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Abstract

Amidst the recent strides in evaluating Large Language Models for Code (Code
LLMs), existing benchmarks have mainly focused on the functional correctness
of generated code, neglecting the importance of their computational efficiency.
To fill the gap, we present Mercury, the first code efficiency benchmark for Code
LLMs. It comprises 1,889 Python tasks, each accompanied by adequate solutions
that serve as real-world efficiency baselines, enabling a comprehensive analysis
of the runtime distribution. Based on the distribution, we introduce a new metric
Beyond, which computes a runtime-percentile-weighted Pass score to reflect
functional correctness and code efficiency simultaneously. On Mercury, leading
Code LLMs can achieve 65% on Pass, while less than 50% on Beyond. Given that
an ideal Beyond score would be aligned with the Pass score, it indicates that while
Code LLMs exhibit impressive capabilities in generating functionally correct code,
there remains a notable gap in their efficiency. Finally, our empirical experiments
reveal that Direct Preference Optimization (DPO) serves as a robust baseline for
enhancing code efficiency compared with Supervised Fine Tuning (SFT), which
paves a promising avenue for future exploration of efficient code generation. 1

1 Introduction

The domain of code generation, which aims to empower computers to autonomously generate code
based on natural language task descriptions (NL2Code), has long been considered a promising way
to facilitate interaction between humans and computers [51, 49]. The recent emergence of Large
Language Models (LLMs) has spurred a new wave of NL2Code models [38, 42, 14, 33, 4], which
leverage the impressive language understanding and generative capabilities of LLMs to drive forward
the ambitious goal of synthesizing high-quality code from natural language instructions.

To measure the quality of code, recent code generation benchmarks mainly focus on evaluating their
functional correctness via test case fuzzing [31]. This approach assesses the outcome congruence
between the LLM-generated and canonical solutions by executing bespoken test cases. For instance,
HumanEval [9] and MBPP [3] collected a small but fine set of handcrafted tasks with test cases.
EvalPlus [30] further consolidates these two above benchmarks by augmenting the case scope. On the
contrary, APPS [18] widely gathered over 5,000 public coding tasks from online platforms. Despite
these strides, there is a discernible oversight in current code generation benchmarks concerning the
code efficiency evaluation, although that is critical in software development [50, 52]. Moreover,
handcrafting diverse solutions and test cases to cover all scenarios is infeasible [30]. In light of these
findings, we highlight vital limitations inherent in the existing code generation benchmarks:

1Our code and data are available on GitHub: https://github.com/Elfsong/Mercury.
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Figure 1: Executing these two LLM-generated codes on 100 test cases. While both codes successfully
follow the task instruction and pass all test cases, the right snippet notably excels in code efficiency,
completing in a mere 121 ms compared to the 5,714 ms consumed by the left snippet. As Code
LLMs become widely used in the real world, code efficiency determines factual productivity, where
Mercury can gauge the vital metric.

1. Absence of Code Efficiency Evaluation. Existing code generation benchmarks focus on assessing
functional correctness while overlooking the evaluation of code efficiency [9, 3, 18]. As illustrated
in Figure 1, despite both code snippets can handle the sorting task functionally, the right efficient
solution (121 ms) is nearly 50 times faster than the left inefficient solution (5,714 ms). This striking
runtime differentiation underscores the necessity of incorporating code efficiency assessments
within code generation benchmarks, encouraging Code LLMs to produce not only correct but also
efficient code.

2. Insufficient Test Case Coverage. As shown in Table 1, most code generation benchmarks
manually build a small number of test cases or extract the accompanying test cases from existing
resources, potentially overlooking edge cases and nuanced code behaviors [9, 3]. For example,
Figure 8 displays that HumanEval #55 contains only 3 test cases, testing up to the 12th Fibonacci
number [9]. Its given canonical solution will quickly reach the recursion depth limitation when
computing a larger Fibonacci number (the recursion limitation depends on the environment).
Therefore, notwithstanding the generated code satisfies all test cases, such success does not
necessarily equate to assurance of functional correctness and much less to code efficiency.

3. Lack of Task Diversity. Another noticeable deficit of existing code generation benchmarks is
the insufficient diversity and complexity in their tasks [9, 3, 31]. Since most benchmarks only
consist of elementary-level programming tasks, recent Code LLMs can effortlessly tackle most
tasks regardless of their actual capacities [52]. This flaw results in these benchmarks failing to
pose a substantial challenge to Code LLMs and truly reflect their underlying potential.

Code Efficiency. Code efficiency refers to the performance measure of time and space complexity
to accomplish a specific task. Efficient code can improve user experience, save energy, and make
applications more sustainable and cost-effective. Compared with the scalable memory space, execu-
tion time is the performance bottleneck of most codes. Consequently, this work focuses on the time
dimension of code efficiency.

Our Benchmark. In this work, we introduce Mercury, a novel code generation benchmark designed
to assess and improve the code efficiency of Code LLMs. As depicted in Figure 2, Mercury comprises
1,889 Python programming tasks with three difficulty stratification, which is divided into two datasets
for model evaluation and fine-tuning separately. For each evaluation task, we assign a test case
generator to remedy the shortfall of test case coverage. In measuring code efficiency, the primary
challenge stems from normalizing the absolute runtime across tasks that have diverse runtime ranges.
Thus, we collect and locally execute numerous historical solutions for each task to form a runtime
distribution and leverage the runtime percentile of LLM-generated code on the distribution instead of
the absolute runtime to evaluate code efficiency. Furthermore, to mitigate performance discrepancies
attributed to irrelevant processes and diverse hardware configurations, we set up an isolated sandbox
environment for task execution to establish local runtime distributions.
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Figure 2: An overview of Mercury dataset. Each Mercury task has a task description, a test case
generator, a prompt & entry point, and corresponding solutions. To evaluate code efficiency, we
introduce the Beyond metric, which signifies the runtime percentile of the LLM-generated code on
the runtime distribution supported by corresponding solutions. In this example, the LLM-generated
code executes in 521 ms, outpacing 86.18% of collected solutions on the runtime distribution.
Consequently, the Beyond metric in this case is 86.18%.

Contribution. Our work aimed to fill the code efficiency evaluation gap in code generation bench-
marks with the following key contributions:

• Dataset. We collect a novel code generation dataset Mercury designed to assess and improve
Code LLM code efficiency in Section 2, accompanied by an extensible open-source data collection
framework for enriching Mercury with more tasks and programming languages.

• Metric. We propose the first efficiency-focused code generation metric Beyond and establish a
benchmark to evaluate leading Code LLMs using this metric in Section 3.

• Baselines. In Section 4, we detail our extensive analysis of two baselines to enhance code
efficiency while maintaining functional correctness. Experiment results reveal that despite Code
LLMs excelling in functional correctness, there is still considerable potential to elevate efficiency.

Table 1: A comparison of Mercury to existing NL2Code benchmarks. Mercury distinguishes itself by
including a set of distilled high-quality solutions and a dedicated test case generator for each task. *
signifies that the solution number can be further expanded by the data collection framework.

Benchmarks Tasks Sources Cases Solutions Difficulty Efficiency
HumanEval 164 Crowd Source 8.08 1 1 ✗
MBPP 257 Crowd Source 3.01 1 1 ✗
APPS 5,000 Online 21.2 23.4 3 ✗
Mercury 256 Online + Filters +∞ 18.4 * 3 ✓

2 Mercury Datasets

We initiate this work by collecting public programming tasks on Leetcode [27]. Subjecting these
questions to a series of filters, we distilled them down to 1,889 high-quality tasks. A difficulty-
balanced subset of 256 tasks was randomly selected to form the Mercury-eval benchmark, which
obtains an average of 18.4 solutions for each problem. The remaining tasks have been designated
as the Mercury-train dataset for baseline training (detailed data distribution is listed in Appendix
Table 6). To enhance clarity within this paper, we employ Mercury to denote Mercury-eval unless
otherwise specified.
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Data Schema. As illustrated in Figure 2, Mercury offers a unified data schema to streamline the
evaluation procedure and bolster further development endeavors. The data scheme encompasses these
principal components: (1) Task Description contains the task instruction interpreted into a plain
text format, along with illustrative examples and constraints of inputs and outputs. (2) Test Case
Generator refers to a Python code snippet designed to automatically produce a comprehensive set
of test cases in accordance with the specifications laid out in the task description. (3) Solutions are
sampled from Leetcode historical submissions. Each solution within Mercury has undergone rigorous
testing, and Locality-Sensitive Hashing [21] is employed to prevent the inclusion of any identical
solutions. (4) Prompts and Entry Points where prompts act as the initiating prefixes for LLM code
generation and entry points denote the start point for code execution. We delineate the definition of
Mercury fields in the Appendix Table 5.

Task Filters. Mercury tasks originate from public programming problems on Leetcode. To assure the
quality and uniformity of the dataset, we distilled gathered tasks based on the following conditions:

1. Number of Solutions. To establish a solution runtime distribution for each task, we filtered out
tasks having less than two associated solutions. After excluding these tasks, Mercury tasks possess
an average of 18.4 unique solutions.

2. Restricted Data Structure. Above the inherent Python data types, Mercury also incorporates two
custom data types: Binary Tree and Linked List (the specific structure definitions can be found in
Appendix Figure 4), which increases Mercury’s diversity and escalates its difficulty level. Tasks
that contain other data structures will be removed.

3. Unique Outputs. Certain Leetcode tasks may permit non-unique answers. For example, a result
list can be returned in any order. Evaluating all possible answers can drastically complicate
the test case verification process. To eliminate this problem, we harness the corresponding
test case generator to generate N test cases Ti = ⟨Inputi, Outputi⟩ s.t. i ∈ {0, 1, · · · , N}
and execute T on different solutions Sm s.t. m ∈ {0, 1, · · · ,M} to observe if all Outputi =
Sm(Inputi) s.t. i ∈ {0, 1, · · · , N} remain identical. Any tasks that potentially yield non-unique
answers were subsequently excluded.

Task Difficulty. Most existing NL2Code benchmarks predominantly comprise simplistic tasks,
leading to a situation where LLMs of varied capabilities address most tasks effortlessly and yield
indistinguishable high scores [52, 22]. To alleviate this issue, Mercury inherits the difficulty cate-
gorization from Leetcode, i.e., Easy, Medium, and Hard. The stratification aims to probe the upper
bounds of Code LLM capabilities, delivering a more evident distinction between various Code LLMs.

Test Case Generator. Manual creation of test cases can be a laborious process. To gather sufficient
test cases to conduct an exhaustive assessment, we assign a test case generator for each evaluation
task, which can produce a full range of test cases to thoroughly evaluate the functional correctness
and code efficiency of given solutions. Specifically, We feed pretty_content into GPT-4 [38] to
generate an initial test case generator snippet. To confirm the effectiveness of the initial generator,
we subsequently create 24 test cases by the generator and submit these cases to the Leetcode Online
Judge (OJ) system. Should any of the generated test cases not pass the LeetCode OJ validation, we
manually revise the generator until all generated cases can be successfully validated.

3 Code Efficiency Metric

In the domain of software development, code efficiency can be defined as the absolute code runtime
for executing a given test case set [8]. Nonetheless, a primary obstacle in benchmarking code
efficiency is normalizing runtime measurements across disparate environments. For instance, a
sub-optimal solution might have a faster absolute runtime on high-performance hardware than an
optimal solution on low-performance hardware. Moreover, different operation systems and code
interpreters may also fluctuate the code runtime. Therefore, absolute runtime fails as a consistent
and reliable code efficiency benchmark metric. To address this issue, an intuitive approach involves
modeling a devoted runtime distribution for each task and calculating the average runtime percentiles
of LLM solution samples over the runtime distribution. With this idea in mind, we proposed a
normalized code efficiency metric Beyond:

pnk =
max(Rn)− clip(rnk ,min(Rn),max(Rn))

max(Rn)−min(Rn)
, Beyond =

∑n=0,k=0
N,K pnk
N ·K

. (1)
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Where N is the total number of tasks, and K denotes the size of LLM solution samples. For a
specific task n ∈ N , Rn is the runtime array corresponding to the collected historical solutions,
and rnk s.t. k ∈ K denotes the runtime for the k-th LLM solution. clip is a function to constraint
the value rnk in the range [min(Rn),max(Rn)]. Runtime is defined as the period from the solution
instantiation to the evaluation across all test cases, culminating with a successful termination (More
engineering details can be found in Appendix Section A.3). Since any case failure of the k-th solution
results in rnk → +∞ and then pnk = 0, Beyond can reflect functional correctness as well.

Untrusted Code Execution. Since most Code LLMs are trained on an extensive code corpus from
unverified sources, there is an intrinsic risk that these models may produce malicious code when
driven by specific meticulous prompts [9]. The direct execution of synthesized code raises significant
security concerns. To alleviate the risk of running untrusted code, we engage a robust sandbox to
execute code in an isolated environment. Sandbox details are deliberated in Appendix A.3

Environment-agnostic Evaluation. To ensure fair comparison across diverse configurations, we
run each task n with corresponding test cases locally and aggregate their runtimes into the runtime
array Rn. Appendix Figure 10 illustrates the Beyond score of two LLMs (‘deepseek-coder-33b’ and
‘deepseek-coder-6.7b’) over three distinct hardware specifications: the micro-tier (0.25 CPU cores),
the small-tier (0.5 CPU cores), and the standard-tier (1 CPU core). The results demonstrate that
Beyond remains consistent over different hardware configurations.

4 Experiments
In this section, we present a series of baseline experiments to improve code efficiency by training
on Mercury-train dataset and assessing on the Mercury-eval dataset. Our empirical study encom-
passes 10 open-source LLMs with a broad parameter spectrum from 1.3 to 34 billion. For each
LLM, we compare the performance of the original model and two optimization strategies, Super-
vised Fine-Tuning (SFT) and Direct Preference Optimization (DPO), for their potential to optimize
LLM generating functionally correct and computationally efficient code. Finally, we analyzed the
underlying factors contributing to the failure of LLMs on the Mercury-eval dataset.

4.1 Baselines
Supervised Fine-Tunning (SFT). Within the SFT [6] method, an LLM undergoes additional training
on a small dataset, which aims to specialize the LLM to perform better on certain tasks correlated to
the training dataset. To optimize the code efficiency performance of Code LLMs, the most intuitive
strategy is to fine-tune the Code LLM using optimal runtime solutions. In our experimental setup, we
apply a unified prompt template for each Code LLM to ensure a fair comparison. The “pretty_content”
attribute fills the <task_content> placeholder, the “prompt” attribute fills the <code_starter> place-
holder, and the <code_completion> placeholder is completed with the fastest solutions. To steer
Code LLMs towards generating the intended code completion format, we prepend a one-shot example
to the prompt template. Appendix Figure 9 presents the generation template.

Direct Preference Optimization (DPO). Although SFT exemplifies a straightforward approach,
it is susceptible to the pitfall of catastrophic forgetting [24]. To enable LLMs to align with human
preferences while preserving their functional capabilities, existing methodologies employ reinforce-
ment learning with human preference feedback (RLHF). However, RLHF introduces additional
model complexities and potential instabilities, necessitating significant computing resources and
extra reward model training [54, 5, 45]. DPO [40] bypasses these challenges by explicitly mapping
reward functions and the optimal objective. This connection demonstrates that maximizing rewards
under specific constraints can be effectively addressed through a singular training phase based on data
reflecting human preferences. The DPO training procedure is elaborated in Appendix Section A.4.

4.2 Functional Correctness Benchmarks
HumanEval assesses the functional correctness of synthesized code derived from docstrings. It
contains 164 distinct Python tasks that cover several programming areas, such as language com-
prehension, algorithm development, and simple mathematics [9]. MBPP has a sanitized collection
of 257 entry-level Python programming problems. Each problem in this dataset consists of three
components: a task description, an associated code solution, and three automated test cases to validate
the code functionality [3]. Both HumanEval and MBPP harness the metric Pass to measure the Code
LLMs’ functional correctness, where a task is considered solved if the given solution passes all test
cases, and the total fraction of solved tasks is reported as Pass = Nsolved/Ntotal [25].
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4.3 Experimental Setups

Configuration. We employ LoRA [19] for both SFT and DPO experiments. We set lora_alpha = 16,
lora_dropout = 0.05, and lora_r = 8. The optimizer is Adamw [32], and the learning rate is 1e-4
and 5e-5 for SFT and DPO, respectively. For SFT experiments, we train each model in 200 steps.
For DPO experiments, we set β = 0.1 and training_step = 500. For code generation, we set the
temperature as 0.2. For the Beyond metric calculation, we set K = 5. All experiments are conducted
on two A100-80G GPUs. We employed Accelerate [17] for distributed training, DeepSpeed [1] for
gradient partitioning, and BitsandBytes [15] for model quantization.

Training Data. We use Mercury-train for model training. As for the SFT process,
we nominate the fastest solution as the supervised label, then format the training data as
⟨pretty_content, prompt, solution_optimal⟩. Regarding the DPO procedure, we select the top 5
pairs of solutions that exhibit the most significant discrepancy in runtime. The training date format is
⟨pretty_content, prompt, solution_fast, solution_slow⟩.

4.4 Empirical Results
Functional correctness is the prerequisite for evaluating code efficiency for the code generation task.
Our primary objective is to enhance the code efficiency without compromising the functional correct-
ness. To this end, we first introduce the existing metric Pass to gauge the functional correctness [9]
and then leverage Beyond to provide a holistic evaluation, encompassing both code efficiency and
functional correctness. Finally, we measure the Gap between Beyond and Pass to reflect the baseline
ability of improving efficiency while preserving correctness. These experiments aim to investigate
the innate capabilities of cutting-edge Code LLMs and their potential after baseline fine-tuning.
Therefore, extensive parameter optimization and prompt engineering were not pursued for the Pareto
front. To deliver a comprehensive evaluation, we have further integrated the HumanEval and MBPP
benchmarks as supplementary measures for appraising functional correctness [9, 3].

Figure 3: The horizontal axis represents the score for functional correctness, while the vertical
axis indicates the score for code efficiency. The diagonal line represents perfect efficiency to the
corresponding correctness. Points closer to this line indicate better efficiency improvements relative
to their correctness. The left figure illustrates the performance of the baseline model, whereas the
right one depicts the performance after DPO tuning.
Functional Correctness. Table 2 lists Pass scores over various Code LLMs, showing that larger
models tend to provide better functional correctness. Except for the smallest model “deepseek-coder-
1.3b-base”, DPO invariably enhances the overall Pass scores across most Code LLMs, while SFT
diminishes functional correctness on the largest two Code LLMs. These findings suggest that smaller
models may struggle to integrate new knowledge while preserving their original functionality, and SFT
may induce catastrophic forgetting in the pursuit of heightened code efficiency. Moreover, it is evident
on Mercury that Pass scores of each model consistently decline as the difficulty level increases,
indicating that the Mercury difficulty stratification is effective at probing the upper limitation of each
Code LLM compared to the auxiliary benchmarks.
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Table 2: Functional correctness (Pass) evaluation results. The underlined values denote the top-
performed approaches among the original model and baselines. The bolded values denote the best
performance on each benchmark. We sample one solution for each task to calculate pass score.

MercuryModel Name HumanEval MBPP Easy Medium Hard Overall

deepseek-coder-1.3b-base 28.7 55.4 60.7 52.8 23.2 38.1
+ SFT 24.2 46.2 58.9 53.6 25.3 36.2 (-1.9)
+ DPO 29.1 50.2 61.4 53.6 20.0 35.9 (-2.2)

starcoder2-3b 31.7 57.4 56.1 52.1 21.6 37.8
+ SFT 29.0 47.2 60.7 58.8 25.3 38.8 (+1.0)
+ DPO 33.5 59.6 62.5 61.0 23.4 41.1 (+3.3)

deepseek-coder-6.7b-base 47.6 70.2 69.3 68.9 56.1 61.0
+ SFT 56.1 59.6 69.1 71.4 57.7 62.2 (+1.2)
+ DPO 54.3 72.8 74.1 72.6 58.9 65.4 (+4.4)

starcoder2-7b 35.2 54.4 63.6 61.7 29.2 44.3
+ SFT 42.9 57.2 64.8 58.5 31.3 47.5 (+3.2)
+ DPO 55.4 61.4 74.8 66.9 32.6 53.6 (+9.3)

CodeLlama-7b-hf 33.5 52.0 55.7 41.7 12.9 29.6
+ SFT 29.5 47.6 58.9 38.5 16.1 31.3 (+1.7)
+ DPO 38.7 49.2 67.5 45.7 17.9 36.1 (+6.5)

CodeQwen1.5-7B 51.8 72.2 70.0 70.1 49.7 61.1
+ SFT 54.3 74.8 70.9 67.9 49.7 61.9 (+0.8)
+ DPO 55.5 75.4 72.5 66.9 45.7 61.1 (+0)

starcoder2-15b 46.3 66.2 69.5 65.4 50.3 58.0
+ SFT 51.6 69.2 72.0 68.9 51.7 61.3 (+3.3)
+ DPO 57.0 72.8 78.0 73.8 54.7 66.7 (+8.7

CodeLlama-13b-hf 37.8 62.4 76.8 60.5 18.4 39.6
+ SFT 39.5 59.8 65.5 54.8 19.5 39.5 (-0.1)
+ DPO 49.1 64.4 78.6 60.0 29.0 50.1 (+10.6)

deepseek-coder-33b-base 54.3 73.2 70.9 67.9 62.3 65.0
+ SFT 58.1 74.8 61.8 58.0 47.1 58.7 (-6.3)
+ DPO 72.9 80.6 78.9 76.5 61.6 73.4 (+8.4)

CodeLlama-34b-hf 48.2 65.4 77.7 63.7 32.4 52.4
+ SFT 52.8 68.2 61.8 58.0 26.2 47.5 (-4.9)
+ DPO 65.9 75.2 83.9 68.4 63.2 70.6 (+18.2)

Code Efficiency. Regarding the NL2Code task, once functional correctness has been assured,
attention naturally pivots to enhancing code efficiency. As depicted in Table 3, we investigate code
efficiency metrics across a spectrum of Code LLMs. Experiments demonstrate that DPO yields a
stable enhancement in code efficiency from models exceeding 6.7B parameters. Notably, "deepseek-
coder-33b-base" achieves the highest Beyond score of 66.47, marking a significant improvement of
17.94 over the vanilla model. In contrast, SFT detracts most Beyond scores from original models,
suggesting that the plain SFT may not be a feasible strategy for enhancing code efficiency.

To investigate whether prompt engineering could offer a straightforward efficiency boost, we con-
ducted an additional experiment using a specific prompt: You are a coding expert. You can generate
correct and fast code. As outlined in Appendix Table 8, pre-trained code LLMs struggled to in-
terpret the instruction, leading to decreased performance. Conversely, the instruction-tuned model
“deepseek-coder-33b-instruct” demonstrated significant performance improvement, likely due to its
training on Leetcode-style tasks, which enables it to effectively interpret the given instructions. By
employing this simple prompt engineering technique, the Gap score is reduced from 10.6 to 8.8.

Gap between Correctness and Efficiency. Further analysis compares the Gap between Beyond and
Pass. Since the ideal Beyond should be aligned with Pass (where the LLM-generated solution is
correct and faster than all historical solutions), it shows how much the baseline method shrinks the
gap between functional correctness and code efficiency. Our findings indicate that DPO substantially
narrows Gap in models larger than 15B parameters. However, Gap tends to widen in smaller models
under the same configuration. This implies that larger models possess a greater capacity to assimilate
the nuanced knowledge to make strides in efficiency while retaining their functional correctness.

7



Table 3: Code efficiency (Beyond) evaluation results across three difficulty levels. The bolded value
indicates the top performance for each metric, while the underlined values denote the most effective
approaches among the original model and the baselines. In our experiment, we sample 5 solutions for
each task to calculate Beyond score.

Model name Easy Medium Hard Overall Gap
deepseek-coder-1.3b-base 47.97 39.77 19.26 35.62 9.85
+ SFT 42.58 38.12 18.67 33.04 (-2.58) 12.74 (+2.89)
+ DPO 46.91 42.27 16.78 35.21 (-0.41) 9.64 (-0.21)

starcoder2-3b 43.55 41.91 15.21 33.40 9.72
+ SFT 44.64 42.10 15.72 34.01 (+0.61) 14.04 (+4.31)
+ DPO 43.70 41.02 12.99 32.42 (-0.99) 16.33 (+6.61)

deepseek-coder-6.7b-base 48.80 51.16 45.11 48.29 16.40
+ SFT 51.37 52.71 44.28 49.39 (+1.09) 16.55 (+0.16)
+ DPO 56.25 52.35 40.62 49.70 (+1.41) 18.73 (+2.34)

starcoder2-7b 50.23 51.29 20.25 40.37 10.95
+ SFT 42.21 44.02 21.09 35.61 (-4.77) 15.80 (+4.84)
+ DPO 53.52 51.41 17.35 40.56 (+0.18) 17.41 (+6.46)

CodeLlama-7b-hf 42.55 30.99 8.88 27.45 9.27
+ SFT 39.75 26.89 9.55 25.41 (-2.04) 12.48 (+3.21)
+ DPO 54.14 34.48 11.10 33.29 (+5.84) 10.46 (1.19)

CodeQwen1.5-7B 51.11 53.56 39.03 47.78 15.35
+ SFT 54.16 51.43 38.05 47.82 (0.04) 14.91 (-0.43)
+ DPO 56.07 51.55 38.05 48.52 (0.74) 13.12 (-2.22)

starcoder2-15b 58.18 52.09 37.34 49.17 12.55
+ SFT 53.54 52.77 37.73 47.92 (-1.25) 16.22 (+3.67)
+ DPO 68.29 59.54 48.97 58.95 (9.78) 10.81 (-1.74)

CodeLlama-13b-hf 57.00 44.25 12.99 38.01 13.79
+ SFT 44.95 39.96 13.55 32.70 (-5.31) 13.78 (-0.01)
+ DPO 67.09 55.72 19.72 47.39 (9.38) 8.47 (-5.32)

deepseek-coder-33b-base 51.26 48.90 45.43 48.53 18.50
+ SFT 40.33 37.75 36.82 38.32 (-10.21) 17.30 (-1.20)
+ DPO 74.59 68.91 55.98 66.47 (+17.94) 5.79 (-12.70)

CodeLlama-34b-hf 56.28 48.21 22.96 42.40 15.49
+ SFT 45.49 44.96 20.73 36.91 (-5.50) 11.61 (-3.88)
+ DPO 78.55 60.95 51.94 63.94 (+21.54) 8.01 (-7.47)

4.5 Failure Analysis

Table 4 provides the error breakdown of where Code LLMs misstep during the Mercury evaluation:

(1) Generation Errors arise from syntactical issues. The common manifestations include improper
indentation, mismatched parentheses, or unexpected truncation. Fine-tuning introduces additional
knowledge for Code LLMs to adapt the Mercury convention, emphasizing standard indentation,
concise code, and minimal comments. Therefore, both SFT and DPO generally reduced these errors,
while they may lead to catastrophic forgetting in relatively smaller models, such as “deepseek-coder-
1.3b-base”.

(2) Execution Errors differ from Generation Errors because they occur after the code has been
successfully loaded. These errors emerge as exceptions, which could stem from various issues, such
as flawed code logic, execution timeouts, memory leakage, or sandbox interruption. We observe that
SFT tends to aggravate these errors on most models, whereas DPO mitigates these errors successfully.

(3) Test Case Errors are the most prevalent errors where the code is executed without exceptions,
but the output fails to align with the expectation. DPO demonstrates the suppression of these errors,
especially in relatively large models, while SFT tends to increase the occurrence of these errors across
nearly all models. This suggests that direct SFT may lead to catastrophic forgetting in vanilla models,
diminishing their ability to generate functionally correct code. In contrast, DPO not only enhances
code efficiency but also more reliably preserves functional correctness.
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Table 4: The distribution of failure cases across Code Generation, Code Execution, and Test Case
errors. E/M/H indicates Easy/Medium/Hard levels, respectively. We sample 5 solutions for each task,
so there are 256 ∗ 5 = 1280 solutions in total for each model.

Model Name Code Generation Code Execution Test Case Passed
E M H E M H E M H E M H

deepseek-coder-1.3b-base 82 85 59 17 33 95 74 73 180 267 214 101
+ SFT 106 104 37 16 8 63 59 76 225 259 217 110
+ DPO 90 108 40 17 5 49 63 75 259 270 217 87

starcoder2-3b 107 102 33 35 26 107 51 66 201 247 211 94
+ SFT 97 93 24 29 13 90 47 61 211 267 238 110
+ DPO 79 75 11 30 14 87 56 69 235 275 247 102

deepseek-coder-6.7b-base 107 101 30 16 5 56 12 20 105 305 279 244
+ SFT 105 100 25 17 6 61 14 10 98 304 289 251
+ DPO 87 82 23 12 6 58 15 23 98 326 294 256

starcoder2-7b 107 101 22 21 9 74 32 45 212 280 250 127
+ SFT 105 100 22 18 13 72 32 55 205 285 237 136
+ DPO 90 90 21 10 11 61 11 33 211 329 271 142

CodeLlama-7b-hf 23 28 23 41 69 122 131 139 234 245 169 56
+ SFT 11 9 17 44 72 112 126 168 236 259 156 70
+ DPO 9 10 12 23 56 117 111 154 228 297 185 78

CodeQwen1.5-7B 105 100 18 1 4 44 26 17 157 308 284 216
+ SFT 105 101 16 4 3 35 19 26 168 312 275 216
+ DPO 98 96 26 5 8 35 18 30 175 319 271 199

starcoder2-15b 105 100 20 4 7 49 25 33 147 306 265 219
+ SFT 104 100 18 3 3 56 16 23 136 317 279 225
+ DPO 83 64 10 1 1 33 13 41 141 343 299 251

CodeLlama-13b-hf 10 14 28 19 41 99 73 105 228 338 245 80
+ SFT 46 52 32 29 19 111 77 112 207 288 222 85
+ DPO 24 9 24 10 12 100 60 141 185 346 243 126

deepseek-coder-33b-base 105 103 26 11 11 47 12 16 91 312 275 271
+ SFT 69 78 27 27 26 65 72 66 138 272 235 205
+ DPO 56 75 15 9 7 86 28 13 66 347 310 268

CodeLlama-34b-hf 22 35 50 28 55 84 48 57 160 342 258 141
+ SFT 35 97 50 37 19 56 96 54 215 272 235 114
+ DPO 4 12 10 26 76 30 41 40 120 369 277 275

5 Related Work

NL2Code Generation is the task of generating a computer program that satisfies given specifications.
Initial approaches to converting natural language to code relied on rigid methods like probabilistic
grammars and domain-specific languages, having limited flexibility and scalability [23, 13]. The
advent of statistical models, such as n-grams and Hidden Markov models, attempted to overcome these
limitations but struggled with modeling complexity and dependencies [35, 46]. The transformational
impact of the Transformer model [47] and its subsequent application to NL2Code [34] led to the
development of LLMs like Codex, which significantly improved the task’s feasibility by utilizing
extensive unlabelled data sets [9]. Follow-up LLMs such as AlphaCode [29], CodeGen [36], PaLM-
Coder [11], and StarCoder [28] continued to advance this research field, exhibiting emergent abilities
in coding and debugging that mirrored human programmers.

NL2Code Correctness Evaluation currently focuses on gauging the functional correctness of
generated code. As a pioneer, CodeBLEU [41] adapts the BLEU [39] metric into code genera-
tion. However, given the abstract nature of programming languages, distinct code can express the
equivalent semantics, prompting subsequent benchmarks to harness test case fuzzing instead of the
similarity measurement. For example, HumanEval [9] and MBPP [3] consist of hand-written Python
programming tasks and corresponding test cases. EvalPlus [1] enhances HumanEval by incorporating
extensive auto-generated test cases, constructing a more rigorous benchmark HumanEval+ to evaluate
the functional correctness of LLM synthesized code. On the note of enhancing language inclusiveness,
ODEX [48] integrates multiple natural languages, while MBXP [2] extends the benchmarks to cater
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to a variety of programming languages, promoting polyglot code generation evaluation. Recent
benchmarks have also begun to consider more aspects beyond functional correctness. For instance, the
benchmark DS-100 [26] dives deeply into the data analysis scenarios, and CodeGen [36] contributes
a benchmark for multi-turn code generation. For security-oriented code generation, SecurityEval [44]
offers a concentrating benchmark on mining the vulnerability of generated code. BigCodeBench [53]
introduces more sophisticated instructions and diverse function calls to gauge the true programming
capabilities of LLMs in realistic scenarios. LiveCodeBench [22] continuously updates its problem set,
ensuring contamination-free functional correctness evaluations. One more work may be related to our
work. AlphaCode [29] employs language models to generate solutions for competitive programming
problems, but they do not focus on optimizing the solution performance.

NL2Code Efficiency Evaluation Evaluating code efficiency has long been a crucial topic in software
engineering. With the advent of code generation models, it is gaining even more attention in the
code LLM evaluation. As a pioneering effort, DeepPERF [16] employs a fine-tuned transformer
to generate performance-enhancing patches for C# programs, evaluating the similarity between
these generated patches and those created by developers. PIE [43] provides a benchmark suite
for deterministically assessing the performance of C++ code within the Gem5 [7] environment.
More recently, EFFIBENCH [20] constructed an efficiency benchmark using 1,000 Python problems
from LeetCode. SUPERSONIC [10] introduces a compact sequence-to-sequence model designed
to iteratively optimize code performance. All these studies employ the relative speedup metric to
evaluate code efficiency gains.

6 Limitations

In this work, we measure code efficiency under the assumption that the code runtime is uniformly
distributed. The simplification streamlines code efficiency evaluation via limited solution samples.
However, the distribution of code runtime in real-world scenarios is more intricate, which may call
for more solution samples to support more precise modeling. Additionally, the presence of data
contamination during the model training phase compromises the precision of the Mercury benchmark
to reflect the performance of tainted models [22]. To mitigate this issue, we will update our benchmark
via our open-sourced data collection framework to import new tasks dynamically, thus laying the
groundwork for more detailed investigations in subsequent studies.

7 Conclusion

In this work, we introduced Mercury, the first code efficiency benchmark for NL2Code evaluation.
Unlike prior work that focused on functional correctness, our benchmark highlights the importance
of code efficiency. By crafting dedicated test case generators and sampling ground-truth solutions
across all difficulty levels from Leetcode, we have developed a comprehensive and rigorous Code
LLM evaluation frame. We evaluated leading Code LLMs against benchmarks and found that even
though these models are proficient in generating functionally correct code, there is still considerable
space for code efficiency improvement. As Code LLMs become more widely used, code efficiency
determines factual productivity, where Mercury can gauge the vital metric. As a commitment to
ongoing research and to foster further innovation in this area, we have open-sourced the Mercury
dataset collection framework, laying the groundwork for future advancements in the field.
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A Appendix

A.1 Dataset Nutrition Labels

Table 5: Definitions of the fields within the Mercury dataset.

Field Name Definition
id Task ID.
slug_name Task name.
meta_info The field accommodating the task description and submission statistics.
difficulty The difficulty level of the task.
pretty_content The field introduces the task description, examples, and constraints in pure text.
solutions Samples of solutions extracted from actual past submissions.
prompt The prompt of the solution.
entry_point The nominative entry point of the solution.
generator_code A function to generate test cases.
test_cases A collection of generated test cases.
convert_online A function to format test cases for online evaluation.
convert_offline A function to format test cases for offline evaluation.
evaluate_offline A function designed to evaluate solutions in an offline setting.

A.2 Mercury Data Distribution and Customized Data Structures

Except for all built-in Python data structures, Mercury imports another two structures to enhance the
diversity and complexity as shown in Figure 4.

Figure 4: Mercury supports two customized data
structures: TreeNode and ListNode.

Splits Easy Medium Hard Sum
Mercury-train 446 968 219 1,633
Mercury-eval 88 81 87 256

Table 6: Mercury-eval encompasses 256 tasks,
the difficulty level of which has been balanced
for model evaluation. Mercury-train com-
prises the remaining 1,633 tasks for model
training.

A.3 Sandbox Details

Time and Memory Limitation. Each executed code within the sandbox is subject to certain
constraints to ensure fair utilization of resources and to prevent any single code from monopolizing
the system resource. Specifically, there are two primary constraints: a time limit and a memory limit.
The time limit restricts how long the code can execute before being forcibly terminated, thereby
ensuring that no infinite loops or excessively long computations negatively impact the availability of
the sandbox. The memory limit caps the amount of RAM that a process can consume. This measure
precludes a single code from exhausting the memory resources, which could lead to a denial of
service for subsequent codes. In our experiment settings, the timeout limit is 30 seconds, and the
memory limit is 2048 MB for each solution execution.

IO Restriction. To mitigate harmful activities such as unauthorized command execution or data
exfiltration, the sandbox imposes strict Input/Output (IO) restrictions. These restrictions include
limitations on reading from or writing to the disk and restrictions on the use of network sockets for
sending or receiving data. By controlling the IO operations, the sandbox can prevent many common
vulnerabilities and ensure that the code runs without interfering with other processes of the host
system.

Isolated File System. The sandbox employs an isolated file system to provide a safe execution
environment for the code. This means that the process running in the sandbox has its virtual file
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system, which is separated from the host’s file system. The isolated nature of this file system ensures
that even if a process within the sandbox attempts to modify or delete files, these changes will not
affect the host system or other sandboxes. It acts as a security layer, protecting the host from potential
threats and maintaining the integrity of the overall system.

System Libraries Redirection. To maintain a consistent and controlled environment, the sandbox
redirects calls to system libraries to sandbox-specific versions. This is done to prevent code from using
certain functions directly from the host’s system libraries, which could result in unpredictable behavior
or security vulnerabilities. The redirected libraries are often limited to a subset of functionalities
deemed safe and necessary for executing programs within the sandbox, thus enforcing the security
policies and ensuring that the running programs behave as expected.

Single-threaded Evaluation. Single-threaded evaluation refers to executing code using a sole
thread of execution, thereby simplifying resource management and timing assessments, and mitigating
the intricacies linked with multi-threaded execution, such as synchronization issues, race conditions,
and potential deadlocks. This mode of operation is especially important in testing environments
where reproducibility and fairness are paramount, ensuring that each piece of code is evaluated using
identical computational resources.

Code Efficiency Measurement. Figure 5 shows the overview of the code execution pipeline. We
gauge the Solution Instantiation and Test Ease Evaluation time spans as the execution runtime.

Context
Initialization 

Solution
Instantiation 

Test Cases
Evaluation Clean upTest Case

Generation

Figure 5: Sandbox Execution Pipeline. 1) Test Case Generation. We first employ the corresponding
test case generator for each task to produce a comprehensive set of test cases for the subsequent
evaluation. 2) Context Initialization. To prevent any unexpected code behavior, the sandbox
environment is meticulously reinitialized for each new task. This phase ensures that all the common
libraries required for executing the solution are loaded. 3) Solution Instantiation. The solution
under evaluation will be encapsulated as a solution class. 4) Test Case Evaluation. Each test case
the generator provides will be rigorously executed against the solution. A solution must successfully
pass all the test cases to be deemed valid. 5) Clean up. The final stage involves the sandbox dutifully
clearing the namespace environment and the temporary directory. Mercury records the time consumed
during the stage of Solution instantiation and Test Ease Evaluation as the primary metric for assessing
code efficiency.

A.4 DPO Experiment Details

Dataset Construction. For every task problem T i in Mercury, we randomly selected two solutions
from the task solution set {siw, sil} ∼ T i

solution, to construct the preference dataset D = {P i, siw, s
i
l},

where pi is the prompt, siw has a faster runtime than sil .

Model Initialization. RLHF [54] typically begins with a reference LLM πref . Here, we ini-
tialize πref by maximizing the likelihood of faster code completions (p, sw) ∼ D, so that
πref = argmaxπ E(p,sw)∼D [log π(sw|p)]. This procedure helps mitigate the distribution shift
between the true reference distribution and πref .

Optimization. We optimize the target LLM πθ to minimize LDPO for the given πref and D
and desired hyperparameter β. The gradient with respect to the parameters θ can be written as
∇θLDPO(πθ;πref ).

LDPO(πθ;πref ) = −E(x,sw,sl)∼D

[
logα(β log

πθ(sw|p)
πref (sw|p)

)− log
πθ(sl|p)
πref (sl|p)

)

]
(2)
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∇θLDPO(πθ;πref ) =

− βE(p,sw,sl)∼D

α(r̂θ(p, sl)− r̂θ(p, sw))︸ ︷︷ ︸
higher weight for wrong estimate

 ∇θ log π(sw|p)︸ ︷︷ ︸
increase likelihood of sw

− ∇θ log π(sl|p)︸ ︷︷ ︸
decrease likelihood of sl


 (3)

Intuitively, the gradient of the loss function LDPO increases the likelihood of the preferred comple-
tions sw and decreases the likelihood of dis-preferred completions sl, which are weighed by how
much higher the implicit reward model r̂θ rates the dis-preferred completions, scaled by β, i.e., how
incorrectly the implicit reward model orders the completions, accounting for the strength of the KL
constraint.

A.5 External Libraries Utilized in Mercury

Raw LeetCode solutions typically commence without importing shared libraries. To avoid solution
failure due to absent libraries, we proactively import the libraries listed in Figure 6 during the sandbox
Context Initialization phase. Note that all these libraries are imported in a temporary namespace of
which the sandbox controls code behaviors.

Figure 6: External Libraries Imported in Mercury Evaluate Framework.

A.6 Model Details

Table 7: Model Scale and Corresponding HuggingFace Links
Model Name Model Scale Link
deepseek-coder-1.3b-base 1.3B https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-base
starcoder2-3b 3B https://huggingface.co/bigcode/starcoder2-3b
deepseek-coder-6.7b-base 6.7B https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
starcoder2-7b 7B https://huggingface.co/bigcode/starcoder2-7b
CodeLlama-7b-hf 7B https://huggingface.co/codellama/CodeLlama-7b-hf
CodeQwen1.5-7B 7B https://huggingface.co/Qwen/CodeQwen1.5-7B
CodeLlama-13b-hf 13B https://huggingface.co/codellama/CodeLlama-13b-hf
starcoder2-15b 15B https://huggingface.co/bigcode/starcoder2-15b
deepseek-coder-33b-base 33B https://huggingface.co/deepseek-ai/deepseek-coder-33b-base
CodeLlama-34b-hf 34B https://huggingface.co/codellama/CodeLlama-34b-hf

18



A.7 A Mercury Example

Given n  non-negative integers representing an
elevation map where the width of each bar is 1 ,
compute how much water it can trap after raining.

Example
Input: height = [0,1,0,2,1,0,1,3,2,1,2,1]
Output: 6
Explanation: The above elevation map (black section) is represented by array
[0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped.

3

2

1

class Solution:
    def trap(self, height: List[int]) -> int:
        l,r = 0, len(height) -1

        total = 0
        maxLeft = height[l]
        maxRight = height[r]

        while l < r:
            if maxLeft < maxRight:
                l += 1
                maxLeft = max(maxLeft, height[l])
                total += maxLeft - height[l]
            else:
                r -= 1
                maxRight = max(maxRight, height[r])
                total += maxRight - height[r]
              
        return total

Runtime: 125 ms
class Solution:
    def trap(self, height: List[int]) -> int:
        prev_greatest = []
        next_greatest = []
        total_tile_area = 0
        greatest = 0
        for i in range(len(height)):
            prev_greatest.append(greatest)
            greatest = max(greatest, height[i])
        greatest=0
        for i in range(len(height)):
            next_greatest.insert(0, greatest)
            greatest = max(greatest, height[len(height)-i-1])
        for i in range(1, len(height)-1):
            if min(next_greatest[i], prev_greatest[i]) > height[i]:
                total_tile_area += (abs(min(

next_greatest[i], prev_greatest[i]) - height[i]
))

        return total_tile_area

Runtime: 600 ms

class Solution:
    def trap(self, height: List[int]) -> int:
        total = 0
        maxLeft, maxRight = [height[0]], []
        currentMaxLeft = height[0]
        currentMaxRight = max(height[1:] or [0])
        for i in range(1, len(height)):
            maxLeft.append(currentMaxLeft)
            maxRight.append(currentMaxRight)
            if(height[i] > currentMaxLeft):
                currentMaxLeft = height[i]
            if(height[i] == currentMaxRight):
                currentMaxRight = max(height[i+1:] or [0])
        maxRight.append(0)
        for i in range(0, len(height)):
            current = min(maxLeft[i], maxRight[i]) - height[i]
            if current > 0: total += current
        return total

Runtime: 2200 ms
class Solution:
    def trap(self, height: List[int]) -> int:
        if len(height) == 0 or len(height) == 1:
            return 0
        

left_bound = height[0]
        right_bound = max(height[1:])
        water = 0

        for i in range(1, len(height)-1):
            right_bound = max(height[i+1:])

            if height[i] < left_bound and height[i]<right_bound:
                water += min(left_bound, right_bound) - height[i]
            elif height[i] >= left_bound:
                left_bound = height[i]
        

return water

Runtime: 4500 ms

Figure 7: This case is drawn from the Mercury-eval benchmark. The upper block presents the
problem statement with its example, while the subsequent portion exhibits the corresponding solutions.
Although all solutions are functionally correct, they exhibit significant differences in runtimes.

A.8 A HumanEval Example

1

8

12

1 1

21 21

144 144

✅

✅

✅
36 Timeout 14930352 ❌

Input Output Expected

Figure 8: An HumanEval example of insufficient test cases. Even though the code passed all test
cases in the dashed-line box, it remains vulnerable to timeout or stack overflow when subjected to a
larger input.
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A.9 Prompts for Code Generation

To guarantee a fair comparison, we apply a unified one-shot prompt template for each pre-trained
Code LLM. As displayed in Figure 9, the prompt template contains one shot example as well as three
placeholders: <task_content>, <code_starter>, and <code_completion>.

Figure 9: Code Generation Prompts. Lines 1 to 40 are the one-shot example. In Mercury experiments,
we feed the pretty_content field to the placeholder <task_content>, the prompt field to the placeholder
<code_starter>, and the solution field to the placeholder <code_completion>
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A.10 Hardware-agnostic Evaluation

Figure 10: Beyond scores of ‘deepseek-coder-33b’ (solid line) and ‘deepseek-coder-6.7b’ (dashed
line) across varied Intel Skylake CPU configurations. The results show that Beyond can remain
consistent across different hardware configurations.

A.11 Performance of Prompt Engineering on Mercury

Table 8: Performance of Prompt Engineering on Mercury.

Model name HumanEval Pass Beyond Gap
deepseek-coder-33b-base 54.3 67.2 48.5 18.7
+ Explicit instruction 55.5 63.3 44.5 18.8

CodeLlama-34b-hf 48.2 57.8 42.4 15.4
+ Explicit Instruction 47.6 53.5 36.9 16.6

deepseek-coder-33b-instruct 78.7 81.3 70.7 10.6
+ Explicit Instruction 80.5 85.9 77.1 8.8

A.12 Distribution of Bootstrapped Beyond Scores

Figure 11: Bootstrapped Beyond Distribution. We evaluate 3B, 7B, and 15B Starcoder2[28] models
using the Mercury benchmark. Each model was executed 50 times to ensure score robustness. The
y-axis in the resulting histogram represents the frequency of observations within each bin.
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A.13 Dataset Metadata
The Mercury dataset is hosted on Huggingface: https://huggingface.co/datasets/Elfsong/
Mercury. The Croissant Metadata can be found at https://huggingface.co/api/datasets/
Elfsong/Mercury/croissant.

A.14 Legal Compliance
In this study, we have curated a comprehensive dataset by gathering publicly accessible task de-
scriptions and archived solutions from LeetCode (https://leetcode.com/problemset/). We
have ensured that our collection process is strictly limited to tasks available in the free domain,
intentionally excluding any content that falls under the paid services of the platform. We abide by
Fair Use [37] (Section 107): “the fair use of a copyrighted work, including such use by ... scholarship,
or research, is not an infringement of copyright”, where fair use is determined by “the purpose
and character of the use, including whether such use is of a commercial nature or is for nonprofit
educational purposes”. With the Mercury dataset, we emphasize its strictly non-commercial nature
and underscore its purpose: to facilitate and advance academic research. The Mercury dataset is
released under Creative Commons Attribution Non Commercial 4.0 [12].
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