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Abstract

We study cross-lingual UMLS named entity001
linking, where mentions in a given source lan-002
guage are mapped to UMLS concepts, most003
of which are labeled in English. We propose004
a general solution that can be easily adapted005
to any source language and demonstrate the006
method on Hebrew documents. Our cross-007
lingual framework includes an offline unsuper-008
vised construction of a bilingual UMLS dictio-009
nary and a per-document pipeline which identi-010
fies UMLS candidate mentions and uses a fine-011
tuned pretrained transformer language model012
to filter candidates according to context.013

Our method exploits a small dataset of manu-014
ally annotated UMLS mentions in the source015
language and uses this supervised data in two016
ways: to extend the unsupervised UMLS dic-017
tionary and to fine-tune the contextual filtering018
of candidate mentions in full documents. Our019
method addresses cross-lingual UMLS NEL in020
a low resource setting, where the ontology is021
large, there is a lack of descriptive text defining022
most entities, and labeled data can only cover023
a small portion of the ontology. We demon-024
strate results of our approach on both Hebrew025
and English. We achieve new state-of-the-art026
results on the Hebrew Camoni corpus, +8.9027
F1 on average across three communities in the028
dataset. We also achieve new SOTA on the En-029
glish dataset MedMentions with +7.3 F1.030

1 Introduction031

Public health practices are becoming increasingly032

digital, with tools to explore scientific sources of033

information such as medical literature and online034

health communities rising in popularity. Such tools035

are essential in offering insights to researchers, pro-036

viding information to patients and to their care-037

givers. Reliable identification of mentions of bio-038

medical concepts in free text is a key technique039

to enable robust mining of such textual resources.040

Named-Entity Recognition (NER) is the task of041

classifying entities in text to high level classes (Per- 042

son, Organization, Gene, Disease, Treatment, etc.). 043

Named-Entity Linking (NEL) seeks to addition- 044

ally classify entity mentions in text into specific 045

concepts according to an existing reference list or 046

knowledge base. We focus in this work on biomed- 047

ical NEL, i.e., identifying mentions referring to 048

biomedical concepts such as disorders and drugs 049

and linking them to normalized concepts, for exam- 050

ple, those listed in the Unified Medical Language 051

System (UMLS) ontology. Biomedical NEL has 052

been mostly studied in English. Other languages 053

present additional challenges because terms in the 054

ontology are described in English. We address 055

cross-lingual NEL (xNEL) which consists of map- 056

ping mentions in a source language to concepts 057

labeled and described in a different target language. 058

We focus on UMLS xNEL, where mentions in the 059

source language (we specifically test Hebrew, see 060

Appendix A for a Hebrew tagging example) are 061

mapped to UMLS concepts. We aim for a general 062

solution that can be adapted to any source language. 063

We operate in a low resource setting, where the on- 064

tology is large, text describing most entities is not 065

available, and labeled data can only cover a small 066

portion of the ontology. We also consider different 067

genres of text to be annotated, ranging from con- 068

sumer health medical articles in popular web sites 069

to scientific biomedical articles. 070

Our main contributions are: (1) We provide a 071

general framework for cross-lingual UMLS NEL 072

that can be adapted to source languages with few 073

pre-requisites; our method includes four steps (a) 074

offline unsupervised learning of a language-specific 075

UMLS dictionary; for each document: (b) genera- 076

tion of candidate mentions, (c) high-recall match- 077

ing of candidate mentions to UMLS concepts and 078

(d) contextual relevance filtering of (candidate, 079

concept) pairs. Steps (c) and (d) take advantage 080

of multi-lingual pre-trained transformer language 081

models (PLMs). (2) Our method exploits a small 082
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annotated corpus of documents in the source lan-083

guage and genre annotated manually for UMLS084

mentions (a few thousands annotated mentions).085

This training data is split to support (a) the exten-086

sion of the unsupervised UMLS dictionary with087

corpus-salient entity names and (b) fine-tune the088

contextual ranking and filtering of (candidate men-089

tions, concept) pairs. We find that the step of090

UMLS dictionary fine-tuning boosts NEL perfor-091

mance and identify a clear tradeoff in allocating092

training data between lexicon extension and con-093

textual fine-tuning; (3) We demonstrate results of094

our approach on both Hebrew and English. We095

achieve new SOTA on the Hebrew Camoni corpus096

(Bitton et al., 2020) with +8.87 F1 and on the En-097

glish dataset MedMentions (Mohan and Li, 2019)098

with +7.3 F11.099

2 Previous Work100

Biomedical NEL is challenging because the under-101

lying ontology (most often UMLS) is extremely102

large and the acquisition of annotated training data103

requires rare and expensive expertise. Loureiro104

and Jorge (2020) presented MedLinker, a tool for105

improving biomedical NEL by predicting the se-106

mantic type of a medical concept mention and filter-107

ing out candidates of the wrong type. MedLinker108

was tested on the MedMentions task of concept109

linking (Mohan and Li, 2019), improving above110

TaggerOne (Leaman and Lu, 2016), the baseline111

model for MedMentions which did not use deep112

learning. MedLinker splits the end to end task of en-113

tity linking into two stages - candidate recognition114

and linking. For candidate matching, it combines115

a BiLSTM-CRF model for contextual matching116

with an approximate dictionary matching method117

to increase recall. In the cross-lingual setting, dic-118

tionary matching is not applicable. We report our119

results on the same MedMentions dataset in 5.2.120

Past work has shown that using in-domain text121

can provide additional gains over general-domain122

language models (Gu et al., 2020). Therefore,123

recent work (BioBERT (Lee et al., 2020), SciB-124

ERT (Beltagy et al., 2019)) addressed biomedical125

NEL, focusing on pre-training models on scien-126

tific/medical text. Liu et al. (2021) developed Sap-127

BERT, a pre-training scheme which exploits the128

graph structure of the UMLS ontology and aims129

at learning an encoding of medical mentions that130

can align with synonym relations in the UMLS131

1Our code is publicly available https://github.com/

graph. Combining the SapBERT objective with 132

pre-training on biomedical text of PubMedBERT 133

(Gu et al., 2020) boosts results on NEL. Experi- 134

mental results demonstrated that SapBERT outper- 135

forms many domain-specific BERT-based variants 136

(BioBERT and SciBERT) on the BC5CDR dataset. 137

Although our model focuses on cross-lingual NEL, 138

it also applies to English documents. We compare 139

our results to these approaches on BC5CDR and 140

MedMentions (Tables 4 and 3). 141

Indexing of the abundant biomedical scientific 142

literature requires precise detection of medical 143

concepts. Mohan et al. (2021) developed a low- 144

resource recognition and linking model of biomed- 145

ical concepts called LRR aimed at generalizing to 146

entities unseen at training time, and incorporating 147

linking predictions into the mention segmentation 148

decisions. This BERT-based model achieved SOTA 149

results on the MedMentions task. In our work, we 150

adopt the LRR bottom-up candidate generation ap- 151

proach (see 4.2). We address the main drawback 152

of the approach by incorporating a UMLS dictio- 153

nary fine-tuning technique which extends the list 154

of candidate pairs (source expression, CUI) on a 155

portion of the training data. We elaborate on the 156

motivation for the technique in 4.5 and demonstrate 157

its contribution in ablation experiments (see 5.4). 158

xNEL, the problem of grounding mentions of 159

entities in a source language text into a different 160

target language knowledge base (typically English), 161

has been addressed in recent years, with a range 162

of promising techniques. When the source and tar- 163

get languages operate over different alphabets and 164

sound systems, both translation and transliteration 165

of terms (which is a noisy process even when done 166

by people) must be handled. Bitton et al. (2020) 167

curated the Camoni corpus, an annotated resource 168

of Hebrew posts from online health communities 169

(OHCs), where noisy text (as opposed to scien- 170

tific text) introduces additional challenges. Many 171

user queries mention medical terms, which are very 172

likely to include noisy transliterations. For exam- 173

ple, the Hebrew query equivalent to “How do I 174

know I have fibromyalgia?” does not return any 175

results in the search engine of the Camoni online 176

community when ‘fibromialgia’ is transliterated. 177

Bitton et al. (2020) introduced MDTEL (Medical 178

Deep Transliteration Entity Linking) for Hebrew- 179

English NEL on noisy text in OHCs, and tested 180

it on the Camoni corpus. MDTEL adopts a four- 181

step approach - consisting of an offline unsuper- 182
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vised Hebrew UMLS dictionary learning, candidate183

mention generation, high-recall matching and fil-184

tering of matching mentions. We adopt MDTEL’s185

unsupervised UMLS dictionary matching, which186

uses an attention-based recurrent neural network187

encoder-decoder that maps UMLS from English188

to Hebrew (either a Hebrew translation or translit-189

eration of the concept). We introduce new meth-190

ods for candidate generation, high-recall matching191

and contextual relevance filtering, relying on multi-192

lingual pre-trained language model (mBERT). Our193

new components lead to significant performance194

improvement over MDTEL on the Camoni corpus.195

3 Task Formulation196

Given input language L and target language Lt, a197

database of medical concepts CLt : L∗t → CUI198

is a function from concept names in Lt to concept199

IDs (CUIs). Using CLt , we want to learn a function200

F from a span in input language L and its context201

to a CUI. We identify a translated dictionary, CL :202

L∗ → CUI . CL is the "translated" version of the203

medical concepts database CLt . We learn CL by204

mapping the medical terms in Lt to terms in L.205

Given mapping CL, we aim to learn:206

F : L∗ ∗ L∗ → CUI ∪ {⊥}207

where ⊥ is a special code denoting a non-medical208

term. F differs from CL as it addresses the vari-209

ability and ambiguity of the task by depending210

on the context as well as the span. Given text211

W = (w1, ..., wn), where wi ∈ L, for every span212

si,j = (wi, ..., wj) ⊆ W , we would like to com-213

pute F (W, si,j), where 0 ≤ j− i < k (we limit the214

span sizes to at most k), that is, we want to predict215

the concept associated with a span within a text216

in L. Provided a dataset AL exposing a subset of217

F combined with linguistic knowledge and gener-218

alization capabilities of neural models, we aim at219

learning a larger portion of function F .220

4 Model Architecture221

Our end-to-end xNEL model (Fig.1) consists of222

four consecutive stages: (1) multilingual UMLS223

mapping: generate UMLS dictionary CL (see 4.1)224

based on the method of Bitton et al. (2020); (2)225

candidate generation: consider all spans of up to226

k words as candidate mentions and compute vec-227

tor representations for both mentions and concepts228

(see 4.2); (3) high recall matching: use a seman-229

tic similarity based score function to generate the230

top matching entities with high recall (see 4.3) and 231

(4) contextual relevance modeling: encode each 232

candidate into a context-dependent vector represen- 233

tation using a pre-trained transformer-based lan- 234

guage model fine tuning process (see 4.4). 235

Our approach attempts to avoid three types of 236

mistakes: (1) morphological and transliteration 237

noise, where candidate terms in the source lan- 238

guage might be extracted due to a transliteration 239

or morphological error and matched with UMLS 240

entities, (2) contextual errors, where candidate 241

terms which are not medical terms when consid- 242

ering the context might be matched with UMLS 243

entities, and (3) partial UMLS tagging, where 244

candidate terms which are not full medical terms 245

in the text but rather more general UMLS mentions 246

might be tagged as UMLS concepts (e.g., in the 247

mention "flu vaccine", "flu" should not be tagged). 248

The first challenge is addressed by learning a high- 249

recall CL dictionary with generalization capabili- 250

ties, trained both on translation and transliteration 251

data; the second, is addressed by an mBERT-based 252

contextual language model; the third, by systematic 253

consideration of all spans up to size k as candidates 254

as part of the candidate generation and contextual 255

relevance components. 256

4.1 Multilingual UMLS Mapping 257

The first step of our model is offline, fully unsu- 258

pervised, and based on the method of (Bitton et al., 259

2020): we generate a mapping CL between med- 260

ical concept names in source language L to their 261

corresponding CUIs. An attention-based character- 262

based recurrent neural network encoder-decoder is 263

used to create a list of 〈UMLS term in English, term 264

in language L〉 so that each UMLS term in English 265

is matched with both transliterated and translated 266

forms in L. This is done without the need of manu- 267

ally annotated data and results in a noisy mapping 268

CL of source language medical terms and their 269

CUIs. 270

4.2 Candidate Generation 271

Given a document in L where we want to identify 272

UMLS mentions, the candidate generation step be- 273

gins with pre-processing: we normalize the source 274

text documents from annotated data AL and the 275

target UMLS concepts from CL by transforming 276

all string values to lower case and removing de- 277

limiters. We then generate a list of overlapping 278

candidate mention spans, ranging in length accord- 279

ing to the max length parameter k (i.e., 1, ..., k. See 280
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Figure 1: End-to-end pipeline overview. Training process is depicted in section (a), inference process is depicted
in section (b).

Appendix B for details). We exclude spans start-281

ing or ending with stop words. We then represent282

both the spans and the concepts as tf-idf character283

n-gram (1 to 3-gram) vectors using sklearn’s im-284

plementation (Pedregosa et al., 2011). Empirical285

experiments showed that tf-idf encoding improved286

recall in candidate generation compared to bag of287

words encoding (see Appendix C for a comparison288

between the two representations using both Hebrew289

and English datasets).290

4.3 High Recall Matching291

The high recall matcher (HRM) receives the vec-292

tor representations from the candidate generator293

and computes a similarity score between each span294

and all concept names in CL using cosine similarity295

(see Appendix C for comparison against Manhattan296

score function). We then select the top m matches297

per span with score over a threshold th (see Ap-298

pendix D for hyper-parameters). This results in a299

high recall list of candidate matches.300

4.4 Contextual Relevance Modeling301

At this step, we want to predict which spans302

returned from the high recall matcher are true303

biomedical concepts. We use multilingual BERT304

(m-BERT) (Jacob Devlin, 2019), a 12 layer trans-305

former that was trained on the Wikipedia pages of306

104 languages (including Hebrew) with a shared307

word piece vocabulary. M-BERT does not use any308

marker denoting the input language, and does not309

include explicit mechanism to encourage transla-310

tion equivalent pairs to have similar representa-311

tions. We fine-tune m-BERT on a binary classi-312

fication task on our training data: each candidate313

mention span returned from the HRM is centered 314

in its context from the original doc, i.e., Ws words 315

to the right of the span and Ws words to the left 316

of the span, creating a window surrounding the 317

candidate mention. The classifier takes as input 318

the window, the HRM’s decision on which concept 319

is represented by the mention in the window, and 320

the true verdict of whether the candidate mention 321

is indeed an occurrence of the concept. We uti- 322

lize m-BERT’s QA format as follows: the question 323

(medical concept c) and the reference text (window 324

w) are packed into the input, and provide the binary 325

label as answer of whether or not c is a medical 326

mention in context w: [CLS] w [SEP ] c [SEP ]. 327

This fine-tuning step consists of adding an addi- 328

tional output layer on top of the pre-trained m- 329

BERT model to adapt it to the biomedical NEL 330

task. 331

4.5 UMLS Dictionary Fine-Tuning 332

We introduce a UMLS dictionary fine-tuning tech- 333

nique where some of the data in AL is removed 334

from the training dataset and used to directly ex- 335

pand the learned dictionary CL. We reserve R% of 336

the training data AL to fine-tune CL generating C ′L 337

(see Fig. 1): from this chunk of AL, we add each 338

mention in the tagged data as new pairs (mention 339

in L, CUI). 340

For example, suppose our training data consists 341

of 10 tagged documents and our UMLS dictionary 342

CL contains 100 concepts. Given R = 10%, our 343

UMLS dictionary fine-tuning technique will re- 344

quire one tagged document d (10% of the 10 docs 345

in the training set) to be used for fine-tuning CL. 346
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We go over every tagged pair (m, c) from doc d,347

where m is a mention in doc d and c is the UMLS348

concept the annotators tagged m. If m 6∈ CL, we349

add m to CL with the CUI of c. Suppose doc d con-350

tained 15 such tags, we will obtain an augmented351

C ′L containing 100 + 15 = 115 concepts.352

We cannot use this portion of data for later train-353

ing of our model, since after fine-tuning we are354

guaranteed to get a perfect match for all the spans355

in the documents used for fine-tuning (thus creating356

bias of the HRM).357

Although this process decreases the overall size358

of the input dataset for contextual relevance fine-359

tuning, it improves the recall of the HRM and adds360

more positive examples for the BERT training pro-361

cess. We elaborate more on this trade-off in 5.4.2.362

This approach allows us to improve recall on syn-363

onyms and abbreviations that were not originally364

in our UMLS dictionary, with genre-specific ter-365

minology observed in the training data (as evident366

from the experiment shown in Table 6).367

5 Experiments368

We test our approach both on cross-lingual UMLS369

Linking using the Camoni dataset of Hebrew con-370

sumer health data and on English UMLS Linking371

using MedMentions and BC5CDR, which include372

scientific papers in the bio-medical field.373

5.1 Camoni Corpus374

The Camoni corpus was curated by Bitton et al.375

(2020) for the analysis of the MDTEL system. Ca-376

moni is an Israeli social network in Hebrew aimed377

at patients with chronic diseases and their family378

members (Camoni). Camoni serves about 20,000379

registered members and 100,000 unique visitors per380

month. The digital platform is organized into 39381

disease-specific communities. Bitton et al. (2020)382

extracted text from three communities (diabetes,383

sclerosis, and depression), for a total of 55,000384

posts and 2.5 million tokens, and constructed an an-385

notated dataset in which 1,000 mentions of UMLS386

terms were annotated. Bitton et al. (2020) pro-387

posed a high recall matcher based on a fuzzy string388

matching algorithm introduced in prior work to per-389

form the matching between the spans and medical390

entities. Table 1 compares our HRM results (re-391

call) with MDTEL for each community (diabetes,392

depression, sclerosis).393

We observe that our candidate generation394

method (adopting the LRR bottom-up approach395

Model Community Recall %
MDTEL Diabetes 76.6
Our model Diabetes 82.0
MDTEL Depression 74.1
Our model Depression 83.5
MDTEL Sclerosis 70.0
Our model Sclerosis 81.0

Table 1: High recall matcher performance on Camoni
corpus.

and mBERT similarity matching) significantly im- 396

proves the recall of the HRM (from about 74% in 397

MDTEL to about 82% overall). We believe that 398

the use of the tf-idf character n-gram vectorization 399

before applying the cosine similarity function as 400

means of comparison helped us achieve better re- 401

sults compared to MDTEL’s method which only 402

applied the cosine similarity. 403

In the end to end linking task, our model 404

achieves much higher precision (98% vs. 77%) 405

at the cost of slightly lower accuracy but much im- 406

proved F-score 84 vs 74. Table 2 compares the 407

performance of MDTEL with our model on the end 408

to end linking task for each community. 409

5.2 MedMentions 410

MedMentions (Mohan and Li, 2019) is a corpus 411

of Biomedical papers annotated with mentions of 412

UMLS entities. The corpus consists of 4,392 pa- 413

pers (Titles and Abstracts) randomly selected from 414

papers released on PubMed in 2016, that were in 415

the biomedical field, published in the English lan- 416

guage, and had both a Title and an Abstract avail- 417

able. MedMentions contains over 350,000 linked 418

mentions, annotated by a team of professional an- 419

notators with rich experience in biomedical con- 420

tent curation. We focus on MedMentions ST21pv 421

(21 Semantic Types and Preferred Vocabularies), a 422

subset of the full annotations containing 203,282 423

mentions and restricting the concepts to a 2.3M 424

large subset of the full ontology (UMLS ST21pv). 425

Each concept in this subset is associated with one 426

of 21 selected semantic types, or to one of their 427

descendants in the semantic type hierarchy. 428

We compare our performance to other models’ 429

results on MedMentions ST21pv in Table 3. We 430

improve on the latest SOTA LRR (Mohan et al., 431

2021), achieving +7.3 F1. 432

Our recall was similar to LRR, however our 433

model achieved highly improved precision, 76.4 434
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Model Community Accuracy % Precision % Recall % F1 %
MDTEL Diabetes 97.0 71.0 75.0 73.0
Our model Diabetes 89.2 98.3 73.8 84.3
MDTEL Depression 99.0 77.0 73.0 75.0
Our model Depression 90.8 97.7 76.9 86.0
MDTEL Sclerosis 98.0 82.0 71.0 76.0
Our model Sclerosis 86.3 98.3 67.8 80.3

Table 2: Intrinsic evaluation performance of our model on Camoni corpus.

Model Accuracy % Precision % Recall % F1 %
TaggerOne - 47.1 43.6 45.3
MedLinker - 48.4 50.1 49.2
LRR - 63.0 52.0 57.0
Our model 74.8 76.4 55.5 64.3

Table 3: Performance of different models on the MedMentions dataset. "-": not reported in the paper.

compared to 63. We believe this improvement435

can be attributed to our UMLS dictionary fine-436

tuning technique, which provides an extended list437

of candidates and thus more examples for the438

mBERT fine-tuning process for contextual rele-439

vance. Mohan et al. (2021) mention the need to440

improve recall for cases where the mentions are441

indirect or too abbreviated to generate a good lexi-442

cal match from the entity knowledge base, which443

is exactly what our technique helps improve. For444

example, our process picked up in the training data445

that the abbreviation mrn is tagged as messenger446

rna (CUI C0035696), which was not originally447

present in the UMLS dictionary for English.448

5.3 BC5CDR449

The BC5CDR corpus (Li et al., 2016) consists450

of 1,500 PubMed articles with 4,409 annotated451

chemicals, 5,818 diseases and 3,116 chemical-452

disease interactions. Each entity annotation in-453

cludes both the mention text spans and normal-454

ized concept identifiers, using MeSH (Lipscomb,455

2000) as the controlled vocabulary (MeSH is part of456

the UMLS ontology). Compared to MedMentions457

which contains annotations of general medical con-458

cepts, BC5CDR is topic-specific, containing only459

annotations of chemicals and diseases. BC5CDR is460

also much smaller, consisting of just 1,500 articles461

compared to the 4,392 annotated papers of Med-462

Mentions. BC5CDR has a total of 13,343 linked463

mentions compared to 203,282 in MedMentions464

ST21pv.465

We compare our model’s performance to other466

models using BC5CDR’s test set in Table 4, while467

Model Dataset F1 %
BioBERT BC5CDR 88.6
SciBERT BC5CDR 90.0
SapBERT BC5CDR-d 93.5
Our model BC5CDR 73.0

Table 4: Performance of different models on the NER
task using BC5CDR dataset.

Accuracy % Prec. % Recall % F1 %
81.6 88.4 62.2 73.0

Table 5: Performance of our model on BC5CDR
dataset.

Table 5 details our full results (additional evaluation 468

metrics). 469

We observe that domain-specific pre-trained 470

transformers help improve results on BC5CDR 471

(93.5 F-measure vs. 73.0 for our model). The 472

subset of semantic types covered in this dataset 473

is much more technical (chemicals and chemical- 474

disease interactions) than those covered in Med- 475

Mentions, even though both BC5CDR and Med- 476

Mentions include documents in the same genre of 477

scientific biomedical articles. This difference is 478

evidenced in the ablation study presented below. It 479

explains why specialized language models trained 480

on the biomedical domain lead to much improved 481

performance compared to our model which uses 482

the general mBERT. We hypothesize that using 483

SapBERT combined with our model could enhance 484

performance on this dataset and leave this for future 485

work. 486
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5.4 UMLS Dictionary Fine-Tuning Ablation487

Study488

In this section, we test several factors impacting the489

contribution of UMLS dictionary fine-tuning to our490

tagger’s performance. First, we test the technique491

on two different datasets and evaluate its benefits492

depending on the dataset size. Next, we test a range493

of UMLS dictionary fine-tuning percentage values494

(R) and discuss the trade-off between this value495

and the end to end performance of our linker.496

5.4.1 Dataset Size Impact497

We tested the UMLS dictionary fine-tuning tech-498

nique on English datasets MedMentions and499

BC5CDR across 5 random seeds and found that it500

improved recall on both, but impacting MedMen-501

tions much more than BC5CDR due to a much502

smaller number of added concepts in BC5CDR,503

209 compared to 3,294 in MedMentions (see Ta-504

ble 6). The difference in the number of added con-505

cepts could be explained by the fact that BC5CDR506

is much smaller, thus the decrease in training data507

size counteracts the small number of concepts be-508

ing added to the UMLS dictionary. To test this509

hypothesis, we took a subset of MedMentions of510

the same size as BC5CDR (annotation-wise: 8,575511

in total), see Table 7 for results averaged across 5512

random seeds. The results suggest that the size of513

the dataset directly affects the number of concepts514

added to our UMLS dictionary (227 added in the515

MedMentions subset, very close to the 209 added516

in BC5CDR), which in turn impacts the HRM’s517

recall: the improvement in recall is very similar be-518

tween the two datasets, +1.37 for BC5CDR, +1.7519

for MedMentions subset.520

5.4.2 The Recall-Accuracy Tradeoff521

We first observe that our UMLS dictionary fine-522

tuning technique can only improve the high recall523

matching performance (Section 4.3) since an anno-524

tation that we do not have a good semantic match525

for from UMLS will be a missed match without526

UMLS DFT. Similarly, an annotation for which527

we do have a good semantic match will be found528

regardless of whether we utilize UMLS DFT or not.529

Thus, UMLS dictionary fine-tuning helps us find530

non-semantically similar matches that we would531

have otherwise missed, meaning that the higher R532

is - the higher the recall of the HRM should be.533

However, there is a trade-off between the recall534

gained from the annotations utilized for UMLS535

dictionary fine-tuning and the overall performance536

Figure 2: HRM Performance (recall%) on MedMen-
tions dataset depending on the value of R.

Figure 3: Tagger Performance (F1) on MedMentions
dataset depending on the value of R.

of the linker, since the annotations used for fine- 537

tuning are examples that the contextual model will 538

be missing during fine-tuning. We explore this 539

trade-off and compare the performance of the high 540

recall matching component with the final tagging 541

results of our model using different values of R on 542

the MedMentions dataset. Figure 2 shows that there 543

is a clear trend of increased recall of the HRM as R 544

increases. However, Figure 3 shows the complex- 545

ity of the trade-off since the tagger’s performance 546

reaches a peak and then begins to drop as R in- 547

creases. The contextual model fine-tuning improve- 548

ment plateaus after a certain amount of training 549

examples, demonstrating the benefit of multi-task 550

adaptation of pre-trained models which converge 551

rapidly. The data efficiency of the contextual rele- 552

vance fine-tuning process allows the UMLS dictio- 553

nary fine-tuning technique to help improve end to 554

end linking results. 555

6 Conclusion 556

In this work we explored the task of cross lingual 557

named entity linking in the biomedical field. We 558
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Dataset UMLS DFT Added Concepts Recall %
MedMentions 7 0 63.2
MedMentions 3 3,294 71.5
BC5CDR 7 0 74.13
BC5CDR 3 209 75.5

Table 6: Number of added concepts per dataset and the average performance of the HRM with and without UMLS
dictionary fine-tuning, across 5 random seeds. "7": UMLS DFT not used, "3": UMLS DFT used.

Dataset UMLS DFT Added Concepts Recall %
MedMentions subset 7 0 62.7
MedMentions subset 3 227 64.4

Table 7: We took a subset of MedMentions the same size as BC5CDR (8,575 annotations). We report the number
of added concepts and the average performance of the HRM with and without UMLS DFT across 5 random seeds.
"7": UMLS DFT not used, "3": UMLS DFT used.

describe a pipeline to detect and link mentions of559

UMLS concepts in documents in Hebrew or in En-560

glish, which improves upon existing methods. The561

key characteristics of our approach are (1) it dis-562

tinguishes candidate generation from linking; (2)563

it uses the sophisticated unsupervised UMLS dic-564

tionary construction using the character-level RNN565

model introduced in Bitton et al. (2020) which566

takes into account both translation and translitera-567

tion but extends this dictionary with a portion of the568

training data mentions; empirical analysis of this569

dictionary augmentation method demonstrates its570

importance in end to end linking performance; (3)571

it adopts the bottom-up systematic generation of572

candidates from Mohan et al. (2021) and improves573

it by using a compact tf*idf ranking of the candi-574

dates (char n-gram) which helps reduce memory575

allocation; (4) it uses a multi-lingual pre-trained576

language model (mBERT) to fine-tune a contextual577

relevance model to filter a list of high-recall can-578

didate matches. Our framework for cross-lingual579

UMLS NEL can easily be adapted to any source580

language and does not rely on any descriptive text581

for the entities.582

We compared our performance to baseline ap-583

proaches on the Camoni dataset in Hebrew (Bitton584

et al., 2020), and the MedMentions (Mohan and Li,585

2019) and BC5CDR English datasets. Our end-to-586

end approach achieves SOTA results on Camoni in587

Hebrew and MedMentions in English with signifi-588

cant improvements. For BC5CDR, we observe that589

the small size of the dataset prevents our dictionary590

augmentation technique from reaching its potential591

and models trained on specialized biomedical text592

(PubMedBert with SapBert training objective) ob-593

tain better coverage. Such specialized training is, 594

however, not available in a multi-lingual setting. 595

For future work, we intend to test whether utiliz- 596

ing language-specific BERT models instead of mul- 597

tilingual BERT (e.g., swapping m-BERT with the 598

recently released AlephBERT (Seker et al., 2021), 599

a Hebrew version of BERT) could improve results 600

on the Hebrew Camoni corpus. In addition, tak- 601

ing into account the SapBERT objective which ex- 602

ploits the UMLS graph structure as part of either 603

fine-tuning or pre-training in Hebrew could lead to 604

improved generalization capabilities. Finally, ex- 605

ploring datasets with additional source languages 606

will help understand the capabilities of our mul- 607

tilingual pipeline. The CLEF eHealth challenges 608

(Névéol et al., 2017, 2018) are good candidates for 609

such analysis. 610
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A Hebrew UMLS Tagging Example 698

Figure 4 illustrates the process of linking Hebrew 699

data to UMLS concepts. The given post was taken 700

from the Camoni sclerosis community and trans- 701

lates to: 702

"Hello, recently, my gait has deteriorated and 703

I was suggested to begin Botox treatment to re- 704

lease the muscles and prevent spasticity. Has any- 705

one here undergone such treatment? Does it help? 706

is there a risk that such a treatment will greatly 707

weaken the muscle, causing the exact opposite ac- 708

tion?". 709

The 6 spans (colored) are linked to to 4 different 710

CUIs of Unified Medical Language System medi- 711

cal concepts. 712

B Span Length Selection (k) 713

Span length represents the number of words we 714

select from the input text and may or may not rep- 715

resent a medical concept (UMLS). This definition 716

is used in the candidate generation step (see Sec- 717

tion 4.2), where we create representations of all 718

possible spans in the text and match them to top 719

ranking concepts. 720

In order to define the max span length parameter 721

k of the model, we performed a simple analysis of 722

the annotated span lengths per dataset. As can be 723

seen in Figures 5, 6 and 7, the most common length 724

values tagged are generally 1 or 2. Taking into 725

account computational limitations of using large 726

span lengths, we chose k = 3. Note that even if the 727

maximal span length selected is smaller than the 728

maximal medical term length in the target dataset 729

CL, it is still possible to match source spans to such 730

medical terms since our scoring function does not 731

exclude matches based on length comparison (see 732

Section 4.3). 733
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Figure 4: A forum post from the Camoni sclerosis community. The post contains 37 words, and 6 spans that link
to 4 different CUIs of Unified Medical Language System medical concepts. Notice that a span can consist of more
than 1 word (like the term matched to “gait abnormality”) and a single CUI can be referenced from several places
in the same post.

Figure 5: Distribution of Camoni Mention and UMLS Lengths (in words)

Figure 6: Distribution of MedMentions Mention and UMLS Lengths (in words)
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Figure 7: Distribution of BC5CDR Mention and MeSH ID Lengths (in words)

Vectorizer Score Function Recall %
Tf Cosine 69.3
Tf Manhattan 68.4
Tf-Idf Cosine 70.7
Tf-Idf Manhattan 69.7

Table 8: Performance of the HRM using two different
vectorization methods and two different score functions
on MedMentions dataset.

C Vectorization and Score Function734

Methods Comparison735

We compared the performance (recall %) using736

two different score functions: (1) cosine similarity737

and (2) Manhattan distance, and two different vec-738

torization techniques: (1) term frequency (tf) and739

(2) tf-idf (term frequency * inverse document fre-740

quency). We used character unigram, bigram and741

trigram analysis in all the reported cases (Table 8).742

We hypothesize that the improvement stems743

from Idf penalizing frequent words by taking the744

log of {number of docs in the corpus divided by the745

number of docs in which the term appears}, where746

in our context, a ’doc’ is either a span of text or a747

UMLS concept from CL. Since no stop words can748

appear at either the start or end of the span/concept,749

we increase the odds of having meaningful words750

comprising each ’doc’. The tf-idf method may con-751

tribute to this further because it not only focuses752

on the frequency of words present in the corpus753

(tf, bag of word) but also provides an importance754

weight to them.755

D Hyper-Parameters756

Table 10 describes all the hyper parameters’ values757

we used in our model’s implementation.758

Vectorizer Score Function Recall %
Tf Cosine 81.5
Tf Manhattan 81.8
Tf-Idf Cosine 82.0
Tf-Idf Manhattan 81.9

Table 9: Performance of the HRM using two different
vectorization methods and two different score functions
on Camoni dataset (diabetes community).
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HP Description Value
m top matches parameter of the high recall matcher (Section 4.3) 50
th threshold of selecting possible matched concepts for the spans (Section 4.3) 0.4
Ws window size per side of the candidate mention (Section 4.4) 2
R UMLS dictionary fine-tuning percentage (Section 4.5) 20
- the model’s learning rate 2e− 5
- train epochs 3
- batch size 32

Table 10: Hyper parameters (HPs) used in our model’s implementation.
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