77G
SubZ0 328G 592G 1491G 2697G 61.18G | 1428G 26.67G 6445G
LOZO 331G 595G 13.66G 2550G 5793G | 1344G 2577G 62.38G
TeZzO 328G 592G 13.68G 2552G 5795G | 1347G 2579G 6240G

MeZO-m 631G 11.77G¢ 27.19G 5132G >80G | 26.85G 5131G >80G
LOZO-m 332G 597G 13.68G 2553G 5799G | 1347G 2580G 62.44G
TeZO-m 329G 593G 13.69G 2552G 5796G | 1348G 2579G 6240G

MezO-Adam | 9.15G 1690G 3998G 7527G >80G | 3950G 7569G >80G
TezO-Adam | 348G 6.16G 1407G 2601G 358.64G | 13.71G 26.16 G 62.80G

Table 9: Wall-clock time per iteration for fine-tuning LLMs on RTE dataset on a single H100 device.

OPT LLaMA
1.3B 2.7B 6.7B 13B 30B \ 7B 13B 30B
Zero-Shot | - - - - - ‘ - - -
MeZO 69 ms 11lms 212ms 388ms &871ms | 212ms 372ms 942 ms
Subz0 75 ms 12lms 211ms 373ms 939ms | 218 ms 385ms 988 ms
LOZO 71 ms 109ms 191ms 34Ims 745ms | 195ms 350ms 832 ms
TeZO 67 ms 106 ms 178ms 316ms 680ms | 186 ms 325ms 775 ms

MeZO-m 76 ms 123ms 236 ms 437 ms - 236 ms 422 ms -
LOZO—m 78 ms 104ms 181ms 312ms 677ms | 180ms 316ms 759 ms
TeZO-m 70 ms 100ms 172ms 303ms 653ms | 176 ms 308 ms 738 ms

MeZO-Adam | 104dms 173 ms 348ms 642 ms - 342ms 624 ms -
TeZO-Adam | 92 ms 134ms 224ms 394ms 841ms | 227ms 397ms 937 ms

From the perspective of memory, low-rank methods have consistently been effective in reducing
memory usage. Whether on the OPT or LLaMA models, our TeZO-Adam method consistently
incurs lower loss compared to the standard MeZO method, and uses approximately 30% of the
memory consumed by the Me ZO-Adam method.

From the perspective of wall-clock time, low-rank methods show a significant efficiency improvement
on large models, while they perform poorly or even slower on smaller models. On the 125M
model, low-rank methods is slower and on the 1.3B models, low-rank methods performs the same
as MezO. Since the model parameters are relatively small, the additional overhead of low-rank
computation offsets the training cost. However, when the model size exceeds 3B, the efficiency
improvement of low-rank methods becomes significant. Tests on both OPT and LLaMA models
show that TeZO-Adam can achieve the same speed as MeZO, while being more than 1.5x faster
than Me ZO-Adam.

These results are consistent with the Figure 4 in the main text. From the perspective of computational
efficiency, we recommend: it is better to adopt low-rank ZO methods on models larger than 3B to
achieve valid improvements.

19

Under review as a conference paper at ICLR 2026

B.5 LOW-RANK PARAMETERS V.S. LOW-RANK ZO METHODS

Gradient low-rank approximation and model low-rank factorization are two key techniques for
efficient training, as we mentioned earlier. Techniques like LoRA (Hu et al., 2021) and GaLore (Zhao
et al., 2024b), they reduce the number of trainable model parameters and optimizer states through
low-rank mapping and subspace mapping, respectively, thereby accelerating the training process. We
want to emphasize that these two methods are orthogonal because they target different parameters,
addressing the efficient training of different parts of the models during training. Recent works (Yu
et al., 2024; Chen et al., 2024) apply low-rank ZO methods to train LoORA models, achieving some
success. Here, we would like to emphasize that, according to the experimental records in Appendix
B.4, when the size of trainable parameters is too small, low-rank ZO methods provide almost no
benefits. For instance, the LORA model for the 13B model has approximately 300M parameters,
and applying low-rank ZO at this parameter scale is clearly unnecessary. Therefore, in this part, we
consider these two techniques as independent methods for comparisons, as shown in Table 10. The
other setups are the same as above.

Table 10: GPU memory usage (max memory reserved) for full fine-tuning, fine-tuning LoRA, fine-
tuning prefix, and ZO methods.

OPT-6.7B OPT-13B
Memory Ratio | Memory Ratio
ft 10524 G 827x | 23826G 9.77x
FO ft-LoRA 3796 298x | 73.19G6 3.00x
ft-prefix 38236 3.00x | 73.13G 3.00x
MeZO 1440G 1.13x | 2643G 1.08x

MeZO-LoRA 13.04G 1.02x | 2482G 1.02x
zo | MezO-prefix | 13.06G 1.03x | 2481G 1.02x

MeZO-Adam 3998G 3.14x | 7527G 3.09x%
TeZO-Adam 14.07G 1.10x | 26.01G 1.06x

| Zero-shot | 12.73G 1x | 2439G Ix

Compared to FO methods, the advantages of ZO methods remain significant. Even with methods
of low-rank parameters, the memory usage is still nearly three times higher than ZO methods.
Additionally, we want to emphasize that while “ZO + LoRA" can further reduce training costs, the
gains of memory-efficiency are negligible. Moreover, based on the experiments in existing studies,
the performance of these approaches will significantly degrade on large models. “ZO + fine-tuning
full parameters" has already achieved to the comparable memory usage of zero-shot (inference only),
and combining ZO with LoRA can only save very limited memory. Therefore, we do not advocate
directly combining ZO methods with PEFT approaches. From the perspective of memory usage, the
benefits of such a combination are indeed limited.

Table 11: Performance and efficiency of full parameter v.s. LoRA on LLaMA-7B.
Model Optimizer SST-2 Memory | WIC Memory

Full FO+Adam 95.6 11533G | 704 127.20G
LoRA FO+Adam 93.2 3825G | 61.0 43.18G
Full | MeZO+Adam | 94.4 39.50G | 619 44.60G
LoRA | MezO+Adam | 92.9 17.15G | 59.7 20.33G
Full | TezO+Adam | 94.6 13.71G | 60.8 15.67G

20

Under review as a conference paper at ICLR 2026

C PROOFS OF MAIN THEOREMS.

C.1 PROOFS OF THEOREM 1

We consider the mean at first. According to Proposition A.1 proposed by Chen et al. (2024), we have:

o L0V 4 0Z.6) — [(W.€) — (VI(W.5).p2)
p—0 p

=0.

Without loss of generality, we consider the case where the parameters are 2D matrix. On each step, we
sample 7 ~ N(0, I,-) and compute the perturbation Z = >_"_, 75 - (us o v,). By directly expanding
the ZO gradient in TeZO, we have:

lim VO f(w, &) = 1i 7
p—0 p—0 2p
— }13% fOW +pZ,6) — f(V?pE) —(VIW.9.02) ,
i FOV =0Z.6) — F(W.6) — (VI (W.0). ~pZ)
p—0 20
*5%W~Z= (VI(W,€),2) - 2,

where the inner product performs as the calculation in vectors. With Z substituted, the following
holds:

lim V£ (W, ¢) = <Vf(W,€)7 > 7o (us o0 vs)> D 7o (us 00s).
s=1

s=1

Specifically, we consider the element [lim,HO VO f(w, 5)] i+ .- To simplify the expression, we have

slightly abused the notation u, ; and v, ;, which means the i-th element in vector u, and j-th element
in vector v,. By taking the expectation,

s=1
r r

=E E Vf(VV, f)i,j § TsUs,iVs,j | * § TsUs,i*Us,j*

%, s=1 s=1

r T

=E E Vf(VV, g)i,j E TsTs' Us, i Us! 3% Vs, jUs! j* +E E Vf(VV, g)i,j § TsTs'Us,iUs! jVs,j Vs j*

it 5,5’ i=i* g 55!

]Euﬂ,[usyiusl‘i*'us,jvszyj*]:[) E, [Usijs',j*]:()

I I
+E Z Vf(m g)i,j ZTsTs’us,ius’,i*vs,jvs’,j +Vf(VVa g)i*,j*EZTSTS’US,i*us’,i"Us,j*vs’,j*

vl y ;
iFT j=5* 5,8 8,8

Ey [Us,q‘,us/.i*]:O

= Vf(Wa g)i*,j* E Z TsTs' Ug, i* Ug’ j* Vs j* Vs’ j* +Vf(W, g)i*,j* EZTzuii*Uz,j* = ’I’Vf(W, E)i*,j*~

s#s! s=1

E,[rs74]=0 =r

Clearly, when the SPSA form is directly applied, the expectation of the TeZO gradient becomes r
times the FO gradient. Therefore, by dividing r, TeZO is an unbiased estimation of the FO gradient.

Then we consider the variance. We have the following term:

E|1> lim V°f(w,) = VAW, = B lin V°F(w, O ~ BV SOV,

21

Under review as a conference paper at ICLR 2026

= TLQ]E” <Vf(W, £), ZTS “(us o US)>) ZTS (ug 0 v,)|* = B[V f(W,€)]?
s=1 s=1

r 2 r r
= T%E <Vf(VV, g):ZTs : (Us ovs)> : <Z Ts - (us o Us)aZTs ’ (us © Us)> —EHVf(VV, E)Hz
s=1 s=1 s=1

A B

Let g;; = V f(W, &), ; for convenience, we have:

2
r
A= <Vf(Wa €)a ZTS . (us © Us)> = ZZ Zgi;jgi',j’TSTS’uS,ius’,i'Us,jvs’7j’

s=1 i, j3,j" s,s’

2
:E g E gi,jgi/,j’TsTs’Us,ius’,i'vs,jvs',j/+E E g 9i,j9i",5' Ts Us,iUs i’ Vs, jUs, 5/

A jHG s#s! i#i A s
A Az
+ i.79i! i TsTs! Ug jUg! Vs jVs/ j + Qi T2 U U 1 Vs Vs j
9i,591 ,jTsTs' Us iUs’ i’ Us,j Vs’ 9i,j9i",jTs Us,iUs,i’ Vs, j Vs, j
i#i j s#s! £t g s
Az Ay
2
+ 9i,j9i,5' TsTs' Us s’ Vs Vs’ 5/ + 9i,59i,5' Ts Us,iUs,iVs, Vs, j/
i j#) st i A s
+ZZZQ¢JTSTS/U45 iUs’ Vs, j Vs’]+ZZZQlJT us Z’US]
i J s#s!
A7 A8
r r
B = E Ts * (us O’US), E Ts * (us o vs § § § TSTS’US ilsg! zvs]vs N
s=1 s=1 J s,s
- § E E TsTs'Us, iUs! §Vs,jVUs’ j + § E § T s iUsg _7
% J s#s’
Bl BZ

Similar to the way of computing expectations for the mean above, When there are cross terms like
Us,; OF Uy ; in the product of A; and By, then E,, ,, [AiBj] = 0. Therefore, it is easy to check that
Eu,v [AlB} = Eu,v [AQB} = Eu,v [A3B} = Eu,v [A4B} = Eu,v [A5B} = Eu,v [AGB} = 0 and
we have E,, , [AB] = E, , [(A7 + Ag)(B1 + Bz)]. Then we consider the cross terms on 75. In
AgBj and A7 Bs, there exist the independent 75 term, that is, E, [AgB;] = E; [A7Bs] = 0, and the
expectation of ABisE, , , [AB] = E, , , [A7B1 + AgBs)]. For the first term, we have:

E[A7B;]=E 222 Z g”7'27'2/u2) ,77113]113, Jl = 222 Z gij =2r(r—1) ZZgi]
g

i j s#s’ i Jj s#s!

For the second term, we have:

E[AgBs] =E Z Z Zg”TQTQ,ug u, Z,vijvi Y

zz/ 7,3" s,s’

_ 2.2 2 2 2 4 2 2
=E ZZ Zg”T T,u“us, Vs Vs | +HE ZZZg” !Z ﬂ/USJUSJ
_1751 J#£3 s#s' £ j#EG S
22,2 2 2 4
+E E E E gle TgrUg 5,0 Ugr z’vsjvs’j +]E E E E gl] US it Vg s,j
i#i j s#s’ £ g s

22

Under review as a conference paper at ICLR 2026

+E ZZ 29”7'27'2,1@71115, lvfjvg,]/ +E ZZZQH susﬂ/sng
_7 J#j s#s’ i j#j s
FEIDD0 D i vk | B 33D T
L ¢ J s#s’
:ZZZgiﬁZZZ?»gﬁﬁZZZgzﬁZZZ%,j
i j#j sHs! £ A5 s il § s#s! il j s
+ZZZgu+ZZZ99U+ZZZQH+ZZZ2%
i j#EG s#s! i g#j s v J s#s
= (mnr +2mnr+6mr+6nr—|—12r Zng.
i g

Thus, we can consolidate all the results as follows:
1. 1
B[~ lim VOf(w,&) = V(W €)|* = FE[A- B] - [V f(W,€)]?
r p—0 T

2 6
— SE[A7By + AsBa] — [V F(W,€) > = (1+mn+ Ty S)

r

This completes the proofs.

C.2 PROOFS OF THEOREM 2

We first introduce some basic lemmas for the subsequent proofs. In fact, when considering the
properties of the function at each layer, we treat the parameters and gradients as a 2D matrices.
However, to consider its general property, we treat them as a flattened parameter vector concatenation
across layers. Therefore, in our proof, we slightly abuse both uppercase and lowercase letters, e.g.,
Vf(Z) and V f(z), to express the specific properties of the gradient.

Lemma 1 Under Assumption 1 and 2, ZO gradient of TeZO is an unbiased estimator of the full FO
gradient NV f (W) with the variance:

1
E| -V (W,€) = VFW)|* < p*X*3, + (8 + 1)o* + SB[V F (W), (12)
where 6 = 1+mn+27”T"+M+l—f and 6, =
1572 (m+3)3 (n43)>+3672 (r 41)171 n34+r2(r—1)(r—2)m°n® are two constants.

Proof. According to the studies of Nesterov & Spokoiny (2017); Chen et al. (2024); Yu et al. (2024),
we first consider the smoothness property as follows:

A)
FW +pZ,6) = F(W,€) = (VF(W,€),p2) < JlloZ]2 = 571 2]

Then we learn the distance between V' f(W) and the lim,_,q V° f(W). Specifically, we consider
the unbiased form as:

1S90 OW,€) - - Ly 90 (W,)

LW g’gpf(w 28 g i),z 2

fW+pZ,§) — fW,§) + (W,) — f(W —pZ,§) — 2V f(W,£), pz)
2p

Sl 7)1

L) Ivsn IR

1| EW+pZ,8) = fW,§) = (VW 8),p2)) = (W = pZ,§) = f(W,§) = (VW €), —pZ

r2

2p

23

DIz

Under review as a conference paper at ICLR 2026

Substituting 7 = Z;:1 Ts * Us O Vg and taking the expectation, we have:

B VOS(,€) -+ lim VST, < 4 s

2/\2
||sz usovsn? <’

Similarly, we can expand the term as:

s
E(ZT?II%IFII%IF) f]EZZZT Tor i lus | s [use [P los 1P llos 12 [los |2
=EY > > il Hvsll6+]EZZ Y il s P os | os |1

EHZH6 I°

“Ug O Vg

4

3
22 r
rpeA
(E Tzllusovs||2> = E(E TfllusllzvsH?)
s=1

s s'=ss''=s’ s s'=ss''#s!
TEYS DD D mirdllusl e P sl fow P + B30 37 37w llus] || os] o
s s'#ss''=s s s'#ss''=s'
+EY NN i md sl P lluwe P [vs |7 [vs |7 [[vse 1.
s s'#ss''#s,s!

Then we will discuss each term one by one. Actually, since T,u,v are independent from each
other, the expectation can be separated term by term. Since us ~ N(0,1,,), vs ~ N(0, I,) and
75 ~ N(0,1), we have: E|lug|?* = m, IEI||uSH4 =m(2m — 1) < 2m?, 6 =m(15+3(m —
1) + (m —1)(m —2)) < (m+3)°, Ellvs = n, Ello||? = n(2n — 1) < 2% E|jv,]|° =
n(15+3(n—1)+(n—1)(n—2)) < (n+3)% E [72] = 1, E [r}] = 3and E [7§] = 15. Therefore,

we can provide the upper bound:

E (Z 7'82||u5||21)5||2> < 157(m + 3)3(n + 3)% + 36r°m3n® + r3m3n3.

1572 (m+3)3 (n+3)3+36r3m‘3 n3+rim3ns

Leté, = 1

, then we have:

1 1. rp 202
E||=VOf(W,§) — — lim V° f(W,&)]|* < (E 7 |lus) ||Usz> < PPN,
r r p—0
Combining it with the variance in Theorem I, we can finish the proofs.

Then we can easily solve the convergence for TezO. Similarly, without loss of generality, we still
consider the 2D parameters. Let n < NCES) +1) By expanding the smoothness inequality, we have:

B [(Wer)] < FOW:) + Ed(VF(We), Wrr — Wi + JE Wiy — Wi
2
= FW) + BV (W), ~Co) + B, 6P
2
= f(Wt) - 77Et||vf(Wt)||2 +)\i]EtHGtHQ

< F(W) — BV W) + N0 ALV F(Wi,€) — VW + A” L N UATE

A1+ d)n 36 A6+1
Sf(Wt>_77<1_(2)>]Etvf(Wt>||2+n2p2 2/) +772 (5)
38 A6 +1)0?
< 50— SRS 4 2?2 4 20D

Therefore, let Dy = f(Wy) — f(W,) be the initialized bias where W, is the optimal solution, by
accumulating it from £ = 0 to 7" — 1 and taking the full expectation, we have:

1 2D
= D EIVIWy)|? < TTO + A (p2A%0, + (6 + 1)0?) .
t=0

N

24

Under review as a conference paper at ICLR 2026

By simply selecting the learning rate n = O (1 / /\T(p%\ggﬁéaz,)) < /\(51+1)’ we have:

1= \/ADO (p2A20, + 002)
T ;EIIW(WJIIQ =0 < T) :

25

	Introduction
	Related Work
	Preliminaries
	Methodology
	Canonical Polyadic Decomposition and TeZO
	Layer-wise Selection of the Rank r
	TeZO and Its Extensions on Memory Efficient Optimization States

	Theoretical Analysis
	Experiments
	Conclusion
	Declaration
	Experiment Materials
	Low Rankness in LLMs
	Low Rankness of Each Single Gradient
	Low Rankness of Gradient Subspace
	Low-rankness between Weights and Gradients
	Comparison between Dynamic Ranking and Static Ranking
	Applicability to Other Advanced Optimizers

	The Efficiency of Lightweight Second-order Momentum in TeZO-Adam
	Errors in One Step
	Accumulated Errors after T Steps

	Setups and Hyperparameters
	Memory Usage and Wall-clock Time on Different Model Sizes
	Low-rank Parameters v.s. Low-rank ZO Methods

	Proofs of Main Theorems.
	Proofs of Theorem 1
	Proofs of Theorem 2

