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Abstract

Causal inference from observational data plays critical role in many applications
in trustworthy machine learning. While sound and complete algorithms exist to
compute causal effects, many of them assume access to conditional likelihoods,
which is difficult to estimate for high-dimensional (particularly image) data. Re-
searchers have alleviated this issue by simulating causal relations with neural
models. However, when we have high-dimensional variables in the causal graph
along with some unobserved confounders, no existing work can effectively sample
from the un/conditional interventional distributions. In this work, we show how to
sample from any identifiable interventional distribution given an arbitrary causal
graph through a sequence of push-forward computations of conditional generative
models, such as diffusion models. Our proposed algorithm follows the recursive
steps of the existing likelihood-based identification algorithms to train a set of feed-
forward models, and connect them in a specific way to sample from the desired
distribution. We conduct experiments on a Colored MNIST dataset having both the
treatment (X') and the target variables (Y") as images and sample from P(y|do(z)).
Our algorithm also enables us to conduct a causal analysis to evaluate spurious
correlations among input features of generative models pre-trained on the CelebA
dataset. Finally, we generate high-dimensional interventional samples from the
MIMIC-CXR dataset involving text and image variables.

1 Introduction

Causal inference has recently attracted significant attention in machine learning (ML) due to its
application in fairness, invariant prediction, and explainability [60, |62} 49]. Even though existing
ML models show notable predictive performance by optimizing the likelihood of the training data,
they are prone to failure when the covariate distribution changes in the test domain. Consider the
medical scenario in Fig.[1a| with the causal order: Xray(X )—Diagnosis(S)—Report(R) representing
the true data-generating mechanisms. Suppose a practitioner observes only X to make a high-level
intermediate diagnosis S that contains sufficient information about the patient. The prescription
report(R) is written only based on the diagnosis (thus X 4 R). Since data are collected from
different hospitals locations (H), H acts as an unobserved common cause for both X and R, i.e.,
X & R (ex: correlation between x-ray artifacts and report writing style). The task is "x-ray to report”
generation. One might train an ML model to directly learn a mapping f : X — R, with maximum
likelihood estimation (MLE) [[7,[L0] mimicking the conditional distribution P(r|z). However, since
H is an unobserved common cause between X and R; H has some influence on P(r|z) [9]. Thus, if
the model is deployed in a new location, its MLE-based prediction accuracy may drop since P(r|z)
shifts in that location. On the other hand, if we can remove the location bias X < R with an
intervention on the x-ray variable (do(x)), the x-ray to report generation would be invariant to domain
shifts. Thus, to obtain such generalization, we need to perform causal interventions in high-dimension.
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Figure 1: (Top: x-ray to report generation task)dafX = x) removes theX $ R bias and makes
the generation oR domain invariant.P (rjdo(x)) is factorized into c-factors and (b) conditional
models {My, gk) are trained for each factor (shown as boxes). (c) The intervened Xalue is
propagated through the merged network and samples frof (tjelo(x)) are generated.

Structural causal models (SCNM3g] enable a data-driven approach to estimate interventional dis-
tributions @3, 30]. Given the qualitative causal relations, summarized daasal graphwe now

have a complete understanding of which causal effects/querie® (exdo(x))) can be uniquely
identi ed from the observational distribution and which require further assumptions or experimental
data P, 23, 28, 37, 46, 50]. More precisely, if all conditional probability tables are available, sound
and complete identi cation algorithmsb1, 46] can perform exact inference to estimate causal effects
or [4,5, 25] can sample from the interventional distribution, using a combination of marginalization
and product operators applied to those conditional distributions. However, such approaches struggle
to deal with high-dimensional variableg In Fig. 1@, we could intervene on Xrand estimate its
effect on the reporR as,P(rjdo(x)) =  (P(sjx) ,.P(x9P(rjx%s), i.e., as functions of the
observational distribution{; X % independent instances of the same variable). However, the second
and third terms in this expression require marginalization overXamy' variable. Exact Bayesian
inference methods used for calculating conditional distributions are infeasible for high-dimensional
variables since marginalization over their non-parametric distributions is generally intractable [6].

Deep generative models with variational inference methods approximate the intractable marginal-
ization and can sample from such high-dimensional distributid®s4[7, 14]. Recent works such

as Xia et al[59], Chao et al[11], Rahman and Kocaogli40] employ deep generative models

to match joint distribution of the system by learning the conditional generation of each variable
from its causal parents. Nonetheless, it is highly non-trivial for these works to mimic any arbitrary
causal model with high-dimensional variables, specially when there are unobserved confounders
in the (semi-Markovian) causal model. Consider ¥heé$ R relation in Fig. 1a wher® andX

are correlated through unobserved hospital location. To learn the joint distridri(kam ), the

above approaches need to synchronously train their generative models. For that purpose, Xia et al.
[59], Rahman and Kocaog[40] train two GAN networks concurrently by feeding the same prior
noise. However, it is nontrivial to design a loss function for the joint distribution balancing multiple
high-dimensional variables making it challenging for the discriminator to detect true/false sampled
pairs. Thus, the high-dimensional intervention problem still requires a more effective approach.

In this paper, we propose a novel algorithliGEN that canutilize any (conditional) generative
models (such as GANs or diffusion models) to perform high-dimensional interventional sampling
in the presence of latent confounderBor this purpose, we resort to the sound and complete
identi cation algorithm B0, 46] and design our algorithm on top of its structure to sample from any
identi able causal query which may have an arbitrarily complex probabilistic expression (ex: Eq. 1).
More precisely, given a causal graph, training data, and a causal query, our algdrithiows

the recursive trace of the ID algorithm to factorize the quBr{rains a set of conditional models

for each factoriii) connects them to build a neural network called sampling network and generate
interventional samples from this network. For example, to sample Rénjdo(x)) for the frontdoor
graph in Fig. 1 (top), wé utilize ID to obtain the factorsP (sjdo(x)) andP (rjdo(x; s)), i) train
conditional model$ M sg; f M x o; Mg g for the two factors (Fig. 1bjii) merge all models based on
input-output (Fig.1c). Sampling according to this network's topological order would produce samples



from P (rjdo(x)). Similarly, for the backdoor graph (bottom), we train conditional moti®s.s g
andf M, gto learnP (a; b) andP (ijv; a; b) respectively and merge them to sample frBifijdo(Vv)) .
To the best of our knowledge, we are the rst to show that conditional generative/feedforward models
are suf cient to sample from any identi able causal effect estimand. Our contributions are as follows:

» We propose a recursive algorithm call@GEN that trains a set of conditional generative
models on observational data to sample from high-dimensional interventional distributions.
We are the rst to use diffusion models as conditional models for semi-Markovian SCMs.

» We show thatD-GEN is sound and complete, establishing that conditional generative mod-
els are suf cient to sample from any identi able interventional and conditional interventional
query. The latter type are especially challenging for existing GAN-based causal models.

* We demonstrateD-GEN's performance on three datasets containing image and text vari-
ables. First, we perform image intervention with diffusion models for the Colored-MNIST
experiment. Next, we show our application in trustworthy Al through quantifying spurious
correlations in pre-trained models for the CelebA dataset. Finally, we make the report to
X-ray generation task interpretable and domain invariant based on the MIMIC-CXR dataset.

2 Background

Structural causal model (SCM) [36] is a tupleM = (G = (V;E);N;U;F;P()). V =
fV1;::5; Vg is a set of observed variables in the systelh.is a set of independent exogenous
random variables whemg; 2 N affectsV; andU is a set of unobserved confounders each affecting
any two observed variables (for 2 check Appendix C.7). This refers to tlsemi-Markovian
causal model A set of deterministic functions =f f, ; fv,;::; fv, g determines the value of each
variableV; from other observed and unobserved variableg as f; (P a;; N;; Us, ), wherePa  V
(parents)N; 2 N (randomness) ands, U (latent confounderg for someS;. P (:) is a product
probability distribution oveN andU and projects gint distribution Py over the set of actiong
representing their likelihood.

An SCM M , induces aracyclic directed mixed graph(ADMG) G = (V; E) containing nhodes

for each variable/; 2 V. For eachV; = f{(Pa;N;;Us,), Pa V, we add an edg¥j !

Vi 2 E;8Y, 2 Pa. Thus,Pa(V;) becomes the parent nodesGn G has abi-directed edge

Vi $ V, 2 E betweerV; andV, if and only if they share a latent confounder. Ifapsti :::! V,

exists, therV is an ancestor of; , i.e.,Vi = An(V,)c. Anintervention do(x) replaces the structural
functionf, with X = x and in other structural functions wheXeoccurs. The distribution induced

on the observed variablés after such an intervention is representedPagv) or P (vjdo(x)).
Graphically, it is represented Iy~ where incoming edges % are removed (marked red). With a
slight abuse of notation, we will uge(y) for both the numerical valuB(Y = y) and the probability
distribution [P (y)]y, depending on the context. An example for the latte'List Y be sampled
fromP(y)". Also, Px(y) refers to thanterventional distribution for all x;y. Given an ADMG

G, a maximal subset of nodes where any two nodes are connected by bidirected paths is called
a c-componentC(G). For anyS 2 C(G), P(Sjdo(V nS)) is called a c-factor. We assume
that we have access to the ADMG through some causal structure learning algorithm and expert
knowledge.Classi er-free diffusion guidance [20] Let (v;c) P(v;c) be the data distribution
andz=fz | 2[ mn; maxJO9fOr min < max 2 R. We corruptthe dataas = x +

and optimize the denoising model by taking the gradient step gn (z ;c)  jj°. Given that
variablesV are connected as a directed acyclic graph and we have diffusion models trained to
learn th@istributionﬁ’ (vijpa(vi)), we can perfornancestral samplingfrom the joint distribution,
P(v)= "y 2y P(vijpa(vi)) by making one pass through each model in the topological order while
sampling from the conditional distribution8][ We choose classi er-free diffusion as our conditional
model, but the choice changes based on the application. Wd yge) and a square node as notation.

3 ID-GEN: generative model-based interventional sampling

Given a causal grapB, dataseD P (v), our objective is to generate high-dimensional interven-
tional samples from a queB®(yjdo(x)) or a conditional query (yjdo(x); z): ID-GEN builds upon

the recursive structure of the identi cation algorithd€] to train necessary conditional models. Thus,

we rst discuss its connection with us and show the challenges it faces if deployed for sampling.



3.1 Identi cation algorithm (ID) and challenges with high-dimensional sampling

Shpitser and Peaf46] propose a recursive algorithm (Algorithm 6) for estimating an interventional
distributionPy (y) given access to all probability tables. At any recursion level, it enters one of its
four recursive steps: 2, 3, 4, 7 and three base case steps: 1, 5, 6 . Below, we discuss them in detalil.

Step 1occurs when the intervention s¥tis empty inPx(y). The effect ofX = ; onY isits
marginalP (y) which is returned as outpuitep 2checks if there exists any non-ancestor variable of

Y in the intervention seX . Such variables in the graph do not have any causal effe¥t.crhus,

it is safe to drop them. IStep 3 it searches for a s8 in G, which does not effect assuming

thatX has already been intervened on. Thus, it can incldas an additional intervention set:

X = X[ W. An intervention orW implies deleting its incoming edges, which simpli es the
problem in the futureStep 4is the most important line and is executed when there are multiple
c-components in the subgraf@hn X . It factorizes (decomposes) the problem of estimaBpfy)

into estimating c-factors (subproblems) and performs recursive calls for each c-factor. Base case
Step 5returns fail for non-identi able queries. Base c&ep 6asserts that wheX does not have a
bi-directed edge with the rest of the nodesiandS consists of a singl%c-cogponent, intervening on

X is equivalent to conditioning oK . Thus, ID can now solv®y (y) as sny  ijVi2S P(vijv(' 1))

and return as outputep 7occurs when the variables ¥ can be partitioned into two sets: one
having bi-directed edges to other variabl&)(in the graph and one (de ned ;) with no
bi-directed edges t8°. In that case, evaluating, (y) from P (V) is equivalent to rst obtaining
PYV) = Py, (V) and then evaluatinBy ., (Y) from PV ). Hence Py, (V) is rst calculated as
injViZSOg F’(\/ijV(I Dy soyt Dy S% and then passed to the next recursive calbix nx,)

to be applied. One major issue of ID is that it requires probability tables and thus cannot be applied
for high-dimensional sampling. Suppose we naively design an algorithm that follows ID's recursive
steps and trains a generative model for every factor it encounters and samples from it. This algorithm
would not know which of these factors to learn and sample rst, leading to a deadlock as shown in
Ex C.1. ID-GEN solves such issue by avoiding direct sampling and building a sampling network.

De nition 3.1 (Sampling networkH). A collection of feedforward modelsM\y, gs, for a set of
variablesV = fVigs, is said to form ssampling network, H, if the directed graph obtained by
connecting eacMy, to M, (v;), Via incoming edges according to some conditional distribution, is
acyclic. Two sampling networkid; ; H, can be merged into a larger netwatk

3.2 Recursive training of ID-GEN and interventional sampling

Similar to ID's recursive structuréD-GEN has 7 steps (Algorithm 1). However, to deal with high-
dimensional variables, we call three new functions: i) Algorithi@dhditionalGMs(.) inside

steps 1 and 6 where we train diffusion models or other conditional models to learn conditional
distributions, ii) Algorithm 3MergeNetwork(.) inside step 4 to merge the conditional models, and
i) Algorithm 4:Update(.) inside step 7 to train models that can apply part of the interventions

and update the training dataset for next recursive calls. We initiatel BABEN (Y ;X ; G; D; X =
.G = G). Along with the given inputs ;X ; G; D, ID-GEN maintains two extra parameters

X ; G to keep track of the interventions performed. During the top-down phRsBEN updates its
parameters: by) removing interventions from the intervention et andii ) updating the training

dataseD, X and the causal grap®; G according to the interventions. At any level of recursion, an
ID-GEN call returns a sampling netwoHk (DAG of a set of trained models) trained on the dataset

D to learn conditional distributions according®q G; G. After the recursion ends, we can generate
samples fronP, (V);Y  V, by ancestral sampling dd. See a recursion tree in Appendix C.4.
Base Case: Step 1:ID-9EN enters stﬁp 1 iéthe interventiok is empty. ForX = ;, we
have,Pc(y) = P(y) = oy POV) = oy “vizv PVl ) which is suitable for ances-
tral sampling. To train models that can collectively sample from this distribution, we call Al-
gorithm 2ConditionalGMs(.) . Here, we train each mod#&ly,, 8V, 2 V usingV(i = (i.e.,
variables that are located earlier in the topological orgeas inputs to matcl?(vijv(i l)). Note
thatX contains the values that were intervened in previous recursion levelS anthe graph at the
current level that contain® with its incoming edges cut. Since we want our conditional models to
generate samples consistent with the value® pive consider the topological order Gfwhile using



v D as inputs so that are also fed as input while training. After training, we connect the trained
models according to their input-outputs to build a sampling netwbdnd return it (Alg 2:lines 1-6).
Note that when all variables M are low dimensional, we can also learn a single mdtieb sample

P (Y ). However, for high-dimensional variables, matching such joint distributions is non-té\dial [

Step 2 & 3: We follow the same steps of the ID algorithm as discussed in Section 3.1.

Step 4 and Merge sampling Networks:Our
goal is to train models that can sample from \ \
P, (y) which unfortunately is not straightfor- X > W * M W L g i N
ward. This step allows us to decompose our W4 Y Y Y Y
problem into sub-problems and we can traifz > Y v « My gk w,[Mw, Y H My |{Mw,
models to sample from the c-factors®f(y)'s
factorization. The next challenge is to connect
these models consistently to sample frBg(y). Figure 2: $ :Unobserved. Left blue samples
More precisely, if we remov& from G and the from P, (wa;y) = P (wajX) P(yjg wa;ws).

graph splits into multiple c-components (varRight blue samples fromyw , (W2) = 0 P(x°)

ables in each component connected wBth P (W2jx%wi). Joint network samples froy (y).

(Alg 1:line 11), we can apply c-component fac-

torization (Lemma D.7,31]) to factorizePx (y) as [ x)Pvns, (S1) 11 Pyns, (Sn) Where each

f Sk ok is the c-factor corresponding to each c-component. To obtain trained models for each of these
c-factors, we perform the next recursive calB:GEN (Y = §;; X = V nSj;G; D;)’Q;G). When

these recursive calls return a sampling netwdrkor eachP, g, (s;), we can wire them based on

their input-output to build a single sampling netwdik According to Theorem D.21 and D.23,

now can sample frorRy (y).

We call Algorithm 3:MergeNetwork(.) to connect all sampling networkll ; gs, . Here, eactt; is

a set of trained conditional moddi#ly, g connected to each other as a DAG. If a sampling network

H; contains an empty nodd, = ; without any conditional model and some other sampling
networkH, generates this variabl with its nodeMy, , i.e.,Vj = Vi, then we combiné/y,
andMy, into the same node to build a connection betweigrandH, (lines 3-6). Intuitively,

due to the c-factorization at this step, the variables intervened in one sampling network might be
generated from models in another network. We connect two networks to continue the ancestral
sampling spquence. Fig. 2 shows an example of this step Whéyg is factorized into c-factors
asPx(y) = w,.w, Pxw:(W2)Pxw,(W1;y). For the c-componeritWy; Y g, ID-GEN rst obtains

Pxw, (W1;y) = P(wijx)P(yjx;w1; wz), and trains conditional mpdeM, andMy for these
conditional distributions. Similarly, forW,g, we havePy., , (Wz) = o P (Xx9P (w2jx%w;) and

we trainM x o andM w, . Finally, we merge these networks based on inputs-outputs to build a single
sampling network and perform ancestral sampling on it to sample Bofy); 8x.

Base Case: Step 5We follow the step 5 of the ID algorithm as discussed in Section 3.1.

Base Case: Step 6We enter Step 6 i n X is a single c-compone®, andX is located outside
the c-compolgent. This situation allows us to replace the interventiok @y conditioning on

X: Py(y) = sy Vi2s P(vijv(i l)). This step is similar to step 1, except that now we have a

non-empty intervention set, i.eX, 6 ;. Here, we consider the topological order®fandv( Y

contains bottX andX . We call Algorithm 2ConditionalGMs(.)  which trains multiple conditional
models to learn the above distribution. More precisely, we utilize classi er-free diffusion guidance

for conditional training of eacM, by taking the gradient step on jj (2 Ve l)) ji%. Here,

Z' is the noisy version o¥; at time step during the forward process anl Y is the condition

(see Background). Finally, we connect the input-output of these diffusion models according to the
topological order to build a sampling network and return it as output. Note that for any speci ¢
conditional distribution, if we have access to a pre-trained models that can sample from it, we can
directly plug it in the network instead of training it from scratch (motivated from [40]).

Step 7: Here,ID-GEN partitionsX into two sets: one is applied in the current step to update the
training dataset and other parameters, and the other is kept for future steps. It performs this step if i)
G nX is a single c-compone® and ii) S is a sub-graph of a larger c-compon&Sin the whole
graphG, i.e,(S= C(GnX)) (S°2 C(G)). For example, in Fig. 3, foPy, -w,x (Y), we have
S=GnfWi;W,; Xg=fYg;S°= fWy;X;Y g. In this step, we call Algorithm 4Update(.)



Algorithm 1 ID-GEN (Y ;X;G;D; X; G) Algorithm 2 ConditionalGMs (Y ;X ;G;D;X ;5)
1: Input: targetY, to be intervened, intervened 1. for eachv; 2f X [ gdo
variables at step 78, causal grapl® withoutX, 2: Add node(Vi;;) toH {Initialized H = ;}
causal graplts with X having no parents, training 3: for eachV; 2 Y in the topological order s do
dataD[G] sampled from observed distributi®h(V ). 4: LetM v; be a model trained oB[V;; VAR
_ _ suchthaMy, (V" V) P(vijvt )
: Output: A sampling network of trained models. 5. aAqq node(Vi; My, ) to H

2

3. if X = ; then{Step 1} . v , (i 1
4: Return ConditionalGMs (Y ;X = ;:G;D;X;6) g: Reﬁjdrg zdge\/, ' MitoH forallyj 2 v

. : .
6

if VnAn(Y)c 6 ; then{Step 2}
Return ID-GEN(Y ; X\ An(Y )c; Gan (Y);ﬁ; Algorithm 3 MergeNetworkfH igs;i)

Gan (v); D°= DI[AN(Y)e]) 1: Input: Set of sampling networki ; gg; .
7 LetW =(V nX)nAn(Y )e- {Step 3} 2: Output: A connected DAG sampling netwotk.
8: if W 6 ; then 3: for Hi 2fH ;ggi do
9: RetunID-GEN(Y;X = X [ W;G;X;G6;D) 4: for My, 2H; do
10: if C(GnX) = fS1;:::;Skgthen {Step 4} 5: if My, = ; and9My, 2 H ,;8r such that
11: for eachS; 2 C(GnX)= fSs;:::;Skg do Vi = Vk andMy, 6 ; then
12: Hi=ID-GEN(Si;X = V nS;;G;X;&;D) 6 My, = My,
13:  Return MergeNetworkfH i gs;) 7: Return H = fH ;gs; {All H; are connected.}
14: if C(GnX) = fSgthen
15:  if C(G) = fGg then {Step 5} Algorithm 4 Update(S% X ;G;D;X;G)
16: throw FAIL ) 0
17 if S 2 C(G) then {Step 6} L' Xz =XnS .
18: Return ConditionalGMs (S; X ; G; D; X ;&) & HO: ConditionalGMs (S% X z; G; D; R ; G)
19:  if (9S%) suchthaS S°2 C(G)then{s7} = 3:D° H (Xz;R); X =X[X:
20: Return ID-GEN (Update(S®X ;G;D:R ;@) 4 RetumY ;X\ S° Gso, DIX;s9, X, éfsoyg

which utilizes the larger c-compone@fto partition the intervention sét into one set contained
within SO i.e.,X \ S% and another set not containedsf i.e., X ; = X nSC EvaluatingPy (y)
from P (v) is equivalent to evaluatinBy, so(y) from PYv) wherePYv) = Py, (v) is the joint
distribution. Hence, we rst perforrdo(X 7) to update the dataset BS. Next, we shift our goal of
sampling fromPy (y) in G with training dataseD P (V) to sampling fronPy, so(y) in éf s0%g

with training dataD® Py, (v) in the next recursive calls. To generate dat@®t Py, (v), we call
ConditionalGMs(.) and use the returned network to sampRlines 2-3).

Note that given access to probability tables, the ID can use any speci ¢ ¥glue X, to calculate
Py, (v) to get the correct estimation & (y) (Verma constraintg4, 46]). In our case, if we use
a speci c valuex, to sample the training datadsef Py, (v), the models trained on this dataset
in subsequent recursive steps will also depena gnHowever, during ancestral sampling in the
returned network, a different valde; = x9 might come from other c-components (&&y (W-; :)

in Fig. 3). Thus, to make our trained models suitable for any values, we{pickom a uniform
distribution or fromP (X 2 ) and generat®°accordingly. We savX ; in X, its values irD[X ; S9

and inéf s0%g with incoming edges removed, to be considered during training in the next recursive

calls. WhenevelD-GEN visits Step 7 agairﬁi will be applied along with the new 7. Finally, a
recursive call is performed with these updated parameters (line 4) which will return a network trained
on dataseD® Py, (v). It can sample fronPy, so(y) and equivalently from the origindy (y).

Algorithm simulation: We applylD-GEN to sample fronPy,, (y) for the causal grapt in Fig. 3.
SinceG nfW; g pas three c-componerft®V,g; f X g;f Y g, we rst call (i) step 4 ofID-GEN. Py, (y)

is factorized as: ., , Pwyixy (W2) Pwyw,iy (X) Pwiw,ix (¥). Thus, step 4 will return the sampling
networksf Hw, ; Hx ; Hy g that can sample from each of these factors. Here, we focus oriixon
ID-GEN reaches (i) step 7 for the querfPy, w,x (y) since we havé&s = G nfWq;W;; X g =
fYgS®= fWy; X;Y gandS  S% Here, sampling fronPy.y ,-w, (Y) in G, with observational
training dataset is equivalent to sampling fré, , (y) in G= Gy, with do(W5) interventional

data. Withw, P (w,), we generat®® Py, (v) by calling step 6 (base case). We padsas

the dataset parameter for the next recursive call. This step implies that if the recursive call returns a
network that is trained oB® P, (v) and can sample fromy., , (y) , it can also be used to sample
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Figure 3: (Left: top-downPy, (y) is factorized intoPw, .y (W2), Pw,w,:y (X) @and Py, w,x (Y)
(Step 4). Steps 7, 2, 6 is shown 8y, .w,:x (¥) only. (Right: bottom-up) we combine the sampling
networks of each c-factor. For any(@¥; = w;), we useH to get samples frorRy, (y).

from Py, -w,x (¥). Next, sinceW; 2 An(Y)g, at (iii) step 2, we drogW; from all parameters before

the next recursive call. We are at the base case (iv) step 8wittV, | X ! Y. Thus, we train a
conditional modeMy (W»; X ) onDIWS,; X; Y ] that can sample frorR (yjw,; x). This would be
returned a$iy at step 4 (Fig. 3:green). Similarly, we cangbtain sampling netwbgk andHyx to
sample fromPy, ;xy (W2) = P (W2jw1) andPu,w,y (X) = o P (xjw$; wo)P (w9) (Fig. 3:blue).
We connect these networks and perform ancestral sampling withwgefor do(W, = wy).

(Un)conditional sampling and complexity: ID-GEN returns a sampling netwolt when recursion
ends. For unconditional queBg (y), we x X = x in H and perform ancestral sampling to generate
joint samples. We pick th¥ values in these joint samples (equivalent to marginalization in ID)
and report as interventional samples. For a conditional gegfyjz); ID-GEN uses the sampling
network to rst generate sampl&[X;Z;Y] Px(y;z) and then train a new conditional model
My (X;Z) on D to sample fromY Px(Yjz) (Alg.5:IDC-GEN). The sampling network has
O(jAn (Y )gJ) number of models and requir€gjAn (Y )gj) time to sample from it. Please, see our
complexity details in Appendix C.5, Appendix C.6.

Theorem 3.2. Under Assumptions: i) the SCM is semi-Markovian, ii) we have access to the ADMG,
iii) P(V) is strictly positive and iv) trained generative models sample from correct distributions,
ID-GENandIDC-GENare sound and complete to sample from any identi djléy) and Py (yjz).

Note that although existing work can sample from (low-dimensional) distributions, Theorem 3.2,
makesD-GEN, to our knowledge, the rst method to usaly feed-forward modelsto provably
sample from identi able high-dimensional interventional distributions.

4 Experiments

To illustratelD-GEN's capabilities with high-dimensional image and text variables, we evaluate it on
semi-synthetic: Colored MNIST and real-world: CelebA and MIMIC-CXR datasets. We provide
additional details in Appendix F. Codes are available at github.com/mus gshohan/idgen.

4.1 ID-GEN performance on napkin-MNIST dataset and baseline comparison

Setup: We consider a semi-synthetic Colored-MNIST dataset for the napkin g8&pm[Fig. 4 with
image variable®Vi; X;Y and paired discrete variabW,. Here,X andY inherit the same digit
value as imag#&V; which is propagated through discrét&:d 2 [0 9]. X is either red or green
which is also inherited frorV; through discret&V,:c, i.e.,Wj:color : fr;g;b;y; m;cyg! Wy:c:
f0;1g! X:color : fr;gg. UnobservedJ color makesw; andY correlated with the same color,
and unobservetlthickness makesW; andX correlated with the same thickness. Even though
imageX (takes r and g) is a direct ancestor of imagétakes all 6 colors)Y only inherits the digit
property fromX but correlates the color property with ima@é& . This color correlation betweéW;
andY is created by Ucolor. All mechanisms incluti®%noise. Our target is to sample fraf (y).

Training and evaluation: We follow ID-GEN steps{3; 7; 2; 6]. Step 3 implie®x (Y) = Pxw ,:w, (¥),

i.e., intervention set B5X; W 1; W,g. Step 7 suggests to general®&\W,) interventional dataset
DIW1; Wo; X; Y] Py, (Wi;Xy) = P(wi)P(X;yjwi; wp). To obtainD® we i) samplew;

P (w1), and ii) train a conditional diffusion model to sampling fréhix; yjwsi; w») with arbitrary

W, values. Next, Step 2 drops non-ancestgrand Step 6 trains a diffusion modély (x; w>) on

the new datasdd®to sample fronP Yyjx; w,). My (X; w>) is returned as output that can sample
from Py (y),8w,. We compare our performance with three baselines: i) a classi er-free diffusion



W FID # Color| True | Cond| DCM| Ours
» P 1\ ® Cond 50.83 Py (y)
g8 v i ﬁg'\/ 2??{ R [0.17 | 0.17 | 0.24 | 0.13
W, | x - G [017 045|027 | 024
=) s Ours | 25.66
£y 8 B [0.17 |0.15] 028|021
RV S — Yw | 0.17 [ 0.19 | 0.05 | 0.14
) 0 DOC” T Mg | 0.17 | 0.02 | 0.07 | 0.11
Y, w [ DCME0.61 Cy 017 [0.10[0.09 [ 0.18
Y > [ours| 22.67 [TVD ][O 0547058025 |

Figure 4: (Left:) Causal graph with color and thickness as unobserved. (Center:) FID scores (lower
the better) of each algorithm and images generated from them. (Right:) Likelihood calculated from
the Py (y) images generated by each algorithm. We closely re ect theRg{g) with low TVD.

model that samples from th€¢nditional distributionP (yjx), ii) the DCMlgorithm [L1] that uses
diffusion models to samples froRy (y) but without confounders, and iii) the NCM algorithisg

that uses GANs and considers confounders. We perfodogd intervention with two images, i)

digit 3 and ii) digit 5, both colored red. In Fig. 4, we show interventional samples for each method
alongside their FID scores representing the image quality (lower:better).Cldmg) (model (row

1, 5),DCMrow 2, 6) and our algorithm (row 5, 8) all generate good quality images of digit 3 and
digit 5 with a speci c color. However, thBICNMlgorithm (row 3, 7) generates images with blended
colors (such as green + red). We observe IBaGEN achieves the lowest FID scores (25.66 and
22.67), showing the ability to generate high-quality images consistent with the dataset. Whereas,
CondandDCNgenerate almost the same structure for all digits lacking variety, which explains their
high FID. Note that dfx) removes the color bias betwe¥nandY along the backdoor path. Thus,
interventional samples should show all colors with uniform probability. S®medandDCNMan not

deal with confounders they show bias towards R, G, B coloi &r red X . ID-GEN removes such

bias and balances different colors (Fig. 4). For a more rigorous evaluation, we use the effectiveness
metric proposed ind4] and employ a classi er to map all generated images to discrete analogues
(Digit; Color; T hickness ) and compute exact likelihoods. We compare them with our ground truth

P (Y:colorjdo(x)) (uniform) and display these results for the color attribute in Fig. 4(right). We
emulate the interventional distribution more closely with a low total variation distance: 0.25 compared
to the baseline€ond(0.54) andDCNMO0.58). We skip classifying colors of NCM as they are blended.

4.2 Evaluating CelebA image translation models with ID-GEN

Setup: We applylD-GEN to evaluate multidomain
image translation of some existing generative mod-
els (ex: Male to Female domain translation). We 4
examine whether they apply causal changes in (fa-' <.\ _»
cial) attributes or add unnecessary changes due t& v
the spurious correlations among different attributes™ = A <+—F:
they picked up in the training data. Our applica-

tion is motivated by Goyal et aJ15], who generate

counterfactual images to explain a pre-trained classi-

er while we examine pre-trained image generative

models. We employ two generative models that are

trained on CelebA datase?9]: i) StarGAN [12] and

i) EGSDE [64] (an approach that utilizes energy-

guided stochastic differential equations). We assume

the graph in Fig. 5 where the original imalgecauses

its own attributesdMale and Young. We consider

an unobserved confounder between them, as in the

dataset, men are more likely to be old (correlatiqgI ure 5: i) Graph and sampling network for
coeff=0:42, [44]) and a classi er might have some 9 1) -orap piing
male (12). ii) For both causal and non-causal

bias toward predicting young-male images as oIP ; . ;
male. These attributes along with the original imagéje[tr'bmes’ EGSDE shows high correlation.
are used to generate a translated imiggdNext, P; andP, are 40 CelebA attributes of andl,. A

is the difference betwedpy ; P, i.e., the additional attributes (ex: makeup) that gets addég bat
are absent iy during translation. We estimaByae=0 (A), i.€., the causal effect of changing the
domain fromMale to Femaleon the appearance of a new attribute.
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