
Conditional Generative Models are Sufficient to
Sample from Any Causal Effect Estimand

Md Musfiqur Rahman ∗

Purdue University
Matt Jordan ∗

University of Texas at Austin
Murat Kocaoglu
Purdue University

Abstract

Causal inference from observational data plays critical role in many applications
in trustworthy machine learning. While sound and complete algorithms exist to
compute causal effects, many of them assume access to conditional likelihoods,
which is difficult to estimate for high-dimensional (particularly image) data. Re-
searchers have alleviated this issue by simulating causal relations with neural
models. However, when we have high-dimensional variables in the causal graph
along with some unobserved confounders, no existing work can effectively sample
from the un/conditional interventional distributions. In this work, we show how to
sample from any identifiable interventional distribution given an arbitrary causal
graph through a sequence of push-forward computations of conditional generative
models, such as diffusion models. Our proposed algorithm follows the recursive
steps of the existing likelihood-based identification algorithms to train a set of feed-
forward models, and connect them in a specific way to sample from the desired
distribution. We conduct experiments on a Colored MNIST dataset having both the
treatment (X) and the target variables (Y) as images and sample from P (y|do(x)).
Our algorithm also enables us to conduct a causal analysis to evaluate spurious
correlations among input features of generative models pre-trained on the CelebA
dataset. Finally, we generate high-dimensional interventional samples from the
MIMIC-CXR dataset involving text and image variables.

1 Introduction

Causal inference has recently attracted significant attention in machine learning (ML) due to its
application in fairness, invariant prediction, and explainability [60, 62, 49]. Even though existing
ML models show notable predictive performance by optimizing the likelihood of the training data,
they are prone to failure when the covariate distribution changes in the test domain. Consider the
medical scenario in Fig. 1a with the causal order: Xray(X)→Diagnosis(S)→Report(R) representing
the true data-generating mechanisms. Suppose a practitioner observes only X to make a high-level
intermediate diagnosis S that contains sufficient information about the patient. The prescription
report(R) is written only based on the diagnosis (thus X ̸→ R). Since data are collected from
different hospitals locations (H), H acts as an unobserved common cause for both X and R, i.e.,
X ↔ R (ex: correlation between x-ray artifacts and report writing style). The task is "x-ray to report"
generation. One might train an ML model to directly learn a mapping f : X → R, with maximum
likelihood estimation (MLE) [7, 10] mimicking the conditional distribution P (r|x). However, since
H is an unobserved common cause between X and R; H has some influence on P (r|x) [9]. Thus, if
the model is deployed in a new location, its MLE-based prediction accuracy may drop since P (r|x)
shifts in that location. On the other hand, if we can remove the location bias X ↔ R with an
intervention on the x-ray variable (do(x)), the x-ray to report generation would be invariant to domain
shifts. Thus, to obtain such generalization, we need to perform causal interventions in high-dimension.

∗Equal contribution. Correspondence to rahman89@purdue.edu

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Diagnosis
(S)

Prescription
Report(R)

Xray
Scan(X)

P(r jdo(x)) =
P

s P(sjdo(x))P(r jdo(x; s))

Hospital
Location (H)

M SX

P(sjdo(x)) = P(sjx)

M R

M X 0

P(r jdo(x; s))
=

P
x 0 P(x0)P(r jx0; s)

S

X 0

M Sdo(X = x) M R

M X 0

X 0

S

P
s P(sjx)

P
x 0 P(x0)P(r jx0; s)

Ventricle
Volume(V)

Brain
MRI (I)

Brain
Volume(B)Age (A)

P(i jdo(v)) =
P

a;b P(a; b)P(i jdo(v; a; b))

Sex
(S)

(a) ML model failure scenario

M AB

P(a; b)

M I

P(i jdo(v; a; b))
= P(i jv; a; b)

[A; B]

V

(b) Train conditional models.

M AB M I

P
a;b P(a; b)P(i jv; a; b)

do(V = v)

[A; B]

(c) Merge and sample ancestrally.

Figure 1: (Top: x-ray to report generation task) (a)do(X = x) removes theX $ R bias and makes
the generation ofR domain invariant.P(r jdo(x)) is factorized into c-factors and (b) conditional
models (f M Vk gk) are trained for each factor (shown as boxes). (c) The intervened valueX = x is
propagated through the merged network and samples from theP(r jdo(x)) are generated.

Structural causal models (SCM) [38] enable a data-driven approach to estimate interventional dis-
tributions [43, 30]. Given the qualitative causal relations, summarized in acausal graph, we now
have a complete understanding of which causal effects/queries (ex:P(r jdo(x))) can be uniquely
identi�ed from the observational distribution and which require further assumptions or experimental
data [2, 23, 28, 37, 46, 50]. More precisely, if all conditional probability tables are available, sound
and complete identi�cation algorithms [51, 46] can perform exact inference to estimate causal effects
or [4, 5, 25] can sample from the interventional distribution, using a combination of marginalization
and product operators applied to those conditional distributions. However, such approaches struggle
to deal with high-dimensional variables. In Fig. 1a, we could intervene on x-rayX and estimate its
effect on the reportR as,P(r jdo(x)) =

P
s P(sjx)

P
x 0 P(x0)P(r jx0; s), i.e., as functions of the

observational distribution (X; X 0: independent instances of the same variable). However, the second
and third terms in this expression require marginalization over the “X-ray" variable. Exact Bayesian
inference methods used for calculating conditional distributions are infeasible for high-dimensional
variables since marginalization over their non-parametric distributions is generally intractable [6].

Deep generative models with variational inference methods approximate the intractable marginal-
ization and can sample from such high-dimensional distributions [22, 47, 14]. Recent works such
as Xia et al.[59], Chao et al.[11], Rahman and Kocaoglu[40] employ deep generative models
to match joint distribution of the system by learning the conditional generation of each variable
from its causal parents. Nonetheless, it is highly non-trivial for these works to mimic any arbitrary
causal model with high-dimensional variables, specially when there are unobserved confounders
in the (semi-Markovian) causal model. Consider theX $ R relation in Fig. 1a whereR andX
are correlated through unobserved hospital location. To learn the joint distributionP(x; r), the
above approaches need to synchronously train their generative models. For that purpose, Xia et al.
[59], Rahman and Kocaoglu[40] train two GAN networks concurrently by feeding the same prior
noise. However, it is nontrivial to design a loss function for the joint distribution balancing multiple
high-dimensional variables making it challenging for the discriminator to detect true/false sampled
pairs. Thus, the high-dimensional intervention problem still requires a more effective approach.

In this paper, we propose a novel algorithmID-GEN that canutilize any (conditional) generative
models (such as GANs or diffusion models) to perform high-dimensional interventional sampling
in the presence of latent confounders.For this purpose, we resort to the sound and complete
identi�cation algorithm [50, 46] and design our algorithm on top of its structure to sample from any
identi�able causal query which may have an arbitrarily complex probabilistic expression (ex: Eq. 1).
More precisely, given a causal graph, training data, and a causal query, our algorithmi) follows
the recursive trace of the ID algorithm to factorize the queryii) trains a set of conditional models
for each factor,iii) connects them to build a neural network called sampling network and generate
interventional samples from this network. For example, to sample fromP(r jdo(x)) for the frontdoor
graph in Fig. 1 (top), wei) utilize ID to obtain the factors:P(sjdo(x)) andP(r jdo(x; s)) , ii) train
conditional modelsf M Sg; f M X 0; M R g for the two factors (Fig. 1b),iii) merge all models based on
input-output (Fig.1c). Sampling according to this network's topological order would produce samples

2

from P(r jdo(x)) . Similarly, for the backdoor graph (bottom), we train conditional modelsf M A;B g
andf M I g to learnP(a; b) andP(i jv; a; b) respectively and merge them to sample fromP(i jdo(v)) .
To the best of our knowledge, we are the �rst to show that conditional generative/feedforward models
are suf�cient to sample from any identi�able causal effect estimand. Our contributions are as follows:

• We propose a recursive algorithm calledID-GEN that trains a set of conditional generative
models on observational data to sample from high-dimensional interventional distributions.
We are the �rst to use diffusion models as conditional models for semi-Markovian SCMs.

• We show thatID-GEN is sound and complete, establishing that conditional generative mod-
els are suf�cient to sample from any identi�able interventional and conditional interventional
query. The latter type are especially challenging for existing GAN-based causal models.

• We demonstrateID-GEN's performance on three datasets containing image and text vari-
ables. First, we perform image intervention with diffusion models for the Colored-MNIST
experiment. Next, we show our application in trustworthy AI through quantifying spurious
correlations in pre-trained models for the CelebA dataset. Finally, we make the report to
X-ray generation task interpretable and domain invariant based on the MIMIC-CXR dataset.

2 Background

Structural causal model, (SCM) [36] is a tupleM = (G = (V ; E); N ; U; F ; P(:)) . V =
f V1; :::; Vn g is a set of observed variables in the system.N is a set of independent exogenous
random variables whereN i 2 N affectsVi andU is a set of unobserved confounders each affecting
any two observed variables (for> 2 check Appendix C.7). This refers to thesemi-Markovian
causal model. A set of deterministic functionsF =f f V1 ; f V2 ; ::; f Vn g determines the value of each
variableVi from other observed and unobserved variables asVi = f i (Pai ; N i ; USi), wherePai � V
(parents),N i 2 N (randomness) andUSi � U (latent confounders) for someSi . P(:) is a product
probability distribution overN andU and projects ajoint distribution PV over the set of actionsV
representing their likelihood.

An SCM M , induces anacyclic directed mixed graph(ADMG) G = (V ; E) containing nodes
for each variableVi 2 V . For eachVi = f i (Pai ; N i ; USi), Pai � V , we add an edgeVj !
Vi 2 E; 8Vj 2 Pai . Thus,Pai (Vi) becomes the parent nodes inG. G has abi-directed edge,
Vi $ Vj 2 E betweenVi andVj if and only if they share a latent confounder. If a pathVi ! : : : ! Vj
exists, thenVi is an ancestor ofVj , i.e.,Vi = An(Vj)G . An intervention do(x) replaces the structural
functionf x with X = x and in other structural functions whereX occurs. The distribution induced
on the observed variablesV after such an intervention is represented asPx (v) or P(vjdo(x)) .
Graphically, it is represented byGX where incoming edges toX are removed (marked red). With a
slight abuse of notation, we will useP(y) for both the numerical valueP(Y = y) and the probability
distribution[P(y)]y , depending on the context. An example for the latter is:“Let Y be sampled
from P(y)". Also, Px (y) refers to theinterventional distribution for all x; y. Given an ADMG
G, a maximal subset of nodes where any two nodes are connected by bidirected paths is called
a c-componentC(G). For anyS 2 C(G), P(Sjdo(V n S)) is called a c-factor. We assume
that we have access to the ADMG through some causal structure learning algorithm and expert
knowledge.Classi�er-free diffusion guidance [20] Let (v ; c) � P(v ; c) be the data distribution
andz = f z� j� 2 [� min ; � max]g for � min < � max 2 R. We corrupt the data asz� = � � x + � � �
and optimize the denoising model by taking the gradient step onr � jj � � (z� ; c) � � jj2. Given that
variablesV are connected as a directed acyclic graph and we have diffusion models trained to
learn the distributionsP(vi jpa(vi)) , we can performancestral samplingfrom the joint distribution,
P(v) =

Q
Vi 2 V P(vi jpa(vi)) by making one pass through each model in the topological order while

sampling from the conditional distributions [6]. We choose classi�er-free diffusion as our conditional
model, but the choice changes based on the application. We useM V (c) and a square node as notation.

3 ID-GEN: generative model-based interventional sampling

Given a causal graphG, datasetD � P(v), our objective is to generate high-dimensional interven-
tional samples from a queryP(y jdo(x)) or a conditional queryP(y jdo(x); z): ID-GEN builds upon
the recursive structure of the identi�cation algorithm [46] to train necessary conditional models. Thus,
we �rst discuss its connection with us and show the challenges it faces if deployed for sampling.

3

3.1 Identi�cation algorithm (ID) and challenges with high-dimensional sampling

Shpitser and Pearl[46] propose a recursive algorithm (Algorithm 6) for estimating an interventional
distributionPx (y) given access to all probability tables. At any recursion level, it enters one of its
four recursive steps: 2, 3, 4, 7 and three base case steps: 1, 5, 6 . Below, we discuss them in detail.

Step 1occurs when the intervention setX is empty inPx (y). The effect ofX = ; on Y is its
marginalP(y) which is returned as output.Step 2checks if there exists any non-ancestor variable of
Y in the intervention setX . Such variables in the graph do not have any causal effect onY . Thus,
it is safe to drop them. InStep 3, it searches for a setW in G, which does not effectY assuming
thatX has already been intervened on. Thus, it can includeW as an additional intervention set:
X = X [W . An intervention onW implies deleting its incoming edges, which simpli�es the
problem in the future.Step 4is the most important line and is executed when there are multiple
c-components in the subgraphG n X . It factorizes (decomposes) the problem of estimatingPx (y)
into estimating c-factors (subproblems) and performs recursive calls for each c-factor. Base case
Step 5returns fail for non-identi�able queries. Base caseStep 6asserts that whenX does not have a
bi-directed edge with the rest of the nodes inS andS consists of a single c-component, intervening on
X is equivalent to conditioning onX . Thus, ID can now solvePx (y) as

P
sny

Q
i jVi 2 S P(vi jv

(i � 1)
�)

and return as output.Step 7occurs when the variables inX can be partitioned into two sets: one
having bi-directed edges to other variables (S0) in the graph and one (de�ned asX Z) with no
bi-directed edges toS0. In that case, evaluatingPx (y) from P(V) is equivalent to �rst obtaining
P0(V) := Px Z (V) and then evaluatingPx nx z (Y) from P0(V). Hence,Px Z (V) is �rst calculated as
Q

f i jVi 2 S0g P(Vi jV
(i � 1)

� \ S0; v(i � 1)
� n S0) and then passed to the next recursive call fordo(x n x z)

to be applied. One major issue of ID is that it requires probability tables and thus cannot be applied
for high-dimensional sampling. Suppose we naively design an algorithm that follows ID's recursive
steps and trains a generative model for every factor it encounters and samples from it. This algorithm
would not know which of these factors to learn and sample �rst, leading to a deadlock as shown in
Ex C.1. ID-GEN solves such issue by avoiding direct sampling and building a sampling network.

De�nition 3.1 (Sampling network,H). A collection of feedforward modelsf M Vi g8 i for a set of
variablesV = f Vi g8 i is said to form asampling network, H , if the directed graph obtained by
connecting eachM Vi to M An (Vi)G via incoming edges according to some conditional distribution, is
acyclic. Two sampling networksH i ; H r can be merged into a larger networkH .

3.2 Recursive training of ID-GEN and interventional sampling

Similar to ID's recursive structure,ID-GEN has 7 steps (Algorithm 1). However, to deal with high-
dimensional variables, we call three new functions: i) Algorithm 2:ConditionalGMs(.) inside
steps 1 and 6 where we train diffusion models or other conditional models to learn conditional
distributions, ii) Algorithm 3:MergeNetwork(.) inside step 4 to merge the conditional models, and
iii) Algorithm 4:Update(.) inside step 7 to train models that can apply part of the interventions
and update the training dataset for next recursive calls. We initiate withID-GEN (Y ; X ; G; D; X̂ =
; ; Ĝ = G). Along with the given inputsY ; X ; G; D, ID-GEN maintains two extra parameters
X̂ ; Ĝ to keep track of the interventions performed. During the top-down phase,ID-GEN updates its
parameters: byi) removing interventions from the intervention setX , andii) updating the training
datasetD, X̂ and the causal graphG; Ĝ according to the interventions. At any level of recursion, an
ID-GEN call returns a sampling networkH (DAG of a set of trained models) trained on the dataset
D to learn conditional distributions according tôX ; G; Ĝ. After the recursion ends, we can generate
samples fromPx (V); Y � V , by ancestral sampling onH. See a recursion tree in Appendix C.4.

Base Case: Step 1:ID-GEN enters step 1 if the interventionX is empty. ForX = ; , we
have,Px (y) = P(y) =

P
v ny P(v) =

P
v ny

Q
Vi 2 V P(vi jv

(i � 1)
�) which is suitable for ances-

tral sampling. To train models that can collectively sample from this distribution, we call Al-
gorithm 2:ConditionalGMs(.) . Here, we train each modelM Vi , 8Vi 2 V usingV (i � 1)

� , (i.e.,
variables that are located earlier in the topological order�) as inputs to matchP(vi jv

(i � 1)
�). Note

thatX̂ contains the values that were intervened in previous recursion levels andĜ is the graph at the
current level that containŝX with its incoming edges cut. Since we want our conditional models to
generate samples consistent with the values ofX̂ , we consider the topological order ofĜ while using

4

V (i � 1)
� as inputs so that̂X are also fed as input while training. After training, we connect the trained

models according to their input-outputs to build a sampling networkH and return it (Alg 2:lines 1-6).
Note that when all variables inY are low dimensional, we can also learn a single modelM to sample
P(Y). However, for high-dimensional variables, matching such joint distributions is non-trivial [40].

Step 2 & 3: We follow the same steps of the ID algorithm as discussed in Section 3.1.

X W1

W2 Y M W 2

M X 0

M Y

M W 1X
W1

W2Y M W 2

M X 0

M Y

M W 1do(x)

Y

Figure 2: $:Unobserved. Left blue samples
from Px;w 2 (w1; y) = P(w1jx) P(yjx; w1; w2).
Right blue samples fromPx;w 1 (w2) =

P
x 0 P(x0)

P(w2jx0; w1). Joint network samples fromPx (y).

Step 4 and Merge sampling Networks:Our
goal is to train models that can sample from
Px (y) which unfortunately is not straightfor-
ward. This step allows us to decompose our
problem into sub-problems and we can train
models to sample from the c-factors ofPx (y)'s
factorization. The next challenge is to connect
these models consistently to sample fromPx (y).
More precisely, if we removeX from G and the
graph splits into multiple c-components (vari-
ables in each component connected with$)
(Alg 1:line 11), we can apply c-component fac-
torization (Lemma D.7, [51]) to factorizePx (y) as

P
v n(y [x) Pv ns1 (s1) : : : Pv nsn (sn) where each

f Sk gk is the c-factor corresponding to each c-component. To obtain trained models for each of these
c-factors, we perform the next recursive calls:ID-GEN (Y = Si ; X = V n Si ; G; D; X̂ ; Ĝ). When
these recursive calls return a sampling networkH i for eachPv nsi (si), we can wire them based on
their input-output to build a single sampling networkH . According to Theorem D.21 and D.22,H
now can sample fromPx (y).

We call Algorithm 3:MergeNetwork(.) to connect all sampling networksfH i g8 i . Here, eachH i is
a set of trained conditional modelsf M Vj gj connected to each other as a DAG. If a sampling network
H i contains an empty nodeM Vj = ; without any conditional model and some other sampling
networkH r generates this variableVj with its nodeM Vk , i.e., Vj = Vk , then we combineM Vj

andM Vk into the same node to build a connection betweenH i andH r (lines 3-6). Intuitively,
due to the c-factorization at this step, the variables intervened in one sampling network might be
generated from models in another network. We connect two networks to continue the ancestral
sampling sequence. Fig. 2 shows an example of this step wherePx (y) is factorized into c-factors
asPx (y) =

P
w1 ;w 2

Px;w 1 (w2)Px;w 2 (w1; y). For the c-componentf W1; Yg, ID-GEN �rst obtains
Px;w 2 (w1; y) = P(w1jx)P(yjx; w1; w2), and trains conditional modelsM W 1 andM Y for these
conditional distributions. Similarly, forf W2g, we havePx;w 1 (w2) =

P
x 0 P(x0)P(w2jx0; w1) and

we trainM X 0 andM W 2 . Finally, we merge these networks based on inputs-outputs to build a single
sampling network and perform ancestral sampling on it to sample fromPx (y); 8x.

Base Case: Step 5:We follow the step 5 of the ID algorithm as discussed in Section 3.1.

Base Case: Step 6:We enter Step 6 ifG n X is a single c-componentS, andX is located outside
the c-component. This situation allows us to replace the intervention onX by conditioning on
X : Px (y) =

P
sny

Q
Vi 2 S P(vi jv

(i � 1)
�). This step is similar to step 1, except that now we have a

non-empty intervention set, i.e.,X 6= ; . Here, we consider the topological order ofĜ andV (i � 1)
�

contains bothX andX̂ . We call Algorithm 2:ConditionalGMs(.) which trains multiple conditional
models to learn the above distribution. More precisely, we utilize classi�er-free diffusion guidance
for conditional training of eachM Vi by taking the gradient step onr � jj � � (zi

� ; v(i � 1)
�) � � jj2. Here,

zi
� is the noisy version ofVi at time step� during the forward process andv(i � 1)

� is the condition
(see Background). Finally, we connect the input-output of these diffusion models according to the
topological order to build a sampling network and return it as output. Note that for any speci�c
conditional distribution, if we have access to a pre-trained models that can sample from it, we can
directly plug it in the network instead of training it from scratch (motivated from [40]).

Step 7: Here,ID-GEN partitionsX into two sets: one is applied in the current step to update the
training dataset and other parameters, and the other is kept for future steps. It performs this step if i)
G n X is a single c-componentS and ii)S is a sub-graph of a larger c-componentS0 in the whole
graphG, i.e, (S = C(G n X)) � (S0 2 C(G)) . For example, in Fig. 3, forPw1 ;w 2 ;x (y), we have
S = G n f W1; W2; X g = f Yg; S0 = f W1; X; Y g. In this step, we call Algorithm 4:Update(.)

5

Algorithm 1 ID-GEN (Y ; X ; G; D; X̂ ; Ĝ)

1: Input: targetY , to be intervenedX , intervened
variables at step 7ŝX , causal graphG without X̂ ,
causal grapĥG with X̂ having no parents, training
dataD[Ĝ] sampled from observed distributionP(V).

2: Output: A sampling network of trained models.
3: if X = ; then {Step 1}
4: Return ConditionalGMs (Y ;X = ; ;G;D;X̂ ;Ĝ)
5: if V n An (Y)G 6= ; then {Step 2}
6: Return ID-GEN(Y ; X \ An (Y)G ; GAn (Y) ; X̂ ;

ĜAn (Y) ; D0 = D[An (Y)G])
7: LetW = (V n X) n An (Y)G X

{Step 3}
8: if W 6= ; then
9: Return ID-GEN (Y ; X = X [W ; G; X̂ ; Ĝ; D)

10: if C(G n X) = f S1 ; : : : ; Sk g then {Step 4}
11: for eachSi 2 C(G n X) = f S1 ; : : : ; Sk g do
12: H i =ID-GEN(Si ; X = V n Si ; G; X̂ ; Ĝ; D)
13: Return MergeNetwork(fH i g8 i)
14: if C(G n X) = f Sg then
15: if C(G) = f Gg then {Step 5}
16: throw FAIL
17: if S 2 C(G) then {Step 6}
18: Return ConditionalGMs (S; X ; G; D; X̂ ; Ĝ)
19: if (9S0) such thatS � S0 2 C(G) then {S7}
20: Return ID-GEN (Update(S0;X ;G;D;X̂ ;Ĝ))

Algorithm 2 ConditionalGMs (Y ;X ;G;D;X̂ ;Ĝ)

1: for eachVi 2 f X [X̂ g do
2: Add node(Vi ; ;) to H {Initialized H = ; }
3: for eachVi 2 Y in the topological order� Ĝ do
4: Let M V i be a model trained onD[Vi ; V (i � 1)

�]
such thatM V i (V (i � 1)

�) � P (vi jv
(i � 1)
�)

5: Add node(Vi ; M V i) to H
6: Add edgeVj ! Vi to H for all Vj 2 V (i � 1)

�

7: Return H .

Algorithm 3 MergeNetwork(fH i g8 i)

1: Input: Set of sampling networksfH i g8 i .
2: Output: A connected DAG sampling networkH .
3: for H i 2 fH i g8 i do
4: for M V j 2 H i do
5: if M V j = ; and9M Vk 2 H r ; 8r such that

Vj = Vk andM Vk 6= ; then
6: M V j = M Vk

7: Return H = fH i g8 i {All H i are connected.}

Algorithm 4 Update(S0; X ; G; D; X̂ ; Ĝ)

1: X Z = X n S0

2: H = ConditionalGMs (S0; X Z ; G; D; X̂ ; Ĝ)
3: D0 � H (X Z ; X̂); X̂ = X̂ [X Z

4: Return Y ; X \ S0, GS 0, D0[X̂ ; S0], X̂ , Ĝ
f S 0; X̂ g

which utilizes the larger c-componentS0 to partition the intervention setX into one set contained
within S0, i.e.,X \ S0, and another set not contained inS0, i.e.,X Z = X n S0. EvaluatingPx (y)
from P(v) is equivalent to evaluatingPx \ s0(y) from P0(v) whereP0(v) := Px z (v) is the joint
distribution. Hence, we �rst performdo(X Z) to update the dataset asD0. Next, we shift our goal of
sampling fromPx (y) in G with training datasetD � P(V) to sampling fromPx \ s0(y) in Ĝ

f S0;X̂ g

with training dataD0 � Px z (v) in the next recursive calls. To generate datasetD0 � Px z (v), we call
ConditionalGMs(.) and use the returned network to sampleD0 (lines 2-3).

Note that given access to probability tables, the ID can use any speci�c valueX Z = x z to calculate
Px z (v) to get the correct estimation ofPx (y) (Verma constraint [54, 46]). In our case, if we use
a speci�c valuex z to sample the training datasetD0 � Px z (v), the models trained on this dataset
in subsequent recursive steps will also depend onx z . However, during ancestral sampling in the
returned network, a different valueX Z = x0

z might come from other c-components (ex:M Y (W2; :)
in Fig. 3). Thus, to make our trained models suitable for any values, we pickX Z from a uniform
distribution or fromP(X Z) and generateD0 accordingly. We saveX Z in X̂ , its values inD[X̂ ; S0]
and inĜ

f S0;X̂ g
with incoming edges removed, to be considered during training in the next recursive

calls. WheneverID-GEN visits Step 7 again,̂X will be applied along with the newX Z . Finally, a
recursive call is performed with these updated parameters (line 4) which will return a network trained
on datasetD0 � Px z (v). It can sample fromPx \ S0(y) and equivalently from the originalPx (y).

Algorithm simulation: We applyID-GEN to sample fromPw1 (y) for the causal graphG in Fig. 3.
SinceGnf W1g has three c-componentsf W2g; f X g; f Yg, we �rst call (i) step 4 ofID-GEN. Pw1 (y)
is factorized as:

P
x;w 2

Pw1 ;x;y (w2) Pw1 ;w 2 ;y (x) Pw1 ;w 2 ;x (y). Thus, step 4 will return the sampling
networksf HW 2 ; HX ; HY g that can sample from each of these factors. Here, we focus only onHY .
ID-GEN reaches (ii) step 7 for the query:Pw1 ;w 2 ;x (y) since we haveS = G n f W1; W2; X g =
f Yg; S0 = f W1; X; Y g andS � S0. Here, sampling fromPx;w 1 ;w 2 (y) in G, with observational
training dataset is equivalent to sampling fromPx;w 1 (y) in Ĝ = GW 2

with do(W2) interventional
data. WithW2 � P(w2), we generateD0 � Pw2 (v) by calling step 6 (base case). We passD0 as
the dataset parameter for the next recursive call. This step implies that if the recursive call returns a
network that is trained onD0 � Pw2 (v) and can sample fromPx;w 1 (y) , it can also be used to sample

6

W1 W2 X Y

(i) Step 4

W1 X Y

(iii) Step 2

W1 W2 X Y

(ii) Step 7

G : X Y

Ĝ : W2 X Y
(iv) Step 6

M W 2

W1

M X

M W 0
1

M YW2 X

Unif [W2]

M W 2

do(W1 = w1)

M X

M W 0
1

M Y

Figure 3: (Left: top-down)Pw1 (y) is factorized intoPw1 ;x;y (w2), Pw1 ;w 2 ;y (x) andPw1 ;w 2 ;x (y)
(Step 4). Steps 7, 2, 6 is shown forPw1 ;w 2 ;x (y) only. (Right: bottom-up) we combine the sampling
networks of each c-factor. For any do(W1 = w1), we useH to get samples fromPw1 (y).

from Pw1 ;w 2 ;x (y). Next, sinceW1 =2 An(Y)G , at (iii) step 2, we dropW1 from all parameters before
the next recursive call. We are at the base case (iv) step 6 withĜ : W2 ! X ! Y . Thus, we train a
conditional modelM Y (W2; X) onD0[W2; X; Y] that can sample fromP(yjw2; x). This would be
returned asHY at step 4 (Fig. 3:green). Similarly, we can obtain sampling networkHW 2 andHX to
sample fromPw1 ;x;y (w2) = P(w2jw1) andPw1 ;w 2 ;y (x) =

P
w 0

1
P(xjw0

1; w2)P(w0
1) (Fig. 3:blue).

We connect these networks and perform ancestral sampling with �xedw1 for do(W1 = w1).

(Un)conditional sampling and complexity: ID-GEN returns a sampling networkH when recursion
ends. For unconditional queryPx (y), we �x X = x in H and perform ancestral sampling to generate
joint samples. We pick theY values in these joint samples (equivalent to marginalization in ID)
and report as interventional samples. For a conditional queryPx (y jz); ID-GEN uses the sampling
network to �rst generate samplesD[X ; Z; Y] � Px (y ; z) and then train a new conditional model
M Y (X ; Z) on D to sample fromY � Px (y jz) (Alg.5:IDC-GEN). The sampling network has
O(jAn(Y)G j) number of models and requiresO(jAn(Y)G j) time to sample from it. Please, see our
complexity details in Appendix C.5, Appendix C.6.

Theorem 3.2. Under Assumptions: i) the SCM is semi-Markovian, ii) we have access to the ADMG,
iii) P(V) is strictly positive and iv) trained generative models sample from correct distributions,
ID-GENandIDC-GENare sound and complete to sample from any identi�ablePx (y) andPx (yjz).

Note that although existing work can sample from (low-dimensional) distributions, Theorem 3.2,
makesID-GEN, to our knowledge, the �rst method to useonly feed-forward modelsto provably
sample from identi�able high-dimensional interventional distributions.

4 Experiments

To illustrateID-GEN's capabilities with high-dimensional image and text variables, we evaluate it on
semi-synthetic: Colored MNIST and real-world: CelebA and MIMIC-CXR datasets. We provide
additional details in Appendix F. Codes are available at github.com/mus�qshohan/idgen.

4.1 ID-GEN performance on napkin-MNIST dataset and baseline comparison

Setup: We consider a semi-synthetic Colored-MNIST dataset for the napkin graph [39] in Fig. 4 with
image variablesW1; X; Y and paired discrete variableW2. Here,X andY inherit the same digit
value as imageW1 which is propagated through discreteW2:d 2 [0 � 9]. X is either red or green
which is also inherited fromW1 through discreteW2:c, i.e.,W1:color : f r; g; b; y; m; cyg ! W2:c :
f 0; 1g ! X:color : f r; gg. UnobservedUcolor makesW1 andY correlated with the same color,
and unobservedUthickness makesW1 andX correlated with the same thickness. Even though
imageX (takes r and g) is a direct ancestor of imageY (takes all 6 colors),Y only inherits the digit
property fromX but correlates the color property with imageW1. This color correlation betweenW1
andY is created by Ucolor. All mechanisms include10%noise. Our target is to sample fromPx (y).

Training and evaluation: We follow ID-GENsteps:[3; 7; 2; 6]. Step 3 impliesPx (y) = Px;w 1 ;w 2 (y),
i.e., intervention set =f X; W 1; W2g. Step 7 suggests to generatedo(W2) interventional dataset
D0[W1; W2; X; Y] � Pw2 (w1; x; y) = P(w1)P(x; yjw1; w2). To obtainD0, we i) sampleW1 �
P(w1), and ii) train a conditional diffusion model to sampling fromP(x; yjw1; w2) with arbitrary
W2 values. Next, Step 2 drops non-ancestorW1 and Step 6 trains a diffusion modelM Y (x; w2) on
the new datasetD0 to sample fromP0(yjx; w2). M Y (x; w2) is returned as output that can sample
from Px (y),8w2. We compare our performance with three baselines: i) a classi�er-free diffusion

7

W1

W2

X

Y

U
colorU

th
ic

kn
es

s

FID #

X
=

3

Cond 50.83
DCM 66.57
NCM 61.11

Ours 25.66

X
=

5

Cond 41.35
DCM 60.61
NCM 71.50

Ours 22.67

Color True
Px (y)

Cond DCM Ours

R 0.17 0.17 0.24 0.13
G 0.17 0.45 0.27 0.24
B 0.17 0.15 0.28 0.21
Yw 0.17 0.19 0.05 0.14
Mg 0.17 0.02 0.07 0.11
Cy 0.17 0.10 0.09 0.18
TVD 0 0.54 0.58 0.25

Figure 4: (Left:) Causal graph with color and thickness as unobserved. (Center:) FID scores (lower
the better) of each algorithm and images generated from them. (Right:) Likelihood calculated from
thePx (y) images generated by each algorithm. We closely re�ect the truePx (y) with low TVD.

model that samples from the (Cond)itional distributionP(yjx), ii) the DCMalgorithm [11] that uses
diffusion models to samples fromPx (y) but without confounders, and iii) the NCM algorithm [58]
that uses GANs and considers confounders. We performeddo(x) intervention with two images, i)
digit 3 and ii) digit 5, both colored red. In Fig. 4, we show interventional samples for each method
alongside their FID scores representing the image quality (lower:better). The (Cond) model (row
1, 5),DCM(row 2, 6) and our algorithm (row 5, 8) all generate good quality images of digit 3 and
digit 5 with a speci�c color. However, theNCMalgorithm (row 3, 7) generates images with blended
colors (such as green + red). We observe thatID-GEN achieves the lowest FID scores (25.66 and
22.67), showing the ability to generate high-quality images consistent with the dataset. Whereas,
CondandDCMgenerate almost the same structure for all digits lacking variety, which explains their
high FID. Note that do(x) removes the color bias betweenX andY along the backdoor path. Thus,
interventional samples should show all colors with uniform probability. SinceCondandDCMcan not
deal with confounders they show bias towards R, G, B colors ofY for redX . ID-GEN removes such
bias and balances different colors (Fig. 4). For a more rigorous evaluation, we use the effectiveness
metric proposed in [34] and employ a classi�er to map all generated images to discrete analogues
(Digit; Color; Thickness) and compute exact likelihoods. We compare them with our ground truth
P(Y:colorjdo(x)) (uniform) and display these results for the color attribute in Fig. 4(right). We
emulate the interventional distribution more closely with a low total variation distance: 0.25 compared
to the baselinesCond(0.54) andDCM(0.58). We skip classifying colors of NCM as they are blended.

4.2 Evaluating CelebA image translation models with ID-GEN

I 1

P1

I 2

P2A
Male

Y oung(Y)

M I 2

M YM I 1

Male = 0 I 2

Figure 5: i) Graph and sampling network for
PMale (I 2). ii) For both causal and non-causal
attributes, EGSDE shows high correlation.

Setup: We applyID-GEN to evaluate multidomain
image translation of some existing generative mod-
els (ex: Male to Female domain translation). We
examine whether they apply causal changes in (fa-
cial) attributes or add unnecessary changes due to
the spurious correlations among different attributes
they picked up in the training data. Our applica-
tion is motivated by Goyal et al.[15], who generate
counterfactual images to explain a pre-trained classi-
�er while we examine pre-trained image generative
models. We employ two generative models that are
trained on CelebA dataset [29]: i) StarGAN [12] and
ii) EGSDE [64] (an approach that utilizes energy-
guided stochastic differential equations). We assume
the graph in Fig. 5 where the original imageI 1 causes
its own attributesMale and Young. We consider
an unobserved confounder between them, as in the
dataset, men are more likely to be old (correlation
coeff=0:42, [44]) and a classi�er might have some
bias toward predicting young-male images as old-
male. These attributes along with the original image
are used to generate a translated imageI 2. Next,P1 andP2 are 40 CelebA attributes ofI 1 andI 2. A
is the difference betweenP1; P2, i.e., the additional attributes (ex: makeup) that gets added toI 2 but
are absent inI 1 during translation. We estimatePMale=0 (A), i.e., the causal effect of changing the
domain fromMale to Femaleon the appearance of a new attribute.

8

	Introduction
	Background
	 ID-GEN: generative model-based interventional sampling
	 Identification algorithm (ID) and challenges with high-dimensional sampling
	 Recursive training of ID-GEN and interventional sampling

	Experiments
	ID-GEN performance on napkin-MNIST dataset and baseline comparison
	 Evaluating CelebA image translation models with ID-GEN
	Invariant prediction with foundation models for chest X-ray generation

	Related work
	Conclusion
	Limitations and future work
	Broader impact
	ID-GEN additional discussion
	Sampling from any interventional distribution with ID-GEN
	Cyclic dependency dealt with ID-GEN
	Related works
	ID-GEN recursion tree example
	IDC-GEN: conditional interventional sampling
	ID-GEN computational complexity
	ID-GEN for Non-Markovian Causal Models

	Theoretical analysis
	Conditional interventional sampling
	Experimental details
	Training details and compute
	Reproducibility

	Napkin-MNIST dataset
	Data generation procedure: discrete case
	Data generation procedure: high-dimensional case
	Diffusion training details
	Extra evaluations
	MNIST baseline comparison

	CelebA experiment
	Conditional image generation

	Explaining foundation model output for chest X-ray generation
	Causal graph

	Covid X-Ray dataset
	Data preprocessing
	Diffusion training details
	Calibrated classifier training details

	Covid X-Ray dataset

	Pseudo-codes

