FlashST: A Simple and Universal Prompt-Tuning Framework for
Traffic Prediction

Zhonghang Li'? Lianghao Xia’? Yong Xu'? Chao Huang*?

Abstract

The objective of traffic prediction is to accurately
forecast and analyze the dynamics of transporta-
tion patterns, considering both space and time.
However, the presence of distribution shift poses a
significant challenge in this field, as existing mod-
els struggle to generalize well when faced with
test data that significantly differs from the train-
ing distribution. To tackle this issue, this paper
introduces a simple and universal spatio-temporal
prompt-tuning framework-FlashST, which adapts
pre-trained models to the specific characteristics
of diverse downstream datasets, improving gen-
eralization in diverse traffic prediction scenarios.
Specifically, the FlashST framework employs a
lightweight spatio-temporal prompt network for
in-context learning, capturing spatio-temporal in-
variant knowledge and facilitating effective adap-
tation to diverse scenarios. Additionally, we in-
corporate a distribution mapping mechanism to
align the data distributions of pre-training and
downstream data, facilitating effective knowledge
transfer in spatio-temporal forecasting. Empirical
evaluations demonstrate the effectiveness of our
FlashST across different spatio-temporal predic-
tion tasks using diverse urban datasets. Code is
available at https://github.com/HKUDS/FlashST.

1. Introduction

Accurate traffic forecasting is a crucial objective in the do-
main of urban computing. It aims to precisely predict and
analyze the dynamic transportation patterns within cities.
The key goals of traffic prediction include supporting urban
planning, enabling real-time monitoring and management
of traffic, and contributing to the development of smart city
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applications (Guo et al., 2019; Han et al., 2021; Li et al.,
2024).. The primary challenge lies in effectively model-
ing the intricate spatial and temporal correlations among
different time intervals and geographical locations.

Neural network techniques have become a prominent ap-
proach for spatio-temporal prediction tasks, thanks to their
remarkable capabilities in feature representation. Initially,
researchers leveraged Recurrent Neural Networks (RNN5s)
(Yu et al., 2017) to capture temporal dependencies, and Con-
volutional Neural Networks (CNNs) (Zhang et al., 2017,
Yao et al., 2018) to model spatial correlations. Subsequently,
Graph Neural Networks (GNNs) have emerged as effective
models for capturing complex spatial dependencies, utiliz-
ing message passing mechanisms to learn the relationships
among spatial units such as regions and road segments. In
constructing the graph adjacency matrices, researchers have
explored various factors. Some have considered static geo-
graphical distance (Li et al., 2018; Yu et al., 2018), while oth-
ers have incorporated time-aware region correlations (Han
etal., 2021; Li et al., 2022). Additionally, there have been
efforts to learn the region-wise relevance in a data-driven
manner (Wu et al., 2019; 2020a).

Although the aforementioned methods have shown effec-
tiveness, most current spatio-temporal prediction models
struggle to generalize effectively when confronted with dis-
tribution shifts across diverse downstream datasets and tasks.
In their methods, the assumption of an inconsistent distribu-
tion between training and testing data becomes a hindrance
to accurate predictions in real-life urban scenarios with un-
controlled shifts from unseen spatio-temporal data. As il-
lustrated in Figure 1, directly applying parameters learned
from training on dataset A to test on dataset B can lead
to suboptimal performance due to significant variations in
spatio-temporal characteristics across different data distri-
butions. Therefore, there is a need to enhance the gener-
alization ability of spatio-temporal forecasting models by
efficiently adapting them to handle such distribution shifts.

While there are potential benefits to enabling model adap-
tation for spatio-temporal prediction methods, several key
challenges remain to be addressed. Firstly, C1: efficiently
distilling specific and complex spatio-temporal contextual
information from the downstream tasks is essential. How-
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Figure 1. Motivations behind FlashST. The left figure illustrates
the diverse data distributions across various ST datasets, while the
right figure demonstrates that the end-to-end model’s parameters
are overfit to training set A and fail to generalize to test set B.

ever, equipping pre-trained models with the ability to un-
derstand and incorporate the spatial and temporal charac-
teristics of new domain data that is only accessible during
testing is a formidable challenge. Secondly, C2: there is
often a significant distribution gap between the training and
test datasets, especially when they are collected from differ-
ent spatio-temporal scenarios and domains. Consequently,
it is essential to enhance the model adaptation framework
by enabling it to effectively bridge the distribution gap and
capture spatio-temporal invariants. This enhancement will
facilitate the successful knowledge transfer from the pre-
trained phase to the downstream prediction tasks.

Contributions. To overcome the challenges mentioned
above, we introduce a lightweight and innovative prompt-
tuning framework (FlashST) that aims to achieve spatio-
temporal in-context learning, enabling efficient and effective
model adaptation across different spatio-temporal prediction
tasks. Within our framework, we employ a spatio-temporal
prompt network to enable in-context learning. To tackle
challenge C1, we propose a context distillation mechanism
that captures contextual signals from unseen data, facilitat-
ing adaptation to diverse spatio-temporal scenarios. Fur-
thermore, a dependency modeling scheme is introduced to
capture and understand the relationships between time and
locations, enabling effective analysis of inter-dependencies
among spatio-temporal elements. To overcome challenge
C2, we enhance our FlashST framework by incorporating
a unified distribution mapping mechanism, which bridges
the distribution gap between pre-trained and downstream
tasks. This mechanism facilitates the effective transfer of
knowledge from the pre-trained insights to downstream
spatio-temporal forecasting by aligning the data distribu-
tions through the regularization of prompt embeddings.

We conduct extensive experiments on four distinct types
of spatio-temporal data tasks to evaluate the effectiveness
of our proposed framework. The results demonstrate that
our framework substantially improves the generalization
capabilities in downstream prediction tasks across differ-
ent spatio-temporal datasets. The noteworthy enhancement
in predictive performance, achieved with model efficiency,
underscores the efficacy of our FlashST framework.

2. Related Work

Deep Spatio-Temporal Learning is a thriving research
field that aims to model and understand the intricate spatio-
temporal dynamics in real-world urban data. Various ap-
proaches have been proposed, including integrating recur-
rent neural networks (RNNs) (Yao et al., 2018; Zhao et al.,
2020) or Transformers(Wang et al., 2020; Xu et al., 2020)
to capture long-term patterns and short-term fluctuations.
Attention mechanisms have been widely used to dynam-
ically weigh spatial and temporal features (Zheng et al.,
2020; Zhang et al., 2021). MLPs are also utilized as tem-
poral encoders to capture temporal correlations (Shao et al.,
2022a). Another important direction involves leveraging
Graph Neural Networks (GNNs) (Yu et al., 2018; Li et al.,
2018; Yu et al., 2018; Ye et al., 2021) to simultaneously cap-
ture spatial dependencies and temporal evolutions. These
models employ graph structures to represent relationships
between spatial entities, facilitating information propaga-
tion. However, most existing deep spatio-temporal models
adopt an end-to-end approach, limiting their generalization
across diverse urban forecasting tasks and domains.

Pre-Training with Spatio-Temporal Data. There has been
a recent surge of interest in using pre-training for acquiring
comprehensive representations from spatio-temporal data
through self-supervised learning. This approach aims to
learn generalizable representations that capture the under-
lying patterns and dynamics. Two dominant research lines
have emerged: i) integrating contrastive learning into the
pre-training stage for spatio-temporal data (Zhang et al.,
2023a), and ii) utilizing masked autoencoders (Shao et al.,
2022b; Li et al., 2023) to reconstruct the masked input data
to learn the spatio-temporal relationships.

Prompt-Tuning is a technique that optimizes prompts or in-
structions during inference to fine-tune the model, resulting
in more accurate and context-specific predictions (Shrivas-
tava et al., 2023; Liu et al., 2023a). It has gained recognition
as a promising approach to improve the performance and
adaptability of pre-trained models in various domains. For
example, in prompt-based language generation, it allows
precise control over the generated output, aligning it with
specific requirements or desired styles (Brown et al., 2020;
Schick & Schiitze, 2020; Zhang et al., 2023b). Similarly,
in vision prompt learning, specific instructions guide the
model’s attention towards relevant visual features or con-
cepts (Zhou et al., 2022b;a; Sohn et al., 2023). This study
explores spatio-temporal prompt-tuning to enhance predic-
tion models in urban computing.

3. Preliminaries

Representation of Spatial-Temporal Data: The spatial-
temporal information is captured and encoded using a three-
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way tensor X, where X € RFXTXF In this representation,
R represents the number of regions, " denotes the time slots,
and F'indicates the number of features. Each entry X, ; ¢ of
the tensor corresponds to the f-th feature of the r-th region
at the ¢-th time slot. For example, in the context of traffic
flow prediction, the tensor X captures traffic volume data,
which quantifies the number of vehicles passing through a
specific region within a fixed time interval (e.g., 5 minutes).

Spatio-Temporal Prediction. In the context of spatio-
temporal learning, a common scenario revolves around pre-
dicting future urban spatio-temporal conditions using histor-
ical records. This scenario can be described as follows:

X?K+1:tK+P = g(XfK—H+1:tK) (M
In this scenario, X* represents the spatio-temporal data
from dataset A. The function g(+) corresponds to the spatio-
temporal predictive function, which could be methods like
spatio-temporal transformers or spatio-temporal graph neu-
ral networks (GNNSs). These predictive methods generate
forecasts for the next P time slots by leveraging the histori-

cal spatio-temporal data from the previous H time slots.

XI‘/BK+1:tK+p = g(f(XtBK,H+1:tK)) (2)

Furthermore, we introduce §(-) as the spatio-temporal pre-
diction model with fixed parameters, and X~ represents
an unseen spatio-temporal dataset. The goal of this work
is to enable swift adaptation of the §(-) model to a new
dataset while ensuring parameter efficiency. To achieve
this, we propose incorporating a lightweight and effective
prompt-tuning paradigm into the pre-trained g(-) model.

4. Methodology

This section provides an in-depth explanation of the tech-
nical details of the proposed FlashST framework. We com-
mence by outlining the foundational paradigm and design
principles that guide the development of the FlashST frame-
work. Subsequently, we present a comprehensive overview
of the framework’s main components: the Spatio-Temporal
In-Context Learning and the Unified Distribution Mapping
Mechanism. To provide a visual representation of the over-
all model architecture, please refer to Figure 2.

4.1. Spatio-Temporal In-Context Learning

Our in-context learning framework is implemented through
a spatio-temporal prompt network, which comprises two pri-
mary components: (i) Spatio-temporal context distillation
mechanism efficiently captures contextual signals that are
aware of both time and location from the unseen data. By
doing so, it enables the model to learn from the specific con-
text of the data, facilitating effective adaptation to various
spatio-temporal scenarios. (ii) Spatio-temporal dependency

modeling scheme incorporates complex relationships across
time and locations into the in-context spatio-temporal net-
work. By capturing and modeling these dependencies, the
network can effectively understand the interdependencies
and interactions between different spatio-temporal elements.

4.1.1. Spatio-Temporal Context Distillation

Spatio-Temporal Data Projection. To initialize the repre-
sentation of the spatio-temporal data, we employ a projec-
tion layer with two steps: normalization using the Z-Score
function and augmentation through linear transformation:

X, ¢ —
E ;=X re0; Xt f=2Z(Xptyf)= et T H (3

g

E. ;€ R? represents the representation for the r-th region
of the f-th feature, where d denotes the number of hidden
units. XM, ¢ € R corresponds to the normalized spatio-
temporal data feature obtained through the Z-Score (Z(-))
function. The parameters i and o represent the mean and
standard deviation of the raw ST matrix X. The parametric
vector ey € R7*? denotes the unit embedding vector for
the normalized spatio-temporal feature.

Temporal Context Incorporation. In order to capture
dynamic and periodic spatio-temporal patterns from diverse
urban data, we introduce the time-aware context into our
prompt network. This context is based on multi-resolution
temporal features, specifically the hour of the day (z(9) e
RT) and the day of the week ™) e RT). To effectively
extract the temporal contextual signals, we employ a process
of transformation and concatenation (denoted as CAT], ]),
which can be summarized as follows:

M, = CAT[Z\?V - e;,2{" - e)] )

Spatial Context Incorporation. To enhance the prompt
network with geographical contextual information related
to regional properties, we incorporate the citywide road
network structure as an encoding feature that reflects spatial
context. This process starts by formulating the normalized
Laplacian matrix, which is defined as follows:

A=1-D1Y2AD1/2 5)

Here, I, D, and A denote the identity matrix, the degree ma-
trix, and the adjacency matrix, respectively. The adjacency
matrix is computed by considering the distances between
areas and the road structure. Since Laplacian eigenvectors
effectively preserve global graph structure information in
Euclidean space, we perform eigenvalue decomposition to
obtain A = UAUT. After extracting the eigenvalue matrix
A and the corresponding eigenvector matrix U, we derive
the structure-aware node properties C € R*?- by project-
ing U to obtain the d, smallest nontrivial eigenvectors.



Title Suppressed Due to Excessive Size

____________________________________________________________________________________

: Spatio-Temporal Context Distillation

i Spatial Temporal Data Temporal Context

(1]2[3]4]..T288 ]
! Time of day
i
H - 1/2)3]4[5]6]|7
i vV V\V/ YV Day of week
STdata Temporal
embedding t features C, embedding

b
CEE Ol oFE
i = [ R
¥ L 4 '

, N (] i srembedings | .. @

Spatial Context Spatial Dependency Encoder

| Region
HE

) .-
. GNNs

- :°ﬁ»° o _ @ NN [T
“p Vm /Qp\ noo® Q @ Q;
}%@quoo

Spatio-Temporal Dependency Modeling

Unified Distribution Mapping Strategy i

Temporal Dependency Encoder positive pair

i

lm Region A -« |
1 Region B H
| IW Region C | | | X| 1 1‘
: 1

negative pair-
Uncertain Normal InfoNCE Uniform
distribution E> mapping E> optimization E> distribution |

2

4 Q
O MLPs |
@

Gating !

Figure 2. Our proposed FlashST framework adopts an architecture that integrates spatio-temporal in-context learning and a unified
distribution mapping mechanism, offering an efficient and effective approach for spatio-temporal prompt-tuning across diverse scenarios.

Acknowledging the potential disparity of C in the feature
space between training and test datasets, we employ a MLP
to map these features and enhance the network’s ability
to generalize spatial context. Subsequently, we use the
concatenation operation to integrate the aforementioned em-
beddings and obtain the initial spatio-temporal embedding:

E = CAT[E,M,C]; C,;=MLP(C, ) (6)
E denotes the integrated embeddings, where we concatenate
the original representation E, the temporal context embed-
dings M, and the transformed regional properties C. The
transformation of C is achieved through the MLP function.

4.1.2. Spatio-Temporal Dependency Modeling

Temporal Dependency Encoder. To capture dependencies
across different time slots and preserve time-evolving data
patterns, we introduce a lightweight gating mechanism. The
formal operations of this mechanism are presented below:

H, ;= Wao(WiE, ; +b1) +b2) + E, ¢ @)

The trainable parameters of this gating mechanism are de-
noted by Wy, Wy € R¥*4" and by, b, € R?. The initial
spatio-temporal embedding is represented by E,. ¢, while the
encoded temporal embedding is denoted by H, ; € R% *?",
The embedding E,. ¢ contains valuable contextual informa-
tion about temporal dynamics and regional characteristics,
which is essential for the temporal dependency encoder.
This enriched information enables our in-context learning
to effectively identify variations in spatio-temporal patterns
across different regions and time intervals, thereby facilitat-
ing precise modeling of temporal correlations.

Spatial Dependency Encoder. Drawing inspiration from
the effectiveness of graph neural networks in capturing spa-
tial correlations between geographical locations (Wu et al.,
2020b; Zheng et al., 2020), we leverage graph convolution-
based message passing to encode inter-regional correlations.
The adjacency matrix A, as defined in Eq 5, acts as the
connectivity matrix within the graph network framework.
The process of spatial encoding is formalized as follows:

Sy =o(A-Hy-W;) + Hy 8)

Here, W3 € RY %4 represents the trainable parameters. To
mitigate the potential over-smoothing phenomenon caused
by multi-layer GNNs, we employ residual networks. By
stacking multiple layers of spatio-temporal encoders, our
model generates a representation E,,., that captures rich
spatial and temporal dependencies across time and space.

4.2. Unified Distribution Mapping Mechanism

To bridge the distribution gap between the pre-training
and diverse unseen data in downstream tasks, we enhance
FlashST by incorporating a distribution mapping mecha-
nism. The objective of this mechanism is to transform both
the pre-training data and the downstream data into a shared
distribution space. This alignment of data distributions en-
ables a seamless transfer of knowledge, ensuring that the
insights gained from the pre-training stage can be effectively
applied to the downstream spatio-temporal context.

To achieve this goal, our FlashST involves standardizing the
prompt embedding to ensure a consistent distribution across
diverse downstream datasets. We draw inspiration from
various works in contrastive learning (Wang & Isola, 2020;
Chuang et al., 2020; Wang & Liu, 2021) and incorporate
the infoNCE-based loss function to regularize the prompt
network for representation generation. This loss function
is designed to bring the representations of positive sample
pairs closer together while pushing apart those of negative
pairs. By leveraging self-supervised learning without the
need for additional labeling, optimizing the infoNCE loss
helps attain a more uniform embedding distribution. Em-
pirical evidence suggests that through this loss alone, an
almost entirely uniform distribution can be achieved (Yu
et al., 2022). Building upon this, we employ the infoNCE
loss to adjust the distribution of the learned spatio-temporal
prompt embedding E,., € RE*F*4" formalized as:

Z Z —log Z exp(cos(ELL End) /1) (9)

r=1 f=1

'CUnz

The cosine similarity function cos(-) is used to measure the
similarity between embeddings, and the temperature coeffi-
cient 7 is used to adjust the softmax scale. In our FlashST,
we enhance the uniformity of prompt embeddings by in-
creasing the separation among embeddings that correspond
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to different regions. This improvement allows downstream
models to effectively utilize the provided prompts Ez(frjg for
rapid generalization across new data and tasks.

4.3. Unifying Pre-training and Downstream Tasks

Our spatio-temporal pretrain-prompt framework integrates
the model pre-training process with downstream forecasting
tasks through efficient prompt-tuning. In the pre-training
phase, we train and optimize all parameters using dedi-
cated pre-training datasets. Subsequently, in the prompt
fine-tuning phase, we exclusively update the parameters of
the prompt network by conducting a limited number of train-
ing epochs on unseen datasets. This approach enables the
downstream model to effectively adapt to new data. More-
over, our framework is model-agnostic, allowing seamless
integration with various existing spatio-temporal prediction
baselines as the downstream model.

i) Pre-training Phase: Our goal is to forecast future
trends using historical spatio-temporal records from the
pre-training data. We achieve this with following process:

~ A
Y =gED); EY) = frromp(XY)  (10)

Here, we have adjustable parameters for both fpyompt(-)
and g(-). To update these parameters, we utilize the loss
function £ in conjunction with the Adam optimizer. The loss
function £ is a combination of the regression loss £, and
the uniformity loss L7,,;, with A as the balance coefficient
between the two losses. The label is represented by Y €
REXTXFE The regression loss £, is defined as:

R T F

Lr= ﬁ D3N Iy = Yerp)l D

r=1t=1 f=1

This formulation calculates the average absolute difference

between the predicted values Y,.; r and the actual labels
Y.+ r across all regions I, time steps 7', and features F'.

ii) Prompt-Tuning Phase: We freeze the parameters of the
downstream model and focus exclusively on fine-tuning the
prompt network. This fine-tuning process is carried out on
the test dataset to perform spatio-temporal prediction tasks,
following the formulation described in Eq 10:

?B = g(fPrompt(XB>) (12)

Here, g represents the downstream model with frozen pa-
rameters, and B indicates the test datasets. During the
prompt-tuning phase, we conduct a limited number of op-
timization epochs to generate high-quality spatio-temporal
prompt representations for the downstream models.

5. Evaluation

In this section, we analyze the performance of our model by
addressing the following several research questions:

Table 1. Statistics of pre-training dataset.

Dataset | Data Record | # Region | Time Steps Sample Date
PEMSO03 | traffic flow 358 26208 1/Sep/2018 - 30/Nov/2018
PEMS04 | traffic flow 307 16992 1/Jan/2018 - 28/Feb/2018
PEMSO07 | traffic flow 883 26208 1/May/2017 - 30/Aug/2017
PEMSO08 | traffic flow 170 17856 1/Jul/2016 - 31/Aug/2016

Table 2. Statistics of downstream tasks dataset.

Dataset Data Record | # Region | Time Steps Sample Date
PEMS07(M) | traffic speed 170 12672 1/Jul/2016 - 31/Aug/2016
CA-D5 traffic flow 211 16992 1/Jan/2017 - 28/Feb/2017
ChengDu-DIDI | traffic index 524 17280 1/Jan/2018 - 30/Apr/2018
NYC Citi Bike | bike orders 250 4368 1/Apr/2016 - 30/Jun/2016

* RQ1: Does FlashST effectively generalize pre-trained
models to new spatio-temporal prediction data and tasks?

* RQ2: How does the efficiency of our model compare to
that of end-to-end training and fine-tuning approaches?

* RQ3: What is the impact of the key components of our
FlashST on the performance of downstream models?

* RQ4: How do parameters affect the model performance?

5.1. Experimental Setting

Datasets. To evaluate how well the model can generalize
across different urban spatio-temporal contexts, our experi-
mental setup is designed as follows: (i) In the pre-training
phase, we use four datasets (PEMS03, PEMS04, PEMSO07,
and PEMSO0S (Song et al., 2020)) as our training sets. These
datasets consist of records detailing traffic flow conditions
across various streets and cities in California, USA. (ii) Dur-
ing the subsequent prompt-tuning phase, we concentrate on
four distinct target datasets to fine-tune and evaluate our
framework: PEMS07(M) (Yu et al., 2018), CA-D5 (Liu
et al., 2023b), ChengDu-DIDI (Lu et al., 2022), and NYC
Citi Bike (Ye et al., 2021). These datasets correspondingly
represent traffic speeds in Los Angeles, traffic flow in Cali-
fornia, traffic flow in Chengdu, and bicycle demand in New
York City. Each target dataset is partitioned into training,
validation, and test sets in a ratio of 6:2:2. Detailed statistics
for each dataset can be found in Table 1 and Table 2.

Experimental Description. We configure the model with
32 hidden units for d, d;, and d,., while employing a spatial
and temporal encoder with 2 layers. The pre-training phase
involves alternating training for 300 epochs on the four
pre-training datasets. Subsequently, we conduct fine-tuning
for 20 epochs during the prompt-tuning phase. In both the
baseline and full fine-tuning setups, the maximum number
of training epochs is limited to 100. Furthermore, a batch
size of 64 is employed for both phases and all baselines. For
the dataset-specific parameters in the baselines (e.g., node
embeddings), we initialize them randomly and make them
trainable during the prompt fine-tuning phase. Additionally,
the final regression layers of some baseline models are set
to be trainable to ensure accurate numerical predictions.

Evaluation Metrics. In order to assess the performance
of the model in spatiotemporal prediction, we employ
three widely-used evaluation metrics: Mean Absolute Er-
ror (MAE), Root Mean Squared Error (RMSE), and Mean
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Table 3. Overall performance on PEMS07(M), CA-D5, ChengDu-DIDI and NYC Citi Bike datasets in terms of MAE, RMSE and MAPE.

Model Dataset PEMS07(M) CA-D5 ChengDu-DIDI NYC Citi Bike

Metrics MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
TGCN 5.05 8.56 13.68% | 15.36 2452 24.42% | 3.18 4.72 14.48% | 2.19 3.54 63.31%
STGCN 3.14 6.25 8.05% | 15.02 2373 27.84% | 2.59 3.97 12.20% | 2.04 3.21 52.06%
ASTGCN 3.13 6.19 8.09% | 1526 2437 2445% | 2.56 3.83 11.58% | 2.03 3.10 55.13%
GWN 2.67 5.40 6.62% | 13.63 2230 24.68% | 2.35 3.56 10.72% | 1.81 2.71 50.05%
STSGCN 2.93 5.87 7.52% | 1530 2444 2470% | 2.86 4.29 13.02% | 1.89 2.78 52.48%
AGCRN 2.89 5.69 732% | 1444 23.10 23.02% | 2.87 4.27 13.05% | 2.16 341 60.95%
MTGNN 2.70 5.50 6.81% | 13.90 2244 23.86% | 2.33 3.56 10.63% | 1.84 2.80  48.69%
STFGNN 3.14 6.21 7.81% | 1538 2437 25.78% | 2.83 4.24 13.05% | 2.36 3.73 61.93%
STGODE 2.81 5.57 7.09% | 1413 2277 2341% | 2.51 3.75 11.48% | 1.94 2.83 56.25%
DMSTGCN 2.94 5.92 7.45% | 13.88 2281 21.97% | 2.67 4.00 12.34% | 2.09 3.32 60.00%
MSDR 2.79 5.53 7.07% | 1531 2371 33.01% | 2.56 3.85 11.94% | 1.87 2.86 51.25%
STWA 2.74 5.52 6.97% | 14.00 22.75 23.22% | 2.44 3.68 11.33% | 1.88 2.83 49.93%
PDFormer 2.68 5.46 6.66% | 13.85 22.59 23.11% | 2.43 3.70 11.17% | 1.89 2.88 51.98%
Ours 2.59 5.25 6.54% ‘ 13.26 21.83 21.49% ‘ 2.31 352 10.51% ‘ 1.79 2.63 49.77%

Absolute Percentage Error (MAPE). These metrics quantify
the disparities between the predicted data and the ground
truth data. It is important to note that lower values of these
metrics indicate better performance.

Baseline Description. To evaluate the effectiveness of our
FlashST, we selected 13 advanced spatio-temporal predic-
tion models as baselines. These include RNNs-based mod-
els, attention-based models, GNNs-based models, and differ-
ential equation-based spatio-temporal prediction methods.

RNN-based Spatio-Temporal Prediction Approaches:

* AGCRN (Bai et al., 2020): This method incorporates
RNNs with learnable node embeddings to capture person-
alized spatio-temporal patterns of regions.

e MSDR (Liu et al., 2022): This model addresses the issue
of long-term information forgetting in RNNs by introduc-
ing a variant of RNNs. It further combines this variant
with GNNs to capture spatio-temporal correlations.

GNN-based Spatio-Temporal Prediction Models:

* TGCN (Zhao et al., 2020): This model leverages a combi-
nation of RNNs and GCNss to separately model temporal
dependencies and spatial correlations.

* STGCN (Yu et al., 2018): This method utilizes gated
convolutional networks to encode temporal dependencies
and GCNss to capture local spatial relationships.

* GWN (Wu et al.,, 2019): This approach incorporates a
learnable graph structure to model spatial correlations,
while TCNs are used to extract temporal features.

* STSGCN (Song et al., 2020): It synchronously models
dynamic spatio-temporal correlations by constructing a
graph network that allows interactions across time slices.

* MTGNN (Wu et al., 2020b): This method captures tem-
poral dependencies using time convolutional networks
combined with skip connections, and employs learnable
graph networks to model spatial correlations.

* STFGNN (Li & Zhu, 2021): This method proposes a
data-driven spatio-temporal graph construction approach
to capture dynamic spatio-temporal correlations.

e DMSTGCN (Han et al., 2021): This method models
dynamic spatial correlations by constructing a learnable
dynamic graph network.

Attention-based Spatio-Temporal Models:

* ASTGCN (Guo et al., 2019): This method leverages
attention mechanisms to effectively capture the periodic
spatio-temporal correlations inherent in the data.

* STWA(Cirstea et al., 2022): This approach goes beyond
standard attention mechanisms by incorporating special-
ized node features and time-dynamic parameters.

* PDFormer (Jiang et al., 2023): This model leverages the
power of the transformer architecture to effectively encode
the intricate spatio-temporal dependencies present in the
data. Furthermore, it introduces a novel time-delayed
spatial correlation modeling technique.

ODE-based Spatio-Temporal Prediction Methods:

* STGODE (Fang et al., 2021): This method enriches graph
networks with ordinary differential equations (ODEs)
to extract continuous spatial correlation information.
Time convolutional networks are employed to learn time-
dependent relationships within the data.
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Table 4. Model-agnostic experiments on PEMS07(M), CA-DS5, ChengDu-DIDI and NYC Citi Bike datasets.

Model Dataset PEMSO07(M) CA-D5 ChengDu-DIDI NYC Citi Bike

Metrics MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
STGCN 3.14 6.25 8.05% | 15.02 2373 27.84% | 2.59 3.97 12.20% | 2.04 3.21 52.06%
w/o Finetune 8.07 11.77 23.02% | 31.20 41.82 68.75% | 4.82 6.53 22.87% | 4.10 560  148.20%
w/ Finetune 3.18 6.25 8.04% | 15.15 24.18 23.30% | 2.58 393 12.01% | 1.99 3.11 50.38%
Ours 2.68 5.37 6.80% | 1347 22.01 22.62% | 2.37 3.60 10.92% | 1.80 2.67 50.06 %
GWN 2.67 5.40 6.62% | 13.63 2230 24.68% | 2.35 3.56 10.72% | 1.81 2.71 50.05%
w/o Finetune 7.41 12.78  2430% | 27.28 4146  48.26% | 4.89 6.99  2342% | 3.39 499  112.57%
w/ Finetune 2.69 5.38 6.74% | 13.61 2244 22.82% | 2.35 355 10.72% | 1.85 2.79 51.88%
Ours 2.67 5.36 6.79% | 1319 21.68 21.21% | 2.37 3.58 10.77% | 1.80 2.66 51.16%
MTGNN 2.70 5.50 6.81% | 13.90 2244 23.86% | 2.33 3.56 10.63% | 1.84 2.80 48.69 %
w/o Finetune 591 9.21 14.56% | 50.07 65.35 77.26% | 4.45 6.27  20.06% | 3.32 474  118.01%
w/ Finetune 2.62 5.33 6.56% | 13.46 22.02 22.10% | 2.33 3.54 10.52% | 1.81 2.74 49.35%
Ours 2.59 5.25 6.54% | 13.26 21.83 21.49% | 2.31 352 10.51% | 1.79 2.63 49.77%
PDFormer 2.68 5.46 6.66% | 13.85 2259 23.11% | 2.43 3.70 11.17% | 1.89 2.88 51.98%
w/o Finetune 557 10.03 19.16% | 20.45 31.56 30.21% | 3.60 5.20 16.93% | 3.19 476  111.40%
w/ Finetune 271 5.44 6.80% | 13.77 2231 2490% | 2.43 3.69 11.15% | 1.83 2.78 48.56 %
Ours 2.68 5.31 6.79% | 13.55 22.08 21.98% | 2.41 3.64 11.05% | 1.81 2.68 52.06%

5.2. Overall Performance (RQ1)

In this section, we investigate the effectiveness of FlashST
in enhancing the generalization capabilities of downstream
models across new spatio-temporal contexts. As shown in
Table 3, the baseline models were exclusively trained and
tested on the target dataset to evaluate their performance.

Superiority over End-to-End Prediction Models. Upon
analyzing the results presented in Table 3, it becomes evi-
dent that our approach exhibits a significant advantage over
the end-to-end spatio-temporal models in diverse urban data
prediction scenarios. These findings provide compelling
evidence of the effectiveness of our FlashST method in ac-
curately capturing the intricate spatio-temporal invariant
patterns present in urban data. Our new in-context learning
paradigm excels in transferring this acquired knowledge
to adapt the pre-trained model to new downstream tasks.
By effectively handling the distribution gap, our method
bridges the semantic gap between the pre-trained model and
the specific prediction scenarios encountered in practice.

Model-Agnostic Advantage. The model-agnostic advan-
tage is a notable strength of our approach. We have de-
signed our method to seamlessly integrate with various
spatio-temporal backbone encoders, providing flexibility
and avoiding the constraints of a specific model choice. This
adaptability is demonstrated in Table 4, where our FlashST
approach showcases easy adaptation with four state-of-the-
art spatio-temporal models (i.e., STGCN, GWN, MTGNN,
PDFormer). The evaluation results highlight the versatility
of our FlashST approach, showcasing its exceptional per-
formance enhancement when combined with these cutting-
edge spatio-temporal models. The successful integration
of our approach with state-of-the-art models further rein-
forces its adaptability and capability to improve prediction
accuracy in diverse urban data scenarios.

Comparison with Model Fine-Tuning. To further demon-
strate the effectiveness of our spatio-temporal in-context
framework, we compare our prompt-tuning approach with
the full fine-tuning of the model parameters. The “w/o
Finetune” approach refers to direct prediction on the tar-
get dataset without any fine-tuning after pre-training. On
the other hand, ”w/ Finetune” indicates the utilization of
full-parameter fine-tuning to adapt the models to the target
data after pre-training. However, it is worth noting that the
observed improvements with direct fine-tuning, compared
to end-to-end prediction outcomes, suggest that pre-training
may not have provided a significant advantage. In the ab-
sence of effective alignment between the pre-trained model
and downstream tasks, noise can be introduced, leading to
misleading fine-tuning and suboptimal performance.

5.3. Assessment of Model Efficiency (RQ2)

Training Time. In this section, we focus on evaluating
the efficiency of our proposed method. We measured the
training time for three different scenarios: end-to-end train-
ing, full fine-tuning, and our FlashST approach. The results
are presented in Table 5. For end-to-end training and full
fine-tuning, we followed the settings of existing baselines,
configuring the training epochs to 100. We also set an early
stopping criterion of 25, which halts the training process if
no decrease in validation loss is observed. Regarding our
FlashST approach, we limited the number of epochs for
prompt-tuning to 20. This constraint was implemented to
promote swift adaptation of the downstream models to the
new datasets. The results suggest that the same baseline
model showcases comparable efficiency in both end-to-end
training and full-parameter fine-tuning. The disparity in
training time between these two settings primarily arises
from variations in convergence speed caused by different
initialization parameters. One of the significant contribu-
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Table 5. Computational time cost investigation (seconds).

Model time(s) Model time(s)
ASTGCN 1310 TGCN 927
AGCRN 689 STSGCN 2253
DMSTGCN 1330 STFGNN 990
MSDR 5190 STWA 5143
STGCN 411 GWN 1042
STGCN Finetune 445 GWN Finetune 1185
STGCN w/ Ours 190 GWN w/ Ours 222
MTGNN 962 PDFormer 7524
MTGNN Finetune 1095 || PDFormer Finetune 6466
MTGNN w/ Ours 230 || PDFormer w/ Ours 1220
PEMS07(M) CA-D5
31 —e— MTGNN 160 —— MTGNN
Finetune Finetune
30 —— Ours 3 —— Ours
Y ﬁm&vmfw n .| kv Walrilangd
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Figure 3. The convergence efficiency of FlashST.

tions of our FlashST framework is the notable increase in
computational efficiency. It reduces the training time of
baseline models by 20% to 80%. This substantial enhance-
ment significantly improves their efficiency in adapting to
new spatio-temporal data.

Faster Convergence Rate. To further validate the ability
of our FlashST framework to swiftly adapt to new spatio-
temporal scenarios, we conducted an investigation into its
convergence speed on different datasets. We specifically
focused on the decreasing trend of the validation error when
using the PEMS07(M) and CA-D5 datasets, with MTGNN
adopted as the downstream model. The results are visualized
in Figure 3. The findings clearly demonstrate that with
the integration of our FlashST approach, the downstream
model achieves convergence within a few tuning epochs. In
contrast, the end-to-end training and fine-tuning paradigms
require a greater number of training rounds to fit the new
data. This phenomenon can be attributed to the effectiveness
of our proposed spatio-temporal prompt network and data
mapping strategy. These components enable the model to
leverage the spatio-temporal characteristics of the new data
in conjunction with the pre-trained knowledge, facilitating
rapid adaptation to diverse spatio-temporal scenes.

5.4. Ablation Study (RQ3)

In this section, we conduct an ablation study to investigate
the contributions of each key module in our FlashST frame-
work. The corresponding experimental results are depicted
in Figure 4. We utilize MTGNN as the downstream base-
line and assess the performance of each component on the

PEMS07(M) and CA-D5 data. Before the prompt-tuning
step, we conduct re-pre-training to adapt to each variant.

» Impact of Spatio-Temporal Context Distillation. To
assess the importance of temporal and spatial context
distillation, we conducted experiments by removing the
distillation with temporal context (-TC) and spatial con-
text (-SC) separately. The results clearly demonstrate a
substantial performance drop across most metrics when
the distilled temporal and spatial context are removed.
This highlights the critical importance of preserving both
temporal and spatial context during the in-context learning
process. Effective encoding of the temporal information
and the incorporation of the spatial information are vi-
tal for capturing dynamic periodic temporal patterns and
region-specific properties, thereby enhancing the model’s
ability to recognize spatio-temporal invariant patterns and
improve its data understanding.

* Impact of Spatio-Temporal Dependency Modeling. In
our analysis, we individually removed the temporal en-
coder (-TE) and spatial encoder (-SE) to investigate their
contributions. Our analysis revealed that spatio-temporal
dependency encoding plays a vital role in effectively inte-
grating complex relationships among different time slots
and locations during the in-context learning process. The
inclusion of both temporal and spatial dependency en-
coders enables the model to comprehend and leverage
the intricate interactions between time and space. This
proficiency facilitates a swifter adaptation of downstream
models to new spatio-temporal scenarios.

* Impact of Unified Distribution Mapping Mechanism.
In our variants, we assess the utility of the unified distri-
bution mapping strategy through two aspects. i) -Uni. We
did not explore the unified distribution mapping strategy.
However, the decline in performance indicates its positive
impact on the model. By mapping the diverse spatio-
temporal data embeddings into a uniform distribution,
our FlashST effectively mitigates the influence of distribu-
tional disparities between the pre-training data and unseen
spatio-temporal data. ii) r/BN. The unified distribution
mapping strategy has been replaced with batch normal-
ization. Batch normalization standardizes the data based
on local statistical properties of mini-batches, mitigating
the issue of internal covariate shift during neural network
training and thereby enhancing convergence efficiency.
However, due to the lack of an established connection
between the pretrained data and the downstream task data,
it is challenging for the downstream model to effectively
transfer knowledge from the pretraining process. The uni-
fied distribution mapping strategy ensures that the model
can effectively leverage the knowledge acquired during
the pre-training. By aligning the distributions of different
data sources, the model can better adapt to new spatio-
temporal scenarios and make more accurate predictions.
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Figure 4. Ablation study of FlashST.

5.5. Hyperparameter Analysis (RQ4)

In this section, we investigate the impact of different hyper-
parameter settings, specifically across various temperature
coefficients and loss weight coefficients, on the model’s per-
formance. Our findings reveal that the model achieves opti-
mal performance with a parameter configuration of 7 = 0.3
and A = 1.0, as shown in Figure 6. Notably, variations
in these parameters minimally influence the final result,
highlighting the model’s effective adaptability to different
parameters settings. It learns efficient representations that
distinguish embedded features in various regions, even with
differences in feature scales. Additionally, the model’s per-
formance remains unaffected by an increase in the unifor-
mity loss. This indicates that the key component of our
distribution mapping strategy does not interfere with the
predictive loss. This further supports the viability of our
strategy and facilitates the downstream model’s rapid gener-
alization to novel spatio-temporal contexts.

5.6. Case Study (RQS5)

To assess the effectiveness of our proposed uniform dis-
tribution mapping approach in transforming various data
representations into uniform distributions, we conducted
visualizations of prompt embeddings with and without the
application of our distribution mapping mechanism. These
visualizations were performed using two variants of the
downstream model MTGNN and evaluated on the test sets
of the PEMS07(M) and CA-DS5 datasets. Given that prompt
embeddings are high-dimensional vectors, we initially ap-
plied the PCA technique to reduce the dimensionality of
each embedding sample to 2-D (Wold et al., 1987). Sub-
sequently, we projected the reduced embeddings onto the
unit circle using the L2 norm, as depicted in Figure 6. The
visualization results provide compelling evidence that our
uniform distribution mapping strategy effectively transforms
the prompt embeddings into an approximate uniform distri-
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Figure 6. Distribution of the prompt embedding.

bution. In contrast, the variants that lack this strategy fail to
achieve such desirable distribution properties. By converting
data from new spatio-temporal contexts into a consistent dis-
tribution, our FlashST gains the ability to utilize pre-trained
knowledge and rapidly adapt to new datasets, facilitating its
performance on various spatio-temporal tasks.

6. Conclusion

This paper presents FlashST, a new and efficient method
for adapting spatio-temporal predictive models to various
downstream tasks that involve previously unseen data. Our
in-context learning framework utilizes a spatio-temporal
prompt network, which consists of a context distillation
mechanism and a dependency modeling scheme. This frame-
work effectively adapts to different spatio-temporal scenar-
ios by capturing contextual signals and modeling complex
relationships across time and locations. To address the
distribution gap, we enhance FlashST by incorporating a
distribution mapping mechanism that aligns the data dis-
tributions of pre-training and downstream data, facilitating
effective knowledge transfer in spatio-temporal forecasting.
Extensive experiments demonstrate the effectiveness and
generalization capabilities of our FlashST in diverse down-
stream spatio-temporal forecasting scenarios. For future
work, an interesting direction would be to explore the poten-
tial of incorporating large language models as knowledge
guidance within our FlashST framework.
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