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Abstract

Causal inference from observational data plays critical role in many applications
in trustworthy machine learning. While sound and complete algorithms exist to
compute causal effects, many of them assume access to conditional likelihoods,
which is difficult to estimate for high-dimensional (particularly image) data. Re-
searchers have alleviated this issue by simulating causal relations with neural
models. However, when we have high-dimensional variables in the causal graph
along with some unobserved confounders, no existing work can effectively sample
from the un/conditional interventional distributions. In this work, we show how to
sample from any identifiable interventional distribution given an arbitrary causal
graph through a sequence of push-forward computations of conditional generative
models, such as diffusion models. Our proposed algorithm follows the recursive
steps of the existing likelihood-based identification algorithms to train a set of feed-
forward models, and connect them in a specific way to sample from the desired
distribution. We conduct experiments on a Colored MNIST dataset having both the
treatment (X) and the target variables (Y ) as images and sample from P (y|do(x)).
Our algorithm also enables us to conduct a causal analysis to evaluate spurious
correlations among input features of generative models pre-trained on the CelebA
dataset. Finally, we generate high-dimensional interventional samples from the
MIMIC-CXR dataset involving text and image variables.

1 Introduction

Causal inference has recently attracted significant attention in machine learning (ML) due to its
application in fairness, invariant prediction, and explainability [60, 62, 49]. Even though existing
ML models show notable predictive performance by optimizing the likelihood of the training data,
they are prone to failure when the covariate distribution changes in the test domain. Consider the
medical scenario in Fig. 1a with the causal order: Xray(X)→Diagnosis(S)→Report(R) representing
the true data-generating mechanisms. Suppose a practitioner observes only X to make a high-level
intermediate diagnosis S that contains sufficient information about the patient. The prescription
report(R) is written only based on the diagnosis (thus X ̸→ R). Since data are collected from
different hospitals locations (H), H acts as an unobserved common cause for both X and R, i.e.,
X ↔ R (ex: correlation between x-ray artifacts and report writing style). The task is "x-ray to report"
generation. One might train an ML model to directly learn a mapping f : X → R, with maximum
likelihood estimation (MLE) [7, 10] mimicking the conditional distribution P (r|x). However, since
H is an unobserved common cause between X and R; H has some influence on P (r|x) [9]. Thus, if
the model is deployed in a new location, its MLE-based prediction accuracy may drop since P (r|x)
shifts in that location. On the other hand, if we can remove the location bias X ↔ R with an
intervention on the x-ray variable (do(x)), the x-ray to report generation would be invariant to domain
shifts. Thus, to obtain such generalization, we need to perform causal interventions in high-dimension.
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Figure 1: (Top: x-ray to report generation task) (a) do(X = x) removes the X ↔ R bias and makes
the generation of R domain invariant. P (r|do(x)) is factorized into c-factors and (b) conditional
models ({MVk

}k) are trained for each factor (shown as boxes). (c) The intervened value X = x is
propagated through the merged network and samples from the P (r|do(x)) are generated.

Structural causal models (SCM) [38] enable a data-driven approach to estimate interventional dis-
tributions [43, 30]. Given the qualitative causal relations, summarized in a causal graph, we now
have a complete understanding of which causal effects/queries (ex: P (r|do(x))) can be uniquely
identified from the observational distribution and which require further assumptions or experimental
data [2, 23, 28, 37, 46, 50]. More precisely, if all conditional probability tables are available, sound
and complete identification algorithms [51, 46] can perform exact inference to estimate causal effects
or [4, 5, 25] can sample from the interventional distribution, using a combination of marginalization
and product operators applied to those conditional distributions. However, such approaches struggle
to deal with high-dimensional variables. In Fig. 1a, we could intervene on x-ray X and estimate its
effect on the report R as, P (r|do(x)) =

∑
s P (s|x)

∑
x′ P (x′)P (r|x′, s), i.e., as functions of the

observational distribution (X,X ′: independent instances of the same variable). However, the second
and third terms in this expression require marginalization over the “X-ray" variable. Exact Bayesian
inference methods used for calculating conditional distributions are infeasible for high-dimensional
variables since marginalization over their non-parametric distributions is generally intractable [6].

Deep generative models with variational inference methods approximate the intractable marginal-
ization and can sample from such high-dimensional distributions [22, 47, 14]. Recent works such
as Xia et al. [59], Chao et al. [11], Rahman and Kocaoglu [40] employ deep generative models
to match joint distribution of the system by learning the conditional generation of each variable
from its causal parents. Nonetheless, it is highly non-trivial for these works to mimic any arbitrary
causal model with high-dimensional variables, specially when there are unobserved confounders
in the (semi-Markovian) causal model. Consider the X ↔ R relation in Fig. 1a where R and X
are correlated through unobserved hospital location. To learn the joint distribution P (x, r), the
above approaches need to synchronously train their generative models. For that purpose, Xia et al.
[59], Rahman and Kocaoglu [40] train two GAN networks concurrently by feeding the same prior
noise. However, it is nontrivial to design a loss function for the joint distribution balancing multiple
high-dimensional variables making it challenging for the discriminator to detect true/false sampled
pairs. Thus, the high-dimensional intervention problem still requires a more effective approach.

In this paper, we propose a novel algorithm ID-GEN that can utilize any (conditional) generative
models (such as GANs or diffusion models) to perform high-dimensional interventional sampling
in the presence of latent confounders. For this purpose, we resort to the sound and complete
identification algorithm [50, 46] and design our algorithm on top of its structure to sample from any
identifiable causal query which may have an arbitrarily complex probabilistic expression (ex: Eq. 1).
More precisely, given a causal graph, training data, and a causal query, our algorithm i) follows
the recursive trace of the ID algorithm to factorize the query ii) trains a set of conditional models
for each factor, iii) connects them to build a neural network called sampling network and generate
interventional samples from this network. For example, to sample from P (r|do(x)) for the frontdoor
graph in Fig. 1 (top), we i) utilize ID to obtain the factors: P (s|do(x)) and P (r|do(x, s)), ii) train
conditional models {MS}, {MX′ ,MR} for the two factors (Fig. 1b), iii) merge all models based on
input-output (Fig.1c). Sampling according to this network’s topological order would produce samples
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from P (r|do(x)). Similarly, for the backdoor graph (bottom), we train conditional models {MA,B}
and {MI} to learn P (a, b) and P (i|v, a, b) respectively and merge them to sample from P (i|do(v)).
To the best of our knowledge, we are the first to show that conditional generative/feedforward models
are sufficient to sample from any identifiable causal effect estimand. Our contributions are as follows:

• We propose a recursive algorithm called ID-GEN that trains a set of conditional generative
models on observational data to sample from high-dimensional interventional distributions.
We are the first to use diffusion models as conditional models for semi-Markovian SCMs.

• We show that ID-GEN is sound and complete, establishing that conditional generative mod-
els are sufficient to sample from any identifiable interventional and conditional interventional
query. The latter type are especially challenging for existing GAN-based causal models.

• We demonstrate ID-GEN’s performance on three datasets containing image and text vari-
ables. First, we perform image intervention with diffusion models for the Colored-MNIST
experiment. Next, we show our application in trustworthy AI through quantifying spurious
correlations in pre-trained models for the CelebA dataset. Finally, we make the report to
X-ray generation task interpretable and domain invariant based on the MIMIC-CXR dataset.

2 Background

Structural causal model, (SCM) [36] is a tuple M = (G = (V, E),N ,U ,F , P (.)). V =
{V1, ..., Vn} is a set of observed variables in the system. N is a set of independent exogenous
random variables where Ni ∈ N affects Vi and U is a set of unobserved confounders each affecting
any two observed variables (for > 2 check Appendix C.7). This refers to the semi-Markovian
causal model. A set of deterministic functions F={fV1

, fV2
, .., fVn

} determines the value of each
variable Vi from other observed and unobserved variables as Vi = fi(Pai, Ni, USi), where Pai ⊂ V
(parents), Ni ∈ N (randomness) and USi ⊂ U (latent confounders) for some Si. P(.) is a product
probability distribution over N and U and projects a joint distribution PV over the set of actions V
representing their likelihood.

An SCMM, induces an acyclic directed mixed graph (ADMG) G = (V, E) containing nodes
for each variable Vi ∈ V. For each Vi = fi(Pai, Ni, USi

), Pai ⊂ V, we add an edge Vj →
Vi ∈ E ,∀Vj ∈ Pai. Thus, Pai(Vi) becomes the parent nodes in G. G has a bi-directed edge,
Vi ↔ Vj ∈ E between Vi and Vj if and only if they share a latent confounder. If a path Vi → . . .→ Vj

exists, then Vi is an ancestor of Vj , i.e., Vi = An(Vj)G. An intervention do(x) replaces the structural
function fx with X = x and in other structural functions where X occurs. The distribution induced
on the observed variables V after such an intervention is represented as Px(v) or P(v|do(x)).
Graphically, it is represented by GX where incoming edges to X are removed (marked red). With a
slight abuse of notation, we will use P (y) for both the numerical value P(Y = y) and the probability
distribution [P (y)]y, depending on the context. An example for the latter is:“Let Y be sampled
from P (y)". Also, Px(y) refers to the interventional distribution for all x, y. Given an ADMG
G, a maximal subset of nodes where any two nodes are connected by bidirected paths is called
a c-component C(G). For any S ∈ C(G), P (S|do(V \ S)) is called a c-factor. We assume
that we have access to the ADMG through some causal structure learning algorithm and expert
knowledge. Classifier-free diffusion guidance [20] Let (v, c) ∼ P (v, c) be the data distribution
and z = {zλ|λ ∈ [λmin, λmax]} for λmin < λmax ∈ R. We corrupt the data as zλ = αλx + σλϵ
and optimize the denoising model by taking the gradient step on ∇θ||ϵθ(zλ, c) − ϵ||2. Given that
variables V are connected as a directed acyclic graph and we have diffusion models trained to
learn the distributions P (vi|pa(vi)), we can perform ancestral sampling from the joint distribution,
P (v) =

∏
Vi∈V P (vi|pa(vi)) by making one pass through each model in the topological order while

sampling from the conditional distributions [6]. We choose classifier-free diffusion as our conditional
model, but the choice changes based on the application. We use MV (c) and a square node as notation.

3 ID-GEN: generative model-based interventional sampling

Given a causal graph G, dataset D ∼ P (v), our objective is to generate high-dimensional interven-
tional samples from a query P (y|do(x)) or a conditional query P (y|do(x), z). ID-GEN builds upon
the recursive structure of the identification algorithm [46] to train necessary conditional models. Thus,
we first discuss its connection with us and show the challenges it faces if deployed for sampling.
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3.1 Identification algorithm (ID) and challenges with high-dimensional sampling

Shpitser and Pearl [46] propose a recursive algorithm (Algorithm 6) for estimating an interventional
distribution Px(y) given access to all probability tables. At any recursion level, it enters one of its
four recursive steps: 2, 3, 4, 7 and three base case steps: 1, 5, 6 . Below, we discuss them in detail.

Step 1 occurs when the intervention set X is empty in Px(y). The effect of X = ∅ on Y is its
marginal P (y) which is returned as output. Step 2 checks if there exists any non-ancestor variable of
Y in the intervention set X. Such variables in the graph do not have any causal effect on Y. Thus,
it is safe to drop them. In Step 3, it searches for a set W in G, which does not effect Y assuming
that X has already been intervened on. Thus, it can include W as an additional intervention set:
X = X ∪W. An intervention on W implies deleting its incoming edges, which simplifies the
problem in the future. Step 4 is the most important line and is executed when there are multiple
c-components in the subgraph G \X. It factorizes (decomposes) the problem of estimating Px(y)
into estimating c-factors (subproblems) and performs recursive calls for each c-factor. Base case
Step 5 returns fail for non-identifiable queries. Base case Step 6 asserts that when X does not have a
bi-directed edge with the rest of the nodes in S and S consists of a single c-component, intervening on
X is equivalent to conditioning on X. Thus, ID can now solve Px(y) as

∑
s\y

∏
i|Vi∈S P (vi|v(i−1)

π )

and return as output. Step 7 occurs when the variables in X can be partitioned into two sets: one
having bi-directed edges to other variables (S′) in the graph and one (defined as XZ) with no
bi-directed edges to S′. In that case, evaluating Px(y) from P (V) is equivalent to first obtaining
P ′(V) := PxZ

(V) and then evaluating Px\xz
(Y ) from P ′(V). Hence, PxZ

(V) is first calculated as∏
{i|Vi∈S′} P (Vi|V (i−1)

π ∩ S′, v
(i−1)
π \ S′) and then passed to the next recursive call for do(x \ xz)

to be applied. One major issue of ID is that it requires probability tables and thus cannot be applied
for high-dimensional sampling. Suppose we naively design an algorithm that follows ID’s recursive
steps and trains a generative model for every factor it encounters and samples from it. This algorithm
would not know which of these factors to learn and sample first, leading to a deadlock as shown in
Ex C.1. ID-GEN solves such issue by avoiding direct sampling and building a sampling network.
Definition 3.1 (Sampling network, H). A collection of feedforward models {MVi}∀i for a set of
variables V = {Vi}∀i is said to form a sampling network, H, if the directed graph obtained by
connecting each MVi to MAn(Vi)G via incoming edges according to some conditional distribution, is
acyclic. Two sampling networksHi,Hr can be merged into a larger networkH.

3.2 Recursive training of ID-GEN and interventional sampling

Similar to ID’s recursive structure, ID-GEN has 7 steps (Algorithm 1). However, to deal with high-
dimensional variables, we call three new functions: i) Algorithm 2:ConditionalGMs(.) inside
steps 1 and 6 where we train diffusion models or other conditional models to learn conditional
distributions, ii) Algorithm 3:MergeNetwork(.) inside step 4 to merge the conditional models, and
iii) Algorithm 4:Update(.) inside step 7 to train models that can apply part of the interventions
and update the training dataset for next recursive calls. We initiate with ID-GEN (Y,X, G,D, X̂ =

∅, Ĝ = G). Along with the given inputs Y,X, G,D, ID-GEN maintains two extra parameters
X̂, Ĝ to keep track of the interventions performed. During the top-down phase, ID-GEN updates its
parameters: by i) removing interventions from the intervention set X, and ii) updating the training
dataset D, X̂ and the causal graph G, Ĝ according to the interventions. At any level of recursion, an
ID-GEN call returns a sampling networkH (DAG of a set of trained models) trained on the dataset
D to learn conditional distributions according to X̂, G, Ĝ. After the recursion ends, we can generate
samples from Px(V),Y ⊆ V, by ancestral sampling onH. See a recursion tree in Appendix C.4.

Base Case: Step 1: ID-GEN enters step 1 if the intervention X is empty. For X = ∅, we
have, Px(y) = P (y) =

∑
v\y P (v) =

∑
v\y

∏
Vi∈V P (vi|v(i−1)

π ) which is suitable for ances-
tral sampling. To train models that can collectively sample from this distribution, we call Al-
gorithm 2:ConditionalGMs(.). Here, we train each model MVi

, ∀Vi ∈ V using V
(i−1)
π , (i.e.,

variables that are located earlier in the topological order π) as inputs to match P (vi|v(i−1)
π ). Note

that X̂ contains the values that were intervened in previous recursion levels and Ĝ is the graph at the
current level that contains X̂ with its incoming edges cut. Since we want our conditional models to
generate samples consistent with the values of X̂, we consider the topological order of Ĝ while using
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V
(i−1)
π as inputs so that X̂ are also fed as input while training. After training, we connect the trained

models according to their input-outputs to build a sampling networkH and return it (Alg 2:lines 1-6).
Note that when all variables in Y are low dimensional, we can also learn a single model M to sample
P (Y). However, for high-dimensional variables, matching such joint distributions is non-trivial [40].

Step 2 & 3: We follow the same steps of the ID algorithm as discussed in Section 3.1.

X W1

W2 Y MW2

MX′

MY

MW1X
W1

W2Y MW2

MX′

MY

MW1do(x)

Y

Figure 2: ↔:Unobserved. Left blue samples
from Px,w2(w1, y) = P (w1|x) P (y|x,w1, w2).
Right blue samples from Px,w1

(w2) =
∑

x′ P (x′)
P (w2|x′, w1). Joint network samples from Px(y).

Step 4 and Merge sampling Networks: Our
goal is to train models that can sample from
Px(y) which unfortunately is not straightfor-
ward. This step allows us to decompose our
problem into sub-problems and we can train
models to sample from the c-factors of Px(y)’s
factorization. The next challenge is to connect
these models consistently to sample from Px(y).
More precisely, if we remove X from G and the
graph splits into multiple c-components (vari-
ables in each component connected with ↔)
(Alg 1:line 11), we can apply c-component fac-
torization (Lemma D.7, [51]) to factorize Px(y) as

∑
v\(y∪x)Pv\s1(s1) . . . Pv\sn(sn) where each

{Sk}k is the c-factor corresponding to each c-component. To obtain trained models for each of these
c-factors, we perform the next recursive calls: ID-GEN (Y = Si,X = V \ Si, G,D, X̂, Ĝ). When
these recursive calls return a sampling network Hi for each Pv\si(si), we can wire them based on
their input-output to build a single sampling networkH. According to Theorem D.21 and D.22,H
now can sample from Px(y).

We call Algorithm 3: MergeNetwork(.) to connect all sampling networks {Hi}∀i . Here, eachHi is
a set of trained conditional models {MVj}j connected to each other as a DAG. If a sampling network
Hi contains an empty node MVj

= ∅ without any conditional model and some other sampling
network Hr generates this variable Vj with its node MVk

, i.e., Vj = Vk, then we combine MVj

and MVk
into the same node to build a connection between Hi and Hr (lines 3-6). Intuitively,

due to the c-factorization at this step, the variables intervened in one sampling network might be
generated from models in another network. We connect two networks to continue the ancestral
sampling sequence. Fig. 2 shows an example of this step where Px(y) is factorized into c-factors
as Px(y) =

∑
w1,w2

Px,w1(w2)Px,w2(w1, y). For the c-component {W1, Y }, ID-GEN first obtains
Px,w2(w1, y) = P (w1|x)P (y|x,w1, w2), and trains conditional models MW1 and MY for these
conditional distributions. Similarly, for {W2}, we have Px,w1(w2) =

∑
x′ P (x′)P (w2|x′, w1) and

we train MX′ and MW2
. Finally, we merge these networks based on inputs-outputs to build a single

sampling network and perform ancestral sampling on it to sample from Px(y),∀x.

Base Case: Step 5: We follow the step 5 of the ID algorithm as discussed in Section 3.1.

Base Case: Step 6: We enter Step 6 if G \X is a single c-component S, and X is located outside
the c-component. This situation allows us to replace the intervention on X by conditioning on
X: Px(y) =

∑
s\y

∏
Vi∈S P (vi|v(i−1)

π ). This step is similar to step 1, except that now we have a

non-empty intervention set, i.e., X ̸= ∅. Here, we consider the topological order of Ĝ and V
(i−1)
π

contains both X and X̂. We call Algorithm 2:ConditionalGMs(.) which trains multiple conditional
models to learn the above distribution. More precisely, we utilize classifier-free diffusion guidance
for conditional training of each MVi

by taking the gradient step on ∇θ||ϵθ(ziλ, v
(i−1)
π )− ϵ||2. Here,

ziλ is the noisy version of Vi at time step λ during the forward process and v
(i−1)
π is the condition

(see Background). Finally, we connect the input-output of these diffusion models according to the
topological order to build a sampling network and return it as output. Note that for any specific
conditional distribution, if we have access to a pre-trained models that can sample from it, we can
directly plug it in the network instead of training it from scratch (motivated from [40]).

Step 7: Here, ID-GEN partitions X into two sets: one is applied in the current step to update the
training dataset and other parameters, and the other is kept for future steps. It performs this step if i)
G \X is a single c-component S and ii) S is a sub-graph of a larger c-component S′ in the whole
graph G, i.e, (S = C(G \X)) ⊂ (S′ ∈ C(G)). For example, in Fig. 3, for Pw1,w2,x(y), we have
S = G \ {W1,W2, X} = {Y }, S′ = {W1, X, Y }. In this step, we call Algorithm 4: Update(.)

5



Algorithm 1 ID-GEN (Y,X, G,D, X̂, Ĝ)

1: Input: target Y, to be intervened X, intervened
variables at step 7s X̂, causal graph G without X̂,
causal graph Ĝ with X̂ having no parents, training
data D[Ĝ] sampled from observed distribution P (V).

2: Output: A sampling network of trained models.
3: if X = ∅ then {Step 1}
4: Return ConditionalGMs(Y,X = ∅,G,D,X̂,Ĝ)
5: if V \An(Y)G ̸= ∅ then {Step 2}
6: Return ID-GEN(Y,X∩An(Y)G, GAn(Y), X̂,

ĜAn(Y), D′ = D[An(Y)G] )
7: Let W = (V \X) \An(Y)G

X
{Step 3}

8: if W ̸= ∅ then
9: Return ID-GEN(Y,X = X ∪W, G, X̂, Ĝ,D)

10: if C(G \X) = {S1, . . . , Sk} then {Step 4}
11: for each Si ∈ C(G \X) = {S1, . . . , Sk} do
12: Hi=ID-GEN(Si,X = V \ Si, G, X̂, Ĝ,D)
13: Return MergeNetwork({Hi}∀i)
14: if C(G \X) = {S} then
15: if C(G) = {G} then {Step 5}
16: throw FAIL
17: if S ∈ C(G) then {Step 6}
18: Return ConditionalGMs(S,X, G,D, X̂, Ĝ)
19: if (∃S′) such that S ⊂ S′ ∈ C(G) then {S7}
20: Return ID-GEN(Update(S′,X,G,D,X̂,Ĝ))

Algorithm 2 ConditionalGMs(Y,X,G,D,X̂,Ĝ)

1: for each Vi ∈ {X ∪ X̂} do
2: Add node (Vi, ∅) to H {Initialized H = ∅}
3: for each Vi ∈ Y in the topological order πĜ do
4: Let MVi be a model trained on D[Vi, V

(i−1)
π ]

such that MVi(V
(i−1)
π ) ∼ P (vi|v(i−1)

π )
5: Add node (Vi,MVi) to H
6: Add edge Vj → Vi to H for all Vj ∈ V

(i−1)
π

7: Return H.

Algorithm 3 MergeNetwork({Hi}∀i)
1: Input: Set of sampling networks {Hi}∀i.
2: Output: A connected DAG sampling network H.
3: for Hi ∈ {Hi}∀i do
4: for MVj ∈ Hi do
5: if MVj = ∅ and ∃MVk ∈ Hr, ∀r such that

Vj = Vk and MVk ̸= ∅ then
6: MVj = MVk

7: Return H = {Hi}∀i {All Hi are connected.}

Algorithm 4 Update(S′,X, G,D, X̂, Ĝ)

1: XZ = X \ S′

2: H = ConditionalGMs(S′,XZ , G,D, X̂, Ĝ)
3: D′ ∼ H(XZ , X̂); X̂ = X̂ ∪XZ

4: Return Y,X∩S′, GS′ , D′[X̂, S′], X̂, Ĝ{S′,X̂}

which utilizes the larger c-component S′ to partition the intervention set X into one set contained
within S′, i.e., X ∩ S′, and another set not contained in S′, i.e., XZ = X \ S′. Evaluating Px(y)
from P (v) is equivalent to evaluating Px∩s′(y) from P ′(v) where P ′(v) := Pxz

(v) is the joint
distribution. Hence, we first perform do(XZ) to update the dataset as D′. Next, we shift our goal of
sampling from Px(y) in G with training dataset D ∼ P (V) to sampling from Px∩s′(y) in Ĝ

{S′,X̂}
with training data D′ ∼ Pxz (v) in the next recursive calls. To generate dataset D′ ∼ Pxz (v), we call
ConditionalGMs(.) and use the returned network to sample D′ (lines 2-3).

Note that given access to probability tables, the ID can use any specific value XZ = xz to calculate
Pxz

(v) to get the correct estimation of Px(y) (Verma constraint [54, 46]). In our case, if we use
a specific value xz to sample the training dataset D′ ∼ Pxz

(v), the models trained on this dataset
in subsequent recursive steps will also depend on xz . However, during ancestral sampling in the
returned network, a different value XZ = x′

z might come from other c-components (ex: MY (W2, .)
in Fig. 3). Thus, to make our trained models suitable for any values, we pick XZ from a uniform
distribution or from P (XZ) and generate D′ accordingly. We save XZ in X̂, its values in D[X̂, S′]

and in Ĝ
{S′,X̂}

with incoming edges removed, to be considered during training in the next recursive

calls. Whenever ID-GEN visits Step 7 again, X̂ will be applied along with the new XZ . Finally, a
recursive call is performed with these updated parameters (line 4) which will return a network trained
on dataset D′ ∼ Pxz (v). It can sample from Px∩S′(y) and equivalently from the original Px(y).

Algorithm simulation: We apply ID-GEN to sample from Pw1
(y) for the causal graph G in Fig. 3.

Since G\{W1} has three c-components {W2}, {X}, {Y }, we first call (i) step 4 of ID-GEN. Pw1
(y)

is factorized as:
∑

x,w2
Pw1,x,y(w2) Pw1,w2,y(x) Pw1,w2,x(y). Thus, step 4 will return the sampling

networks {HW2
, HX , HY } that can sample from each of these factors. Here, we focus only on HY .

ID-GEN reaches (ii) step 7 for the query: Pw1,w2,x(y) since we have S = G \ {W1,W2, X} =
{Y }, S′ = {W1, X, Y } and S ⊂ S′. Here, sampling from Px,w1,w2(y) in G, with observational
training dataset is equivalent to sampling from Px,w1

(y) in Ĝ = GW2
with do(W2) interventional

data. With W2 ∼ P (w2), we generate D′ ∼ Pw2(v) by calling step 6 (base case). We pass D′ as
the dataset parameter for the next recursive call. This step implies that if the recursive call returns a
network that is trained onD′ ∼ Pw2

(v) and can sample from Px,w1
(y) , it can also be used to sample
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(i) Step 4

W1 X Y

(iii) Step 2

W1 W2 X Y

(ii) Step 7

G : X Y

Ĝ : W2 X Y
(iv) Step 6

MW2

W1

MX

MW ′
1

MYW2 X

Unif [W2]

MW2

do(W1 = w1)

MX

MW ′
1

MY

Figure 3: (Left: top-down) Pw1(y) is factorized into Pw1,x,y(w2), Pw1,w2,y(x) and Pw1,w2,x(y)
(Step 4). Steps 7, 2, 6 is shown for Pw1,w2,x(y) only. (Right: bottom-up) we combine the sampling
networks of each c-factor. For any do(W1 = w1), we useH to get samples from Pw1(y).

from Pw1,w2,x(y). Next, since W1 /∈ An(Y )G, at (iii) step 2, we drop W1 from all parameters before
the next recursive call. We are at the base case (iv) step 6 with Ĝ : W2 → X → Y . Thus, we train a
conditional model MY (W2, X) on D′[W2, X, Y ] that can sample from P (y|w2, x). This would be
returned as HY at step 4 (Fig. 3:green). Similarly, we can obtain sampling network HW2

and HX to
sample from Pw1,x,y(w2) = P (w2|w1) and Pw1,w2,y(x) =

∑
w′

1
P (x|w′

1, w2)P (w′
1) (Fig. 3:blue).

We connect these networks and perform ancestral sampling with fixed w1 for do(W1 = w1).

(Un)conditional sampling and complexity: ID-GEN returns a sampling networkH when recursion
ends. For unconditional query Px(y), we fix X = x inH and perform ancestral sampling to generate
joint samples. We pick the Y values in these joint samples (equivalent to marginalization in ID)
and report as interventional samples. For a conditional query Px(y|z), ID-GEN uses the sampling
network to first generate samples D[X,Z,Y] ∼ Px(y, z) and then train a new conditional model
MY(X,Z) on D to sample from Y ∼ Px(y|z) (Alg.5:IDC-GEN). The sampling network has
O(|An(Y)G|) number of models and requires O(|An(Y)G|) time to sample from it. Please, see our
complexity details in Appendix C.5, Appendix C.6.
Theorem 3.2. Under Assumptions: i) the SCM is semi-Markovian, ii) we have access to the ADMG,
iii) P (V) is strictly positive and iv) trained generative models sample from correct distributions,
ID-GEN and IDC-GEN are sound and complete to sample from any identifiable Px(y) and Px(y|z).

Note that although existing work can sample from (low-dimensional) distributions, Theorem 3.2,
makes ID-GEN, to our knowledge, the first method to use only feed-forward models to provably
sample from identifiable high-dimensional interventional distributions.

4 Experiments

To illustrate ID-GEN’s capabilities with high-dimensional image and text variables, we evaluate it on
semi-synthetic: Colored MNIST and real-world: CelebA and MIMIC-CXR datasets. We provide
additional details in Appendix F. Codes are available at github.com/musfiqshohan/idgen.

4.1 ID-GEN performance on napkin-MNIST dataset and baseline comparison

Setup: We consider a semi-synthetic Colored-MNIST dataset for the napkin graph [39] in Fig. 4 with
image variables W1, X, Y and paired discrete variable W2. Here, X and Y inherit the same digit
value as image W1 which is propagated through discrete W2.d ∈ [0− 9]. X is either red or green
which is also inherited from W1 through discrete W2.c, i.e., W1.color : {r, g, b, y,m, cy} →W2.c :
{0, 1} → X.color : {r, g}. Unobserved Ucolor makes W1 and Y correlated with the same color,
and unobserved Uthickness makes W1 and X correlated with the same thickness. Even though
image X (takes r and g) is a direct ancestor of image Y (takes all 6 colors), Y only inherits the digit
property from X but correlates the color property with image W1. This color correlation between W1

and Y is created by Ucolor. All mechanisms include 10% noise. Our target is to sample from Px(y).

Training and evaluation: We follow ID-GEN steps: [3, 7, 2, 6]. Step 3 implies Px(y) = Px,w1,w2(y),
i.e., intervention set ={X,W1,W2}. Step 7 suggests to generate do(W2) interventional dataset
D′[W1,W2, X, Y ] ∼ Pw2(w1, x, y) = P (w1)P (x, y|w1, w2). To obtain D′, we i) sample W1 ∼
P (w1), and ii) train a conditional diffusion model to sampling from P (x, y|w1, w2) with arbitrary
W2 values. Next, Step 2 drops non-ancestor W1 and Step 6 trains a diffusion model MY (x,w2) on
the new dataset D′ to sample from P ′(y|x,w2). MY (x,w2) is returned as output that can sample
from Px(y),∀w2. We compare our performance with three baselines: i) a classifier-free diffusion
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R 0.17 0.17 0.24 0.13
G 0.17 0.45 0.27 0.24
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Yw 0.17 0.19 0.05 0.14
Mg 0.17 0.02 0.07 0.11
Cy 0.17 0.10 0.09 0.18
TVD 0 0.54 0.58 0.25

Figure 4: (Left:) Causal graph with color and thickness as unobserved. (Center:) FID scores (lower
the better) of each algorithm and images generated from them. (Right:) Likelihood calculated from
the Px(y) images generated by each algorithm. We closely reflect the true Px(y) with low TVD.

model that samples from the (Cond)itional distribution P (y|x), ii) the DCM algorithm [11] that uses
diffusion models to samples from Px(y) but without confounders, and iii) the NCM algorithm [58]
that uses GANs and considers confounders. We performed do(x) intervention with two images, i)
digit 3 and ii) digit 5, both colored red. In Fig. 4, we show interventional samples for each method
alongside their FID scores representing the image quality (lower:better). The (Cond) model (row
1, 5), DCM (row 2, 6) and our algorithm (row 5, 8) all generate good quality images of digit 3 and
digit 5 with a specific color. However, the NCM algorithm (row 3, 7) generates images with blended
colors (such as green + red). We observe that ID-GEN achieves the lowest FID scores (25.66 and
22.67), showing the ability to generate high-quality images consistent with the dataset. Whereas,
Cond and DCM generate almost the same structure for all digits lacking variety, which explains their
high FID. Note that do(x) removes the color bias between X and Y along the backdoor path. Thus,
interventional samples should show all colors with uniform probability. Since Cond and DCM can not
deal with confounders they show bias towards R, G, B colors of Y for red X . ID-GEN removes such
bias and balances different colors (Fig. 4). For a more rigorous evaluation, we use the effectiveness
metric proposed in [34] and employ a classifier to map all generated images to discrete analogues
(Digit, Color, Thickness) and compute exact likelihoods. We compare them with our ground truth
P (Y.color|do(x)) (uniform) and display these results for the color attribute in Fig. 4(right). We
emulate the interventional distribution more closely with a low total variation distance: 0.25 compared
to the baselines Cond (0.54) and DCM (0.58). We skip classifying colors of NCM as they are blended.

4.2 Evaluating CelebA image translation models with ID-GEN
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EGSDE: P(A|do(Male = 0)
StarGAN: P(A|do(Male = 0)
StarGAN: P(A|Young, do(Male = 0)

Figure 5: i) Graph and sampling network for
PMale(I2). ii) For both causal and non-causal
attributes, EGSDE shows high correlation.

Setup: We apply ID-GEN to evaluate multidomain
image translation of some existing generative mod-
els (ex: Male to Female domain translation). We
examine whether they apply causal changes in (fa-
cial) attributes or add unnecessary changes due to
the spurious correlations among different attributes
they picked up in the training data. Our applica-
tion is motivated by Goyal et al. [15], who generate
counterfactual images to explain a pre-trained classi-
fier while we examine pre-trained image generative
models. We employ two generative models that are
trained on CelebA dataset [29]: i) StarGAN [12] and
ii) EGSDE [64] (an approach that utilizes energy-
guided stochastic differential equations). We assume
the graph in Fig. 5 where the original image I1 causes
its own attributes Male and Young. We consider
an unobserved confounder between them, as in the
dataset, men are more likely to be old (correlation
coeff=0.42, [44]) and a classifier might have some
bias toward predicting young-male images as old-
male. These attributes along with the original image
are used to generate a translated image I2. Next, P1 and P2 are 40 CelebA attributes of I1 and I2. A
is the difference between P1, P2, i.e., the additional attributes (ex: makeup) that gets added to I2 but
are absent in I1 during translation. We estimate PMale=0(A), i.e., the causal effect of changing the
domain from Male to Female on the appearance of a new attribute.
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Figure 6: Left: Baseline vs our causal graph. Right: images for specific prompt w/ and w/o pneumonia.
Inferred attributes are shown with their likelihood. Blue indicates changes compared to healthy.

Training and Evaluation: For PMale(A), We first generate I2 ∼ PMale=0(I2) and then use a
classifier on I2. ID-GEN vists steps: 4, 6 and factorizes as PMale=0(I2) =

∫
Y,I1

P (I2|Male =

0, Y, I1) ∗P (Y, I1). To sample from these factors, it first trains MY ,MI1 . Next, instead of training
MI2 for P (I2|Male = 0, Y, I1), we plug in the model that we want to evaluate (StarGAN or EGSDE)
as MI2 . We connect these models to build the sampling network in Fig. 5. We can now perform
ancestral sampling in the network with Male = 0 and generate samples of I2. Next, we use a
classifier to obtain 40 attributes of I1 and I2 as P1 and P2. Finally, we obtain the added attributes, A
by comparing P1 and P2 and report the proportion as the estimate of PMale=0(A). Similarly, we also
estimate the conditional query, PMale=0(A|Y ), using StarGAN with Y = 1 fixed.

In Fig. 5, we show top 9 most appeared attributes. We observe that EGSDE introduces both causal
(ex: WearingLipstick to 82%, HeavyMakeup to 69.28% of all images) and non-causal attributes
(ex:Attractive to 37.61% and Young to 24.76%) with high probability. The model might assign
high-probability to non-causal attributes because they were spuriously correlated in the CelebA
training dataset (ex: sex and age). On the other hand, StarGAN and conditional StarGAN introduce
new attributes with a low probability (≤ 30%) even if they are causal which is also not preferred.
These evaluations enabled by ID-GEN help us to understand the fairness or bias in the prediction
of image translation models. Finally, for the conditional query PMale=0(A|Y ), StarGAN translates
54.68% of all images as Young,Female which is consistent. In Appendix F.3, we discuss how
baselines deal poorly with these queries.

4.3 Invariant prediction with foundation models for chest X-ray generation

Setup: In this section, we demonstrate ID-GEN’s utility to intervene with a text variable and generate
images from the corresponding interventional distribution. Due to the lack of high-quality, annotated
medical imaging datasets, the task of generating X-ray images (X) from the prescription reports
(R) is recently being investigated. Consider the report-to-Xray generation task shown in Fig. 6.
The shown causal graph is designed based on the MIMIC-CXR dataset [24] (see Appendix F.4 for
details). Existing works [10] solve this task by using vision-language foundation models to directly
generate CXR images conditioned on text prompts (or report): P (X|R)(Fig. 6 left). These models
can generate images satisfying the prompt attributes (ex: effusion). However, they ignore the status of
other attributes caused by prompt attributes (effusion→atelectasis) that might implicitly contribute to
generate the image. Moreover, these models are trained on multiple datasets collected from different
locations, which could introduce different types of bias [9]. For example, in many scenarios, patients
with severe pneumonia are transferred to a different hospital and receives critical reports. Thus,
there exists a potential confounding bias between report (R) writing style and pneumonia prevalence
(N ) in a specific location (H) i.e. R ← H → N . The direct R → X prediction of the above
mentioned conditional models might absorb the backdoor bias: R← H → N → ...→ X and get
affected if P (R,N) shifts in a new location. We aim to make the image generation task of such
models, interpretable and invariant in the test domain. Therefore, we consider the same input (report
variable) and output (X-ray image) as such these models. For this purpose, ID-GEN performs do(R)
intervention to remove the backdoor bias and infer attributes from the interventional distribution.
Now these attributes are used to generate the final images (motivated by [48, 27]).
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Training and Evaluation: We indicate attribute extraction with outgoing edges from report R and
image generation with incoming edges to X-ray X . We assume pneumonia infection N affects
other attributes. For our target query PR(N,E,A,L,X), ID-GEN first visits step 4 and factorizes
it as PR(N,E,A,L,X) = P (N)PR,N (E)PR,N,E(A)PR,N,E,A(L)PE,A,L(X). ID-GEN goes to
step 6 for each, converts them to conditional distributions and trains corresponding models or use
pre-trained ones for MN ,ME ,MA,ML,MX . We utilize an LLM labeler [16] that can only extract
attributes E,A,L from the report R (thus R ̸→ N ). If R explicitly mentions E,A,L then the models
ME ,MA,ML output 1. Otherwise, they probabilistically infer their output conditioned on parent
attributes in the causal graph. The models we train are able to converge to their conditional distribution
with a low total variation distance (≈ 0.05). We utilize a stable diffusion-based model [10] as MX

to sample X ∼ PE,A,L(X). After ID-GEN connects all models, we intervene with a prompt, infer
all attributes along with their empirical distribution and generate corresponding X-rays. In Fig. 6
(right), we show our results for the prompt intervention do(R =left pleural fluid persists). For better
visualization, we also condition on N = 0 and N = 1 separately. First, the LLM labeler extracts
effusion (E = 1) from the prompt. Next, ancestral sampling with E = 1 in the sampling network
provides us with the top 3 most probable attribute combination (N = 0/1, E = 1, A, L) and their
corresponding images. In Fig. 6, we provide (i) a healthy image, (ii) image generated by baseline [10],
and (iii)-(v) images generated with ID-GEN and their attributes with empirical probabilities. ID-GEN
makes these predictions interpretable while facilitating them to be invariant with domain shifts.

5 Related work

Shalit et al. [43], Louizos et al. [30], Zhang et al. [63], Vo et al. [55] propose novel approaches to
solve the causal effect estimation problem using variational autoencoders. Their proposed solution
and theoretical guarantees are tailored for specific causal graphs containing treatment, effect, and
covariates (or observed proxy variables), where they can apply the backdoor adjustment formula.
Sanchez and Tsaftaris [42] employ DDPMs [22] to generate high-dimensional interventional samples,
but only for bivariate models. Kocaoglu et al. [26] perform adversarial training on a collection
of conditional generative models following the topological order to sample from interventional
distributions. Pawlowski et al. [35] employ a conditional normalizing flow-based approach to offer
high-dimensional interventional sampling as part of their solution. Chao et al. [11] designs diffusion-
based causal models for arbitrary causal graphs with classifier-free guidance [21]. However, these
works have limited applications due to their strong assumption of no latent confounders in the system.

Xia et al. [58] propose a similar training process as Kocaoglu et al. [26] in the presence of hidden
confounders. They show explicit connections with the Causal Hierarchy Theorem [3] and formalize
the identification problem with neural models. However, it is difficult to match an arbitrary high-
dimensional distribution, and their joint GAN training approach may suffer from convergence issues.
Rahman and Kocaoglu [40] utilizes a modular algorithm to relax the joint training restriction for
specific structures, but might face the convergence issue when the number of high-dimensional
variables increases. Note that these methods are not suitable for efficient conditional sampling. Jung
et al. [25] convert the expression returned by identification algorithm [51] into a form where it
can be computed through a re-weighting function to allow sample-efficient estimation. Similarly
Bhattacharyya et al. [4, 5] utilize bounded number of samples from the observational distribution to
construct an interventional sampler. However, computing these reweighting functions/conditional
distributions from data is still highly nontrivial with high-dimensional variables. Zečević et al. [61]
models each probabilistic term in the expression obtained for P (y|do(x)) with (i)SPNs. However,
they require access to the interventional data and do not address identification from only observations.
Wang and Kwiatkowska [56] design a novel probabilistic circuit architecture to encode the target
causal query and estimate causal effects but do not offer high-dimensional sampling.

6 Conclusion

We propose a sound and complete algorithm to sample from conditional or unconditional high-
dimensional interventional distributions. Our approach is able to leverage the state-of-the-art condi-
tional generative models by showing that any identifiable causal effect estimand can be sampled from
efficiently, only via feed-forward models. In future, we aim to relax our assumption on access to the
ADMG and adapt our algorithm to deal with soft interventions.
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A Limitations and future work

In this section, we list some future directions of our work. i) We assume that we have access to the
fully specified causal graph (ADMG) and the causal model is semi-MarkoviaN. Although these are
common assumptions in causal inference, we aim to extend our algorithm for structures with more
uncertainty (ex: PAGs). ii) In certain cases, the identification algorithm acts on particular variables,
yet the expression for the causal effect does not depend on these variables. However, given that
our sample size is limited, distinct values of these variables could affect the accuracy of the causal
effect [19]. Since our algorithm follows the same recursive trace as the identification algorithm,
it might suffer from the same problem. In addition, some model training might be unnecessarily
performed due to this issue. To avoid this scenario, the pruning algorithm proposed in [53] might be
merged with us to reduce the redundant cost of model training. iii) Since we target a specific causal
query, if the query is substantially changed (causal effect on new variables), we might have to re-train
some models. iv) For causal effect estimation in high-dimension, we follow the ID algorithm [45] to
consider a hard intervention do(X = x) i.e., fixing a specific value of the intervened variable, and
assume that the rest of the conditional distribution stays unchanged. An interesting future direction
would be to consider imperfect/soft intervention where the underlying mechanism of intervention
changes instead of being fixed to a specific value.

B Broader impact

During the last few years, researchers have proposed many deep learning-based approaches to learn
the unknown structural causal model from available data and employ the learned model to estimate
the causal effect or sample from the high-dimensional interventional distribution. However, all
these methods propose solutions tailored to specific neural architectures. As a result, when better
generative models appear (such as diffusion models), existing methods lack the flexibility to utilize
them, and thus we are in need of a new causal sampling method to get benefits of the new architecture.
ID-GEN proposes a generic method that is independent of any model architecture and can generate
high-dimensional interventional samples with any model architecture (GANs, VAE, Normalizing
flow, diffusion models, etc.) as long as that model has the ability to generate conditional samples.
Thus, our algorithm would allow the causal community to always use the latest generative model for
high-dimensional causal sampling-based applications.

On a different note, the ability to sample from interventional distributions may enhance deep-
generative models to obtain fake data, which can be exploited similarly to fake image generation.
Since our algorithm considers causal relations among different variables, it has the ability to generate
comparatively sensible and realistic fake images. Fake images can be a source of distress or might
influence public actions and opinion. Thus, careful deployment of should be considered for deep
causal generative models and the same procedures to detect fake image should be taken.

C ID-GEN additional discussion

In this section, we provide more details about our algorithm ID-GEN.

C.1 Sampling from any interventional distribution with ID-GEN

Here we provide the full form of the causal query P (v|do(r)) for the graph in Figure 7. Each term is
expressed in terms of observational distribution. Note that it is nonintuitive and nontrivial for existing
algorithms to sample from this complicated expression. Our algorithm ID-GEN solves this problem
by training a specific set of models in a recursive manner and building a sampling network combining
them. Finally, ID-GEN uses this network to sample from the following interventional distribution.

P (v|do(r)) = P (w2, w3|do(r))P (w4|do(w3))P (w1|do(v \ {w1, x}))P (x|do(v \ {x}))
= P (w2, w3|r) ∗ P (w4|w3) ∗

∑
r′P (w1|r′, w2, w3, w4)P (r′|w3, w4)

∗
∑

r′ P (w1, x|r′, w2, w3, w4)P (r′|w3, w4)∑
r′ P (w1|r′, w2, w3, w4)P (r′|w3, w4)

(1)
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Figure 7: do(R = r) removes the R↔ X bias and makes prediction of X domain invariant. ID-GEN
factorizes P (v|do(r)) into four factors and trains conditional models ({MVi

}i) for each (blue shades).
The intervened value R = r is propagated through the merged network to generate all other variables.

C.2 Cyclic dependency dealt with ID-GEN
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Figure 8: ↔:Confounding. MW1
, MY sample from Px,w2

(w1, y) = P (w1|x) P (y|x,w1, w2). MX′ ,
MW2 sample from Px,w1(w2) =

∑
x′ P (x′) P (w2|x′, w1). Joint network samples from Px(y).

Example C.1 (Cyclic dependency). For the graph in Fig. 8, Px(y) does not fit any familiar criterion
such as backdoor or front door. ID algorithm factorizes Px(y) into c-factors at its step 4, as
Px(y) =

∑
w1,w2

Px,w1
(w2)Px,w2

(w1, y) and estimates each of them recursively. Suppose we
naively design an algorithm that follow ID step-by-step and trains a generative model and sample
from every factor it encounters. This algorithm would not know which of these factors to learn and
sample first with the generative models. To sample W2 ∼ Px,w1

(w2) we need W1 as input, which
has to be sampled from Px,w2

(w1, y). But to sample {W1, Y } ∼ Px,w2
(w1, y), we need W2 as

input which has to be sampled from Px,w1
(w2). Therefore, no order helps to sample all W1,W2, Y

consistently.

ID-GEN follows ID’s recursive trace to reach at the factorization: Px(y) =∑
w1,w2

Px,w1
(w2)Px,w2

(w1, y) but solves the deadlock issue by avoiding direct sampling
from them. Rather, it first trains the required models for c-components {W1, Y }, {W2} individually,
considering all possible input values, and then connects them to perform sampling. Thus, ID-GEN
first obtains Px,w2

(w1, y) = P (w1|x)P (y|x,w1, w2), and trains a conditional model for each of the
conditional distributions (Fig. 8 left-blue). Similarly, for Px,w1

(w2) =
∑

x′ P (x′)P (w2|x′, w1), we
train models for each conditional distribution (right-blue). Note that X and X ′ are sampled from the
same P (x) but considered as different variables. Thus, we train MX′ to sample from P (x′) which is
different from intervention do(X). Finally, we merge these networks trained for each c-component
to build a single sampling network and can perform ancestral sampling on this network to sample
from Px(y),∀x.

C.3 Related works

In Figure 9, we show a visual comparison among different implementations of existing works.
Researchers have proposed deep neural networks for causal inference problems [43, 30] and neural
causal methods Xia et al. [58], Kocaoglu et al. [26] to deal with high-dimensional data. However,
the proposed approaches are not applicable to any general query due to the restrictions they employ
or their algorithmic design. For example, some approaches perform well only for low-dimensional
discrete and continuous data (group 2 in Figure 9: [58, 1]) while some propose modular training to
partially deal with high-dimensional variables (group 3: [40]). Other works with better generative
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Figure 9: Suppose we aim to sample from P (m|do(v)), with M (MRI) as high-dimensional. Group
1 includes algorithms (ex: ID) that depend on likelihood estimation such as P (m|v, a, b). Group
2 algorithms with GAN architectures have issues with GAN convergence while Group 3 improves
convergence with modularization but both struggle to match the joint distribution. Group 4 utilizes
normalizing flow, diffusion models, etc but cannot deal with confounders. Groups 2-4 only do
unconditional interventions or costly rejection sampling. Finally, our method can employ classifier-
free diffusion models to sample from P (m|do(v)) or conditional P (m|a, do(v)). The causal graph
is adapted from Ribeiro et al. [41].

performance depend on a strong structural assumption: no latent variable in the causal graph (group
4: Kocaoglu et al. [26], Pawlowski et al. [35], Chao et al. [11]).

C.4 ID-GEN recursion tree example

In Figure 10, we show a possible recursive route of ID-GEN for a causal query P (y|do(x)). At any
recursion level, we check condition for 7 steps (S1-S7) and enter into one step based on the satisfied
conditions. The red edges indicate the top-down phase, and the green edges indicate the bottom-
up phase. The rectangular gray boxes (ConditionalGMs(.), MergeNetwork(.), Update(.))
represent the functions that allow ID-GEN to sample from the high-dimensional interventional
distribution. Pv\s1(s1)Pv\s2(s2) are obtained after performing c-factorization at step 4. We also
indicate the recursive route with increasing indices. We hope that this figure helps the readers
understand the recursion route in a better way.

C.5 IDC-GEN: conditional interventional sampling

Existing works that use causal graph-based feedforward models [59, 40] need to update the posterior
of Z’s upstream variables which is not efficiently feasible in their architecture. We, given a causal
query Px(y|z), sample from this conditional interventional query by calling Algorithm 5: IDC-GEN.
This function finds the maximal set α ⊂ Z such that we can apply do-calculus rule-2 and move α
from conditioning set Z and add it to intervention set X . Precisely, Px(y|z) = Px∪α(y|z \ α) =
Px∪α(y,z\α)
Px∪α(z\α) . Next, Algorithm 1: ID-GEN (.) is called to obtain the sampling network that can sample

from the interventional joint distribution Px∪α(y, z \ α). We use the sampling network to generate
samples D[X ∪ α,Y,Z \ α]. We train a new conditional model MY on D that takes Z \ α, X ∪ α
as input and samples Y ∼ Px∪α(y, z \ α) i.e, Y ∼ Px(y|z).

C.6 ID-GEN computational complexity

Bhattacharyya et al. [5] in their work discusses the sample complexity and time complexity of Shpitser
and Pearl [46]’s ID algorithm. Since our algorithm ID-GEN is build upon the recursive structure of
ID, we follow their approach to determine the computational complexity of our algorithm.

Suppose, in step 4 ID-GEN factorizes Px(y) as∑
v\(y∪x)Pv\s1(s1) . . . Pv\sl(sl) . . . Pv\sn(sn)

where each Si is the c-factor of each c-component Ci. Let the number of variables located in each
c-component be k. Suppose, the intervention X can be partitioned into multiple c-components
and the c-components can be arranged in a way such that X = ∪li=1Xi and Xi ⊆ Ci, i.e., all
interventions are located in the first l c-components. Following [5], we define two sets C>l = ∪i>lCi

and C≤l = ∪i≤lCi.
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Figure 10: ID-GEN Recursion Tree Example

For |C>l| = n− l, c-components that do not contain any X, ID-GEN will either go to step1 or step
6. In the base cases, they will train k models for each c-components. Thus, the number of models
trained for these c-components will be O((n− l)k).

For the first |C≤l| = l, c-components, we assume that each c-component contains intervention subset
Xi of size X . Then the size of the remaining c-component is k −X . For each Pv\si(si), ID-GEN
will eventually reach the base cases: Step 1 or 6 and will train k−X models. Now, consider recursive
steps. We assume that, in the worst case, Xi will reduce one at a time, by visiting step 7 and step
2 alternately. Thus, ID-GEN will visit step 7, O((X/2 − 1)) times (except base case). Whenever
ID-GEN visits step 7, it will apply a subset of the intervention Xi and atmost k models will be trained
to sample the updated training dataset. Thus, till the base case, the total number of models trained
in step 7s will be O(k(X/2− 1)). If we consider the whole recursive route for each c-component
Ci ∈ C≤l, we will train O(k(X/2 − 1)) + O((k − X )) = O(kX/2) number of models. For all
c-components in C≤l, we will train O(lkX/2) number of models.

Finally, if we consider all c-components, we will train in total O((n− l)k + lkX/2) models. If the
cost of training a diffusion model to learn a specific conditional distribution is O(T ), then the total
training cost is O(T (n − l)k + T lkX/2). Note that, when there exists no confounders, we have
k = 1 and the trining cost isO(T (n− l)+T l) = O(Tn). Here |An(Y)G| = n. Existing algorithms
train |V| number of models for a causal graph of V variables. Thus, their training cost is O(T |V|).

C.7 ID-GEN for Non-Markovian Causal Models

We assumed the underlying true causal model to be semi-Markovian in our paper. This is not a
limitation as [52] showed that causal models with arbitrary latent variables can always be converted
into semi-Markovian causal models i.e., models in which latent variables have no parent and only
two children, while preserving the same independence relations between the observed variables.
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D Theoretical analysis

Here we provide formal proofs for all theoretical claims made in the main paper, along with accom-
panying definitions and lemmas.
Definition D.1. A conditional generative model for a random variable X ∈ V relative to the
distribution P (v) is a function MX : PaX → |X| such that MX(paX) ∼ P (x|paX),∀pa ∈ Pa,
where Pa is a subset of observed variables in V .
Definition D.2 (Recursive call). For a function f(), when a subprocedure with the same name is
called within f() itself, we define it as a recursive call. At Steps 2, 3, 4, 7 of Algorithm 1:ID-GEN,
the sub-procdedure ID-GEN(.) with updated parameters are recursive calls, but the sub-procedure
ConditionalGMs(.), Update(.) are not recursive calls.

Here, we restate the assumptions that are mentioned in the main paper.
Assumption D.3. The causal model is semi-Markovian.
Assumption D.4. We have access to the true acyclic-directed mixed graph (ADMG) induced by the
causal model.
Assumption D.5. Each conditional generative model trained by ID-GEN correctly samples from the
corresponding conditional distribution.
Assumption D.6. The observational joint distribution is strictly positive and Markov relative to the
causal graph.
Lemma D.7 (c-component factorization [51]). LetM be an SCM that entails the causal graph G
and Px(y) be the interventional distribution for arbitrary variables X and Y . Let C(G \ X) =
{S1, . . . , Sn}. Then we have Px(y) =

∑
v\(y∪x)

Pv\s1(s1)Pv\s2(s2) . . . Pv\sn(sn).

Definition D.8. We say that a sampling networkH is valid for an interventional distribution Px(y)
if the following conditions hold:

• Every node V ∈ H has an associated conditional generative model MV (.) except the
variables in X.

• If the values X = x are specified in H, then the samples of Y obtained after dropping
H \ {X ∪Y} from all generated samples are equivalent to samples from Px(Y).

Proposition D.9. The ConditionalGMs(.) (S′,XZ , G,D, X̂, Ĝ) called inside Update(.), re-
turns D[XZ , S

′] ∼ PXZ
(S′).

Proof. Suppose that our goal is to generate samples from PXZ
(Y = S′). S′ is a single c-component

and the intervention set X = XZ located outside of S′. This is the entering condition for step 6 of the
ID-GEN algorithm. Thus, we can directly apply it as Algorithm 2: ConditionalGMs(.), instead of
another recursive ID-GEN (Y = S′,X = XZ , G,D, X̂, Ĝ) call.

Proposition D.10. At any recursion level of Algorithm 1: ID-GEN (Y,X, G,D, X̂, Ĝ) and Algo-
rithm 6: ID(Y,X, P,G) , the execution step is determined by the values of the set of observed
variables Y, the set of intervened variables X and the causal graph G, at that recursion level.

Proof. To enter in steps [1-7] of ID-GEN and steps [1-7] of ID, specific graphical conditions are
checked, which depend only on the values of the parameters Y,X and G. If that graphical condition
is satisfied, both algorithms enter in their corresponding steps. Thus, the execution step of each
algorithm at any recursive level is determined by only Y,X and G.

Lemma D.11. (Recursive trace) At any recursion level R, recursive call ID-GEN (Y,X,D, G, X̂, Ĝ)
enters Step i if and only if recursive call ID(Y,X, P,G) enters Step i, for any i ∈ [7]

Proof. Suppose, both algorithms start with an input causal query Px(y) for a given graph G. For
this query, the parameters Y,X, G of ID(Y,X, P,G) and ID-GEN (Y,X, X̂′,D, G) represent the
same objects: the set of observed variables Y, the set of intervened variables X and the causal graph
G. According to Proposition D.10, Algorithm 1: ID-GEN and Algorithm 6: ID only check these 3
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parameters to enter into any steps and decide the next recursive step. Thus, we use proof by induction
based on these 3 parameters to prove our statement.

Induction base case (recursion level R = 0): Both algorithms start with the same input causal
query Px(y) in G, i.e., the same parameter set Y,X, G. We show that at recursion level R = 0,
ID-GEN enters step i if and only if ID enters step i for any i ∈ [7].

Step 1: Both ID and ID-GEN check if the intervention set X is empty and go to step 1. Thus,
ID-GEN enters step 1 iff ID enters step 1.

Step 2: If the condition for step 1 is not satisfied, then both ID and ID-GEN check if there exist any
non-ancestor variables of Y: V \An(Y)G in the graph to enter in their corresponding step 2. Thus,
with the same Y and G, ID-GEN enters step 2 iff ID enters step 2.

Step 3: If conditions for Steps [1-2] are not satisfied, both ID and ID-GEN check if W is an empty
set for W = (V \X) \An(Y)GX

to enter in their corresponding step 3. Since both algorithms have
the same Y,X and G, ID-GEN enters step 3 iff ID enters step 3.

Step 4: If conditions for Steps [1-3] are not satisfied, both ID and ID-GEN check if they can partition
the variables set C(G \X) into k (multiple) c-components. Since these condition checks depend on
X and G and both have the same input X and G, ID-GEN enters step 4 iff ID enters step 4.

Step 5: If conditions for Steps [1-4] are not satisfied, both algorithms check if C(G \X) = {S}
and C(G) = {G} to enter their corresponding step 5. Since both have the same X and G, ID-GEN
enters step 5 iff ID enters step 5.

Step 6: If the conditions of Steps [1-5] are not satisfied, ID and ID-GEN check if C(G \X) = {S}
and S ∈ C(G), to enter their corresponding step 6. Since both have the same X and G, ID-GEN
enters step 6 iff ID enters step 6.

Step 7: If conditions for Steps [1-6] are not satisfied, both ID and ID-GEN check if C(G\X) = {S}
and (∃S′) such that S ⊂ S′ ∈ C(G) to enter their corresponding step 7. Since both have the same X
and G, both will satisfy this condition and enter this step. Thus, ID-GEN enters step 7 iff ID enters
step 7.

Induction Hypothesis: We assume that for recursion levels R = 1, . . . , r, ID-GEN and ID follow
the same steps at each recursion level and maintain the same values for the parameter set Y,X and
G.

Inductive steps: Both algorithms have the same set of parameters Y,X, G and they are at the same
step i at the current recursion level R = r. As inductive step, we show that with the same values of
the parameter set Y,X and G at recursion level R = r, ID-GEN and ID will visit the same step at
recursion level R = r + 1.

Step 1: Step 1 is a base case of both algorithms. After entering into step 1 with X = ∅, ID
estimates

∑
v\y P (v) and ends the recursion. ID-GEN also ends the recursion after training a set of

conditional models MVi(V
(i−1)
π ) ∼ P (vi|v(i−1)

π ). Thus, ID-GEN goes to the same step at recursion
level R = r + 1 iff ID goes to the same step which in this case is Return.

Step 2: At step 2, both ID-GEN and ID update their intervention set X as X ∩ An(Y)G and the
causal graph G as GAn(Y). The same values of the parameters X,Y and G will lead both algorithms
to the same step at the recursion level R = r + 1. Thus, at recursion level R = r + 1, ID-GEN visits
step i iff ID visits step i, ∀i ∈ [7].

Step 3: At step 3, both algorithms only update the intervention set parameter X as X = X ∪W
and perform the next recursive call. Since they leave for the next recursive call with the same set of
parameters, at recursion level R = r + 1, ID-GEN visits step i iff ID visits step i, ∀i ∈ [7].

Step 4: At step 4, both ID-GEN and ID partition the variables set C(G \ X) into k (multiple)
c-components. Then they perform a recursive call for each c-component with parameter Y = Si

and X = V \ Si. For each of these k recursive calls, both algorithms use the same values for the
parameter set Y,X and G. Thus, at recursion level R = r+1, ID-GEN visits step i iff ID visits step
i, ∀i ∈ [7].
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Step 5: Step 5 is a base case for both algorithms, and if both algorithms are at step 5, they return FAIL.
This step represents the non-identifiability case. Thus, ID-GEN goes to the same step at recursion
level R = r + 1 iff ID goes to the same step, which in this case is Return.

Step 6: Step 6 is a base case for both algorithms. ID calculates the product of a set of conditional
distributions P (vi|vi−1

π ) and returns it. While ID-GEN trains conditional models MVi
(V

(i−1)
π ) to

learn those conditional distributions, ID-GEN returns a sampling network after connecting these
models. Both algorithms end the recursion here and return different objects but that will not affect
their future trace. Thus, ID-GEN goes to the same step at recursion level R = r + 1 iff ID goes to
the same step which in this case is Return.

Step 7: ID algorithm at step 7, updates its distribution parameter P with Pxz(S
′). On the other

hand, ID-GEN generates do(XZ) interventional samples. Both algorithms update their parameters
set Y,X and G in the same way as Y = Y,X = X ∩ S′ (or X \XZ since X ∩ S′ = X \XZ ) and
G = GS′ . Since they leave for the next recursive call with the same set of parameters Y,X, G, at
recursion level R = r + 1, ID-GEN visits step i iff ID visits step i, ∀i ∈ [7].

Therefore, we have proved by induction that ID-GEN (Y,X, G,D, X̂, Ĝ) enters Step i if and only if
ID(Y,X, P,G) enters Step i, for any i ∈ [7] for any recursion level R.

Lemma D.12. Termination: Let Px(Y) be a query for causal graph G = (V, E) and D ∼ P (V).
Then the recursions induced by ID-GEN (Y,X, G,D, X̂, Ĝ) terminate in either step 1, 5, or 6.

Proof. The result follows directly from Lemma D.11: Consider any causal query Px(Y). Since ID
is complete, the query – whether it is identifiable or not – terminates in one of the steps 1, 5, or 6.
By Lemma D.11, ID-GEN follows the same steps as ID, and hence also terminates in one of these
steps.

Lemma D.13. Consider the recursive calls ID(∗, GID) and ID-GEN(∗, GID-GEN, X̂, Ĝ) at any level
of the recursion. Then GID = GID-GEN and GID = Ĝ \ X̂.

Proof. According to Lemma D.11, ID and ID-GEN follow the same recursive trace. Thus, at any
recursion level, both algorithms will stay at step i ∈ [7].

Base case: At recursion level R = 0, both ID and ID-GEN start with the same input causal graph
G. Thus, GID = GID-GEN = Ĝ = G. Also at R = 0, the set of intervened variables X̂ = ∅. Thus,
GID = Ĝ \ ∅ = G holds.

Induction hypothesis: At any recursion level R = r, let Gr
ID be the graph parameter of the ID

algorithm and {Gr
ID-GEN, X̂

r, Ĝr} be the parameters for the ID-GEN algorithm. We assume that
Gr

ID = Gr
ID-GEN and Gr

ID = Ĝr \ X̂r.
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Inductive step: The set of parameters {GID-GEN, X̂, Ĝ} of ID-GEN and the graph parameter G of
ID are only updated at step 2 and step 7 for the next recursive calls. Thus, we prove the claim for
these two steps separately.

At step 2: In both ID and ID-GEN algorithms, we remove the non-ancestor variables V \ An(Y )
from the graph. For ID, Gr+1

ID = Gr
ID(An(Y)). For the ID-GEN algorithm, we obtain

Gr+1
ID-GEN = Gr

ID-GEN(An(Y)). Thus, Gr+1
ID = Gr+1

ID-GEN. In ID-GEN, we also update Ĝr+1 as
Ĝr+1 = Ĝr(An(Y)). Since removing non-ancestor does not affect the intervened variables X̂

anyway, the same relation between Gr+1
ID and Ĝr+1 is maintained, i.e., Gr+1

ID = Ĝr+1 \ X̂.

At step 7: Both ID and ID-GEN finds XZ = X \ S′ and apply do(XZ) as intervention. Also, in
ID-GEN, X̂r+1 is set to X̂r ∪XZ .

For ID-GEN:

Since XZ is intervened on, Gr for ID-GEN is updated as Gr+1 = Gr
XZ

and Ĝr is updated as

Ĝr+1 = Ĝr
XZ

.

Now, XZ has all incoming edges are cut off in Gr+1 and does not have any parents. As a result,
removing XZ from Gr+1 is valid. Thus, we obtain Gr+1 = Gr+1 \ XZ = Gr

XZ
\ XZ = Gr

S′ .

However, for the other graph parameter, we keep Ĝr+1 = Ĝr
XZ

as it is, since we would follow this

structure in the base cases and consider XZ while training the conditional models. Note that, in Ĝr

the intervened variables X̂r (before recursion level r) had already incoming edges removed. Thus,
after X̂r being updated as X̂r+1 = X̂r ∪ XZ , we can write Ĝr+1 = Ĝr

XZ
= Ĝr

X̂r+1
. Since by

inductive assumption, Gr = Ĝr \ X̂r, thus

Gr+1 = Ĝr+1 \ {X̂r ∪XZ} = Ĝr+1 \ {X̂r+1} (2)

For ID:

ID algorithm updates its parameters G as Gr+1 = Gr
S′ = Gr \XZ . Since ID-GEN and ID have the

same graph parameter at recursion level r, i.e, Gr
ID = Gr

ID-GEN and they updated the parameter in the
same way, Gr+1

ID = Gr+1
ID-GEN holds true. Since Gr+1

ID-GEN = Ĝr+1 \ {X̂r+1} according to Equation 2,
we also obtain Gr+1

ID = Ĝr+1 \ {X̂r+1}.
Therefore, the lemma holds for any recursion level R.

Lemma D.14. Let P (.) be the input observational distribution to the ID algorithm and D ∼ P (.)

be the input observational dataset to the ID-GEN algorithm. Suppose, X̂ is the set of variables that
are intervened at step 7 of both the ID and ID-GEN algorithm from recursion level R = 0 to R = r.
Consider recursive calls ID(∗, PID(v)) and ID-GEN(∗,D, ∗, X̂, Ĝ) at recursion level R = r. Then
PID = Px̂(v) and D[X̂,V] ∼ Px̂(x̂,v).

Proof. According to Lemma D.11, ID and ID-GEN follow the same recursive trace. Thus, at any
recursion level, both algorithms will stay at step i ∈ [7].

Base case: At recursion level R = 0, ID starts with the observational distribution P and ID-GEN
starts with the observational training dataset D ∼ P . At R = 0, X̂ = ∅ since no variables have yet
been intervened on. Thus, for ID algorithm PID = P∅(V ) holds. For ID-GEN, D[∅,V] ∼ P∅(∅,V)
holds. Thus, the claim is true for R = 0.

Induction hypothesis: Let the set of variables intervened at step 7s from the recursion level R = 0 to
R = r, be X̂r. At R = r, let the distribution parameter of the ID algorithm be P r

ID = Px̂r (v). Let
the dataset parameter of the ID-GEN algorithm be sampled from Px̂r (x̂r,v), i.e, Dr ∼ Px̂r (x̂r,v).

Inductive step: The distribution parameter P of ID and the dataset parameter D of ID-GEN only
change at step 2 and step 7 for the next recursive calls. Thus, we prove the claim for these two steps
separately.

At step 2: At step 2 of both ID and ID-GEN algorithms, there is no change in X̂, i.e., no additional
variables are intervened to change the distribution P or the dataset D.
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At this step, we marginalize over V \ An(Y). Since X̂ ⊂ An(Y)Ĝ, marginalizing non-ancestors
out does not impact X̂. Thus, P r+1

ID (An(Y)) =
∑

V\An(Y)G
P r
ID(v) =

∑
V\An(Y)G

Px̂r (v) =

Px̂r (An(Y)). This holds true since we can marginalize over V \An(Y)G in the joint interventional
distribution.

In the ID-GEN algorithm, we drop the values of variables V \ An(Y)G from the data set, that
is, Dr[X̂,V] → Dr+1[X̂, An(Y)G]. Since we assumed Dr[X̂,V] ∼ Px̂r (x̂r,v), therefore
Dr+1[X̂, An(Y)G] ∼ Px̂r (An(Y)) holds.

At step 7: At step 7, both ID and ID-GEN algorithm intervened on variable set XZ where XZ =

X \ S′. Thus, at level R = r + 1, we have X̂r+1 = X̂r ∪XZ . Note that at this step, S′ = V \XZ .

ID algorithm updates its current distribution parameter P r
ID by intervening on XZ . Thus, at level

R = r + 1, P r+1
ID (v \ xZ) = P r+1

ID (s′) = P r
ID(v|do(xZ)) = Px̂r (v|do(xZ)) = Px̂r∪xZ

(s′) =
Px̂r+1(s′). Thus the claim holds for ID algorithm at level R = r + 1.

In the ID-GEN algorithm, we generate an interventional dataset Dr+1[XZ , X̂, S′] by applying
the do(XZ) intervention on dataset Dr[X̂,V]. Since Dr[X̂r,V] ∼ Px̂r (x̂r,v), we obtain
Dr+1[XZ , X̂

r, S′] ∼ Px̂r∪xz
(x̂r,xz, s

′) =⇒ Dr+1[X̂r+1, S′] ∼ Px̂r+1(x̂r+1, s′). Thus, the
claim holds true for ID-GEN at the recursion level R = r + 1.

Therefore, P (.) being the input distribution for ID and D ∼ P (.) being the input dataset for ID-GEN,
we proved by induction that PID = Px̂(v) and D[X̂,V] ∼ Px̂(x̂,v) at any recursion level.

Lemma D.15. Consider recursive calls ID(Y,X, G, PID(v)) and ID-GEN (Y,X, G,D, X̂, Ĝ) at
any recursion level R. If D[X̂, V ] ∼ PID-GEN(x̂,v), thenPID(v) = PID-GEN(v|x̂) for fixed values of
X̂ = x̂.

Proof. At any level R = r of the recursion , we have GID = GID-GEN and GID = Ĝ \ X̂ according
to Lemma D.13 and PID = Px̂(v) and D[X̂,V] ∼ Px̂(x̂,v) according to Lemma D.14 where P (v)
is the input observational distribution.

Let D[X̂,V] ∼ Px̂(x̂,v) = PID-GEN(x̂,v),∀x̂.

Now, since in Ĝ we have already intervened on X̂, for fixed X̂ = x̂, we have Px̂(x̂,v) = Px̂(x̂) ∗
Px̂(v|x̂) = Px̂(v|x̂), thus V will be sampled from PID-GEN(v|x̂) for fixed consistent X̂ = x̂.

On the other hand, in the ID algorithm, at any recursion level, PID(v) = Px̂(v) for fixed consistent
X̂ = x̂ and GID = Ĝ \ X̂.

Since according to Lemma D.14, PID = Px̂(v) and D[X̂,V] ∼ Px̂(x̂,v) at any recursion level, i.e.,
starting from the same P (V), the same set of interventions are performed in the same manner in both
algorithms; thus for fixed X̂ = x̂, we obtain PID(v) = PID-GEN(v|x̂) .

Lemma D.16. If a non-identifiable query is passed to it, ID-GEN will return FAIL.

Proof. Suppose ID-GEN is given a non-identifiable query as input. Since the ID algorithm is
complete, if ID is given this query, it will reach its step 5 and return FAIL. According to the
lemma D.11, ID-GEN follows the same trace and the same sequence of steps as ID for a fixed input.
Since for the non-identifiable query ID reaches step 5, ID-GEN will also reach step 5 and return
FAIL.

Lemma D.17. ID-GEN Base case (step 1):

Let, at any recursion level of ID-GEN, the input dataset D[X̂,V] is sampled from a specific joint
distribution P (X̂,V), i.e., D[X̂,V] ∼ P (X̂,V) where X̂ is the set of intervened variables at step
7s. Given a target interventional query P (y) over a causal graph G = (V,E), suppose ID-GEN
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(Y,X = ∅, G,D, X̂, Ĝ) enters step 1 and returnsH. ThenH is a valid sampling network for P (y)

with fixed consistent X̂ = x̂.

Proof. Since the intervention set X is empty, we are at the base case step 1 of ID-GEN. Suppose that
for the same query, the ID algorithm reaches step 1. Let PID(v) be the current distribution of the ID
algorithm after performing a series of marginalizations in step 2 and intervention in step 7 on the
input observational distribution. D[X̂,V] is the dataset parameter of ID-GEN algorithm that went
through the same transformations as the ID algorithm in the sample space according to Lemma D.15.
X̂ is the set of interventions that are applied on the dataset at step 7s.

Since ID algorithm is sound it returns correct output for the query P (y). We prove the soundness of
ID-GEN step 1 by showing that the sampling network ID-GEN returns, is valid for the output of the
ID algorithm.

ID algorithm is sound and factorizes PID(v) with respect to the graph G as below.

PID(v) =
∏
vi∈V

P (vi|v(i−1)
πG

)

And obtains PID(y) by:
PID(y) =

∑
v\y

∏
vi∈V

P (vi|v(i−1)
πG

) (3)

LetD[X̂,V] ∼ PID-GEN(x̂,v) = P (x̂,v),∀(x̂,v). For fixed X̂ = x̂, PID-GEN(v|x̂) can be factorized
with respect to G and Ĝ as following:

PID-GEN(v|x̂) =
∏
vi∈V

P (vi|v(i−1)
πG

, x̂)

=
∏
vi∈V

P (vi|v(i−1)
πĜ

)

[Changed the graph from G to Ĝ since X̂ ∈ Ĝ and only affects the descendants of X̂.]

And PID-GEN(y|x̂) can be obtained by:

PID-GEN(y|x̂) =
∑
v\y

∏
vi∈V

P (vi|v(i−1)
πĜ

) (4)

Since for fixed X̂ = x̂, PID(v) = PID-GEN(v|x̂) according to Lemma D.15. Thus, the cor-
responding conditional distributions in Equation 3 and 4 are equal, i.e, PID(vi|v(i−1)

πG ) =

PID-GEN(vi|v(i−1)
πĜ

),∀{i|Vi ∈ V}. Therefore, PID(y) and PID-GEN(y|x̂) having the same factoriza-
tion and the corresponding conditional distributions being equal implies that PID(y) = PID-GEN(y|x̂).
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Now, based on Assumption D.5, ID-GEN learns to sample from each conditional distribution
PID-GEN(vi|v(i−1)

π , v
(i−1)
πĜ

) of the product in Equation 4, by training a conditional model MVi
on

samples from the dataset D[X̂,V] ∼ P (x̂,v).

For each Vi, we add a node containing Vi and its associated conditional generative model MVi to a
sampling network. This produces a sampling networkH that is a DAG, where each variable Vi ∈ V
has a sampling mechanism. By factorization and Assumption D.5, ancestral sampling from this
sampling graph produces samples from PID-GEN(v|x̂). We can drop values of V \ Y to obtain the
samples from PID-GEN(y|x̂). Since PID(v) = PID-GEN(v|x̂), both factorized in the same manner and
MVi

learned conditional distribution of ID-GEN’s factorization, the sampling network returned by
ID-GEN, will correctly sample from the distribution PID(y) returned by the ID algorithm for fixed
X̂ = x̂. Thus, the sampling network returned by ID-GEN is valid for P (y).

Lemma D.18. ID-GEN Base case (step 6): Let, at any recursion level of ID-GEN, the input dataset
D[X̂,V] is sampled from a specific joint distribution P (X̂,V), i.e., D[X̂,V] ∼ P (X̂,V) where X̂
is the set of intervened variables at step 7s. Given an identifiable interventional query Px(y) over
a causal graph G = (V,E), suppose ID-GEN (Y,X, G,D, X̂, Ĝ) immediately enters step 6 and
returnsH. ThenH is a valid sampling network for Px(y) with fixed consistent X̂ = x̂.

Proof. By Lemma D.11, both ID-GEN (Y,X, G,D, X̂, Ĝ) and ID(Y,X, P,G) enter the same
base case step 6. By the condition of step 6, G \X has only one c-component {S}, where S ∈ C(G).

Let P (v) be the current distribution of the ID algorithm after performing a series of marginalizations
in step 2 and intervention in step 7 on the input observational distribution. Let D[X̂,V] ∼ P ′(x̂,v)
be the dataset parameter of ID-GEN algorithm that went through the same transformations as the ID
algorithm in the sample space. X̂ is the set of interventions that are applied on the dataset at step 7s.
According to Lemma D.15 for fixed values of X̂ = x̂, P (v) = P ′(v|x̂) holds true at any recursion
level.

Since ID algorithm is sound it returns correct output for the query Px(y). We prove the soundness of
ID-GEN step 6 by showing that the sampling network ID-GEN returns, is valid for the output of the
ID algorithm.

With the joint distribution P (v), the soundness of ID implies that

Px(y) =
∑
S\Y

∏
{i|Vi∈S}

P (vi|v(i−1)
πG

) (5)

where πG is a topological ordering for G.

With the joint distribution P ′(v|x̂), ID-GEN can factorize P ′
x(y|x) in the same manner:

P ′
x(y|x̂) =

∑
S\Y

∏
{i|Vi∈S}

P ′(vi|v(i−1)
πG

, x̂)

=
∑
S\Y

∏
{i|Vi∈S}

P ′(vi|v(i−1)
πĜ

)

[Changed the graph from G to Ĝ since X̂ ∈ Ĝ and only affects the descendants of X̂.]

(6)

Since P (v) = P ′(v|x̂), the corresponding conditional distributions in Equation 5 and 6 are
equal, i.e, P (vi|v(i−1)

πG ) = P ′(vi|v(i−1)
πĜ

),∀{i|Vi ∈ S}. Therefore, Px(y) and P ′
x(y|x̂) having

the same factorization and the corresponding conditional distributions being equal implies that
Px(y) = P ′

x(y|x̂).

ID-GEN operates in this case by training, from joint samples D[X̂, V ], a model to correctly sample
each P ′(vi | v(i−1)

πĜ
) term, i.e., we learn a conditional generative model MVi

(V
(i−1)
πĜ

) which produces
samples from P ′(vi | v(i−1)

πĜ
), which we can do according to Assumption D.5. Then we construct a

sampling networkH by creating a node Vi with a sampling mechanism MVi
for each Vi ∈ S. We add
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edges from Vj → Vi for each Vj ∈ V
(i−1)
πĜ

. Since every vertex in Ĝ is either in S or in X ∪ X̂, every
edge either connects to a previously constructed node or a variable in X ∪ X̂. Since we already have
fixed values for X̂ = x̂, when we specify values for X and sample according to topological order πĜ,
this sampling graph provides samples from the distribution

∏
{i|Vi∈S} P

′(vi|v(i−1)
πĜ

), i.e. P ′
x(s|x̂).

Since, as shown earlier, P ′
x(s|x̂) = Px(s), samples from the sampling networkH is consistent with

Px(s) as well. We obtain samples from Px(y) by dropping the values of S \ Y from the samples
obtained from Px(s). We assert the remaining conditions to show that this sampling network is
correct for Px(y): certainly this graph is a DAG and every v ∈ S has a conditional generative model
inH. By the conditions to enter step 6, Ĝ = S ∪X ∪ X̂ and S ∩ {X ∪ X̂} = ∅. Then every node in
H is either in S or is in X ∪ X̂: hence the only nodes without sampling mechanisms are those in
X ∪ X̂ as desired. Therefore, when X̂ is fixed as x̂,H is a valid sampling network for Px(y).

Proposition D.19. At any level of the recurison, the graph parameters G and Ĝ in ID-GEN
(Y,X, G,D, X̂, Ĝ) have the same topological order excluding X̂.

Proof. Let πG be the topological order of G and πĜ be the topological order of Ĝ. At the beginning
of the algorithm G = Ĝ. Thus, πG = πĜ. According to the lemma D.13, at any level of recursion,
GID = GID-GEN and GID = Ĝ \ X̂. Thus, we have G = GID-GEN = GID = Ĝ \ X̂. Therefore,
πG = πĜ\X̂.

Lemma D.20. LetH be a sampling network produced by ID-GEN from an identifiable query Px(y)
over a graph G. If G has the topological ordering π, then every edge in the sampling graph of H
adheres to the ordering π.

Proof. We consider two factors: which edges are added, and with respect to which graphs. Since
the only base cases ID-GEN enters are steps 1 and 6, the only edges added are consistent with the
topological ordering π for the graph that was supplied as an argument to these base case calls. The
only graph modifications occur in steps 2 and 7, and these yield subgraphs of G. Thus the original
topological ordering π for graph G is a valid topological ordering for each restriction of G. Therefore
any edge added toH is consistent with the global topological ordering Π.

Lemma D.21. Let H be a sampling network for random variables {V1, V2, . . . Vn} formed by
a collection of conditional generative models MVi relative to P (v) for all Vi. Then the tuple
(V1, V2 . . . Vn) obtained by sequentially evaluating each conditional generative model relative to the
topological order of the sampling graph is a sample from the joint distribution ΠiPi(vi|pai).

Proof. Without loss of generality, let (V1, V2, . . . , VN ) be a total order that is consistent with the
topological ordering over the nodes in G. To attain a sample from the joint distribution, sample each
Vi in order. When sampling Vj , each Vi for all i < j is already sampled, which is a superset of
Paj (the inputs to MVj

) by definition of topological orderings. Thus, all inputs to every conditional
generative model MVj are available during sampling. Since each Vj is conditionally independent of
Vi ̸∈ Paj , the joint distribution factorizes as given in the claim.

Theorem D.22. ID-GEN Soundness: Let Px(y) be an identifiable query given the causal graph
G = (V,E) and that we have access to joint samples D ∼ P (v). Then the sampling network
returned by ID-GEN (Y,X, G,D, X̂, Ĝ) correctly samples from Px(y) under Assumption D.5.

Proof sketch: Suppose that Px(y) is the input causal query and Assumptions D.3, D.4, D.5, D.6
hold. The soundness of ID-GEN implies that if the trained conditional models converge to (near)
optimality, ID-GEN returns the correct samples from Px(y). For each step of the ID algorithm that
deals with probabilities of discrete variables, multiple actions are performed in the corresponding
step of ID-GEN to correctly train conditional models to sample from the corresponding distributions.
ID-GEN merges these conditional models according to the topological order of G, to build the final
sampling network H. Therefore, according to structural induction, when we intervened on X and
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perform ancestral sampling in H each model in the sampling network will contribute correctly to
generate samples from Px(y).

Proof. We proceed by structural induction. We start from the base cases, i.e., the steps that do not
call ID-GEN again. ID-GEN only has three base cases: step 1 is the case when no variables are
being intervened upon and is covered by Lemma D.17; step 6 is the other base case and is covered by
Lemma D.18; step 5 is the non-identifiable case and since we assumed that Px(y) is identifiable, we
can skip ID-GEN’s step 5.

The structure of our proof is as follows. By the assumption that Px(y) is identifiable and due to
Lemma D.12, its recursions must terminate in steps 1 or 6. Since we have already proven correctness
for these cases, we use these as base cases for a structural induction. We prove that if ID-GEN enters
any of step 2, 3, 4 or 7, under the inductive assumption that we have correct sampling network for
the recursive calls, we can produce a correct overall sampling network. The general flavor of these
inductive steps adheres to the following recipe: i) determine the corresponding recursive call that ID
algorithm makes; ii) argue that we can generate the correct dataset to be analogous to the distribution
that ID uses in the recursion; iii) rely on the inductive assumption that the generated DAG from
ID-GEN’s recursion is correct.

We consider each recursive case separately. We start with step 2. Suppose ID-GEN
(Y,X, G,D, X̂, Ĝ) enters step 2, then according to Lemma D.11, ID(Y,X, P,G) enters step
2 as well. Hence the correct distribution to sample from is provided by ID step 2:

Px(y) = ID(Y,X ∩An(Y )G,
∑

V\An(Y)G

P (v), GAn(Y)).

Now, according to Lemma D.15, at the current step, the dataset D of ID-GEN is sampled from a
distribution P ′(v|x̂) such that for fixed values of X̂ = x̂, P (v) = P ′(v|x̂) holds true. Following
our recipe, we need to update the dataset D such that it is sampled from

∑
V \An(Y )G

P (v) =∑
V \An(Y )G

P ′(v|x̂). We do this by dropping all non-ancestor variables of Y (in the graph G)
from the dataset D, thereby attaining samples from the joint distribution

∑
V\An(Y)G

P (v). Since

Ĝ is used at the base case, we update it as ĜAn(Y), the same as GAn(Y) to propagate the correct
graph at the next step. Therefore, we can generate the sampling network from ID-GEN(Y,X ∩
An(Y)G, GAn(Y),D[An(Y )], X̂, ĜAn(Y )) by the inductive assumption and simply return it.

Next, we consider step 3. Suppose ID-GEN (Y,X, G,D, X̂, Ĝ) enters step 3. Then by Lemma D.11,
ID(Y,X, P,G) enters step 3, and the correct distribution to sample from is provided from ID step 3
as

Px(y) = ID(Y,X ∪W,P,G)

where W := (V \ X) \ An(Y)GX
. Since the distribution passed to the recursive call is P , we

can simply return the sampling graph generated by ID-GEN (Y,X, G,D, X̂, Ĝ), which we know is
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correct for PX∪W(Y) by the inductive assumption. Thus, the returned sampling network by ID-GEN
can sample from Px(y). While we do need to specify a sampling mechanism for W to satisfy our
definition of a valid sampling network, this can be chosen arbitrarily, say W ∼ P (w) or uniform the
distribution.

Next we consider step 4. Suppose ID-GEN (Y,X, G,D, X̂, Ĝ) enters step 4. Then by Lemma D.11,
ID(Y,X, P,G) enters step 4 and the correct distribution to sample from is provided from ID step 4
as: ∑

V \(y∪x)

∏
i

ID(si, v \ si, P,G)

where Si are the c-components of G\X, i.e., elements of C(G\X). By the inductive assumption, we
can sample from each term in the product with the sampling network returned by ID-GEN(Si,X =

V \ Si, G,D, X̂, Ĝ). However, recall the output of ID-GEN: ID-GEN returns a ‘headless’ (no
conditional models for X) sampling network as follows:

ID-GEN (Y,X, G,D, X̂, Ĝ) returns a sampling network, i.e., a collection of conditional generative
models where for each variable in G and every variable except those in X have a specified conditional
generative model. To sample from this sampling network, values for X must first be specified. In the
step 4 case, the values v \ si need to be provided to sample values for Si, and similarly for i ̸= j,
values v \ sj are needed to sample values for Sj . Since Si ⊆ (V \ Sj) and Sj ⊆ (V \ Si), it might
lead to cycles (as shown in Example C.1) if we attempt to generate samples for each c-components
sequentially. Thus, it does not suffice to sample from each c-component sequentially or separately.

Note that, Hi is the correct sampling network corresponding to ID-GEN(Si,X = V\Si, G,D, X̂, Ĝ)
by definition, for each node Vi ∈ Si, Vi has a conditional generative model in Hi. By Lemma D.20,
each edge in Hi adheres to the topological ordering πG (at the current level). Hence, if we apply
MergeNetwork(.) to construct a graphH from {Hi}i, it will also adhere to the original topological
ordering πG. Thus,H is a DAG.

Since every node Vi in G \X has a conditional generative model in some Hi, the only nodes in
combined H without conditional generative models are those in X. Finally, since each node in H
samples the correct conditional distribution by the inductive assumption,H samples from the product
distribution Px(y) corretly. The sum

∑
v\(y∪x) can be safely ignored now and can be applied later

since the sample values of the marginalized variables (v \ (y ∪ x)) can be dropped from the joint at
the end of the algorithm to attain samples values of the remaining variables. HenceH is correct for
Px(y).

Step 5 can never happen by the assumption that Px(y) is identifiable, and step 6 has already been
covered as a base case. The only step remaining is step 7.

Lemma D.11 says, ID-GEN (Y,X, G,D, X̂, Ĝ) enters step 7 by the same conditions
ID(Y,X, P,G) enters step 7. Then by assumption, C(G \ X) = {S} and there exists a con-
founding component S′ ∈ C(G) such that S ⊂ S′. The correct distribution to sample from is
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provided from ID step 7 as

Px(y) = ID(Y,X ∩ S′, P ′, GS′)

where

P ′ :=
∏

{i|Vi∈S′}

P (Vi|V (i−1)
π ∩ S′, v(i−1)

π \ S′).

Examining ID algorithm more closely, if we enter step 7 during ID, the interventional set X is
partitioned into two components: X ∩ S′ and XZ := X \ S′. From Lemmas 33 and 37 of Shpitser
and Pearl [46], in the event we enter step 7, Px(y) is equivalent to P ′

x∩S′(y) where P ′(v) = PxZ
(v).

ID estimates PxZ
(v) with a similar computation as the step 6 base case.

To sample correctly in ID-GEN, we consider two cases.
i) X̂ = ∅: When ID-GEN visits step 7 for the first time, we have X̂ = ∅. In that case, we first update
our datasetD[V] ∼ P (v) to samples fromD′ ∼ PxZ

(v), and then we recurse on the query P ′
x∩S′(y)

over the graph GS′ . Also, XZ is outside the c-component S′. Therefore we generate a dataset from
D′ ∼ PxZ

(S′) via running directly the ConditionalGMs(.) of the ID-GEN algorithm, Algorithm 2:
ConditionalGMs(S′, XZ , G,D, X̂, Ĝ). This is attainable via the inductive assumption and Lemma
D.12. The only divergence from ID during the generation of D′ is that ID presumes pre-specified
fixed values for XZ , where we train a sampling mechanism that is agnostic a priori to the specific
choice of XZ . To sidestep this issue, we generate a dataset with all possible values of XZ and be
sure to record the values of XZ in the dataset D′[XZ , S

′].

ii) X̂ ̸= ∅: When ID-GEN has visited step 7 already once and thus X̂ ̸= ∅. We consider X̂ along
with XZ when generating D′ this time. More precisely, we update our dataset D[X̂,V] ∼ P (x̂,v)
to samples from D′ ∼ PxZ∪x̂(xz, x̂,v). Rest of the steps follow similarly as the above case. We
record the new XZ in X̂ and carry them in D′[X̂, S′] and Ĝ.

Next, we need to map the recursive call ID(Y,X ∩ S′, P ′, G) to ID-GEN. ID-GEN sends the same
parameters Y,X ∩ S′ and G as ID. Now, equivalent to passing the distribution P ′ of ID, we pass the
dataset D[X̂, S′] sampled from this distribution, including the intervened values for X̂ used to obtain
this dataset. According to Lemma D.15, this dataset is sampled from P ′ if we fix to a specific value
X̂ = x̂. Finally, ID algorithm uses specific value of XZ and then ignores those variables from X and
G for rest of the recursion. On the other hand, ID-GEN saves XZ in X̂ as X̂ = X̂∪XZ and keeps X̂
connected to Ĝ with incoming edges cut, i.e., G

S′,X̂
for the next recursive calls since ID-GEN utilizes

X̂ and the topological order in Ĝ at the base cases (step 1 and 6). By the inductive assumption, we can
generate a correct sampling network from the call ID-GEN(Y,X \XZ , GS′ ,D[X̂, S], X̂, Ĝ

{S′,X̂}
),

and hence the returned sampling graph is correct for Px(y).

Since we have shown that every recursion of ID-GEN ultimately terminates in a base case, that all
the base cases provide correct sampling graphs, and that correct sampling graphs can be constructed
in each step assuming the recursive calls are correct, we conclude that ID-GEN returns the correct
sampling graph for Px(y).

Theorem D.23. ID-GEN is complete.

Proof. Suppose we are given a causal query Px(y) as input to sample from. We prove that if ID-GEN
fails, then the query Px(y) is non identifiable, implying that it is not possible to train conditional
models on observational data and correctly sample from the interventional distribution Px(y).

If ID-GEN reaches step 5, it returns FAIL. According to the lemma D.11, ID reaches at step 5 if
and only if ID-GEN reaches at step 5. Step 5 is also the FAIL case of the ID algorithm. Since ID is
complete and returns FAIL at Step 5, the query Px(y) is not identifiable.
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E Conditional interventional sampling

Conditional sampling: Given a conditional causal query Px(y|z), we sample from this conditional
interventional query by calling Algorithm 5: IDC-GEN. This function finds the maximal set α ⊂ Z
such that we can apply rule-2 and move α from conditioning set Z and add it to intervention set
X . Precisely, Px(y|z) = Px∪α(y|z \ α) = Px∪α(y,z\α)

Px∪α(z\α) . Next, Algorithm 1: ID-GEN(.) is called to
obtain the sampling network that can sample from the interventional joint distribution Px∪α(y, z \ α).
We use the sampling network to generate samples D′ through feed-forward. A new conditional model
MY is trained on D′ that takes Z \ α and X ∪ α as input and outputs Y . Finally, we generate new
samples with MY by feeding input values such that Y ∼ Px∪α(y, z \ α) i.e, Y ∼ Px(y|z).
Theorem E.1 (Shpitser and Pearl [46]). For any G and any conditional effect PX(Y |W ) there exists
a unique maximal set Z = {Z ∈W |PX(Y |W ) = PX,Z(Y |W \ Z)} such that rule 2 applies to Z
in G for PX(Y |W ). In other words, PX(Y |W ) = PX,Z(Y |W \ Z).

Theorem E.2 (Shpitser and Pearl [46]). Let PX(Y |W ) be such that every W ∈W has a back-door
path to Y in G \X given W \ {W}. Then PX(Y |W ) is identifiable in G if and only if PX(Y,W ) is
identifiable in G.

Theorem E.3. IDC-GEN Soundness: Let PX(Y |Z) be an identifiable query given the causal
graph G = (V,E) and that we have access to joint samples D ∼ P (v). Then the sampling
network returned by IDC-GEN (Y,X,Z,D, G) correctly samples from PX(Y |Z) under Assump-
tions D.3, D.4, D.5, D.6.

Proof. The IDC algorithm is sound and complete based on Theorem E.1 and Theorem E.2. For
sampling from the conditional interventional query, we follow the same steps as the IDC algorithm
in Algorithm 5: IDC-GEN and call the sound and complete Algorithm 1:ID-GEN as sub-procedure.
Therefore, IDC-GEN is sound and complete.

F Experimental details

F.1 Training details and compute

We performed some of our experiments on a machine with an RTX-3090 GPU. We also performed
some training on 2 A100 GPU’s which took roughly 9 hours for 1000 epochs. Training for baseline
NCM took more than 50 hours to complete 1000 epochs. The baseline DCM took around 10 hours.
When variables were low-dimensional discrete, it was quite fast and took 10-20 minutes to finish all
training and get convergence. We discuss more specifics about each experiment in their individual
sections.

F.1.1 Reproducibility

For reproducibility purposes, we provide our anonimized source codes with instructions. Besides,
we provided explanations of each experiment along with model settings and hyperparameters. We
provide the code to generate the Colored MNIST dataset.

F.2 Napkin-MNIST dataset

Data Generation: First we consider a synthetic dataset imbued over the napkin graph. We consider
variables W1,W2, X, Y , where W1, X, Y are images derived from MNIST and W2 is a paired
discrete variable. We introduce latent confounders C, T , denoting color and thickness, where C can
be any of {red, greed, blue, yellow,magenta, cyan}, and T can be any of {thin, regular, thick}.
Data generation proceeds as follows: first we sample latent C, T from the uniform distribution. We
color and reweight a random digit from MNIST to form W1. W2 only keeps the digit value in
{0 . . . 9} of W1 and a restriction of its color: if the color of W1 is red, green, or blue, W2’s color
value is 0, and it is 1 otherwise. X then picks a random MNIST image of the same digit as W2’s digit
value (0-9), is colored according to W2’s color value (0-1), and is reweighted according to the latent
T . Then Y is the same original MNIST image as X , with the same thickness but colored according
to the latent C. Further, for every edge in the graph, we include a random noising process: with
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probability 0.1, the information passed along is chosen in a uniformly random manner from the valid
range.

Here we describe the data-generation procedure, and training setup for the Napkin-MNIST experiment
in full detail.

F.2.1 Data generation procedure: discrete case

As a warm-up, we outline the generation for the Napkin-MNIST dataset in a low-dimensional setting.
When we consider in the next section the high-dimensional case, we simply replace some of these
discrete variables with MNIST images which can be mapped back into this low-dimensional case.

We start by enumerating the joint distribution and the support of each marginal variable. First lets
define the sets

• COLORS := {red, green, blue, yellow, magenta, cyan}.
• RG_COLORS := {red, green}.
• THICKNESSES := {thin, regular, thick}.
• DIGITS := {0, . . . , 9}.

And then the definitions and support of each of the variables in our distribution:

• (Latent) Color ∈ COLORS.
• (Latent) Thickness ∈ THICKNESSES.
• W1 ∈ DIGITS× COLORS× THICKNESSES

• W2 ∈ DIGITS× RG_COLORS.
• X ∈ DIGITS× COLORS× THICKNESSES

• Y ∈ DIGITS× COLORS× THICKNESSES

Now we describe the full data generation procedure. A key hyperparameter is a noise-probability
p. This defines the probability that any variable flips to a uniform probability. To ease notation, we
define the function ηp(v, S) defined as

ηp(v, S) :=

{
v with probability 1− p

U(S) otherwise

and we define the mapping R : COLORS→ RESTRICTED_COLORS as

R(c) :=

{
red if c ∈ {red, green, blue}
green otherwise

Where U(S) means a uniformly random choice of S. Then our data generation procedure follows the
following steps:

• Color := U(COLORS)

• Thickness := U(THICKNESSES)

• W1 :=
(
U(DIGITS), ηp(Color, COLORS), ηp(Thickness, THICKNESSES)

)
• W2 :=

(
ηp(W1.digit, DIGITS), ηp(R(W1.color, RG_COLORS)

)
• X :=

(
ηp(W2.digit, DIGITS), ηp(W2.color, RG_COLORS), ηp(Thickness, THICKNESSES)

)
• Y :=

(
ηp(X.digit, DIGITS), ηp(Color, COLORS), ηp(X.thickness, THICKNESSES)

)
It is easy to verify that this describes the Napkin graph, as each only Color, Thickness are latent
and each variable only depends on its parents in the SCM.

Secondly, observe that this structural causal model is separable with respect to digits, colors, and
thicknesses. Since each digit only depends on parent digits, each color only depends on parent colors,
and each thickness depends only on parent thicknesses, these can all be considered separately.

31



Color

Thickness

W1

W2

X

Y

Figure 15: Joint samples from the Napkin-MNIST dataset: Samples from the Napkin-MNIST
dataset are visualized as columns above. The first row indicates the latent variable color, the second
row indicates the latent variable thickness, and the row labeled W2 is a discrete variable holding a
(color, digit), where digit is represented as the number of dots. Notice that the noising process
sometimes causes information to not be passed to children.

Further, because this distribution is only supported over discrete variables, exact likelihoods can be
computed for any conditional query. This is much more easily done programmatically, however, and
we provide code in the attached codebase to do just that. We will claim without proof that in the case
of thicknesses and digits, PY (X) = P (Y |X). However in the case of colors, PY (X) ̸= P (Y |X).
Hence we consider this case in the evaluations in the experiments section.

F.2.2 Data generation procedure: high-dimensional case

The high-dimensional case follows the discrete case of the Napkin-MNIST dataset, with a few key
changes. Namely, W1, X, and Y are MNIST images that have been colored and thickened. We
explicitly outline these changes:

• W1: A random MNIST image of the provided digit is used, then colored and thickened
accordingly (noisy from latents).

• W2 : This is a discrete variable, only encoding the (noised) digit and (noised) restricted
color of W1.

• X: This is a random MNIST image of the (noised) digit obtained from W2, then colored
with the (noised) restricted color from W2 and thickened according to the (noised) latent
thickness.

• Y : This is the same base image of X , unless the noising procedure calls for a change in
digit, then a random MNIST image of the specified image is used. The (noisy) color is
obtained from the latent distribution, and the (noisy) thickness is obtained from X .

To color the images, we convert each 1-channel MNIST image into a 3-channel MNIST image,
and populate the necessary channels to generate these colors. Note that in RGB images: if only
the RG channels are active, the image is yellow; if only the RB channels are active, the image is
magenta; if only the BG channels are active, the image is cyan. To thicken the images, we use
the MorphoMNIST Castro et al. [8] package2. Operationally, we generate a base dataset for our
experiments of size equivalent to the original MNIST dataset. That is, the training set has a size
of 60K, and the test set has a size of 10K. Because we have access to the latents during the data
generation procedure, we are able to train classifiers for each variable to identify their digit, color and
thickness. We use a simple convolutional network architecture for each of these cases and achieve
accuracy upwards of 95% in each case.

F.2.3 Diffusion training details

We train two diffusion models during our sampling procedure, and we discuss each of them in turn.

To train a model to sample from P(X,Y |W1,W2), we train a single diffusion model over the joint
(X,Y ) distribution, i.e., 6 channels. We train a standard UNet architecture where we follow the

2https://github.com/dccastro/Morpho-MNIST/
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conditioning scheme of classifier-free guidance. That is, we insert at every layer an embedding of the
W1 (image) and W2 (2-dimensional discrete variable). To embed the W1 image, we use the base of a
2-layer convolutional neural network for MNIST images, and to embed the W1 we use a standard
one-hot embedding for each of the variables. All three embeddings are concatenated and mixed
through a 2-layer fully connected network to reach a final embedding dimension of 64. Batch sizes of
256 are used everywhere. Training is performed for 1000 epochs, which takes roughly 9 hours on 2
A100 GPU’s. Sampling is performed using DDIM over 100 timesteps, with a conditioning weight of
w = 1 (true conditional sampling) and noise σ = 0.3.

To train a model to sample Y from the generated dataset (W2, X, Y ), we follow an identical scheme.
An option is to train a single diffusion model for each choice of W2 in our synthetic dataset, however,
we argue our schema still produces correct samples because: 1) W2 can be arbitrarily chosen, and
thus should not affect Y , 2) we argue that the model fidelity benefits from weight sharing across
multiple choices of W2, 3) the model is only ever called with a specified value of W2 so we always
condition on this W2.

F.2.4 Extra evaluations

As such, our evaluations include verifying the quality of the trained component neural networks
and, in the case of MNIST, a surrogate ground truth for a discrete version of the dataset. In each
experiment, for conditional sampling with high-dimensional data, we train diffusion models using
classifier-free guidance [21]. For conditional sampling of categorical data, we train a classifier using
cross-entropy loss. In addition to the evaluations presented in the main paper, we can further perform
evaluations on the component models necessary to sample PX(Y ).

P (X,Y |W1,W2): We can evaluate the model approximating samples from P (X,Y |W1,W2) on
a deeper level than just visual inspection as provided in the main paper. In particular, assuming
access to good classifiers that can predict the digit, color, and thickness of an MNIST image, we
can compare properties of the generated images with respect to the ground truth in the discrete case.
For example, assuming we have hyperparameter of random noise equal to p, we can compute the
following quantities analytically on the discrete dataset as:

• P [Xd = W2d] = 1− p+ p
10

• P [X.c = W2c] = 1− p+ p
10

• P [Xt = W1t] = (1− p+ p
3 )

2 +
(
p
3

)2 ∗ 2
• P [Yd = Xd] = 1− p+ p

10

• P [Yc = W1c] = (1− p+ p
6 )

2 + big(p6
)2 ∗ 5

• P [Yt = Xt] = 1− p+ p
3

where Vd, Vc, Vt refer to the digit, color, and thickness attributes respectively. These calculations
follow from two formulas. In a discrete distribution with support S and |S| = K:

• P [ηp(z, S) = z] = 1− p+ p
K

• P [ηp(z, S) = ηp(z, S)] = (1− p+ p
K )2 +

(
p
K

)2

∗ (K − 1)

where in the second equation, it is assumed that ηp(·, ·) are two independent noising procedures.

Then to evaluate, we can 1) consider a large corpus of joint data, 2) run each of W1, X, Y through a
classifier for digit, color, and thickness, 3) evaluate the empirical estimate of each desired probability.
We present these results for the synthetic dataset Dsynth sampled from the diffusion model approxi-
mating P (X,Y |W1,W2), a dataset Dorig generated according to the data generation procedure, and
Ptrue the true analytical probabilities. These results are displayed in the Table 1.
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Table 2: Color probability distribution of the sampled images. P (y.c|x.c = red) is biased towards
[R, G, B] while P (y.c|do(x.c = red)) is not.

Predicted color probabilities Red Green Blue Yellow Magenta Cyan
Conditional model: P (y.c|x.c = red) 0.1889 0.4448 0.1612 0.1021 0.0232 0.0798

Ours: P (y.c|do(x.c = red)) 0.1278 0.2288 0.2097 0.1445 0.1177 0.1715

Figure 16: Samples from P (I2|do(Male = 0). Row 1: original I1, Row 2: translated I2 by StarGAN
and Row3: translated I2 by EGSDE.

Table 1: Evaluations on the Napkin-MNIST generated dataset. V.d, V.c, V.t refer to the digit,
color and thickness respectively of variable V . The first column is with respect to samples generated
from diffusion model P̂ (X,Y |W1,W2), Image Data is the dataset used to train P̂ , Discrete Data is
the empirical distribution according to a discrete Napkin-MNIST, and the ground truth is analytically
computed. Ideally all values should be equal across a row. While our synthetic dataset generated from
P̂ is not a perfect representation, it is quite close in all attributes except thickness. This is because the
classifier for thickness has some inherent error in it, as evidenced by the mismatch between the base
data and ground truth in the thickness rows.

P̂ (Y,X |W1,W2) Image Data Discrete Data Ground Truth

P [X.d = W2.d] 0.931 0.895 0.909 0.910
P [X.c = W2.c] 0.964 0.950 0.950 0.950
P [X.t = W1.t] 0.683 0.776 0.879 0.873
P [Y.d = X.d] 0.927 0.895 0.909 0.910
P [Y.c = W1.c] 0.847 0.841 0.841 0.842
P [Y.t = X.t] 0.830 0.851 0.933 0.933

F.2.5 MNIST baseline comparison

Here we provide some additional information about the baseline comparison we showed in Section 4.1.
Although the implementation of the baseline methods is different, we considered the performance of
each method after running them for 300 epochs (until good image quality is obtained). The NCM
algorithm took around 50 hours to complete while our algorithm took approximately 16 hours to
complete. We observe the probabilities in Table 2.

In the generated samples from the conditional model, the color of digit image X and digit image Y are
correlated due to confounding through backdoor paths. For example, for a digit image X with color as
red, Y takes a value from [Red, Green, Blue] with high probability. Thus, the conditional model does
not have the ability to generate interventional samples. On the other hand, our algorithm generates
samples from the interventional distribution P (y|do(x)) and the generated samples choose different
colors:[Red, Green, Blue, Yellow, Magenta, Cyan] with almost the same probability. Therefore, our
algorithm shows superior performance compared to baselines and illustrates the high-dimensional
interventional sampling capability.

F.3 CelebA experiment

Here we provide some additional information about the CelebA image to image translation experiment
we showed in Section 4.2. We used a pre-trained classifier from this repository: https://github.
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Figure 17: Multi-domain image translation by EGSDE. Images in rows 1 and 3 are the original
images (male domain) and images in rows 2 and 4 are translated images (female domain). Table 3
shows, 29.16% of the total images are translated as a young person.

Figure 18: Performance comparison of multi-domain image translation between StarGAN and
EGSDE.

com/clementapa/CelebFaces_Attributes_Classification. We use the pre-trained model
of EGSDE from this repository:https://github.com/ML-GSAI/EGSDE We use the pre-trained
model of StarGAN from this repository:https://github.com/yunjey/stargan. We generated
850 samples withe these models. Note that although EGSDE generates better quality (blur-free)
images compared to StarGAN (blurry), it makes its samples more realistic by adding different non-
causal attributes such as Y oung or Attractive. As a result, it will generate Female samples from a
specific part of the image manifold. As a result, it might lack the ability to generate a different variety
of images (for example: old females). The reason behind this is possibly the correlation in the dataset
it is trained on. For example, in the CelebA dataset, we observe a high correlation between Female
and Y oung while also a high correlation between Male and Old. As a result, when EGSDE converts
the images whether the Male is young or old, it converts them to a young female. On the other
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Table 3: Additional attributes added (in percentage) in the translated images.
WearingLipstick HeavyMakeup ArchedEyebrows OvalFace Attractive Young

Added Attribute (%) 87.5 79.16 66.66 54.16 37.5 29.16

Figure 19: Samples from P (I2|Y oung = 1, do(Male = 0)) generated by StarGAN.

Models Distribution
Matched TVD ↓

MN P (N) 0.0595
ME P (E|N,R) 0.0512
MA P (A|N,E,R) 0.0451
ML P (L|N,E,A) 0.042
MX P (X|N,E,A,L)Pre-

trained

Figure 20: CXR conditional models in the sampling network.

hand, starGAN does not change noncausal attributes, but it also does not properly change the causal
attributes as well.

Baselines: Existing algorithms such as Xia et al. [59], Chao et al. [11] do not utilize the causal effect
expression of P (A|do(Male = 0)), rather they train neural models for each variable in the causal
graphs which will be costly in this scenario. Even if they utilize pre-trained models, they have to train
models for the remaining variables to match the whole joint and perform sampling-based methods to
evaluate P (A|Young = 1, do(Male = 0)). Note that the ground truth if our considered attributes
are causally related with an image of a Female is unknown. We assume that they are causal in the
CelebA dataset based on expert knowledge [26].

F.3.1 Conditional image generation

In Figure 19, we show images generated from conditional interventional distribution.

F.4 Explaining foundation model output for chest X-ray generation

F.4.1 Causal graph

Below we shortly describe the reasoning for our causal graph assumption.

Nodes and Edges:

• Prompt/Report (R) is variable that represents textual input. In CXR datasets such as MIMIC-
CXR, it is generally doctor written text report indicating the existence of different attributes.
In our experiment, we consider it as an input prompt feed by some user who is interested
to understand how the prompt affects other attributes and the CXR image generation. We
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assume that the LLM labeler can extract effusion (E) and atelectasis (A). Thus, we consider
R→ E and R→ A.

• Pneumonia(N ) is an infection that inflames the air sacs in one or both lungs [31].

• Pleural effusion (E) happens when fluid builds up in the space between the lung and the
chest wall. This can occur for reasons such as pneumonia or complications from heart, liver,
or kidney disease. Pleural effusion also involves fluid in the lung area. It is common in
patients who develop pneumonia. At least 40-60% of patients with bacterial pneumonia will
develop a pleural effusion of varying severity. Thus, we consider N → E .

• Atelectasis (A) is one of the most common breathing complications after surgery. Here,
complication is a medical problem that occurs during a disease, or after a procedure or
treatment [13]. External pulmonary compression by pleural fluid or air (i.e, pleural effusion,
pneumothorax, etc.) may cause atelectasis [33]. Thus, we consider the edge E → A. Also,
various types of pneumonia, which is a lung infection, can cause atelectasis [32]. Therefore,
we consider the edge N → A.

• Lung opacity (L) is a lack of transparency, i.e., an opaque or non-transparent area on an
x-ray/radiograph. [18]. We consider pneumonia, effusion and atelectasis to be causes for
lung opacity. Thus we consider edges N → L,E → L,A→ L.

• Xray Image (X) represents different attributes such as atelectasis, effusion and lung opacity
in visible radiography form. Thus, we consider edges E → X,A→ X,L→ X .

• N ↔ R represents the presence of a hidden confounder between pneumonia and the input
prompt/report. We followed [9] to consider the hospital location as the unobserved variable
from where the chest x-ray datasets where collected. They discuss that when we merge/mix
different datasets and train models on that different types of biases are introduced. For
example, in many scenarios, most patients are screened in certain health services and highly
suspicious patients are derived to a different area. Another example of introducing bias is,
when we aim to increase the number of controls or cases, we expand the dataset with samples
coming from significantly different origins and labeled with unbalanced class identifiers.
Since we utilized foundation models such as [16, 10] which are trained in multiple chest
radiograph datasets, they are prone to above kind of bias. In some cases, to discriminate
between cases and controls, these models might depend on the origins/location based details
rather than finding actual features related to the disease. Thus, we consider that hospital
locations have some effect on the text report on which the models were trained on and
also how likely people were affected by pneumonia infection in those areas. Therefore, we
consider the presence of a confounder between the text report (R) and pneumonia (N ).

Note that all our results are based on the MIMIC-CXR dataset and our assumption on the causal
graph. Thus, our results should not be used to make medical inferences without an expert opinion. In
the real world, the domain-specific causal graph might change. Our algorithm can be applied on the
domain specific causal graph and the dataset to obtain correct results.

F.5 Covid X-Ray dataset

F.5.1 Data preprocessing

Note that a full pipeline of data preparation is contained in cxray/prep_cxray_dataset.sh in the
provided codebase. We start by downloading the corpus approximately 30K Covid X-Ray images3.
Then we download Covid-19 labels and Pneumonia labels4 and attach labels to each image. Then
we convert each image to black-white one-channel images and rescale each to a size of (128× 128)
pixels. Finally, a random split of the 30K images is performed: keeping 20K to be used during
training, and 10K to be used as validation images. Note that the labels come with a set of 400 test
images, but 400 images is too small to be an effective test set (say for FID computations). We will be
explicit about where we use each data set.

3https://www.kaggle.com/datasets/andyczhao/covidx-cxr2
4https://github.com/giocoal/CXR-ACGAN-chest-xray-generator-covid19-pneumonia
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Figure 21: Two prompts, their CXR images, and inferred attributes with the likelihood to appear.
Blue regions indicate changes compared to the healthy X-ray.

F.5.2 Diffusion training details

We train a diffusion model to approximate P (X|C). To do this, we use a standard UNet and classifier-
free guidance scheme. We train for 100K training steps over the 20K-sized training set, using a
batch size of 16. This takes roughly 10 hours on a single A100. The same classifier-free guidance
parameters are used as in the NapkinMNIST diffusion training.

F.5.3 Calibrated classifier training details

To train a classifier to sample from P (N |C,X), we note that our inputs are a (1, 128, 128) image
and a binary variable. Our architecture is as follows: we create an embedding of X by modifying the
final linear layer of a ResNet18 to have output dimension 64 (vs 1000), and modify the input channels
to be 1. We create an embedding for N by using a standard embedding layer for binary variables,
with embedding dimension 64. These embeddings are then concatenated and pushed through 3 fully
connected layers with ReLU nonlinearities and dimension 128. A final fully-connected layer with 2
outputs is used to generate logits.

Training follows a standard supervised learning setup using cross entropy loss. We train for 100
epochs using a batch size of 256 and a standard warmup to decaying learning rate (see code for full
details).

We note the deep literature suggesting that even though classifiers seek to learn P (N |X,C), neural
networks trained using cross entropy loss do not actually do a very good job of estimating this
distribution. Training attains an accuracy of 91.2% on the test set. Calibrated classification seeks
to solve this problem by modifying the network in a way such that it more accurately reflects this
distribution. We follow the standard approach using temperature scaling of the logits, where a
temperature is learned over the validation set, using LBFGS with a learning rate of 0.0001 and a
maximum of 10K iterations. This does not affect the test accuracy at all, but drastically improves the
ECE and MCE reliability metrics. See Guo et al. [17] for a further discussion of temperature scaling.

F.6 Covid X-Ray dataset

Data generation: Next we apply our algorithm to a real dataset using chest X-rays on COVID-19
patients. Specifically, we download a collection of chest X-rays (X) where each image has binary
labels for the presence/absence of COVID-19 (C), and pneumonia (N) [57] 5. We imbue the causal

5Labels are from https://github.com/giocoal/CXR-ACGAN-chest-xray-generator-covid19-pneumonia/
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Figure 22: Reliability plots for P(N|C,X):. Reliability plots which overlay accuracy versus
classifier confidence. (Left) Reliability plot for P (N |C,X) without calibration. (Right) Reliability
plot for P (N |C,X) with temperature scaling calibration applied.

Real
(C=0)

Generated
(C=0)

Generated
(C=1)

Real
(C=1)

Figure 23: Generated Covid XRay Images: Generated chest XRay images from our diffusion
model, separated by class and compared against real data.

Table 4: (Left) Class-conditional FID scores for generated Covid XRAY images (lower is better).
Generated C = c, means we sample from the diffusion model conditioned on c. Real (C = c) refers
to a held out test set of approximately 5k images, partitioned based on C-value. Low values on
the diagonal and high values on the off-diagonal imply we are sampling correctly from conditional
distributions. (Right) Evalution of Interventional Distribution Pc(n). We evaluate the distributions
Pc(n = 1) for three cases for the Covid-XRAY dataset. Diffusion uses a learned diffusion model
for P (x|c), No Diffusion samples P (x|c) empirically from a held out validation set, and no latent
evaluates the conditional query assuming no latent confounders in the causal model.

FID (↓) Real: C = 0 Real: C = 1

Generated: C = 0 15.77 61.29
Generated C = 1 101.76 23.34

Pc(n = 1) c = 0 c = 1

Diffusion 0.622 0.834
No Diffusion 0.623 0.860
No Latent 0.406 0.951

structure of the backdoor graph, where C → X , X → N , and there is a latent confounder affecting
both C and N but not X . This may capture patient location, which might affect the chance of
getting COVID-19, and quality of healthcare affecting the right diagnosis. Since medical devices are
standardized, location would not affect the X-ray image given COVID-19. We are interested in the
interventional query Pc(n): the treatment effect of COVID-19 on the presence of pneumonia.

Component Models: Applying ID-GEN to this graph requires access to two conditional distributions:
P (x|c) and P (n|x, c). Since X is a high-dimensional image, we train a conditional diffusion model
to approximate the former. Since N is a binary variable, we train a classifier that accepts X,C and
returns a Bernoulli distribution for N . The generated sampling network operates by sampling an
X given the interventional C, and then sampling an auxiliary C ′ ∼ P (c′) and feeding X,C ′ to the
classifier for P (n|x, c), finally sampling from this distribution.

Evaluation: Again we do not have access to the ground truth. Instead, we focus on the evaluation of
each component model, and we also perform an ablation on our diffusion model. We first evaluate
the image quality of the diffusion model approximating P (x|c). We evaluate the FID of generated
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samples versus a held-out validation set of 10K X-ray images. When samples are generated with C
taken from the training distribution, we attain an FID score of 16.17. We then evaluate the conditional
generation by comparing class-separated FID evaluations and display these results in Table 4 (left).
The classifier estimating P (n|x, c) has an accuracy of 91.9% over validation set. We note that we
apply temperature scaling [17] to calibrate our classifier, where the temperature parameter is trained
over a random half of the validation set. Temperature scaling does not change the accuracy, but it
does vastly improve the reliability metrics; see Appendix.

Finally we evaluate the query of interest Pc(n). Since we cannot evaluate the ground truth, we
consider our evaluated Pc(n) versus an ablated version where we replace the diffusion sampling
mechanism with P̂ (x|c), where we randomly select an X-ray image from the held-out validation set.
We also consider the query Pc(n) if there were no latent confounders in the graph, in which case, the
interventional query Pc(n) is equal to P (n|c). We display the results in Table 4 (right).

G Pseudo-codes

Algorithm 5 IDC-GEN (Y,X,Z,D, G)

1: Input: target Y , intervention X , conditioning set Z. training data D, G.
2: Output: A DAG of trained model to sample from PX(Y|Z).
3: if ∃α ∈ Z such that (Y ⊥⊥ α|X,Z \ {α})G

X,α
then

4: return IDC-GEN (Y,X ∪ {α}, Z \ {α},D, G)
5: else
6: H1= ID-GEN (Y ∪ Z,X,D, X̂ = ∅, Ĝ = G)
7: D′ ∼ H1(X)
8: H2 = ∅
9: Add node (X, ∅) and (Z, ∅) to H2

10: Let MY be a model trained on {Y,X,Z} ∼ D′ such that MY (X,Z) ∼ P ′(Y |X,Z) i.e., MY (X,Z) ∼
PX(Y |Z)

11: Add node (Y,MY ) to H2

12: Add edge X → Y and Z → Y to H2

13: return H2

Algorithm 6 ID(y,x, P,G)

1: Input: y, x value assignments , distribution P , G.
2: Output: Expression for Px(y) in terms of P or Fail(F, F ′).
3: if x = ∅ then {Step:1}
4: Return

∑
v\y P (v)

5: if V \An(Y)G ̸= ∅ then {Step:2}
6: Return ID(y,x ∩An(Y)G,

∑
V\An(Y)G

P,GAn(Y))
7: Let W = (V \X) \An(Y)G

X
{Step:3}

8: if W ̸= ∅ then
9: Return ID(y,x ∪w, P,G)

10: if C(G \X) = {S1, . . . , Sk} then {Step:4}
11: Return

∑
v\(y∪x)

∏
i ID(si,v \ si, P,G)

12: if C(G \X) = {S} then
13: if C(G) = {G} then {Step:5}
14: Return FAIL(G,G ∩ S)
15: if S ∈ C(G) then {Step:6}
16: Return

∑
s\y

∏
{i|Vi∈S} P (vi|vi−1

π )

17: if ∃S′ s.t. S ⊂ S′ ∈ C(G) then {Step:7}
18: Return ID(y,x ∩ S′, P =

∏
{i|Vi∈S′} P (Vi|V (i−1)

π ∩ S′, v
(i−1)
π \ S′), GS′)

40



Algorithm 7 IDC(Y,X,Z, P,G)

1: Input: x, y, z value assignments, P a probability distribution, G a causal diagram (an I-map of P ).
2: Output: Expression for PX(Y |Z) in terms of P or Fail(F, F’).
3: if ∃α ∈ Z such that (Y ⊥⊥ α|X,Z \ {α})G

X,α
then

4: return IDC(Y,X ∪ {α}, Z \ {α},D, G)
5: else
6: let P ′ = ID(y ∪ z,x, P,G)
7: return P ′/

∑
y P ′
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly enlist our claims and contributions in the abstract and in the
introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We properly acknowledged our limitations in Appendix A.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We provide all our theoretical claims and their proofs in Appendix D.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer:[Yes]
Justification: We discuss reproducibility in Appendix F.1.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We provide our source code as supplementary material and also as a github
repo.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the experimental details in Appendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provided appropriate information about the statistical significance of the
MIMIC-CXR experiment in Section 4.3. We did not provide such evaluations for the
Colored-MNIST or CelebA datasets, as we obtained consistent results in multiple runs. We
plan to run our algorithm on larger datasets and will include error bars in those experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We discuss about the computing resources for each experiment in Appendix F.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, our research in the paper conform, in every respect, with the NeurIPS
Code of Ethics

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impact of our work in Appendix B.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper does not pose such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We properly cited papers of all models, datasets we used.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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