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Abstract

The Bayesian personalized ranking (BPR) loss
is a commonly used objective in training recom-
mender systems, upon which various auxiliary
graph-based self-supervised contrastive learning
tasks are designed for improved model robustness.
Previous research has also shown that the unsu-
pervised contrastive loss shapes the learned rep-
resentations from the perspectives of alignment
and uniformity, and representations with lower
supervised alignment and/or uniformity loss con-
tribute to better model performance. Despite the
progress, no one neither explores how the two
representation qualities evolve along the learning
trajectory, nor associates the behaviors with the
combination of supervised and unsupervised rep-
resentation alignment and uniformity (RAU). In
this work, we first observe that different meth-
ods trades of alignment and uniformity to varying
degrees, and hypothesize that optimizing over su-
pervised RAU loss alone is not sufficient for an
optimal trade-off. Then, by analyzing how BPR
loss relates to the unsupervised contrastive loss
where the supervised RAU loss stems from, we
migrate the relation to propose our framework
which aligns embeddings from both supervised
and unsupervised perspectives while promoting
user/item embedding uniformity on the hyper-
sphere. Within the framework, we design a 0-
layer embedding perturbation to the neural net-
work on the user-item bipartite graph for minimal
yet sufficient data augmentation, discarding the
traditional ones such as edge drop. Extensive ex-
periments on three datasets show that our frame-
work improves model performance and quickly
converges to user/item embeddings.
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1. Introduction
The development of recommender systems (RSs)has been
widely explored to assist information filtering that alleviates
the data overload issue among multiple fields (McAuley
et al., 2015; Covington et al., 2016). The goal of a rec-
ommender system is to abstract historical data and predict
future interactions given current observations. Based on
the modeling of the preference, RSs are categorized into
content-based models (Lops et al., 2011; Tay et al., 2018),
and collaborative filtering (CF) based models (Schafer et al.,
2007; Chen et al., 2020a; Yang et al., 2022; Wang et al.,
2019; He et al., 2020b; Wu et al., 2021; Lee et al., 2021;
Lin et al., 2022), which performs representation learning on
the users and items based on the observed user-item inter-
action histories. On the other hand, Bayesian personalized
ranking (BPR) loss, which encourages the posterior proba-
bilities of the observed interactions to be higher than their
unobserved counterparts, is widely used for CF models, in-
cluding matrix factorization (Koren et al., 2009) and other
graph-based methods (Ying et al., 2018; Wang et al., 2019;
Yu et al., 2019; Sun et al., 2020; He et al., 2020b). Recently
inspired by the resurgence of contrastive learning (CL) in
deep representation learning (Jaiswal et al., 2020), multiple
recent works (Wu et al., 2021; Yu et al., 2021b; Xia et al.,
2021; Lin et al., 2022) design one/several unsupervised aux-
iliary contrastive task(s) to jointly optimized for improved
model performance and robustness. Moving beyond, some
other works shift their attention toward how the CL loss
influences the learned representations (Wang & Isola, 2020;
Wang et al., 2022). In spite of the success, no one has ex-
plored the reason why in general, directly optimizing over
supervised RAU loss yields better results than the BPR loss,
let alone exploiting the empirical observation and extending
it beyond the supervised side from both the supervised and
unsupervised perspectives. They either only consider the
unsupervised representation uniformity (Yu et al., 2022),
or only the supervised alignment of the observed user-item
pairs, along with controlled attention towards improving
embedding uniformity (Wang et al., 2022).

With the above identified research gaps, in this work we first
compare the representation qualities of the existing models
with respect to alignment and uniformity losses, after which
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a further inspection of the embedding learning trajectories
of the leading models in terms of the two losses shows that
optimizing merely the supervised RAU loss is not sufficient
for an ideal trade-off between the two properties. Then,
we analyze the relationship between the BPR loss and the
unsupervised CL loss to explain why models optimized
over the supervised RAU loss work better empirically, and
further hypothesize that the unsupervised alignment of the
embeddings between the contrastive views is able to fill
up the deficiency of the supervised RAU loss. Based on
the hypothesis, we propose our framework along with two
variants that similarly suffice the requirements. In addition,
we design a 0-layer embedding perturbation to perform
minimal yet sufficient data augmentation without specifying
and tuning among all the graph augmentation types such as
edge drop. Empirical results show that our proposed model
outperforms existing models in terms of with better initial
and final representation qualities, as well as remarkably
rapid convergence rate. In summary, the main contributions
of this work are:

• We analyze the relationship between the BPR loss and
unsupervised contrastive loss where the supervised
RAU loss stems from, based on which we reach the
explanation of why generally models optimized with
supervised RAU loss perform better.

• Based on empirical observations, we show that opti-
mizing over merely supervised RAU loss is neither
enough to make the initial embeddings a head start in
terms of performance, nor direct the model to a con-
verged point with an ideal trade-off between the two
properties. In light of these, we propose a novel frame-
work that jointly optimizes the RAU loss with regards
to both supervised and unsupervised aspects.

• We conduct comprehensive experiments on three
benchmark datasets to show that our model outper-
forms other methods at the very start of the training
process, which leads to a more stabilized learning tra-
jectory with a better ultimate balance between align-
ment and uniformity, contributing to not only perfor-
mance improvement but also fast convergence speed.

2. Methodology
2.1. Motivation

A recent study (Wang & Isola, 2020) identifies alignment
and uniformity as critical properties of representations,
which are closely related to unsupervised contrastive loss.
The contrastive loss is commonly used as an auxiliary loss,
along with the BPR loss, to enhance model performance
and robustness (Ye et al., 2019; He et al., 2020a; Chen et al.,
2020b; Caron et al., 2020). As a result, prior works (Yu
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Figure 1. The alignment and uniformity losses of different models.
(a) Each point represents the corresponding embeddings of the
converged model; (b) The arrows point to the converging directions,
and the recalls@20 of the converged points are denoted aside.

et al., 2022; Wang et al., 2022) focus on improving perfor-
mance from the perspective of alignment and uniformity.
To understand how the two properties affect the model per-
formance, we show the values of the two associated losses
calculated from different models’ learned embeddings with
each model’s best performance on Yelp2018 (Wang et al.,
2019) - a benchmark dataset for recommendation - in Fig-
ure 1(a). From the subfigure, we see that each model sub-
tly trades off between the two losses, leading to different
levels of performance with respect to recall. Models like
BUIR, MF, and NCL yield relatively smaller alignment
losses, while their corresponding uniformity losses are high.
In contrast, models like DirectAU, SimGCL, including our
method partially sacrifice embedding alignment to favor
smaller uniformity loss. Although (Gao et al., 2021; Wang
et al., 2022) propose that embeddings with smaller align-
ment and/or uniformity losses usually lead to better perfor-
mance, one might still wonder how each model balances
the two along the training trajectory. Furthermore, since
DirectAU directly minimizes the two losses in the training
process without strongly favoring either of them, it is ques-
tionable whether this objective is sufficient for the model to
converge to a status where the embeddings ideally trade off
one property for the other.
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To answer the above questions, we then take a closer look
at the learning trajectories with respect to the two losses of
the leading models SimGCL (Yu et al., 2022) and Direc-
tAU (Wang & Isola, 2020), including our model in Figure 1
(b). Through the subfigure, we see that the learning curves
of the three models differ: DirectAU directly optimizes the
weighted combination of alignment and uniformity alto-
gether, while the others (SimGCL and ours) start from a
favor point of one metric, i.e., one with low alignment loss
or low uniformity loss, and then sacrifice the advantaged
metric for the improvement of the disadvantaged one. Since
each model is already under its best hyperparameters setting
and the end of the trajectory shows the converging point, we
posit that simply optimizing the weighted combination of
losses for the two embedding properties as DirectAU may
not be sufficient to converge to a point that balances both
properties effectively. In addition, it is not obvious how to
determine the favorable metric explicitly, since the training
behaviors are implicitly affected by the objective function.
Hence, identifying an optimal trade-off point between align-
ment and uniformity, or which property to prioritize over the
other at the initial training procedure, is crucial in guiding
the model toward a desirable performance outcome.

2.2. Comparison between LBPR and Lcl

In this subsection, we compare the BPR loss (LBPR) with
the contrastive loss (Lcl) to demonstrate how the addition of
unsupervised RAU loss to supervised RAU loss implicitly
addresses the problem mentioned in the previous subsection.
For simplicity, we omit the superscript in the notation for the
negative sample distribution of a certain node u. Specifically
for a positive user-item pair (u, v), the part it contributes to
LBPR for the recommendation task is:

LBPR(u, v) = −
∑

{z−i }M
i=1

i.i.d.∼ pneg

log σ(s(zu, zv)− s(zu, z−i )),

(1)
where s(·) is a similarity function. Let V ′ and V ′′ denote
the node set under two different augmented views. For a
positive pair created for node u with respect to the two
views, the contrastive loss is defined as:

Lcl(u) =

− log
es(zu′ ,zu′′ )/τ

es(zu′ ,zu′′ )/τ +
∑

{z−i }M
i=1

i.i.d.∼ pneg′
es(zu′ ,z−i )/τ

, (2)

where pneg′ is the negative sample embedding distribution
from view V ′ with respect to node u, i.e., {zk ∼ p′neg|k ∈
V ′, k ̸= u}. Setting aside the difference between positive
and negative pairs, we see that LBPR(u, v) pulls its posi-
tive user-item pairs closer via pairwise similarity ranking
loss, while Lcl(u) does so to its view-view (user-user or
item-item) pairs via the softmax function. In other words,

LBPR(u, v) normalizes through the sigmoid function, while
Lcl(u) normalizes through the softmax function. However,
unlike LBPR(u, v) which utilizes pairwise signals, Lcl im-
plicitly promotes the uniformity through the uniformed nor-
malization of all batched views in the softmax function.
Since supervised RAU extends from unsupervised Lcl, we
believe that the implicit uniformity promotion in LDirectAU
contributes to the more superior empirical performance than
LBPR. Despite the extra uniformity promotion in LDirectAU,
it statically weighs the supervised RAU along the learning
trajectory, and neglects the unsupervised RAU. Given the
merits of unsupervised contrastive learning stated in (Wu
et al., 2021), we suspect that incorporating unsupervised
RAU with supervised RAU dynamically calibrates the train-
ing trajectory and adjusts the weighing of the two properties
via the introduced inductive bias during the training pro-
cess. This dynamic calibration not only enables the model
to implicitly uncover the optimal initial favorable property,
but aslo filters the noise residing in the original data, which
greatly affects models that directly optimize over super-
vised RAU loss. In the experiment section, we empirically
verify that the addition of unsupervised RAU loss indeed
effectively calibrates the learning process.

2.3. Our Proposed Model

In light of the above motivation, in this part, we intro-
duce our model named Dynamic-calibrated Representation
Alignment and UnIformity for Recommendation (DAIR),
which utilizes the inductive bias brought by unsupervised
contrastive learning (RAU) to calibrate the weighing along
the training trajectory. To enhance representation proper-
ties, we first substitute the BPR loss with the supervised
RAU loss for supervised RAU, followed by the integration
of an additional unsupervised RAU loss for the training
process calibration. Trivially, adding the graph-augmented
contrastive loss as SGL suffices the requirements. Generat-
ing graph-augmented contrastive views, however, entails the
selection of augmentation type among node drop, edge drop,
and random walk, as well as determining the augmented
ratio, resulting in extra hyperparameter tuning efforts. In-
spired by (Gao et al., 2021) which finds that the last dropout
layer performs minimal data augmentation, we propose the
0-layer embedding perturbation to create the contrastive
views upon the framework of LightGCN. Specifically, we
perturb the 0-layer initialized learnable embeddings with a
d-dimensional random noise ∆. Formally, the augmented
view is created as follows:

z(0)u′ = z(0)u +∆′, z(0)u′′ = z(0)u +∆′′, (3)

where ∆′,∆′′ both subject to ∥∆∥2 = ϵ, ∆ = ∆̄ ⊙
sign(z(0)u ), and ∆̄ ∈ Rd ∼ U(0, 1). We obtain the final
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Figure 2. (a) The overall framework of our DAIR. For supervised signals, it aligns the embeddings of the observed user-item pairs, and
promotes their uniformity on the hypersphere; for unsupervised signals, it maximizes the agreement of the same node of different views
through InfoNCE loss. (b) 0-layer embeddings are perturbed by randomly sampled noise.

embedding following the propagation rule of LightGCN:

zu =
1

L+ 1

L∑
i=0

Ãiz(0)u , (4)

where Ã ∈ R|V|×|V| is the normalized undirected adja-
cency matrix of the bipartite graph, and L is the number
of layers. We choose InfoNCE (Oord et al., 2018) loss
as the contrastive loss between the two views, which has
been shown effective in many self-supervised representation
learning works (Bachman et al., 2019; Chen et al., 2020b;
Wu et al., 2021). Specifically, the contrastive InfoNCE loss
is defined as:

Lcl =
∑
u∈V

− log
exp (s (z′u, z

′′
u) /τ)∑

v∈V,v ̸=u exp (s (z
′
u, z

′′
v) /τ)

, (5)

where s(·) is the cosine similarity function, and τ is the
hyperparameter temperature in the softmax function. The
total loss of DAIR is defined as the weighted summation of
the above losses plus a regularization term:

L = Ls
align + γLs

uniform + λ1Lcl + λ2∥Θ∥2, (6)

and our framework is shown in Figure 2. The rationale
of our framework lies in that we rely on self-supervised
contrastive learning to calibrate the learning trajectory di-
rected by the supervised RAU loss. We circumvent the
requirement of classical graph augmentation by the 0-layer
embedding perturbation, inspired by the last-layer dropout
augmentation previously proven effective.

2.4. Theoretical Comparison with SimGCL

Compared with SimGCL, our method only adds the noise
at the 0-layer embeddings, while SimGCL adds the noise
to every aggregated layer, starting from layer 1 to layer L.
In this part, we aim to theoretically analyze why our 0-level
embedding perturbation improves upon SimGCL and per-
forms minimal yet sufficient data augmentation. Formally,

let Z(0) be the embedding matrix at layer 0, i.e., the ini-
tialized learnable embedding matrix of all nodes. SimGCL
creates one contrastive view Z′

sim following the propogation
rule as follows:

Z′
sim =

1

L

[(
ÃZ(0) +∆(1)

)
+
(
Ã
(
ÃZ(0) +∆(1)

)
+∆(2)

)
+ . . .

]
=
1

L

[(
ÂZ(0) +∆(1)

)
+(

Â2Z(0) + Â∆(1) +∆(2)
)
+ . . .

]
=
1

L

L∑
i=1

ÂiZ(0) +
1

L

L∑
i=1

I +

L−i∑
j=1

Âj

∆(i),

(7)

where ∆(i) is the noise generated at layer i. The first term in
Eq. 7 is the weighted sum of the propagated embeddings via
the rule of LightGCN, where each layer has a weight 1/L.
The second term in Eq. 7 is essentially the average of the
summation of the propagated noise up to L− i layer, where
i is the layer at which the noise is generated, and we denote
it as ϵsim. For example, for noise that is randomly gener-
ated at layer l, the term it contributes to the summation is∑l

i=1 ∆̂
(i), where ∆̂(i) = ∆(i)+ Â∆(i)+ . . .+ ÂL−i∆(i).

Therefore, the noise SimGCL adds to the final embedding
is actually the average of the summation of multiple propa-
gated noise to different extents, according to the layer num-
ber where the noise is generated. In contrast, our 0-layer
embedding perturbation modifies the final Z′

DAIR:

Z′
DAIR =

1

L

[
Â(Z(0) +∆) + Â2(Z(0) +∆) + . . .

]
=

1

L

L∑
i=1

ÂiZ(0) +
1

L

L∑
i=1

Âi∆,
(8)

where ∆ is the generated uniform noise at layer 0. Similarly,
the first term in Eq. 8 is the embeddings obtained via the
original LightGCN model. The second term is the averaged
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propagated noise up to layer i, and we denote it as ϵDAIR. In
comparison with ϵDAIR, we believe there exists redundant in-
formation in ϵsim that reduces the effectiveness of the added
noises. Since ∆ and ∆(i) follow the same distribution, in
ϵDAIR the coefficient Âi within the inner iteration in front of
∆ actually contains the information included in the convolu-
tional coefficient I +

∑L−i
j=1 A

j in front of ∆(i) in ϵsim. In
other words, ϵDAIR already contains information from mul-
tiple levels of the propagated noise, while ϵsim repeats the
propagation for every noise generated at each layer, given
that they essentially follow the same uniform distribution.
This redundancy brings extra learning complexity into the
contrastive learning task, and is eliminated by our 0-layer
embedding perturbation by only generating the noise at the
0-th layer. Since the generated noise is propagated to each
level’s extent for data augmentation, and each level’s propa-
gated noise has its own contribution to the averaged term,
our perturbation makes sure each level’s information is aug-
mented while simplifying the information atoms, making
the embedding learning process easier.

2.5. Model Variants and Time Complexity

Model Variants. To empirically prove that inductive bias
from unsupervised contrastive learning calibrates the learn-
ing process in a positive way, we add several variants for
comparison. We denote the variant which creates the con-
trastive views through classic graph augmentation as DAIR-
SGL. Furthermore, (Wang & Isola, 2020) compares the self-
supervised effect among Lcl, the combination of Lalign and
Luniform, as well as the combination of three losses. Experi-
ments show that the combination of Lalign and Luniform some-
times brings about more desirable effects to the model with
respect to mean squared error. Therefore, here we denote
the model variant which replaces Lcl with Lalign+γpLuniform
as DAIR-AU. Specifically, the contrastive loss is defined as:

Lau
cl = E

(zu′ ,zu′′ )∼pcl

∥f(zu′)− f(zu′′)∥2+

γp log E
(zu′ ,zv′ )∼p′

data,u̸=v
e−2∥f(zu′ )−f(zv′ )∥2

/2 +

γp log E
(zu′′ ,zv′′ )∼p′′

data,u̸=v
e−2∥f(zu′′ )−f(zv′′ )∥2

/2,

(9)

where pcl is the distribution of the same node in two aug-
mented views, (u′, v′) and (u′′, v′′) are node pairs within
the same view.

3. Experiments
In this part, we aim to show the superiority of our frame-
work compared with other baselines from the perspectives
of model performance and convergence speed. In addi-
tion, we perform an ablation study to show the necessity
of jointly optimizing both the supervised and unsupervised
RAU losses. We refer the readers of results of the ablation
study to Appendix E.3 Our codes can be accessed through

this anonymous link.1

3.1. Experimental Settings

We select three public benchmark datasets -
Yelp2018 (Wang et al., 2019), Amazon-book (Wu
et al., 2021), and Douban-book (Yu et al., 2021a) - under
the public splittings to train and evaluate our model. We
split the public training set with the ratio 8:2 for training
and validation, and the model is tested on the test set. Each
model’s performance is evaluated by the metrics Recall@K
and NDCG@K, and K = 20, and each reported result
is the average over 5 repeated experiments under the
same hyperparameter setting. We reproduce the results of
DirectAU under the public split, and the results of other
methods are copied from the paper for SimGCL.

We first compare our model and its two variants with meth-
ods built upon vanilla LightGCN (He et al., 2020b) with
auxiliary CL tasks, namely SGL (Wu et al., 2021), NCL (Lin
et al., 2022), and SimGCL (Yu et al., 2022). We further se-
lect BPRMF (Rendle et al., 2012), Mult-VAE (Liang et al.,
2018), BUIR (Lee et al., 2021), and DirectAU (Wang et al.,
2022) as other baselines that boost the performance from the
perspective of framework or objective modification. More
details regarding the experimental settings are outlined in
Appendix D

3.2. Comparison with CL-based Methods

We compare our model with the CL-based methods, includ-
ing SGL, SimGCL, and NCL, and the overall performance
of CL-based methods with two layer settings are shown
in Table 4. Additional layer settings are provided in Ap-
pendix E.1. We do not further increase the number of layers
since models with more than three layers suffer from the
over-smoothing problem. For a fair comparison, we repro-
duce the results of NCL on each dataset with the public
splits under either the best hyperparameter settings reported
in the original paper or the one we find via grid search.

From the table, we observe that:

• Adding CL as the auxiliary task empirically improves
the performance of LightGCN, regardless of the aug-
mentation types.

• We credit the improvement of SGL to the fact that the
unsupervised contrastive learning loss improves the
embedding uniformity. Similarly, SimGCL improves
the embedding uniformity through layer-wise noise
perturbation. The superiority of SimGCL over SGL
can be attributed to the layer-wise perturbation mech-
anism, which preserves some essential collaborative

1https://tinyurl.com/DAIR
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Table 1. Performance comparison between the CL-based methods with our model and its variants on the three datasets. The best results
are in bold and the runner-ups are underlined. Relative improvements are calculated based on LightGCN. We omit the standard deviation
of all reported results due to their small magnitudes.

Method Yelp2018 Amazon-book Douban-book
Recall NDCG Recall NDCG Recall NDCG

LightGCN 0.0639 0.0525 0.0410 0.0318 0.1392 0.1188
NCL 0.0666(4.2%) 0.0555(5.7%) 0.0440(7.3%) 0.0341(7.2%) 0.1625(16.7%) 0.1401(17.9%)
SGL 0.0675(5.6%) 0.0555(5.7%) 0.0478(16.6%) 0.0379(19.2) 0.1732(24.4%) 0.1551(30.6%)

SimGCL 0.0721(12.8%) 0.0601(14.5%) 0.0515(25.6%) 0.0414(30.2) 0.1772(27.2%) 0.1583(33.2%)

DAIR-SGL 0.0718(12.4%) 0.0600(14.3%) 0.0502(22.4%) 0.0403(26.7%) 0.1737(24.8%) 0.1539(29.6%)
DAIR-AU 0.0726(13.6%) 0.0611(16.4%) 0.0528(28.8%) 0.0427(34.3%) 0.1745(25.4%) 0.1557(31.1%)

DAIR 0.0730(14.2%) 0.0614(17%) 0.0536(30.7%) 0.0432(35.8) 0.1776(27.6%) 0.1597(34.4%)

signals that might be corrupted by graph augmentation
such as edge drop.

• The performance of NCL is slightly worse than SGL,
possibly because the contrasting views between the
node and its identified structure and semantic neighbors
introduce inductive bias that is inconsistent with the
downstream task.

• In comparison, our model consistently outperforms
other CL-based methods. The fact that both DAIR
and its variants yield better performance proves our hy-
pothesis, which is adding unsupervised RAU (whether
via directly optimizing the RAU losses or through the
unsupervised contrastive loss) to the supervised RAU
helps the model better trade-off between embedding
alignment and uniformity.

• Our model and DAIR-AU, both of which rely on our 0-
layer embedding perturbation for the CL task, generally
perform better than DAIR-SGL, in that the perturbation-
based augmentation minimally hurts the essential col-
laborative signals while providing necessary unsuper-
vised signals.

3.3. Comparison with Other Methods

In this part, we compare our model with methods that im-
prove performance from other perspectives such as structure
modification and objective function substitution. The re-
sults are shown in Table 2. According to the table, we see
that our model consistently outperforms other methods. We
attribute the disadvantaged performance of BPRMF and
Mult-VAE to their incapability in capturing high-order con-
nectivity information, which is essential in collaborative
filtering. BUIR yields better performance than LightGCN,
possibly due to the inductive bias injected by stochastic data
augmentation. DirectAU outperforms other baselines in that
it directly considers the supervised RAU losses, which is
proven to be effective from the previous statement. In com-
parison, our model including its two variants outperforms
the baselines mainly in that they all consider supervised and

unsupervised RAU, although they are distinct from each
other in the manner of how they receive the unsupervised
signals. It is also noted that the performance of Bias-SGL
is slightly inferior to that of DAIR-AU and our proposed
model. This discrepancy can be attributed to the limitations
of the graph augmentation approach discussed previously,
and further supports the validity of our 0-level embedding
perturbation method.

Table 2. Performance comparison between different other models
with our model and its variants. The best performance is in bold
and the runner-ups are underlined.

Method Yelp2018 Amazon-book Douban-book
Recall NDCG Recall NDCG Recall NDCG

BPRMF (Rendle et al., 2012) 0.0488 0.0398 0.0298 0.0233 0.1286 0.1051
Mult-VAE (Liang et al., 2018) 0.0584 0.0450 0.0407 0.0315 0.1310 0.1103
LightGCN (He et al., 2020b) 0.0639 0.0525 0.0411 0.0315 0.1485 0.1272

BUIR (Lee et al., 2021) 0.0578 0.0461 0.0423 0.0326 0.1533 0.1317
DirectAU (Wang et al., 2022) 0.0699 0.0593 0.0435 0.03501 0.1623 0.1463

DAIR-SGL 0.0718 0.0600 0.0507 0.0408 0.1746 0.1574
DAIR-AU 0.0729 0.0611 0.0540 0.0436 0.1779 0.1602

DAIR 0.0730 0.0614 0.0538 0.0434 0.1804 0.1628

4. Conclusion
In this paper, we revisit the representation alignment and
uniformity problem for the recommendation task and in-
vestigate the progressive curves of the two related losses
along the model’s learning trajectories. We demonstrate the
significance of representations’ properties with respect to
alignment and uniformity from both supervised and unsu-
pervised perspectives, and such properties are essential in
the whole training processes that determine the final model
performance. We propose an inductive bias-calibrated RAU
mechanism to combine both the supervised and unsuper-
vised RAU and dynamically calibrates the trade-off of the
two properties, leading to decent initial and superior final
performance. Additionally, we design a 0-layer embedding
perturbation for minimal yet sufficient data augmentation
for the unsupervised contrastive task jointly trained with
the supervised RAU task. Extensive experiments show that
the combination of the supervised and unsupervised RAU
equips our model with performance improvement, stable
learning properties, and fast convergence speed.
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Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Lio, P., and Bengio, Y. Graph attention networks. arXiv
preprint arXiv:1710.10903, 2017.

Wang, C., Yu, Y., Ma, W., Zhang, M., Chen, C., Liu, Y., and
Ma, S. Towards representation alignment and uniformity
in collaborative filtering. In SIGKDD, 2022.

Wang, T. and Isola, P. Understanding contrastive represen-
tation learning through alignment and uniformity on the
hypersphere. In ICML, 2020.

Wang, X., He, X., Wang, M., Feng, F., and Chua, T.-S.
Neural graph collaborative filtering. In SIGIR, 2019.

Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., and Wein-
berger, K. Simplifying graph convolutional networks. In
ICML, 2019a.

Wu, J., Wang, X., Feng, F., He, X., Chen, L., Lian, J., and
Xie, X. Self-supervised graph learning for recommenda-
tion. In SIGIR, 2021.

Wu, L., Sun, P., Fu, Y., Hong, R., Wang, X., and Wang, M.
A neural influence diffusion model for social recommen-
dation. In SIGIR, 2019b.

Wu, Z., Wang, S., Gu, J., Khabsa, M., Sun, F., and Ma, H.
Clear: Contrastive learning for sentence representation.
arXiv preprint arXiv:2012.15466, 2020.

Xia, X., Yin, H., Yu, J., Wang, Q., Cui, L., and Zhang, X.
Self-supervised hypergraph convolutional networks for
session-based recommendation. In AAAI, 2021.

Yang, M., Li, Z., Zhou, M., Liu, J., and King, I. Hicf: Hy-
perbolic informative collaborative filtering. In SIGKDD,
2022.

Ye, M., Zhang, X., Yuen, P. C., and Chang, S.-F. Unsu-
pervised embedding learning via invariant and spreading
instance feature. In CVPR, 2019.

Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton,
W. L., and Leskovec, J. Graph convolutional neural net-
works for web-scale recommender systems. In SIGKDD,
2018.

Yu, J., Yin, H., Gao, M., Xia, X., Zhang, X., and Viet Hung,
N. Q. Socially-aware self-supervised tri-training for rec-
ommendation. In SIGKDD, pp. 2084–2092, 2021a.

Yu, J., Yin, H., Li, J., Wang, Q., Hung, N. Q. V., and Zhang,
X. Self-supervised multi-channel hypergraph convolu-
tional network for social recommendation. In WWW,
2021b.

Yu, J., Yin, H., Xia, X., Chen, T., Cui, L., and Nguyen, Q.
V. H. Are graph augmentations necessary? simple graph
contrastive learning for recommendation. In SIGIR, 2022.

Yu, L., Zhang, C., Liang, S., and Zhang, X. Multi-order
attentive ranking model for sequential recommendation.
In AAAI, 2019.

8



A Head Start Matters: Dynamic-Calibrated Representation Alignment and Uniformity for Recommendations

A. Related Work
In this part, we briefly review the works that are closely related to this paper, namely GNN-based recommender systems and
contrastive learning for recommendation.

A.1. GNN-based Recommender Systems

Recently, the advances of graph neural networks (Kipf & Welling, 2016; Hamilton et al., 2017; Veličković et al., 2017) offer
new opportunities for recommender systems to capture high-order structure information in the observed interactions (Gao
et al., 2022), making GNN-based recommender systems the new state-of-the-art approaches. For example, GCMC (Berg
et al., 2017) transforms the interaction matrix completion problem into a link prediction problem on the bipartite interaction
graph. NGCF (Wang et al., 2019) encodes the collaborative signals into the embedding process for modeling high-order
connectivity in an explicit manner. LightGCN (He et al., 2020b) simplifies the design of GCN by removing the linear
aggregation weights and the non-linear activation functions in each layer, making the model more concise and appropriate
for the recommendation task. In addition, domain knowledge has been utilized as side information to enhance the quality of
recommendation (Chen et al., 2019; Wu et al., 2019b;a; Huang et al., 2021). Despite the differences in details, the above
methods follow the general idea, which is to gather and propagate neighborhood information for high-order connectivity
abstraction. Our work also follows this paradigm. Beyond the previous work, we relate the properties of the representations
and the downstream task and design the framework that learns representations well align with the supervised signals while
preserving high uniformity.

A.2. Contrastive Learning for Recommendation

Unsupervised contrastive learning was first brought up in the domain of computer vision (Ye et al., 2019; He et al., 2020a;
Chen et al., 2020b; Caron et al., 2020), and was quickly adapted to multiple application areas including natural language
processing (Wu et al., 2020; Giorgi et al., 2020), graph mining (Liu et al., 2022), as well as recommendation (Wu et al.,
2021; Yu et al., 2022; Lee et al., 2021; Lin et al., 2022; Chen et al., 2022), due to its alleviation of the data sparsity issue.
Specifically for the recommendation task, ICL (Chen et al., 2022) leverages the EM algorithm to learn latent intent variables
and maximizes the agreement of a view with its intent variable. SGL (Wu et al., 2021) relies on graph augmentation such as
node drop, edge drop, and random walk to create contrastive views. They also theoretically analyze that self-supervised
contrastive learning with InfoNCE loss mines hard negative samples by properly tuning the temperature hyperparameter.
BUIR (Lee et al., 2021) relieves the burden of negative sampling to create contrastive views by maintaining two distinct
encoders that learn from each other. SimGCL (Yu et al., 2022) creates contrastive views by adding uniform distributed
noises to every layer of LightGCN. They also find that this auxiliary task improves the user/item embedding uniformity,
which not only mitigates the popularity bias but also improves the training performance and efficiency. NCL (Lin et al.,
2022) leverages the EM algorithm to learn the neighbors of a node in the structure space, and its semantic prototype in the
semantic space. Positive contrastive views are created between the node and its structure neighbors and semantic prototype.
The general paradigm of the contrastive learning that the above models follow is to identify invariant views which filter
irrelevant noises with respect to the downstream task, and improve model robustness by pulling them together. Apart from
the fact that our model also follows this paradigm, we further focus on the coherent effects between the main and auxiliary
tasks from the perspective of embedding properties, and is free from the requirement of traditional graph augmentation as
most of the previous work.

B. Preliminaries
In this section, we first formalize the graph-based collaborative filtering problem, and concisely introduce the vanilla
LightGCN (He et al., 2020b). Then, we present the measurements of RAU.

B.1. Graph-based Collaborative Filtering

Collaborative filtering in recommendation relies on the collaborative relations among users who interact with the same
items to implicitly learn the representations. Specifically, let U and I denote the set of users and items respectively. The
interaction matrix is denoted as R ∈ {0, 1}|U|×|I|, where ruv = 1 represents an observed interaction between user u and
item v, and 0 otherwise. For each user u ∈ U , let zzzu ∈ Rd be its learned embedding, and let zzzv ∈ Rd be the learned
embedding for each item v ∈ I. To extract collaborative signals, the interaction matrix R is usually abstracted to a bipartite
graph G = {V, E}, where V = U ∪ I is the set of nodes and E = {(u, v)|u ∈ U , v ∈ I, ruv = 1} is the set of edges.

9



A Head Start Matters: Dynamic-Calibrated Representation Alignment and Uniformity for Recommendations

Graph neural network (GNN) is one of the most widely adopted methods for representation learning for it captures high-order
connectivity information. In general, at each layer of a GNN, the neighborhood information is aggregated and combined,
and information received at each layer is summarized via a readout function at last:

z(l)v = COM(l)
(

z(l−1)
v ,AGG(l)

({
z(l−1)
u ,∀u ∈ Nv

}))
,

zv = READOUT([z(0)v , z(1)v , ..., z(L)
v ]),

(10)

where COM(·),AGG(·),READOUT(·) are neighbor combination, neighbor aggregation, and readout function respectively,
Nv is the neighbor set of node v, z(l)v is the embedding of node v at layer l, and L is the number of layers. LightGCN (He
et al., 2020b) is empirically proven to be effective in capturing collaborative signals. It aggregates and reads out the
information via a simple weighted sum. Specifically, the aggregation and readout function is defined as follows:

z(l+1)
u =

∑
v∈Nu

1√
|Nu|

√
|Nv|

z(l)v , zu =

L∑
l=0

alz(l)u , (11)

where al is the readout coefficient for each layer-l’s embedding, and is usually set to 1/(L + 1). After learning the
embedding of each node, the preference score of item v to user u can be either directly calculated via ŷu,v = zTu zv, or
through a preference function ŷu,v = fp(zu, zv). The BPR loss is widely adopted as the objective for training the models. It
encourages the similarity scores of the observed interaction pairs to be higher than the unobserved ones. Formally, it is
defined as:

LBPR = −
|U|∑
u=0

∑
v∈Nu

∑
k/∈Nu

log σ(ŷu,v − ŷu,k), (12)

where σ(·) is the sigmoid function. We also note that the learnable parameters Θ in LightGCN are the 0-layer initialized
embeddings, i.e., Θ = {z(0)u , z(0)v |∀u ∈ U ,∀i ∈ I}.

B.2. Representation Alignment and Uniformity

Recent study (Wang & Isola, 2020) identifies two critical properties of the representations - alignment and uniformity - that
are closely related to unsupervised contrastive loss. Formally, the unsupervised contrastive loss of two views is defined as:

Lcl(f ; τ,M) ≜ E
(z,z+)∼ppos

{z−i }M

i=1

i.i.d.∼ pneg

[
− log

ef(z)⊤f(z+)/τ

ef(z)⊤f(z+)/τ +
∑

i e
f(z−i )

⊤
f(z)/τ

]
, (13)

where z is the embedding of one view, τ is the hyperparameter temperature which tunes the level of matching, M is
the number of negative samples for one positive pair, ppos is the distribution for positive node pairs from two augmented
views, and pneg is the distribution for negative sampling. (Gao et al., 2021) empirically proves that under contrastive
loss, representations that align positive pairs and distribute evenly in the hypersphere lead to better model performance.
Specifically, the alignment loss is defined as the expected distance between the positive pairs over ppos:

ℓalign ≜ E
(z,z+)∼ppos

∥f(z)− f(z+)∥2, (14)

where f(·) is the L2 normalization. Based on the Gaussian potential kernel (Cohn & Kumar, 2007), the uniformity loss is
defined as the logarithm of the expected pairwise Gaussian potential:

ℓuniform ≜ log E
(zu,zv)∼p data

e−2∥f(zu)−f(zv)∥2

, (15)

where pdata is the distribution over the pairwise node embeddings, and the uniformity loss measures how well the embeddings
distribute uniformly on the hypersphere. Based on the relationship between the contrastive loss and the two properties,
(Wang et al., 2022) extends the unsupervised contrastive learning towards a supervised loss named DirectAU that directly
minimizes the representation alignment of the observed user-item pairs as well as the uniformity of the user/item embeddings.
Specifically, the two losses DirectAU optimizes are:

Ls
align = E

(zu,zv)∼ps
pos

∥f(zu)− f(zv)∥2, (16)
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Ls
uniform = log E

(zu,zu′ )∼puser

e−2∥f(zu)−f(zu′ )∥2

/2 + log E
(zv,zv′ )∼pitem

e−2∥f(zv)−f(zv′ )∥2

/2, (17)

where pspos is the observed user-item distribution, puser and pitem are user and item embedding distributions respectively. The
supervised loss for DirectAU is then defined as the weighted combination of the two losses:

LDirectAU = Ls
alignment + γLs

uniform, (18)

where γ is the weight coefficient of Ls
uniform.

C. Time Complexity
Since the calculation of the uniformity loss and the InfoNCE loss both involves pairwise embedding distance, their runtime
is of the same order. If we treat all other nodes in a batch other than itself as the negative samples, within one batch, the
runtime of DAIR is O(2B2d), where B is the batch size and d is the embedding dimension. The time mainly depends on the
calculation of the supervised uniformity loss, the unsupervised uniformity loss for DAIR-AU, and the InfoNCE loss for DAIR
and DAIR-SGL. Although theoretically, DAIR is no faster than the previous CL-based methods, we show in the experiment
section that DAIR converges much faster than the other methods, therefore requiring less time to achieve desirable model
performance.

D. Experimental Details
D.1. Dataset Statistics

Table 3. Statistics of the datasets.
Dataset User # Item # Iteraction # Density

Douban-book 13,024 22,347 792,062 0.00272
Yelp2018 31,668 38,048 1,561,406 0.0013

Amazon-book 52,643 91,599 2,984,108 0.00062

D.2. Baselines

• BPRMF (Rendle et al., 2012) learns embeddings by randomly sampling negative items coupled with positive items to
optimize the BPR loss.

• Mult-VAE (Liang et al., 2018) is based on a variational auto-encoder and aims to reconstruct the user-item click matrix.

• LightGCN (He et al., 2020b) linearly propagates and aggregates the neighborhood information on the user-item
bipartite graph.

• SGL (Wu et al., 2021) promotes performance through the auxiliary contrasting learning task which maximizes the
agreement of each node under different graph-augmented views.

• SimGCL (Yu et al., 2022) adjusts the uniformity of the representations by contrasting node views where different
uniform noises are added to each layer of the aggregated embeddings.

• BUIR (Lee et al., 2021) exploits bootstrapping to maintain two encoders that learn from each other and have one
approximate the higher level features learned from the other.

• NCL (Lin et al., 2022) optimizes the structure- and semantic-contrastive objectives to capture the layer- and semantic-
wise relations among the identified neighbors.

• DirectAU (Wang et al., 2022) replaces the BPR loss with the combination of the alignment and uniformity loss, which
leads to higher quality representations with respect to the two properties.
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D.3. Hyperparameters

For all the baselines, we either refer to the best hyperparameter settings in the original papers, or tune the parameters
through grid search. Overall, we add a L2 regularization to each of the models and set the regularization coefficient λ2 as
1e−4. The batch size is set to 2048 and we use Adam optimizer with a learning rate 1e−3. Following the original setting for
SGL and SimGCL, we set the temperature τ as 0.2 and keep it the same for BiasuAU and its variants for a fair comparison.
More detailed hyperparameter settings are provided in the appendix.

E. Additional Experiments
E.1. Additional CL-based Comparison

Table 4 further shows the comparison of our framework with other CL-based methods under the three layer settings. We
note that NCL requires the encoder layer larger than 1 to calculate the structure-contrastive loss, therefore the results for
NCL with 1-layer are omitted. Results show that our DAIR still outperforms other methods by a large margin. We credit
this to the auxiliary CL task, which calibrates the model learning process even under relatively under-fitted models.

Table 4. Performance comparison between the CL-based methods with our model and its variants on the three datasets. The best results
are in bold and the runner-ups are underlined. Relative improvements are calculated based on LightGCN. We omit the standard deviation
of all reported results due to their small magnitudes.

Method Yelp2018 Amazon-book Douban-book
Recall NDCG Recall NDCG Recall NDCG

1-Layer

LightGCN 0.0631 0.0515 0.0384 0.0298 0.1288 0.1081
NCL - - - - - -
SGL 0.0643(1.9%) 0.0529(2.7%) 0.0451(17.4%) 0.0353(18.5%) 0.1658(28.7%) 0.1491(37.9%)

SimGCL 0.0689(9.2%) 0.0572(11.1%) 0.0453(18.0%) 0.0358(20.1%) 0.1720(33.5%) 0.1519(40.5%)

DAIR-SGL 0.0711(12.7%) 0.0594(15.3%) 0.0504(31.3%) 0.0405(35.9%) 0.1706(32.5%) 0.152(40.6%)
DAIR-AU 0.0726(15.1%) 0.0608(18.1%) 0.0540(40.6%) 0.0436(46.3%) 0.1746(35.6%)) 0.1574(45.6%)

DAIR 0.0725(14.9%) 0.0610(18.4%) 0.0535(39.3%) 0.0432(45.0%) 0.1767(37.2%) 0.1586(46.7%)

2-Layer

LightGCN 0.0622 0.0504 0.0411 0.0315 0.1485 0.1272
NCL 0.0655(5.3%) 0.0545(8.1%) 0.0424(3.2%) 0.0331(5.1%) 0.1628(9.6%) 0.1426(12.1%)
SGL 0.0668(7.4%) 0.0549(8.9%) 0.0468(13.9%) 0.0371(17.8%) 0.1721(15.9%) 0.1525(19.9%)

SimGCL 0.0719(15.6%) 0.0601(19.2%) 0.0507(23.4%) 0.0405(28.6%) 0.1770(19.2%) 0.1582(24.4%)

DAIR-SGL 0.0717(15.3%) 0.0601(19.2%) 0.0507(23.4%) 0.0408(29.5%) 0.1756(18.2%) 0.1576(23.9%)
DAIR-AU 0.0729(17.2%) 0.0611(21.2%) 0.0531(29.2%) 0.043(36.5%) 0.1779(19.8%) 0.1602(25.9%)

DAIR 0.0730(17.4%) 0.0613(21.6%) 0.0538(30.9%) 0.0434(37.8%) 0.1804(21.5%) 0.1628(28.0%)

3-Layer

LightGCN 0.0639 0.0525 0.0410 0.0318 0.1392 0.1188
NCL 0.0666(4.2%) 0.0555(5.7%) 0.0440(7.3%) 0.0341(7.2%) 0.1625(16.7%) 0.1401(17.9%)
SGL 0.0675(5.6%) 0.0555(5.7%) 0.0478(16.6%) 0.0379(19.2) 0.1732(24.4%) 0.1551(30.6%)

SimGCL 0.0721(12.8%) 0.0601(14.5%) 0.0515(25.6%) 0.0414(30.2) 0.1772(27.2%) 0.1583(33.2%)

DAIR-SGL 0.0718(12.4%) 0.0600(14.3%) 0.0502(22.4%) 0.0403(26.7%) 0.1737(24.8%) 0.1539(29.6%)
DAIR-AU 0.0726(13.6%) 0.0611(16.4%) 0.0528(28.8%) 0.0427(34.3%) 0.1745(25.4%) 0.1557(31.1%)

DAIR 0.0730(14.2%) 0.0614(17%) 0.0536(30.7%) 0.0432(35.8) 0.1776(27.6%) 0.1597(34.4%)

E.2. Convergence Speed Comparison

In this part, we aim to compare our model with other CL-based models in terms of convergence speed, and plot each model’s
learning curve with respect to recall under their best performance settings shown in Figure 3. For comparison purposes, we
keep the number of epochs as 50. From the figure, we see that our model achieves nearly state-of-the-art performance after
only 5 epochs of training. A slight performance increment can be further obtained after a few more epochs, but 50 epochs
are generally sufficient for convergence. In contrast, the performance of LightGCN and NCL slowly increases as the training
process proceeds, and evidently needs more epochs for final convergence. While SGL and SimGCL require relatively fewer
epochs to converge, their performance fluctuates and is not stabilized after 15 to 20 epochs of training. Consequently, the
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Figure 3. The learning curve w.r.t. recall@20 for the dataset of Yelp2018, Amazon-book, and Douban-book. All curves are plotted based
on the corresponding model’s best performance setting, and only the previous 50 epochs are shown.

performance showing up in the first few epochs is inadequate to estimate the final performance of the aforementioned
methods, inevitably introducing more efforts for fine-tuning. In comparison, our model has decent performance in the first
few epochs, and reveals stable training properties, avoiding the overshooting problem as observed in SimGCL when they
have identical learning rates. We credit this property to the combination of supervised and unsupervised RAU losses, which
quickly identifies the favorable property and yields lightly learned yet superior embeddings. Given the ideal trade-off point,
we expect its surrounding points also yield similar if not better performance, leading to a steady increase in performance as
opposed to significant fluctuations.

E.3. Ablation Study

In this part, we perform an ablation study to demonstrate the significance of combining supervised and unsupervised RAU.
Specifically, we replace the supervised RAU loss with the BPR loss and denote this variant as BiasBPR. We remove the
unsupervised RAU task, which degenerates our model to DirectAU. Each of the ablated variants is tuned to their best
performance on each of the datasets, and the compared results are shown in Table 5. Clearly, removing/replacing either
of the modules causes performance decrement. We attribute that to BiasBPR in its lack of consideration for supervised
representation uniformity. Despite this, our approach demonstrates improved performance compared to vanilla LightGCN,
affirming the efficacy of our 0-level embedding perturbation. As previously stated, DirectAU underperforms our model
due to its lack of unsupervised RAU. Both variants fail to integrate supervised and unsupervised RAU, resulting in subpar
performance compared to our model. This highlights the significance of a joint optimization objective.
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Figure 4. The learning trajectories of BiasBPR, DirectAU, and our model on the three datasets w.r.t. alignment and uniformity losses. The
denoted numbers represent the final converged recall@20 and the arrows point to the converging directions.

Table 5. Performance comparison of our model with its ablated versions on Yelp2018, Amazon-book, and Douban-book.

Method Yelp2018 Amazon-book Douban-book
Recall NDCG Recall NDCG Recall NDCG

BiasBPR 0.0690 0.0573 0.0429 0.0335 0.1634 0.1430
DirectAU 0.0708 0.0592 0.0455 0.0364 0.1669 0.1497

Ours 0.0730 0.0614 0.0538 0.0434 0.1804 0.1628
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To further elaborate on the difference, we plot the learning trajectories of the two variants with respect to the corresponding
two losses, shown in Figure 4. From the figure, we see that the start point of our model generally has smaller RAU losses.
For the dataset Yelp2018 and Amazon-book, it chooses to favor the alignment first and then sacrifice the alignment for
better uniformity; for the dataset Douban-book, our model prefers low uniformity loss at first and then moves for better
alignment. Compared with our model, BiasBPR always favors alignment first and then sacrifices alignment for better
uniformity. DirectAU optimizes the two losses altogether but is not able to land at a better point at last without the calibration
from the unsupervised RAU loss. This figure serves as additional evidence to support our hypothesis, which assumes that
unsupervised RAU loss calibrates the learning process through the inductive bias for better initial and final status.
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