

SPATIALTHINKER: REINFORCING 3D REASONING IN MULTIMODAL LLMS VIA SPATIAL REWARDS

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 Multimodal large language models (MLLMs) have achieved remarkable progress
 014 in vision–language tasks, but they continue to struggle with spatial understanding.
 015 Existing spatial MLLMs often rely on explicit 3D inputs or architecture-specific
 016 modifications, and remain constrained by large-scale datasets or sparse supervision.
 017 To address these limitations, we introduce SPATIALTHINKER, a 3D-aware MLLM
 018 trained with RL to integrate structured spatial grounding with multi-step reasoning.
 019 The model simulates human-like spatial perception by constructing a scene graph
 020 of task-relevant objects and spatial relations, and reasoning towards an answer via
 021 dense spatial rewards. SPATIALTHINKER consists of two key contributions: (1)
 022 a data synthesis pipeline that generates STVQA-7K, a high-quality spatial VQA
 023 dataset, and (2) online RL with a multi-objective dense spatial reward enforcing
 024 spatial grounding. SPATIALTHINKER-7B outperforms supervised fine-tuning and
 025 the sparse RL baseline on spatial understanding and real-world VQA benchmarks,
 026 nearly doubling the base-model gain compared to sparse RL, and surpassing GPT-
 027 4o. These results showcase the effectiveness of combining spatial supervision with
 028 reward-aligned reasoning in enabling robust 3D spatial understanding with limited
 029 data and advancing MLLMs towards human-level visual reasoning.

1 INTRODUCTION

030 Spatial reasoning is central to human intelligence, enabling us to perceive, localize, and manipulate
 031 objects in complex environments. This capability is crucial for embodied AI tasks such as robotic
 032 manipulation (Intelligence et al., 2025; Gao et al., 2023; Nasiriany et al., 2024), navigation (Huang
 033 et al., 2022), and augmented reality (Konenkov et al., 2024), where precise spatial awareness underpins
 034 interactive decision-making and makes spatial reasoning essential for real-world deployment (Driess
 035 et al., 2023; Team et al., 2025). While multimodal large language models (MLLMs) have advanced
 036 rapidly in vision–language tasks such as visual question answering (VQA), captioning and referring
 037 expression comprehension (Hurst et al., 2024; Lin et al., 2024; Deitke et al., 2025; Bai et al., 2025;
 038 Du et al., 2025; Liu et al., 2023; Google, 2025), they continue to struggle with spatial understanding
 039 tasks, especially in the 3D space (Chen et al., 2024a; Tong et al., 2024b; Kamath et al., 2023; Yang
 040 et al., 2025a; Tong et al., 2024a; Ma et al., 2024b), which requires capturing geometry, structure, and
 041 relations beyond 2D projections.

042 Existing approaches are often data-intensive, relying on either synthesizing massive question-
 043 answering datasets from 3D scene graphs (Chen et al., 2024a; Ma et al., 2025b; Daxberger et al., 2025;
 044 Cheng et al., 2024), training auxiliary spatial tokens or architectural changes (Hong et al., 2023b; Ma
 045 et al., 2025b), ingesting explicit 3D inputs like depth maps or point clouds (Hong et al., 2023c; Cheng
 046 et al., 2024; Cai et al., 2024), or more recently applying reinforcement learning (RL) with sparse
 047 rewards (Ma et al., 2025a; Wang & Ling, 2025; Xia et al., 2025; Xiao et al., 2025; Shen et al., 2025a;
 048 Zhu et al., 2025). This has led to models that are extremely data-hungry (e.g., SpatialVLM trained on
 049 2B VQA samples (Chen et al., 2024a), SpatialLLM on 1M (Ma et al., 2025b), SpatialRGPT on 700k
 050 (Cheng et al., 2024)), or require architecture-specific modifications.

051 Recently, reinforcement learning with verifiable rewards (RLVR) has demonstrated superior general-
 052 ization over supervised fine-tuning (SFT) by learning diverse reasoning strategies rather than static

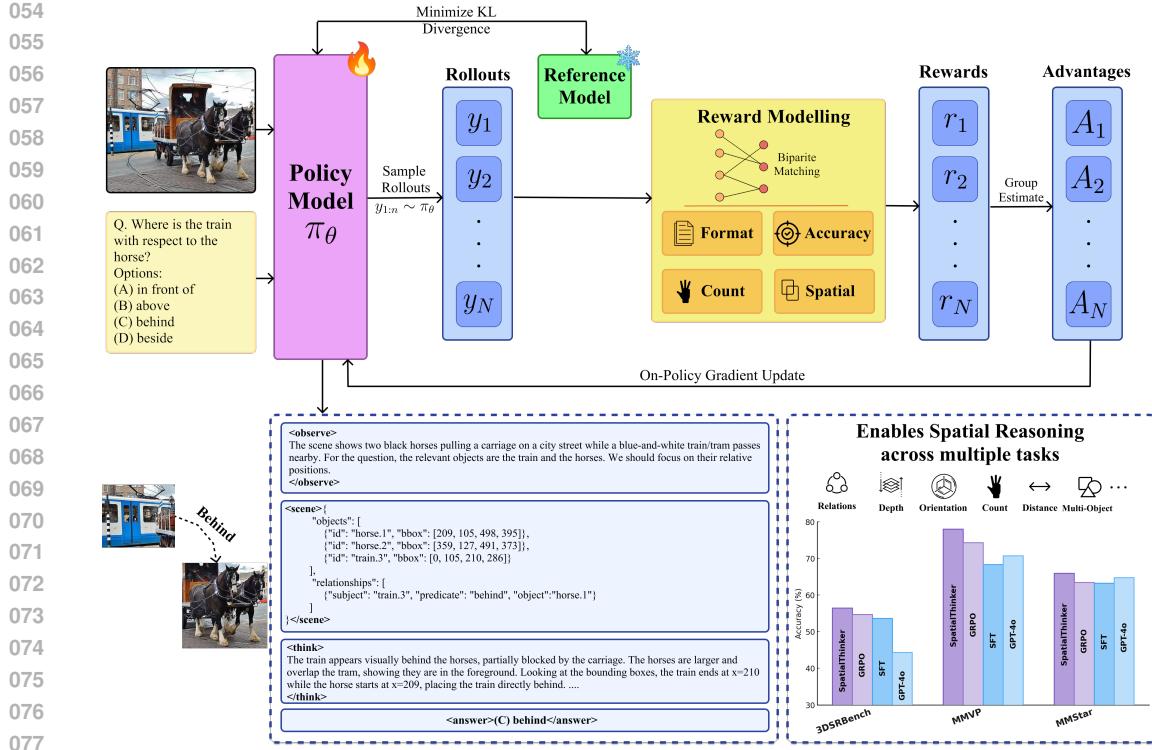


Figure 1: Method overview of SPATIALTHINKER. Our framework integrates structured scene-graph grounded reasoning with multi-objective dense RL to enhance 3D spatial understanding in multimodal large language models.

patterns (DeepSeek-AI et al., 2025; Shen et al., 2025b; Gandhi et al., 2025). However, existing RLVR approaches for visual spatial reasoning employ simple rewards focused on final correctness, providing insufficient guidance for visually-grounded reasoning (Shen et al., 2025a; Xiao et al., 2025; Ma et al., 2025a). We hypothesize that progress in this domain requires models to simulate grounded perception before reasoning, mirroring how humans mentally visualize regions of interest and relational layouts before making spatial judgments (Yang et al., 2016; Wu & Xie, 2023; Yang et al., 2025a). Scene graphs offer natural structure (Hildebrandt et al., 2020; Wald et al., 2020), but existing methods treat them as external pre-processing (Kim et al., 2024; Chen et al., 2023; Li et al., 2024c; Chen et al., 2025c; Li et al., 2025) rather than integrating them with end-to-end reasoning.

We introduce SPATIALTHINKER, a 3D-aware MLLM that integrates scene graph grounding with multi-step spatial reasoning through online policy RL. The model constructs question-focused scene subgraphs capturing objects, their relations, and localized coordinates, and reasons over these structured representations. The training leverages a multi-objective reward framework with lexicographic ordering: format rewards enforce structured reasoning; count penalties regulate regional focus; accuracy rewards prioritize correctness; and CIOU-based spatial rewards encourage precise localization when answers are correct. This design promotes human-like reasoning, following a process of *observe, localize, think, answer*.

By training on only 7K samples from our synthesized STVQA-7K dataset, SPATIALTHINKER-7B outperforms supervised fine-tuning (+6%) and conventional RL baselines (+3.2%) across twelve spatial understanding, real-world and generic VQA benchmarks, surpassing GPT-4o (+3.4% avg.) and Claude 3.5 Sonnet (+10.1% avg.) (Hurst et al., 2024; Anthropic, 2024), particularly a +12.1% gain over GPT-4o on 3DSRBench (Ma et al., 2024b). Notably, while vanilla RL with sparse rewards improves the base model by +4% average across all benchmarks, SPATIALTHINKER-7B trained with dense spatial rewards achieves +7.2% gains, almost doubling ($\times 1.8$) the benefit of RL training by providing richer learning signals. This demonstrates that models can learn effective spatial reasoning by discovering how to focus on regions of interest, construct mental scene graph representations, and accurately localize objects - all through online environmental feedback from dense rewards

108 that incentivize visually-grounded perception, rather than relying on data scale alone. The strong
 109 generalization for in-domain and out-of-domain tasks from minimal high-quality data validates that
 110 properly-guided RL surpasses static SFT patterns learned from much larger datasets (Chen et al.,
 111 2024a; Ma et al., 2024a). Our main contributions are:

- 113 • We propose **SPATIALTHINKER**, the first MLLM integrating scene graph-based grounding
 114 with online RL for spatial reasoning, achieving strong performance with only 7K training
 115 samples versus millions required by existing methods.
- 116 • We introduce **STVQA-7K**, a high-quality spatial VQA dataset grounded in scene graphs,
 117 enabling efficient training for spatial reasoning.
- 118 • We design a dense spatial reward that prioritizes objectives in a fixed order (through
 119 lexicographic gating). This encourages interpretable, region-focused reasoning and prevents
 120 reward hacking.
- 121 • We evaluate the method on six spatial understanding, and six real-world VQA benchmarks
 122 demonstrating superior generalization performance.

124 2 PRELIMINARIES

126 **Scene Graph Generation.** A scene graph provides a structured representation of an image I as a
 127 directed graph $G = (V, E)$. Each node $v_i \in V$ denotes an object with a category label c_i and a 2D
 128 bounding box $b_i = (x_1, y_1, x_2, y_2)$; each edge $e_{ij} \in E$ is a relationship triplet $\langle v_i, r_{ij}, v_j \rangle$ consisting
 129 of subject v_i , predicate r_{ij} , and object v_j that capture spatial or interactive relations (e.g., *left of*, *on*,
 130 *under*) (Hildebrandt et al., 2020; Wald et al., 2020). Classical SGG decomposes prediction into object
 131 detection and relation recognition (Carion et al., 2020; Cong et al., 2023), while open-vocabulary
 132 methods leverage language or vision priors to generalize beyond fixed ontologies (Chen et al., 2024b;
 133 Li et al., 2023). We refer to *question-focused scene subgraphs* as $G_q = (V_q, E_q) \subseteq G$ that retain
 134 only objects and relations relevant to a given query q .

135 **Reasoning in Multimodal Large Language Models.** Multimodal large language models (MLLMs)
 136 aim to solve reasoning tasks defined over a dataset \mathcal{D} of multimodal instances $(\mathbf{x}_{\text{img}}, \mathbf{x}_{\text{text}}, \mathbf{y}^*)$, where
 137 \mathbf{x}_{img} is a visual input, \mathbf{x}_{text} is a natural language query, and \mathbf{y}^* is a verifiable reasoning trajectory.
 138 We model the MLLM as an autoregressive policy π_θ that outputs a trajectory $\mathbf{y} = (s_1, \dots, s_T, a)$
 139 consisting of reasoning steps s_t and a final answer a . The policy factorizes as:

$$140 \pi_\theta(\mathbf{y} \mid \mathbf{x}_{\text{img}}, \mathbf{x}_{\text{text}}) = \left(\prod_{t=1}^T \pi_\theta(s_t \mid \mathbf{x}_{\text{img}}, \mathbf{x}_{\text{text}}, s_{<t}) \right) \cdot \pi_\theta(a \mid \mathbf{x}_{\text{img}}, \mathbf{x}_{\text{text}}, s_{\leq T}). \quad (1)$$

143 Supervised fine-tuning enables imitation of reference reasoning traces but often struggles with
 144 generalization. Reinforcement learning (RL) instead optimizes reasoning trajectories with explicit
 145 reward signals, improving robustness and task adherence (Gandhi et al., 2025; DeepSeek-AI et al.,
 146 2025; Huang et al., 2025). The RL objective is given by: $\max_\theta \mathbb{E}_{(\mathbf{x}_{\text{img}}, \mathbf{x}_{\text{text}}, \mathbf{y}^*) \sim \mathcal{D}, \mathbf{y} \sim \pi_\theta} [R(\mathbf{y})]$,
 147 where $R(\mathbf{y})$ evaluates the trajectory based on format adherence, object counting, answer correctness,
 148 and spatial localization.

150 3 SPATIALTHINKER: SPATIALLY-AWARE REASONING MLLMs

152 **Task Formulation** We cast spatial reasoning in MLLMs as the task of producing a visually
 153 grounded response \mathbf{y} to a query $Q = \{\mathbf{x}_{\text{img}}, \mathbf{x}_{\text{text}}\}$. Unlike generic reasoning, our formulation
 154 explicitly requires constructing question-focused scene subgraphs G_q and reasoning over objects,
 155 bounding boxes, and relations. The policy π_θ is trained on spatially grounded VQA samples from
 156 STVQA-7K 3.3 using our multi-objective spatial reward R (Section 3.1), which enforces structural
 157 validity, count fidelity, answer accuracy, and precise spatial grounding.

158 3.1 MULTI-OBJECTIVE REWARD DESIGN

159 SPATIALTHINKER is trained with a fine-grained, multi-objective reward function that guides spatial
 160 reasoning via explicit visual grounding. Unlike prior RLVR methods that use sparse final-answer

162 rewards (Peng et al., 2025; Zhu et al., 2025; Shen et al., 2025b), our dense reward design combines
 163 lexicographic gating with four components—format, count, accuracy, and spatial rewards. We further
 164 discuss our reward design rationale in Appendix C.

165 **Format Reward.** We enforce a visually-grounded and structured reasoning template: `<observe>`
 166 for scene description, `<scene>` for regional scene graphs with objects, bounding boxes, and relations,
 167 `<think>` for explicit reasoning, and `<answer>` for the final output. Beyond tag presence, the
 168 format reward validates the JSON inside `<scene>`, ensuring (1) it is parseable, (2) each object
 169 includes required fields (ID and bounding box), and (3) all relations are valid subject–predicate–object
 170 triplets. This encourages sequential grounding: perceive → localize → reason → answer. The reward
 171 $R_f \in [0, 1]$ is weighted at $w_{\text{format}} = 0.1$.

172 **Accuracy Reward.** To prioritize task performance, we define the accuracy reward R_a as a binary
 173 score based on exact string match between the model’s predicted answer and the ground-truth answer,
 174 enabled by our multiple-choice format. This component carries the highest weight ($w_{\text{accuracy}} = 0.5$),
 175 directly incentivizing correct final predictions, while the other rewards shape how the model arrives
 176 at correct answers.

177 **Count Reward.** The count reward encourages the model to predict the appropriate number of objects
 178 and relations relevant to the query, penalizing both under- and over-generation based on the deviation
 179 between predicted and ground-truth counts:

$$181 R_{\text{count}} = w_{\text{count}} \cdot \left(0.7 \cdot \max \left(0, 1 - \frac{|N_{\text{obj}}^{\text{pred}} - N_{\text{obj}}^{\text{gt}}|}{\max(N_{\text{obj}}^{\text{gt}}, 1)} \right) + 0.3 \cdot \max \left(0, 1 - \frac{|N_{\text{rel}}^{\text{pred}} - N_{\text{rel}}^{\text{gt}}|}{\max(N_{\text{rel}}^{\text{gt}}, 1)} \right) \right)$$

182 where N^{pred} and N^{gt} denote predicted and ground truth counts respectively, and $w_{\text{count}} = 0.2$ is the
 183 overall count reward weight. This guides the model to stay focused on question-relevant regions.
 184 Without it, we found the models tend to game the spatial reward by generating excessive objects and
 185 relations to maximize random matches—a form of reward hacking.

186 **Spatial Reward.** To supervise object localization, we compute the spatial reward only when the final
 187 answer is correct. Predicted and ground-truth objects are matched using the Hungarian algorithm for
 188 bipartite matching with a cost function that combines Complete IoU (CIoU) and semantic similarity:

$$189 C(o_i^{\text{pred}}, o_j^{\text{gt}}) = \lambda_{\text{spatial}}(1 - \text{IoU}(b_i, b_j)) + \lambda_{\text{semantic}}(1 - \text{sim}(l_i, l_j)),$$

190 where b and l denote bounding boxes and labels, respectively, $\lambda_{\text{spatial}} = 1.0$, and $\lambda_{\text{semantic}} = 2.0$. The reward is then computed as the average CIoU across matched pairs: $R_{\text{spatial}} = w_{\text{spatial}} \cdot$
 191 $\left(\frac{1}{|\mathcal{M}|} \sum_{(i,j) \in \mathcal{M}} \text{CIoU}(b_i^{\text{pred}}, b_j^{\text{gt}}) \right)$, where $w_{\text{spatial}} = 0.2$. CIoU offers dense supervision over IoU,
 192 even for non-overlapping boxes by incorporating distance and aspect ratio terms Zheng et al. (2020).

193 **Lexicographic Gating.** To avoid reward gaming across objectives, we apply lexicographic ordering
 194 with conditional gating Skalse et al. (2022), prioritizing format $\succ \{\text{count, accuracy}\} \succ \text{spatial}$. The
 195 model must first satisfy formatting, then jointly optimize count and accuracy, and receives spatial
 196 reward only when the answer is correct. This ensures spatial grounding reinforces valid reasoning.
 197 Without accuracy gating, we observe that models overfit to spatial localization while sacrificing task
 198 correctness. The final reward is computed as the following with $\mathbb{I}[\cdot]$ as the indicator function:

$$200 R_{\text{total}} = \mathbb{I}[R_{\text{format}} = 1] \cdot (w_{\text{format}} R_f + w_{\text{count}} R_c + w_{\text{accuracy}} R_a + \mathbb{I}[R_{\text{accuracy}} = 1] w_{\text{spatial}} R_s)$$

205 3.2 ONLINE RL POLICY OPTIMIZATION

206 To train SPATIALTHINKER with dense, lexicographically gated rewards, we adopt Group-Relative
 207 Policy Optimization (GRPO) DeepSeek-AI et al. (2025); Shao et al. (2024), an online RL method
 208 that avoids critic networks by estimating advantages through intra-group comparisons. Given an
 209 input \mathbf{x} , we sample N trajectories $\{y^{(1)}, \dots, y^{(N)}\}$ from the current policy $\pi_{\theta_{\text{old}}}$. Each response
 210 is scored via our dense spatial reward function (Section 3.1), and advantages are computed using
 211 group-normalized scores: $A^{(i)} = \frac{r^{(i)} - \mu}{\sigma + \varepsilon}$, where μ and σ are the group mean and standard deviation,
 212 and $\varepsilon = 10^{-6}$. We then update the policy using a PPO-style clipped loss with KL regularization:

$$214 \mathcal{L}_{\text{RL}}(\theta) = -\frac{1}{G} \sum_{i=1}^G \frac{1}{|y^{(i)}|} \sum_{t=1}^{|y^{(i)}|} \left[\min \left(r^{i,t} A^{(i)}, \text{clip}(r^{i,t}, 1 - \epsilon_l, 1 + \epsilon_h) A^{(i)} \right) - \beta D_{\text{KL}} \right],$$

216 where $r^{i,t} = \frac{\pi_\theta(y_t^{(i)} | \mathbf{x}, y_{<t}^{(i)})}{\pi_{\theta_{\text{old}}}(y_t^{(i)} | \mathbf{x}, y_{<t}^{(i)})}$ is the importance ratio between new and old policies, and $D_{\text{KL}}^{i,t}$ is the
 217 token-level KL divergence against a reference model. We set $\epsilon_l = 0.2$, $\epsilon_h = 0.3$, and $\beta = 10^{-2}$.
 218 This objective balances learning from dense spatial rewards while constraining policy divergence to
 219 ensure stability and generalization.
 220

222 3.3 STVQA-7K: DATASET CONSTRUCTION

224 To facilitate reward-aligned spatial reasoning, we con-
 225 struct STVQA-7K, a synthetic visual question an-
 226 swering (VQA) dataset built from human-annotated
 227 scene graphs in Visual Genome Krishna et al. (2017).
 228 STVQA-7K comprises 7,587 spatially grounded
 229 multiple-choice VQA pairs spanning both 2D and
 230 3D spatial understanding, covering nine core reason-
 231 ing types including relations, size, orientation, dis-
 232 tance, depth, reach, location, count, and existence.
 233 We augment the original VG150 predicate set with
 234 34 additional spatial relations—covering distance
 235 (e.g., near, far), size (e.g., bigger, taller), orientation
 236 (e.g., facing away), and containment (e.g., inside,
 237 beneath)—to enrich the relational vocabulary beyond
 238 the standard 50 predicates. Each QA pair is generated
 239 from a scene graph using Claude Sonnet 4 Anthropic
 240 (2025), and rated by difficulty and quality. We apply
 241 a consistency-based filtering pipeline using GPT-4o
 242 Hurst et al. (2024) to ensure semantic correctness via
 243 pass@2 agreement. From an initial pool of 56,224
 244 questions, we retain the top 7.5K high-quality sam-
 245 ples based on rating, difficulty, and verification. To
 246 enable region-specific reasoning, we extract relevant
 247 objects and relations per question via lemmatized keyword matching, constructing question-aligned
 248 scene subgraphs as localized supervision. This localized supervision helps the model learn where
 249 to focus within complex scenes. Bounding box coordinates are retained in absolute pixel space to
 250 preserve real-world scale for CIoU-based reward training. Importantly, our pipeline is scalable and
 251 can be extended to generate up to $\sim 108\text{K}$ samples, the maximum supported by Visual Genome,
 252 enabling future large-scale post-training or RL fine-tuning. Figure 2 shows the distribution of QA
 253 categories. Full dataset details and examples are provided in Appendix A.
 254

253 3.4 TRAINING DETAILS

255 We build SPATIALTHINKER upon two strong open-source multimodal base models: Qwen2.5-VL-3B
 256 and Qwen2.5-VL-7B (Bai et al., 2025), using them as backbones for policy optimization with RL. No
 257 SFT is performed prior to RL training on our STVQA-7K dataset (Section 3.3). We employ GRPO
 258 (Shao et al., 2024) as the advantage estimator as described in Section 3.2, using a rollout size of
 259 8 samples per query and a sampling temperature of 1.0. The models are trained with a maximum
 260 context length of 16,384 tokens. The rollout batch size is set to 512, and the global batch size is 128.
 261 We train for 75 training steps i.e., 5 training episodes) on $4 \times$ NVIDIA H100 80GB GPUs. Training
 262 time totals ~ 13 hours for the 3B model and ~ 15 hours for the 7B model.

263 The models are trained on high-resolution image inputs ranging from 512×512 to 2048×2048 pixels,
 264 to preserve fine-grained spatial information. All model parameters, including the vision encoder,
 265 are updated during training. We use the AdamW optimizer with `b1`/`b2` 16 precision, a learning rate of
 266 1×10^{-6} , and a weight decay of 1×10^{-2} . The KL penalty coefficient is set to 10^{-2} (Appendix D).
 267 STVQA-7K is partitioned with a 90/10 train-validation split. Further details on prompts, SFT, and
 268 RL training setups, are provided in Appendices B.3, B.4, and B.5, respectively. Finally, Section B.5.1
 269 illustrates how each reward component improves steadily under our multi-objective spatial reward,
 reflecting stable and interpretable learning dynamics.

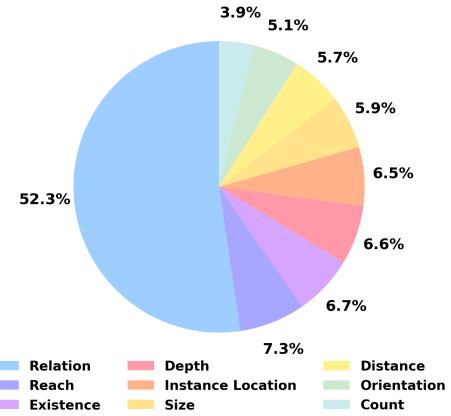


Figure 2: Distribution of QA types in STVQA-7K. The dataset spans a diverse range of spatial reasoning skills, covering spatial relations, localization, existence, reach, depth, distance, size, count and orientation.

Model	3DSRBench	CV-Bench		Avg.	BLINK _{val}		Avg.
		2D	3D		Spatial Relation	Relative Depth	
<i>Proprietary Models</i>							
GPT-4o	44.3	<u>75.8</u>	83.0	79.4	82.5	78.2	80.4
Claude 3.5 Sonnet	48.2	60.2	71.5	65.9	58.7	67.7	63.2
<i>Open-Source General MLLMs</i>							
Qwen2.5-VL-3B	44.0	59.9	60.2	60.0	66.4	54.0	60.2
Qwen2.5-VL-7B	48.4	69.1	68.0	68.6	<u>84.0</u>	52.4	68.2
VLAA-Thinker-Qwen2.5-VL-7B	52.2	60.8	60.3	60.6	81.2	71.0	76.1
LLaVA-NeXT-8B	48.4	62.2	65.3	63.8	-	-	-
Cambrian-1-8B	42.2	72.3	72.0	72.2	69.9	73.4	71.7
<i>Open-Source Spatial MLLMs</i>							
RoboPoint-13B	-	-	61.2	-	60.8	61.3	61.1
SpatialBot-3B	41.1	-	69.1	-	67.8	67.7	67.8
SpaceLLaVA-13B	42.0	-	68.5	-	72.7	62.9	67.8
Spatial-RGPT-7B w/ depth	48.4	-	60.7	-	65.7	82.3	74.0
SpaceThinker	51.1	65.1	65.9	65.5	73.4	59.9	66.7
SpaceOm	52.2	72.1	69.3	70.7	81.1	65.3	73.2
<i>Method Comparison (Trained on SpatialThinkerVQA)</i>							
Qwen2.5-VL-3B + SFT	50.8	53.9	68.4	61.1	65.0	66.9	66.0
Qwen2.5-VL-3B + Vanilla GRPO	50.1	70.6	66.6	68.6	73.4	55.6	64.5
SpatialThinker-3B (Ours)	52.9	71.0	76.3	73.6	81.8	66.9	74.4
Qwen2.5-VL-7B + SFT	53.6	56.1	71.3	63.7	75.5	64.5	70.0
Qwen2.5-VL-7B + Vanilla GRPO	54.7	68.9	76.5	72.7	80.4	<u>75.0</u>	77.7
SpatialThinker-7B (Ours)	56.4	77.7	78.7	78.2	86.0	72.6	79.3

Table 1: Performance over 2D & 3D Spatial Understanding Benchmarks across different model types. Top-1 & Top-2 accuracies are represented using **bold** text, and underlines.

4 EXPERIMENTS

We evaluate SPATIALTHINKER across 12 diverse spatial understanding and real-world VQA benchmarks, encompassing both 2D and 3D reasoning tasks. Our experiments are guided by two core questions: (Q1) Does our spatial VQA generation pipeline, combined with dense reward RL, improve general spatial reasoning in MLLMs? (Q2) Can MLLMs learn strong spatial capabilities from just 7K synthetic training samples, and how does this compare to models trained on orders-of-magnitude more data?

Benchmarks. We evaluate on six core spatial benchmarks: CV-Bench 2D and 3D (Tong et al., 2024a), BLINK Spatial Relations and Relative Depth (Fu et al., 2024), 3DSRBench (Ma et al., 2024b), MMVP (Tong et al., 2024b), SpatialBench (Cai et al., 2024), and SpatialReasonerEval (Ma et al., 2025a), covering relation understanding, depth, distance, counting, size, and egocentric 3D reasoning. To test generalization in real-world, embodied, and generalist VQA contexts, we use VStarBench (Wu & Xie, 2023), RealWorldQA (xAI, 2024), MME-RealWorld (Zhang et al., 2024), RoboSpatial-Home (Song et al., 2025) (Configuration and Compatibility only), MM-Star (Chen et al., 2024c), and HallusionBench (Guan et al., 2023).

Baselines. We compare against proprietary MLLMs including GPT-4o (GPT-4O-0513) (Hurst et al., 2024) and Claude 3.5 Sonnet (CLAUDE-3.5-SONNET-0620) (Anthropic, 2025), open-source generalist models like Qwen2.5-VL (Bai et al., 2025), LLaVA-NeXT (Li et al., 2024b), Cambrian-1 (Tong et al., 2024a), and VLAA-Thinker (Chen et al., 2025a), and spatially-tuned open-source MLLMs such as SpaceLLaVA (AI & Mayorquin, 2025a; Chen et al., 2024a), SpatialRGPT (Cheng et al., 2024), RoboPoint (Yuan et al., 2024), SpaceThinker (AI & Mayorquin, 2025c), SpaceOm (AI & Mayorquin, 2025b), SpatialReasoner (Ma et al., 2025a), and SpatialBot (Cai et al., 2024). In addition, we evaluate ablations on variants of our model trained with the STVQA-7K dataset: a supervised fine-tuning (SFT) baseline, and a sparse-reward RL baseline that optimizes only format and accuracy rewards, each weighted equally at 0.5, , to isolate the effect of our dense spatial reward.

Evaluation Setting. All models are evaluated in a zero-shot setting using greedy decoding (temperature = 0.0). Models default prompting format is used where applicable (e.g., for VLAA-Thinker, SpaceOm, SpaceThinker). SpatialRGPT is evaluated with depth inputs; all other models use RGB. Accuracy is the primary evaluation metric. Our evaluation pipeline extends OpenVLThinker (Deng et al., 2025) to support new benchmarks and formats. *Full benchmark descriptions, baseline details, and additional implementation specifics are provided in Appendix B.*

324
325

4.1 RESULTS

326
327
328
329

We evaluate SpatialThinker across six spatial reasoning and six generalist VQA benchmarks to assess its effectiveness in learning spatial understanding and real-world VQA from limited training data through dense reward supervision.

330

Performance across Spatial Benchmarks.

331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

We evaluate SPATIALTHINKER across six spatial reasoning benchmarks that collectively span 2D relational understanding, 3D spatial alignment, counting, depth ordering, and distance comparison. As shown in Tables 1 and 2, SPATIALTHINKER-7B achieves strong and consistent performance across all spatial tasks. On CV-Bench, the model attains an average accuracy of 78.2% across 2D and 3D tasks, nearing GPT-4o’s 79.4% while outperforming all other open-source models, and Claude 3.5 Sonnet. On the challenging 3DSRBench, which requires orientation and multi-object reasoning, it achieves 56.4%, surpassing GPT-4o by +12%. On BLINK’s spatial relation and relative depth tasks, it achieves 86.0% and 72.6%, respectively, yielding a 79.3% average—closely matching GPT-4o (80.4%) and outperforming other spatial MLLMs like Spatial-RGPT-7B (74.0%), which uses depth inputs and 700K training samples. On SpatialBench, our model reaches 66.4%, approaching GPT-4o’s 67.0%.

349
350
351
352
353
354
355
356
357
358

Despite being trained on just 7K synthetic samples and using only RGB inputs, SPATIALTHINKER-7B consistently outperforms open-source baselines, including VLAA-Thinker-7B, Cambrian-1-8B, Spatial-RGPT, SpaceLLaVA, and RoboPoint-13B, all of which are trained on orders of magnitude more data. Notably, it exceeds specialized spatial models as well: on CV-Bench 3D, it outperforms SpaceLLaVA-13B (78.7% vs. 68.5%), and on BLINK tasks, it surpasses Spatial-RGPT-7B by +5.3%, and SpatialBot by +11.5% despite their reliance on depth information. Further, SPATIALTHINKER-7B outperforms all models on MMVP, and all open-source baselines on SpatialReasonerEval that measures 3D spatial understanding tasks like depth and distance. These results highlight the effectiveness of our dense reward design in enabling generalizable spatial reasoning without the need for explicit geometric inputs or large-scale pretraining.

359

Model	MM-Star	VStarBench	RealWorldQA	MME-RealWorld-Lite	RoboSpatial-Home	HallusionBench
Proprietary and Open-Source MLLMs						
GPT-4o	64.7	66.0	75.4	51.6	68.4	55.0
Claude 3.5 Sonnet	65.1	51.8	60.1	45.2	57.0	55.5
Qwen2.5-VL-3B	55.9	74.9	58.2	41.9	58.7	46.3
Qwen2.5-VL-7B	63.9	75.9	68.4	44.1	70.6	52.9
VLAA-Thinker-7B	63.8	58.1	66.4	44.6	68.9	68.9
SpaceThinker	54.5	56.5	61.6	-	52.6	65.4
SpaceOm	57.7	56.5	53.3	-	68.9	62.9
Method Comparison (Trained on SpatialThinkerVQA)						
Qwen2.5-VL-3B + SFT	53.9	73.3	64.8	43.0	69.8	58.9
Qwen2.5-VL-3B + Vanilla GRPO	56.7	74.3	64.4	46.7	64.0	59.0
SpatialThinker-3B (Ours)	57.6	78.0	66.3	46.5	70.6	62.5
Qwen2.5-VL-7B + SFT	63.2	78.0	65.4	47.4	72.4	66.2
Qwen2.5-VL-7B + Vanilla GRPO	63.4	73.9	66.6	46.3	76.2	60.7
SpatialThinker-7B (Ours)	65.9	81.7	69.2	48.3	76.3	66.4

369

Table 3: Performance on VQA and Real-World benchmarks. Top-1 & Top-2 accuracies are represented using **bold text**, and underlines.

372

373
374
375
376
377

Performance across Real-World and General VQA Benchmarks. We further assess our model’s generalization to real-world visual question answering using six diverse benchmarks: MM-Star, RealWorldQA, VStarBench, MME-RealWorld-Lite, RoboSpatial-Home, and HallusionBench (Table 3). SPATIALTHINKER-7B achieves the highest overall performance across these datasets. It obtains 65.9% on MM-Star, 81.7% on VStarBench, and 76.3% on RoboSpatial-Home, surpassing all open-source and proprietary baselines. It also performs competitively on hallucination-sensitive and

real-world benchmarks, scoring 66.4% on HallusionBench, 69.2% on RealWorldQA, and 48.3% on MME-RealWorld-Lite benchmarks.

These results show that training with dense spatial rewards generalizes beyond synthetic benchmarks to real-world settings. Gains on MM-Star, RoboSpatial-Home, and VStarBench highlight the benefit of structured scene grounding, even with a small synthetic training set. Compared to generalist and open-source spatial MLLM baselines, SPATIALTHINKER delivers greater robustness, fewer hallucinations, and higher task fidelity, reinforcing our hypothesis that spatial grounding via reward optimization not only improves spatial reasoning but also enhances visual understanding in the wild.

RL Training with Dense Rewards Enables Superior Generalization.

To isolate the contributions of our multi-objective spatial reward design, we compare against two ablation variants: supervised fine-tuning (SFT) and reinforcement learning with sparse rewards using only format and answer accuracy. As shown in Table 4, SPATIALTHINKER-7B achieves an average accuracy of 71.2% across all 12 benchmarks—exceeding the SFT baseline by +6.0% and the sparse GRPO variant by +3.2%. These gains are consistent across the 3B variant as well, where SPATIALTHINKER-3B outperforms its SFT and GRPO counterparts by +5.5% and +4.1% average gains, respectively. Notably, even vanilla GRPO provides modest improvements over the base model (+4.0 for 7B, +4.9 for 3B), but our dense spatial reward nearly doubles $\times 1.8$ this gain (+7.2% for 7B, +9.0% for 3B), underscoring the complementary learning signal provided by count and spatial objectives.

Beyond aggregate accuracy, lexicographic reward gating stabilizes training by enforcing format and answer correctness before applying spatial rewards. This encourages structured task completion prior to spatial grounding, resulting in steady and interpretable reward curves during training (Section B.5.1). Overall, these results affirm that structured reinforcement learning with dense spatial supervision significantly enhances the capabilities of multimodal LLMs, even in low-data regimes.

Out-of-Distribution Generalization:

Dense Rewards Enable Stronger Transfer.

While both SFT and sparse-reward GRPO improve spatial reasoning over base models, their ability to generalize to out-of-distribution (OOD) real-world tasks is limited, when compared to SPATIALTHINKER models. As shown in Table 5, sparse-reward GRPO provides large spatial gains (+4.3% for 3B, +4.7% for 7B), but offers only marginal improvements on real-world benchmarks (+6.0 and +2.7 respectively)—nearly matching or underperforming SFT (+5.9% for 3B, +2.9% for 7B). In contrast, SPATIALTHINKER, trained with dense spatial and count rewards, achieves significantly stronger OOD generalization: +8.5 for 3B and +5.2 for 7B, outperforming all baselines at both scales. Notably, SPATIALTHINKER-7B provides nearly double the real-world VQA benchmarks gains compared to sparse-reward GRPO (+5.2% vs. +2.7%), highlighting the robustness of our dense reward framework. The combination of structured reasoning formats and lexicographically gated dense rewards encourages models to internalize spatial priors and compositional patterns that transfer effectively to out-of-distribution tasks, even without explicit domain-specific supervision. Appendix E further demonstrates generalization to abstract reasoning tasks.

Model	Avg. Acc. (12)	Δ_{Base}	$\Delta_{\text{GPT-4o}}$	$\Delta_{\text{Claude 3.5 Sonnet}}$
<i>Proprietary and Base MLLMs</i>				
GPT-4o	67.8	-	-	-
Claude 3.5 Sonnet	61.1	-	-	-
Qwen2.5-VL-3B	57.3	-	-	-
Qwen2.5-VL-7B	64.0	-	-	-
<i>Method Comparison (Trained on SpatialThinkerVQA)</i>				
Qwen2.5-VL-3B + SFT	60.8	+3.5	-7.0	-0.3
Qwen2.5-VL-3B + Vanilla GRPO	62.2	+4.9	-5.6	+1.1
SpatialThinker-3B (Ours)	66.3	+9.0	-1.5	+5.2
Qwen2.5-VL-7B + SFT	65.2	+1.2	-2.6	+4.1
Qwen2.5-VL-7B + Vanilla GRPO	68.0	+4.0	+0.2	+6.9
SpatialThinker-7B (Ours)	71.2	+7.2	+3.4	+10.1

Table 4: Average accuracy across all 12 benchmarks with relative improvements (Δ). *SpatialThinker models consistently outperform SFT and vanilla GRPO, with SpatialThinker-7B surpassing GPT-4o by +3.4 points and Claude 3.5 Sonnet by +10.1 points.*

Model Variant	Spatial VQA Δ_{Base}	Real-World VQA Δ_{Base}
Qwen2.5-VL-3B + SFT	+2.3	+5.9
Qwen2.5-VL-3B + GRPO	+4.3	+6.0
SpatialThinker-3B	+9.3	+8.5
Qwen2.5-VL-7B + SFT	+0.3	+2.9
Qwen2.5-VL-7B + GRPO	+4.7	+2.7
SpatialThinker-7B	+8.3	+5.2

Table 5: Average accuracy gains (Δ) over respective base models on (6) spatial and (6) real-world VQA (OOD) benchmarks.

432 **5 RELATED WORK**

433

434 **3D Spatial Reasoning in MLLMs.** While MLLMs have advanced core visual tasks (Hurst et al.,
 435 2024; Lin et al., 2024; Deitke et al., 2025; Bai et al., 2025; Du et al., 2025; Li et al., 2024b), their
 436 spatial reasoning abilities remain limited (Mirzaee et al., 2021; Tong et al., 2024b; Kamath et al.,
 437 2023; Yamada et al., 2023; Li et al., 2024a; Yang et al., 2025a; Ma et al., 2024b), partly due to
 438 datasets focused more on perception than relational grounding (Hudson & Manning, 2019). To
 439 address this, recent work integrates 3D signals via point clouds or multi-view reconstructions (Hong
 440 et al., 2023c;a), or world models with physical priors (Wang et al., 2023; 2024). Large-scale efforts
 441 like SpatialVLM (Chen et al., 2024a), SpatialPIN (Ma et al., 2024a), SpatialBot (Cai et al., 2024),
 442 and SpatialRGPT (Cheng et al., 2024) use hundred thousand to millions of 3D-augmented samples
 443 or RGB-D scene graphs. Others like MM-Spatial (Daxberger et al., 2025), SpatialLLM (Ma et al.,
 444 2025b), and SpaRE (Ogezi & Shi, 2025) similarly scale synthetic or reconstructed 3D data. However,
 445 these methods are often data-heavy, depend on specialized inputs, or fall short on structured relational
 446 modeling. In contrast, SPATIALTHINKER attains robust relational, and regional reasoning using just
 447 7K structured QA samples trained with RL with dense spatial rewards.
 448

449 **Structured Visual Grounding in MLLMs.** Scene graphs offer structured object–relation represen-
 450 tations and have long supported visual reasoning (Hildebrandt et al., 2020; Wald et al., 2020; Gu et al.,
 451 2023). Classical Scene Graph Generation (SGG) relies on detection–relation pipelines (Carion et al.,
 452 2020; Cong et al., 2023), but struggles with multi-role and open-vocabulary generalization. Recent
 453 LLM-based methods like LLM4SGG and GPT4SGG extract structured graphs from captions (Kim
 454 et al., 2024; Chen et al., 2023), while open-vocabulary SGG approaches use MLLMs to generalize
 455 beyond fixed ontologies (Chen et al., 2024b; Li et al., 2023). RL-trained models like R1-SGG and
 456 Relation-R1 directly generate scene graphs via dense structural or cognitive rewards (Chen et al.,
 457 2025c; Li et al., 2025), emphasizing the value of structured supervision. In parallel, region-aware
 458 MLLMs including KOSMOS-2 (Peng et al., 2023), Ferret (You et al., 2023), and GLaMM (Rasheed
 459 et al., 2024), enhance spatial grounding via bounding boxes and region-text alignment. SPATIAL-
 460 THINKER extends these ideas by grounding reasoning in scene subgraphs focused on the question’s
 461 region of interest, combining structured understanding with interpretable, reward-guided spatial
 462 reasoning.
 463

464 **Multimodal Reinforcement Learning.** Reinforcement learning (RL) has been increasingly applied
 465 to enhance reasoning in MLLMs, extending chain-of-thought prompting (Wei et al., 2022) with veri-
 466 fiable rewards across tasks like math reasoning (Yang et al., 2025b; Meng et al., 2025), classification
 467 and grounding (Liu et al., 2025b), semantic segmentation (Liu et al., 2025a), regional understanding
 468 (Shen et al., 2025a), and open-vocabulary detection or referring expression comprehension (Shen
 469 et al., 2025b; Pinto et al., 2023). Spatial RL has also emerged, with SVQA-R1 using view-consistency
 470 rewards (Wang & Ling, 2025) and SpatialReasoner introducing coordinate-aware supervision (Shen
 471 et al., 2025b; Ma et al., 2025a). However, most prior methods rely on sparse signals like final
 472 accuracy or coarse location cues, offering limited support for fine-grained spatial reasoning. In
 473 contrast, SPATIALTHINKER introduces a dense, multi-objective reward framework encompassing
 474 regional subgraph construction, object localization, relational grounding, object counting, and final
 475 correctness. It first predicts structured scene representations, then reasons over them for detailed and
 476 interpretable spatial inference.
 477

478 **6 CONCLUSION**

479 We introduced SPATIALTHINKER, a 3D-aware MLLM that achieves strong spatial reasoning by
 480 combining scene graph grounding with dense spatial rewards through RL. Trained on just 7K
 481 samples, it surpasses proprietary and open-sourced MLLMs on spatial, real-world, and generic
 482 VQA benchmarks while outperforming models trained on orders of magnitude more data, specifically
 483 for spatial understanding. Dense spatial rewards nearly double the gains of standard RL via GRPO,
 484 underscoring the value of rich supervision signals. While our approach relies on explicit scene graphs,
 485 future work could explore implicit spatial reasoning within latent tokens. Additional directions
 486 include extending our reward framework to spatiotemporal reasoning, real-world tasks like web
 487 navigation, and developing unified multi-objective policies covering diverse visual tasks.
 488

486 **7 REPRODUCIBILITY STATEMENT**

487

488 To ensure the reproducibility of our results, we provide comprehensive details of our experimental
 489 setup in Section 3.4. Our dense reward design for RL training is described in Section 3.1, with further
 490 details on RL training, inference prompts, and baseline SFT training elaborated in Appendix B.
 491 Section Appendix A covers the dataset construction process and we will open-source our dataset on
 492 HuggingFace post the reviews. Our full code for training SpatialThinker models, dataset generation
 493 pipeline, and evaluation scripts, along with our STVQA-7K dataset and SpatialThinker 3B and 7B
 494 model checkpoints will be open-sourced after review on GitHub and HuggingFace.

495

496 **REFERENCES**

497

498 Remyx AI and Salma Mayorquin. Spacellava models. *Hugging Face*, March 2025a. URL <https://huggingface.co/remyxai/SpaceLLaVA>.

500 Remyx AI and Salma Mayorquin. Spaceom models. *Hugging Face*, 2025b. URL <https://huggingface.co/remyxai/SpaceOm>.

502 Remyx AI and Salma Mayorquin. Spacethinker models. *Hugging Face*, April 2025c. URL <https://huggingface.co/remyxai/SpaceThinker-Qwen2.5VL-3B>.

504 Anthropic. Model card addendum: Claude 3.5 haiku and upgraded claude 3.5 sonnet. *Anthropic*,
 505 October 2024.

507 Anthropic. System card: Claude opus 4 & claude sonnet 4. *Anthropic System Cards*, May 2025.

509 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 510 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
 511 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
 512 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-v1 technical report. *ArXiv*,
 513 abs/2502.13923, 2025.

514 Wenxiao Cai, Iaroslav Ponomarenko, Jianhao Yuan, Xiaoqi Li, Wankou Yang, Hao Dong, and
 515 Bo Zhao. Spatialbot: Precise spatial understanding with vision language models. *arXiv preprint*
 516 *arXiv:2406.13642*, 2024.

518 Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
 519 Zagoruyko. End-to-end object detection with transformers. In *European conference on computer*
 520 *vision*, pp. 213–229. Springer, 2020.

521 Boyuan Chen, Zhuo Xu, Sean Kirmani, Brain Ichter, Dorsa Sadigh, Leonidas Guibas, and Fei Xia.
 522 Spatialvlm: Endowing vision-language models with spatial reasoning capabilities. In *Proceedings*
 523 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 14455–14465,
 524 2024a.

526 Guikun Chen, Jin Li, and Wenguan Wang. Scene graph generation with role-playing large language
 527 models. *ArXiv*, abs/2410.15364, 2024b.

529 Hardy Chen, Haoqin Tu, Fali Wang, Hui Liu, Xianfeng Tang, Xinya Du, Yuyin Zhou, and Cihang
 530 Xie. Sft or rl? an early investigation into training rl-like reasoning large vision-language models.
 531 *ArXiv*, abs/2504.11468, 2025a.

532 Kaiyuan Chen, Shuangyu Xie, Zehan Ma, and Ken Goldberg. Robo2vlm: Visual question answering
 533 from large-scale in-the-wild robot manipulation datasets, 2025b.

535 Lin Chen, Jinsong Li, Xiao wen Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan,
 536 Jiaqi Wang, Yu Qiao, Dahua Lin, and Feng Zhao. Are we on the right way for evaluating large
 537 vision-language models? *ArXiv*, abs/2403.20330, 2024c.

538 Zuyao Chen, Jinlin Wu, Zhen Lei, Zhaoxiang Zhang, and Changwen Chen. Gpt4sgg: Synthesizing
 539 scene graphs from holistic and region-specific narratives. *arXiv preprint arXiv:2312.04314*, 2023.

540 Zuyao Chen, Jinlin Wu, Zhen Lei, Marc Pollefeys, and Chang Wen Chen. Compile scene graphs
 541 with reinforcement learning. *arXiv preprint arXiv:2504.13617*, 2025c.
 542

543 An-Chieh Cheng, Hongxu Yin, Yang Fu, Qiushan Guo, Ruihan Yang, Jan Kautz, Xiaolong Wang,
 544 and Sifei Liu. Spatialrgpt: Grounded spatial reasoning in vision-language models. *Advances in
 545 Neural Information Processing Systems*, 37:135062–135093, 2024.

546 Yuren Cong, Michael Ying Yang, and Bodo Rosenhahn. Reltr: Relation transformer for scene graph
 547 generation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(9):11169–11183,
 548 2023.

549 Erik Daxberger, Nina Wenzel, David Griffiths, Haiming Gang, Justin Lazarow, Gefen Kohavi, Kai
 550 Kang, Marcin Eichner, Yinfei Yang, Afshin Dehghan, et al. Mm-spatial: Exploring 3d spatial
 551 understanding in multimodal llms. *arXiv preprint arXiv:2503.13111*, 2025.

552 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Jun-Mei Song, Ruoyu Zhang, Runxin Xu,
 553 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiaoling Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F.
 554 Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bing-Li Wang,
 555 Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong
 556 Ruan, Damai Dai, Deli Chen, Dong-Li Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo
 557 Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
 558 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
 559 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, Jiong Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
 560 Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
 561 Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, M. Tang, Meng
 562 Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu
 563 Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, Ruiqi Jin, Ruyi
 564 Chen, Shanghao Lu, Shangyan Zhou, Shanhua Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu,
 565 Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shao-Kang Wu, Tao Yun, Tian Pei, Tianyu
 566 Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wen-Xia Yu,
 567 Wentao Zhang, Wangding Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xi aokang Chen, Xiaotao
 568 Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng
 569 Lin, X. Q. Li, Xiangyu Jin, Xi-Cheng Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan
 570 Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang,
 571 Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi,
 572 Yi Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang
 573 Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yu-Jing Zou, Yujia He, Yunfan Xiong, Yu-Wei Luo,
 574 Yu mei You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanping Huang, Yao Li, Yi Zheng, Yuchen
 575 Zhu, Yunxiang Ma, Ying Tang, Yukun Zha, Yuting Yan, Zehui Ren, Zehui Ren, Zhangli Sha, Zhe
 576 Fu, Zhean Xu, Zhenda Xie, Zhen guo Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu
 577 Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zi-An Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang,
 578 Zhipeng Xu, Zhongyu Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability
 579 in llms via reinforcement learning. *ArXiv*, abs/2501.12948, 2025.

580 Matt Deitke, Christopher Clark, Sangho Lee, Rohun Tripathi, Yue Yang, Jae Sung Park, Moham-
 581 madreza Salehi, Niklas Muennighoff, Kyle Lo, Luca Soldaini, et al. Molmo and pixmo: Open
 582 weights and open data for state-of-the-art vision-language models. In *Proceedings of the Computer
 583 Vision and Pattern Recognition Conference*, pp. 91–104, 2025.

584 Yihe Deng, Hritik Bansal, Fan Yin, Nanyun Peng, Wei Wang, and Kai-Wei Chang. Openvlthinker:
 585 Complex vision-language reasoning via iterative sft-rl cycles. 2025.

586 Danny Driess, F. Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter, Ayzaan
 587 Wahid, Jonathan Tompson, Quan Ho Vuong, Tianhe Yu, Wenlong Huang, Yevgen Chebotar, Pierre
 588 Sermanet, Daniel Duckworth, Sergey Levine, Vincent Vanhoucke, Karol Hausman, Marc Toussaint,
 589 Klaus Greff, Andy Zeng, Igor Mordatch, and Peter R. Florence. Palm-e: An embodied multimodal
 590 language model. In *International Conference on Machine Learning*, 2023.

591 Kimi Team Angang Du, Bohong Yin, Bowei Xing, Bowen Qu, Bowen Wang, Cheng Chen, Chenlin
 592 Zhang, Chenzhuang Du, Chu Wei, Congcong Wang, Dehao Zhang, Dikang Du, Dongliang Wang,
 593 Enming Yuan, Enzhe Lu, Fang Li, Flood Sung, Guangda Wei, Guokun Lai, Han Zhu, Hao

594 Ding, Hao-Xing Hu, Hao Yang, Hao Zhang, Haoning Wu, Haotian Yao, Haoyu Lu, Heng Wang,
 595 Hongcheng Gao, Huabin Zheng, Jiaming Li, Jianling Su, Jianzhou Wang, Jiaqi Deng, Jiezhong
 596 Qiu, Jin Xie, Jinhong Wang, Jingyuan Liu, Junjie Yan, Kun Ouyang, Liang Chen, Lin Sui, Long
 597 Yu, Mengfan Dong, Meng Dong, Nuo Xu, Peng Cheng, Qizheng Gu, Runjie Zhou, Shaowei Liu,
 598 Sihan Cao, Tao Yu, Tianhui Song, Tongtong Bai, Wei Song, Weiran He, Weixiao Huang, Weixin
 599 Xu, Xiao feng Yuan, Xingcheng Yao, Xingzhe Wu, Xinxing Zu, Xinyu Zhou, Xinyuan Wang,
 600 Y. Charles, Yan-Qing Zhong, Yang Li, Yan-Ni Hu, Yanru Chen, Ye-Jia Wang, Yibo Liu, Yibo Miao,
 601 Yidao Qin, Yimin Chen, Yiping Bao, Yiqin Wang, Yongsheng Kang, Yuan-Qing Liu, Yulun Du,
 602 Yuxin Wu, Yuzhi Wang, Yuzi Yan, Zaida Zhou, Zhaowei Li, Zhejun Jiang, Zheng Zhang, Zhilin
 603 Yang, Zhiqi Huang, Zihao Huang, Zijia Zhao, and Ziwei Chen. Kimi-vl technical report. *ArXiv*,
 604 abs/2504.07491, 2025.

605 Xingyu Fu, Yushi Hu, Bangzheng Li, Yu Feng, Haoyu Wang, Xudong Lin, Dan Roth, Noah A. Smith,
 606 Wei-Chiu Ma, and Ranjay Krishna. Blink: Multimodal large language models can see but not
 607 perceive. *ArXiv*, abs/2404.12390, 2024.

608 Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, nathan lile, and Noah D. Goodman. Cognitive
 609 behaviors that enable self-improving reasoners, or, four habits of highly effective stars. *ArXiv*,
 610 abs/2503.01307, 2025.

611 Jensen Gao, Bidipta Sarkar, F. Xia, Ted Xiao, Jiajun Wu, Brian Ichter, Anirudha Majumdar, and
 612 Dorsa Sadigh. Physically grounded vision-language models for robotic manipulation. *2024 IEEE*
 613 *International Conference on Robotics and Automation (ICRA)*, pp. 12462–12469, 2023.

614 Google. Gemini 2.0 flash: Model card. *Technical Report*, April 2025. Published April 15, 2025.

615 Qiao Gu, Ali Kuwajerwala, Sacha Morin, Krishna Murthy Jatavallabhula, Bipasha Sen, Aditya
 616 Agarwal, Corban Rivera, William Paul, Kirsty Ellis, Ramalingam Chellappa, Chuang Gan, Celso
 617 de Melo, Joshua B. Tenenbaum, Antonio Torralba, Florian Shkurti, and Liam Paull. Concept-
 618 graphs: Open-vocabulary 3d scene graphs for perception and planning. *2024 IEEE International*
 619 *Conference on Robotics and Automation (ICRA)*, pp. 5021–5028, 2023.

620 Tianrui Guan, Fuxiao Liu, Xiyang Wu, Ruiqi Xian, Zongxia Li, Xiaoyu Liu, Xijun Wang, Lichang
 621 Chen, Furong Huang, Yaser Yacoob, Dinesh Manocha, and Tianyi Zhou. Hallusionbench: An
 622 advanced diagnostic suite for entangled language hallucination and visual illusion in large vision-
 623 language models. *2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition*
 624 (*CVPR*), pp. 14375–14385, 2023.

625 Marcel Hildebrandt, Hang Li, Rajat Koner, Volker Tresp, and Stephan Günnemann. Scene graph
 626 reasoning for visual question answering. *ArXiv*, abs/2007.01072, 2020.

627 Yining Hong, Chunru Lin, Yilun Du, Zhenfang Chen, Joshua B. Tenenbaum, and Chuang Gan.
 628 3d concept learning and reasoning from multi-view images. In *Proceedings of the IEEE/CVF*
 629 *Conference on Computer Vision and Pattern Recognition*, pp. 9202–9212, 2023a.

630 Yining Hong, Haoyu Zhen, Peihao Chen, Shuhong Zheng, Yilun Du, Zhenfang Chen, and Chuang
 631 Gan. 3d-llm: Injecting the 3d world into large language models. *Advances in Neural Information*
 632 *Processing Systems*, 36:20482–20494, 2023b.

633 Yining Hong, Haoyu Zhen, Peihao Chen, Shuhong Zheng, Yilun Du, Zhenfang Chen, and Chuang
 634 Gan. 3d-llm: Injecting the 3d world into large language models. *Advances in Neural Information*
 635 *Processing Systems*, 36:20482–20494, 2023c.

636 Audrey Huang, Wenhao Zhan, Tengyang Xie, Jason D. Lee, Wen Sun, Akshay Krishnamurthy, and
 637 Dylan J. Foster. Correcting the mythos of kl-regularization: Direct alignment without overopti-
 638 mization via chi-squared preference optimization. *ArXiv*, abs/2407.13399, 2024.

639 Chen Huang, Oier Mees, Andy Zeng, and Wolfram Burgard. Visual language maps for robot
 640 navigation. *2023 IEEE International Conference on Robotics and Automation (ICRA)*, pp. 10608–
 641 10615, 2022.

642 Wenxuan Huang, Bohan Jia, Zijie Zhai, Shaoshen Cao, Zheyu Ye, Fei Zhao, Zhe Xu, Yao Hu, and
 643 Shaohui Lin. Vision-r1: Incentivizing reasoning capability in multimodal large language models.
 644 *ArXiv*, abs/2503.06749, 2025.

648 Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning
 649 and compositional question answering. In *Proceedings of the IEEE/CVF conference on computer*
 650 *vision and pattern recognition*, pp. 6700–6709, 2019.

651

652 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 653 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
 654 *arXiv:2410.21276*, 2024.

655 Physical Intelligence, Kevin Black, Noah Brown, James Darpinian, Karan Dhabalia, Danny Driess,
 656 Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai, Manuel Y. Galliker, Dibya Ghosh,
 657 Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming Ke, Devin
 658 LeBlanc, Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Allen Z.
 659 Ren, Lucy Xiaoyang Shi, Laura Smith, Jost Tobias Springenberg, Kyle Stachowicz, James Tanner,
 660 Quan Vuong, Homer Rich Walke, Anna Walling, Haohuan Wang, Lili Yu, and Ury Zhilinsky. π 0.5:
 661 a vision-language-action model with open-world generalization. *ArXiv*, abs/2504.16054, 2025.

662

663 Amita Kamath, Jack Hessel, and Kai-Wei Chang. What's" up" with vision-language models?
 664 investigating their struggle with spatial reasoning. *arXiv preprint arXiv:2310.19785*, 2023.

665

666 Kibum Kim, Kanghoon Yoon, Jaehyeong Jeon, Yeonjun In, Jinyoung Moon, Donghyun Kim, and
 667 Chanyoung Park. Llm4sgg: Large language models for weakly supervised scene graph generation.
 668 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 28306–28316, 2024.

669

670 Mikhail Konenkov, Artem Lykov, Daria Trinitatova, and Dzmitry Tsetserukou. Vr-gpt: Visual
 671 language model for intelligent virtual reality applications. *ArXiv*, abs/2405.11537, 2024.

672

673 Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie
 674 Chen, Yannis Kalantidis, Li-Jia Li, David A Shamma, et al. Visual genome: Connecting language
 675 and vision using crowdsourced dense image annotations. *International journal of computer vision*,
 123(1):32–73, 2017.

676

677 Chengzu Li, Caiqi Zhang, Han Zhou, Nigel Collier, Anna Korhonen, and Ivan Vulić. Topviewrs:
 678 Vision-language models as top-view spatial reasoners. *arXiv preprint arXiv:2406.02537*, 2024a.

679

680 Feng Li, Renrui Zhang, Hao Zhang, Yuanhan Zhang, Bo Li, Wei Li, Zejun Ma, and Chunyuan Li.
 681 Llava-next-interleave: Tackling multi-image, video, and 3d in large multimodal models. *ArXiv*,
 abs/2407.07895, 2024b.

682

683 Lin Li, Jun Xiao, Guikun Chen, Jian Shao, Yueting Zhuang, and Long Chen. Zero-shot visual relation
 684 detection via composite visual cues from large language models. *ArXiv*, abs/2305.12476, 2023.

685

686 Lin Li, Wei Chen, Jiahui Li, Kwang-Ting Cheng, and Long Chen. Relation-r1: Progressively
 687 cognitive chain-of-thought guided reinforcement learning for unified relation comprehension.
arXiv preprint arXiv:2504.14642, 2025.

688

689 Rongjie Li, Songyang Zhang, Dahua Lin, Kai Chen, and Xuming He. From pixels to graphs: Open-
 690 vocabulary scene graph generation with vision-language models. In *Proceedings of the IEEE/CVF*
 691 *conference on computer vision and pattern recognition*, pp. 28076–28086, 2024c.

692

693 Ji Lin, Hongxu Yin, Wei Ping, Pavlo Molchanov, Mohammad Shoeybi, and Song Han. Vila: On
 694 pre-training for visual language models. In *Proceedings of the IEEE/CVF conference on computer*
 695 *vision and pattern recognition*, pp. 26689–26699, 2024.

696

697 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *ArXiv*,
 abs/2304.08485, 2023.

698

699 Yuqi Liu, Bohao Peng, Zhisheng Zhong, Zihao Yue, Fanbin Lu, Bei Yu, and Jiaya Jia. Seg-zero:
 700 Reasoning-chain guided segmentation via cognitive reinforcement. *ArXiv*, abs/2503.06520, 2025a.

701

Ziyu Liu, Zeyi Sun, Yuhang Zang, Xiao wen Dong, Yuhang Cao, Haodong Duan, Dahua Lin, and
 Jiaqi Wang. Visual-rft: Visual reinforcement fine-tuning. *ArXiv*, abs/2503.01785, 2025b.

702 Chenyang Ma, Kai Lu, Ta-Ying Cheng, Niki Trigoni, and Andrew Markham. Spatialpin: Enhancing
 703 spatial reasoning capabilities of vision-language models through prompting and interacting 3d
 704 priors. *Advances in neural information processing systems*, 37:68803–68832, 2024a.
 705

706 Wufei Ma, Haoyu Chen, Guofeng Zhang, Celso M de Melo, Alan L. Yuille, and Jieneng Chen.
 707 3dsrbench: A comprehensive 3d spatial reasoning benchmark. *ArXiv*, abs/2412.07825, 2024b.
 708

709 Wufei Ma, Yu cheng Chou, Qihao Liu, Xingrui Wang, Celso M de Melo, Jieneng Chen, Jianwen
 710 Xie, and Alan L. Yuille. Spatialreasoner: Towards explicit and generalizable 3d spatial reasoning.
 711 *ArXiv*, abs/2504.20024, 2025a.
 712

713 Wufei Ma, Luoxin Ye, Celso M de Melo, Alan Yuille, and Jieneng Chen. Spatialllm: A compound
 714 3d-informed design towards spatially-intelligent large multimodal models. In *Proceedings of the
 715 Computer Vision and Pattern Recognition Conference*, pp. 17249–17260, 2025b.
 716

717 Fanqing Meng, Lingxiao Du, Zongkai Liu, Zhixiang Zhou, Quanfeng Lu, Daocheng Fu, Tiancheng
 718 Han, Botian Shi, Wenhui Wang, Junjun He, Kaipeng Zhang, Ping Luo, Yu Qiao, Qiaosheng Zhang,
 719 and Wenqi Shao. Mm-eureka: Exploring the frontiers of multimodal reasoning with rule-based
 720 reinforcement learning. 2025.
 721

722 Roshanak Mirzaee, Hossein Rajaby Faghihi, Qiang Ning, and Parisa Kordjimashidi. Spartqa: A
 723 textual question answering benchmark for spatial reasoning. *arXiv preprint arXiv:2104.05832*,
 724 2021.
 725

726 Soroush Nasirany, Fei Xia, Wenhao Yu, Ted Xiao, Jacky Liang, Ishita Dasgupta, Annie Xie, Danny
 727 Driess, Ayzaan Wahid, Zhuo Xu, Quan Ho Vuong, Tingnan Zhang, Tsang-Wei Edward Lee, Kuang-
 728 Huei Lee, Peng Xu, Sean Kirmani, Yuke Zhu, Andy Zeng, Karol Hausman, Nicolas Manfred Otto
 729 Heess, Chelsea Finn, Sergey Levine, and Brian Ichter. Pivot: Iterative visual prompting elicits
 730 actionable knowledge for vlm. *ArXiv*, abs/2402.07872, 2024.
 731

732 Michael Ogezi and Freda Shi. Spare: Enhancing spatial reasoning in vision-language models with
 733 synthetic data. *arXiv preprint arXiv:2504.20648*, 2025.
 734

735 Yi Peng, Gongrui Zhang, Miaozen Zhang, Zhiyuan You, Jie Liu, Qipeng Zhu, Kai Yang, Xingzhong
 736 Xu, Xin Geng, and Xu Yang. Lmm-r1: Empowering 3b lmm with strong reasoning abilities
 737 through two-stage rule-based rl. *ArXiv*, abs/2503.07536, 2025.
 738

739 Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, and Furu
 740 Wei. Kosmos-2: Grounding multimodal large language models to the world. *arXiv preprint
 741 arXiv:2306.14824*, 2023.
 742

743 André Susano Pinto, Alexander Kolesnikov, Yuge Shi, Lucas Beyer, and Xiaohua Zhai. Tuning
 744 computer vision models with task rewards. *ArXiv*, abs/2302.08242, 2023.
 745

746 Hanoona Rasheed, Muhammad Maaz, Sahal Shaji, Abdelrahman Shaker, Salman Khan, Hisham
 747 Cholakkal, Rao M Anwer, Eric Xing, Ming-Hsuan Yang, and Fahad S Khan. Glamm: Pixel
 748 grounding large multimodal model. In *Proceedings of the IEEE/CVF Conference on Computer
 749 Vision and Pattern Recognition*, pp. 13009–13018, 2024.
 750

751 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Jun-Mei Song, Mingchuan Zhang, Y. K. Li,
 752 Yu Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open
 753 language models. *ArXiv*, abs/2402.03300, 2024.
 754

755 Chuming Shen, Wei Wei, Xiaoye Qu, and Yu Cheng. Satori-r1: Incentivizing multimodal reasoning
 756 with spatial grounding and verifiable rewards. *ArXiv*, abs/2505.19094, 2025a.
 757

758 Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun
 759 Zhang, Kangjia Zhao, Qianqian Zhang, Ruochen Xu, and Tiancheng Zhao. Vlm-r1: A stable and
 760 generalizable r1-style large vision-language model. *ArXiv*, abs/2504.07615, 2025b.
 761

762 Joar Skalse, Lewis Hammond, Charlie Griffin, and Alessandro Abate. Lexicographic multi-objective
 763 reinforcement learning. *ArXiv*, abs/2212.13769, 2022.
 764

756 Chan Hee Song, Valts Blukis, Jonathan Tremblay, Stephen Tyree, Yu Su, and Stan Birchfield.
 757 Robospatial: Teaching spatial understanding to 2d and 3d vision-language models for robotics. In
 758 *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 15768–15780, 2025.
 759

760 Kexian Tang, Junyao Gao, Yanhong Zeng, Haodong Duan, Yanan Sun, Zhenling Xing, Wenran Liu,
 761 Kaifeng Lyu, and Kai Chen. Lego-puzzles: How good are mllms at multi-step spatial reasoning?
 762 *ArXiv*, abs/2503.19990, 2025. URL <https://api.semanticscholar.org/CorpusID:277322494>.
 763

764 Gemini Robotics Team, Saminda Abeyruwan, Joshua Ainslie, Jean-Baptiste Alayrac, Montse Gonza-
 765 lez Arenas, Travis Armstrong, Ashwin Balakrishna, Robert Baruch, Maria Bauzá, Michiel Blokzijl,
 766 Steven Bohez, Konstantinos Bousmalis, Anthony Brohan, Thomas Buschmann, Arunkumar Byra-
 767 van, Serkan Cabi, Ken Caluwaerts, Federico Casarini, Os car Chang, José Enrique Chen, Xi Chen,
 768 Hao-Tien Lewis Chiang, Krzysztof Choromanski, David D’Ambrosio, Sudeep Dasari, Todor
 769 Davchev, Coline Devin, Norman Di Palo, Tianli Ding, Adil Dostmohamed, Danny Driess, Yilun
 770 Du, Debidatta Dwibedi, Michael Elabd, Claudio Fantacci, Cody Fong, Erik Frey, Chuyuan Kelly
 771 Fu, Marissa Giustina, Keerthana Gopalakrishnan, Laura Graesser, Leonard Hasenklever, Nico-351
 772 las Heess, Brandon Hernaez, Alex Herzog, R. Alex Hofer, Jan Humplik, Atil Iscen, Mithun George
 773 Jacob, Deepali Jain, Ryan C. Julian, Dmitry Kalashnikov, Mustafa Emre Karagozler, Stefani Karp,
 774 Chase Kew, Jerad Kirkland, Sean Kirmani, Yuheng Kuang, Thomas Lampe, Antoine Laurens,
 775 Isabel Leal, Alex X. Lee, Tsang-Wei Edward Lee, Jacky Liang, Yixin Lin, Sharath Maddineni,
 776 Anirudha Majumdar, Assaf Hurwitz Michaely, Robert Moreno, Michael Neunert, Francesco Nori,
 777 Carolina Parada, Emilio Parisotto, Peter Pastor, Acorn Pooley, Kanishka Rao, Krista Reymann,
 778 Dorsa Sadigh, Stefano Saliceti, Pannag R. Sanketi, Pierre Sermanet, Dhruv Shah, Mohit Sharma,
 779 Kathryn Shea, Charles Shu, Vikas Sindhwani, Sumeet Singh, Radu Soricut, Jost Tobias Sprin-
 780 genberg, Rachel Sterneck, Razvan Surdulescu, Jie Tan, Jonathan Tompson, Vincent Vanhoucke,
 781 Jake Varley, Grace Vesom, Giulia Vezzani, Oriol Vinyals, Ayzaan Wahid, Stefan Welker, Paul
 782 Wohlhart, Fei Xia, Ted Xiao, Annie Xie, Jinyu Xie, Peng Xu, Sichun Xu, Ying Xu, Zhuo Xu,
 783 Yuxiang Yang, Rui Yao, Sergey Yaroshenko, Wenhao Yu, Wentao Yuan, Jingwei Zhang, Tingnan
 784 Zhang, Allan Zhou, and Yuxiang Zhou. Gemini robotics: Bringing ai into the physical world.
 785 *ArXiv*, abs/2503.20020, 2025.

786 Shengbang Tong, Ellis L Brown, Penghao Wu, Sanghyun Woo, Manoj Middepogu, Sai Charitha
 787 Akula, Jihan Yang, Shusheng Yang, Adithya Iyer, Xichen Pan, Austin Wang, Rob Fergus, Yann
 788 LeCun, and Saining Xie. Cambrian-1: A fully open, vision-centric exploration of multimodal llms.
 789 *ArXiv*, abs/2406.16860, 2024a.

790 Shengbang Tong, Zhuang Liu, Yuxiang Zhai, Yi Ma, Yann LeCun, and Saining Xie. Eyes wide
 791 shut? exploring the visual shortcomings of multimodal llms. In *Proceedings of the IEEE/CVF*
 792 *Conference on Computer Vision and Pattern Recognition*, pp. 9568–9578, 2024b.

793 Jean Vassoyan, Nathanael Beau, and Roman Plaud. Ignore the kl penalty! boosting exploration on
 794 critical tokens to enhance rl fine-tuning. *ArXiv*, abs/2502.06533, 2025.

795 Johanna Wald, Helisa Dhamo, Nassir Navab, and Federico Tombari. Learning 3d semantic scene
 796 graphs from 3d indoor reconstructions. *2020 IEEE/CVF Conference on Computer Vision and*
 797 *Pattern Recognition (CVPR)*, pp. 3960–3969, 2020.

798 Peiyao Wang and Haibin Ling. Svqa-r1: Reinforcing spatial reasoning in mllms via view-consistent
 799 reward optimization. *ArXiv*, abs/2506.01371, 2025.

800 Xingrui Wang, Wufei Ma, Zhuowan Li, Adam Kortylewski, and Alan L Yuille. 3d-aware visual
 801 question answering about parts, poses and occlusions. *Advances in Neural Information Processing*
 802 *Systems*, 36:58717–58735, 2023.

803 Xingrui Wang, Wufei Ma, Angtian Wang, Shuo Chen, Adam Kortylewski, and Alan Yuille. Compo-
 804 sitional 4d dynamic scenes understanding with physics priors for video question answering. *arXiv*
 805 *preprint arXiv:2406.00622*, 2024.

806 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed H. Chi, F. Xia, Quoc Le, and
 807 Denny Zhou. Chain of thought prompting elicits reasoning in large language models. *ArXiv*,
 808 abs/2201.11903, 2022.

810 Penghao Wu and Saining Xie. V*: Guided visual search as a core mechanism in multimodal
 811 llms. *2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp.
 812 13084–13094, 2023.

813 xAI. Grok-1.5 vision preview. *xAI Blog*, apr 2024.

814 Jiaer Xia, Y.-F. Zang, Peng Gao, Yixuan Li, and Kaiyang Zhou. Visionary-r1: Mitigating shortcuts in
 815 visual reasoning with reinforcement learning. *ArXiv*, abs/2505.14677, 2025.

816 Tong Xiao, Xin Xu, Zhenya Huang, Hongyu Gao, Quan Liu, Qi Liu, and Enhong Chen. Advancing
 817 multimodal reasoning capabilities of multimodal large language models via visual perception
 818 reward. *ArXiv*, abs/2506.07218, 2025.

819 Yutaro Yamada, Yihan Bao, Andrew K Lampinen, Jungo Kasai, and Ilker Yildirim. Evaluating spatial
 820 understanding of large language models. *arXiv preprint arXiv:2310.14540*, 2023.

821 Jihan Yang, Shusheng Yang, Anjali W Gupta, Rilyn Han, Li Fei-Fei, and Saining Xie. Thinking in
 822 space: How multimodal large language models see, remember, and recall spaces. In *Proceedings
 823 of the Computer Vision and Pattern Recognition Conference*, pp. 10632–10643, 2025a.

824 Scott Cheng-Hsin Yang, Daniel M Wolpert, and Máté Lengyel. Theoretical perspectives on ac-
 825 tive sensing. *Current Opinion in Behavioral Sciences*, 11:100–108, 2016. ISSN 2352-1546.

826 Computational modeling.

827 Yi Yang, Xiaoxuan He, Hongkun Pan, Xiyan Jiang, Yan Deng, Xingtao Yang, Haoyu Lu, Dacheng
 828 Yin, Fengyun Rao, Minfeng Zhu, Bo Zhang, and Wei Chen. R1-onevision: Advancing generalized
 829 multimodal reasoning through cross-modal formalization. *ArXiv*, abs/2503.10615, 2025b.

830 Haoxuan You, Haotian Zhang, Zhe Gan, Xianzhi Du, Bowen Zhang, Zirui Wang, Liangliang Cao,
 831 Shih-Fu Chang, and Yinfei Yang. Ferret: Refer and ground anything anywhere at any granularity.
 832 *arXiv preprint arXiv:2310.07704*, 2023.

833 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
 834 Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan Tong, Chi
 835 Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie Chen, Chengyi
 836 Wang, Honglin Yu, Weinan Dai, Yuxuan Song, Xiang Wei, Haodong Zhou, Jingjing Liu, Wei Ma,
 837 Ya-Qin Zhang, Lin Yan, Mu Qiao, Yong-Xu Wu, and Mingxuan Wang. Dapo: An open-source llm
 838 reinforcement learning system at scale. *ArXiv*, abs/2503.14476, 2025.

839 Wentao Yuan, Jiafei Duan, Valts Blukis, Wilbert Pumacay, Ranjay Krishna, Adithyavairavan Murali,
 840 Arsalan Mousavian, and Dieter Fox. Robopoint: A vision-language model for spatial affordance
 841 prediction for robotics. *ArXiv*, abs/2406.10721, 2024.

842 Yi-Fan Zhang, Huanyu Zhang, Haochen Tian, Chaoyou Fu, Shuangqing Zhang, Jun Wu, Feng Li, Kun
 843 Wang, Qingsong Wen, Zhang Zhang, Liang Wang, Rong Jin, and Tien-Ping Tan. Mme-realworld:
 844 Could your multimodal llm challenge high-resolution real-world scenarios that are difficult for
 845 humans? *ArXiv*, abs/2408.13257, 2024.

846 Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyuan Luo, and Yongqiang Ma. Lla-
 847 mafactory: Unified efficient fine-tuning of 100+ language models. *ArXiv*, abs/2403.13372, 2024.

848 Yaowei Zheng, Junting Lu, Shenzhi Wang, Zhangchi Feng, Dongdong Kuang, and Yuwen
 849 Xiong. Easyr1: An efficient, scalable, multi-modality rl training framework. *arXiv preprint
 850 arXiv:2501.12345*, 2025.

851 Zhaohui Zheng, Ping Wang, Dongwei Ren, Wei Liu, Rongguang Ye, Qinghua Hu, and Wangmeng
 852 Zuo. Enhancing geometric factors in model learning and inference for object detection and instance
 853 segmentation. *IEEE Transactions on Cybernetics*, 52:8574–8586, 2020.

854 Hengguang Zhou, Xirui Li, Ruochen Wang, Minhao Cheng, Tianyi Zhou, and Cho-Jui Hsieh.
 855 R1-zero's "aha moment" in visual reasoning on a 2b non-sft model. *ArXiv*, abs/2503.05132, 2025.

856 Fangrui Zhu, Hanhui Wang, Yiming Xie, Jing Gu, Tianye Ding, Jianwei Yang, and Huaiyu Jiang.
 857 Struct2d: A perception-guided framework for spatial reasoning in large multimodal models. *ArXiv*,
 858 abs/2506.04220, 2025.

864

APPENDIX

865

866

867

A STVQA-7K: DATASET CONSTRUCTION

868

869

870

871

872

873

874

875

876

877

878

High-quality spatial VQA datasets remain scarce, as most existing benchmarks either lack grounded scene-graph annotations (i.e., explicit spatial coordinates for objects and relations) or fail to comprehensively cover both 2D and 3D spatial reasoning categories. Visual Genome (Krishna et al., 2017) provides dense, human-annotated scene graphs that support strict grounding of both question generation and answer verification within a unified representational framework. Using Visual Genome, we synthetically constructed a spatial visual question answering dataset called **SPATIALTHINKER** Visual Question Answering dataset i.e., STVQA-7K comprising 7,587 samples, fully grounded in human-annotated scene graphs (Krishna et al., 2017), which we employed for post-training the **SPATIALTHINKER** models. Importantly, our pipeline is scalable and can be extended to generate up to 108K samples, the maximum supported by Visual Genome, enabling future large-scale post-training or RL fine-tuning.

879

880

881

882

883

884

885

886

887

888

889

The original VG150 predicate set is limited to 50 relations, missing several important categories such as positional relations (e.g., left, right, beside), distance-based relations (e.g., near, far, next to), comparative size (e.g., smaller, taller, bigger), orientation (e.g., facing towards/away), and containment (e.g., inside, beneath). To address this gap, we extended the scene graph relation space with an additional 34 predicates, ensuring richer spatial coverage in both 2D and 3D reasoning. Bounding box coordinates are retained in absolute pixel space, rather than normalized values, to preserve real-world scale and spatial alignment, to enable both improved spatial reasoning and effective use of CIoU-based supervision during reward optimization. The dataset construction pipeline proceeds in three stages: (1) synthetic question generation from ground-truth scene graphs, (2) automated quality filtering with external verification, and (3) scene graph adaptation for regional alignment with individual questions.

890

891

892

893

894

895

896

897

898

899

900

901

902

903

Synthetic Question Generation. Visual Genome scene graphs serve as our foundational ground truth, providing object categories, bounding boxes, and relational triplets for over 150,000 images. We synthetically generate question-answer pairs for a given scene graph data using Claude Sonnet 4 (Anthropic, 2025), synthesizing multiple-choice questions based on the salient objects and meaningful spatial relations explicitly present in each graph. Each question-answer pair is accompanied with a rating generated out of 10 and the difficulty level. Our question generation encompasses nine distinct spatial reasoning categories: spatial relations (above, behind, near, etc.), physical reach and interaction (holding, touching), comparative size, orientation from specific viewpoints, instance location within image frames, depth ordering relative to the camera, distance comparisons to reference objects, object counting, and existence verification. This comprehensive taxonomy spans both 2D and 3D spatial understanding, providing a broad coverage of visual-spatial reasoning capabilities. To promote robust perception, we also include questions involving objects that are partially visible or occluded in the scene, encouraging the model to reason about spatial arrangements and fine-grained details. For each question, we generate a rating out of 10.

904

905

906

907

908

909

910

911

912

913

914

915

916

917

Quality Filtering and Validation. To ensure semantic correctness at scale, we implement a consistency-based verification procedure using GPT-4o (Hurst et al., 2024) as an external validation model. For each generated question-answer pair, we assess agreement between the external model and our synthetic ground truth label using a pass@2 criterion. Questions that fail this initial consistency check undergo additional evaluation with two supplementary model responses. Items for which all four collected responses disagree with the generated label are discarded as potentially incorrect or ambiguous. This filtering process begins with 56,224 initially generated questions by Claude Sonnet 4 (Anthropic, 2025). We select the 10,000 highest-rated samples based on the questions complexity and rating towards its contribution to enhance spatial intelligence as judged by Claude Sonnet 4. Following consistency filtering, we retain 6,895 training samples and 692 validation samples (75%), indicating high label reliability. The final set consists of 50% samples from the relation category, and the remaining 50% distributed across the eight other categories. To prevent positional bias, answers are uniformly distributed across options A, B, C, and D. Figure Figure 2 illustrates the distribution of QA types in STVQA-7K, highlighting the emphasis on spatial relations while maintaining balanced coverage across the remaining reasoning categories. Representative examples of generated QA pairs

918
919
920
921
922
923
924
925
926
927
928
929
930

STVQA-7K QA Examples

Spatial Relations

Q. Where is the cap with respect to the glove?
Options:
(A) above
(B) below
(C) beside
(D) behind

Reach

Q. What is the woman doing with the surfboard?
Options:
(A) standing on
(B) carrying over head
(C) holding
(D) sitting beside

Existence

Q. Is there a fork touching the food in the picture?
Options:
(A) yes
(B) no

Depth

Q. Which is closer to the camera, the pizza or the bottle?
Options:
(A) bottle
(B) they are at the same distance
(C) pizza

Instance Location

Q. In which part of the image is the fork located?
Options:
(A) bottom left corner
(B) center
(C) top left corner
(D) top right corner

Size

Q. What is the relationship between the boy and the towel in terms of size?
Options:
(A) boy is larger
(B) they are the same size
(C) towel is larger

Distance

Q. Which object is closer to the chair, the lamp or the boy?
Options:
(A) lamp
(B) boy
(C) they are equidistant

Orientation

Q. From the woman's perspective, which direction is the pole?
Options:
(A) to the left
(B) in front
(C) to the right
(D) behind

Count

Q. How many skis are there in the image?
Options:
(A) 3
(B) 4
(C) 6
(D) 5

Figure 3: Examples of generated QA pairs across the nine spatial reasoning categories in STVQA-7K. Each category highlights distinct reasoning skills, ranging from relative spatial relations and depth ordering to distance, size, orientation, reach, location, count and existence.

968

969
970
971

972 across the nine spatial reasoning categories are shown in Figure 3, illustrating the diversity of question
 973 types in STVQA-7K.
 974

975 **Scene Graph Adaptation.** Since each question focuses on specific objects and relationships within
 976 the broader scene, we derive question-aligned scene subgraphs that capture only the relevant spatial
 977 context. For each question, we extract content words through tokenization and lemmatization to
 978 obtain both singular and plural word forms. We then filter the original scene graph to retain only object
 979 nodes whose labels appear in the extracted question vocabulary. Relational triplets are preserved
 980 when both the subject and object entities are retained and the predicate appears in the question
 981 context. The resulting focused scene graph representations enable training the model to generate
 982 question-aligned region-of-interest subgraphs, encouraging it to localize attention, ground reasoning
 983 in relevant entities and relations, and ultimately learn where to focus within complex visual scenes.
 984

985 B EXPERIMENTAL SETUP DETAILS

987 This section presents comprehensive evaluations of SPATIALTHINKER across multiple spatial rea-
 988 soning benchmarks, demonstrating the effectiveness of our multi-objective dense reward design and
 989 data-efficient training approach.

990 991 B.1 IMPLEMENTATION DETAILS

992 We build SPATIALTHINKER upon two strong open-source multimodal base models: Qwen2.5-VL-
 993 3B and Qwen2.5-VL-7B Bai et al. (2025), using them as backbones for policy optimization with
 994 reinforcement learning. No supervised fine-tuning is performed prior to RL training on our STVQA-
 995 7K dataset (Section 3.3). We employ GRPO Shao et al. (2024) as the advantage estimator as described
 996 in Section 3.2, using a rollout size of 8 samples per query and a sampling temperature of 1.0. The
 997 models are trained with a maximum context length of 16,384 tokens. The rollout batch size is set to
 998 512, and the global batch size is 128. We train for 75 training steps i.e., 5 training episodes) on 4 ×
 999 NVIDIA H100 80GB GPUs. Training time totals around 13 hours for the 3B model and 15 hours for
 1000 the 7B model.

1001 The models are trained on high-resolution image inputs ranging from 512×512 to 2048×2048 pixels,
 1002 to preserve fine-grained spatial information. All model parameters, including the vision encoder,
 1003 are updated during training. We use the AdamW optimizer with bf16 precision, a learning rate of
 1004 1×10^{-6} , and a weight decay of 1×10^{-2} . The KL penalty coefficient is set to 10^{-2} . STVQA-7K is
 1005 partitioned with a 90/10 train-validation split.

1006 1007 B.2 EXPERIMENTAL SETUP

1008 We evaluate SPATIALTHINKER across a diverse suite of 12 spatial understanding and real-world VQA
 1009 benchmarks, covering both 2D and 3D understanding aspects to assess fine-grained spatial reasoning
 1010 capabilities and real-world generalization. We compare against both proprietary and open-source
 1011 baselines, including models specifically trained for spatial reasoning tasks. Our experiments address
 1012 two key questions: (Q1) Does our spatial VQA data generation pipeline, combined with dense reward
 1013 RL, improve MLLMs’ general spatial reasoning capabilities? (Q2) How effectively can MLLMs
 1014 learn spatial understanding from just 7K synthetic training samples, and how does this compare to
 1015 models trained on orders-of-magnitude larger datasets?

1016 **Benchmarks.** We evaluate models across six core spatial benchmarks, and six general-purpose VQA
 1017 and real-world understanding datasets. The spatial benchmarks includes CV-Bench (Tong et al.,
 1018 2024a) that measures 2D spatial relations, object counting, depth ordering, and distance reasoning.
 1019 BLINK’s Spatial Relations and Relative Depth tasks (Fu et al., 2024) test directional and positional
 1020 understanding, and fine-grained point-level depth perception—particularly challenging as SPATIAL-
 1021 THINKER receives no explicit point-level supervision during training 3DSRBench (Ma et al., 2024b)
 1022 assesses egocentric 3D spatial reasoning via relational and multi-object comparisons. MMVP (Tong
 1023 et al., 2024b) examines visual pattern recognition across attributes such as orientation, positional
 1024 relations, existence, viewpoint, and size. SpatialBench (Cai et al., 2024) assesses general spatial
 1025 comprehension across counting, existence, positional relationships, physical interactions such as
 reach, and size comparisons. Finally, SpatialReasonerEval (Ma et al., 2025a) emphasizes depth and

1026 distance reasoning within 3D spatial tasks.

1027 To assess broader generalization, we further evaluate models on six diverse real-world benchmarks.
 1028 VStarBench (Wu & Xie, 2023) measures accurate localization and recognition of key objects in
 1029 complex natural scenes. RealWorldQA (xAI, 2024) requires integrating visual inputs with common-
 1030 sense and multi-step reasoning for real-world understanding. MME-RealWorld (Zhang et al., 2024)
 1031 spans five challenging domains including optical character recognition in the wild, remote sensing,
 1032 diagram and table interpretation, autonomous driving, and scene monitoring. RoboSpatial-Home
 1033 (Song et al., 2025) simulates embodied spatial reasoning tasks involving object-object relationships,
 1034 compatibility, and reference-frame switching (ego-centric, object-centric, and world-centric). We
 1035 only use Configuration and Compatibility subsets of RoboSpatial-Home. MM-Star (Chen et al.,
 1036 2024c) provides a holistic benchmark covering math, logical reasoning, instance recognition, and
 1037 fine/coarse visual perception. HallusionBench (Guan et al., 2023) evaluates hallucination resistance
 1038 in multimodal models, requiring accurate visual grounding to counteract entangled linguistic or
 1039 perceptual illusions. Together, these benchmarks allow us to probe spatial and perceptual reasoning
 1040 across synthetic, embodied, and naturalistic settings.

1041 **Closed-Source MLLM Baselines.** Among proprietary models, we evaluate GPT-4o (GPT-4o-0513)
 1042 (Hurst et al., 2024) and Claude 3.5 Sonnet (CLAUDE-3.5-SONNET-0620) (Anthropic, 2024), which
 1043 represent the current state-of-the-art in commercial multimodal reasoning. These serve as upper
 1044 bounds for spatial generalization under non-public training regimes.

1045 **Open-Source Generalist MLLM Baselines.** We compare against generalist open-source MLLMs
 1046 including Qwen2.5-VL 3B and 7B models (Bai et al., 2025), LLaVA-NeXT (Li et al., 2024b),
 1047 Cambrian-1 (Tong et al., 2024a), and VLAA-Thinker (3B and 7B) (Chen et al., 2025a). These models
 1048 represent state-of-the-art vision-language architectures, offering strong general visual reasoning but
 1049 without specific spatial tuning.

1050 **Open-Source Spatial MLLM Baselines.** We benchmark against specialized open-source models
 1051 designed for spatial reasoning: SpaceLLaVA-13B AI & Mayorquin (2025a); Chen et al. (2024a)
 1052 – a public re-implementation of SpatialVLM, SpatialRGPT-7B (Cheng et al., 2024) incorporates
 1053 region-level supervision and explicit depth maps into training, RoboPoint-13B (Yuan et al., 2024),
 1054 which instruction-tunes an MLLM to predict image key-point affordances for robotics and spatial
 1055 affordance tasks, SpaceThinker (AI & Mayorquin, 2025c), a fine-tuned VLAA-Thinker model for
 1056 spatial reasoning, and its improved successor SpaceOm (AI & Mayorquin, 2025b), which incorporates
 1057 deeper chain-of-thought traces and Robo2VLM data (Chen et al., 2025b). Other baselines include
 1058 SpatialReasoner (Ma et al., 2025a), trained with RL and explicit 3D representations, and SpatialBot
 1059 (Cai et al., 2024), which integrates RGB and depth inputs for robust spatial perception.

1060 In addition to the above, we compare against our training variants including supervised fine-tuning
 1061 (SFT) baselines and vanilla GRPO trained with sparse rewards (accuracy and format only) to isolate
 1062 the contribution of our dense spatial reward framework.

1063 In addition to external baselines, we evaluate ablations on variants of our model trained with the
 1064 STVQA-7K dataset: a supervised fine-tuning (SFT) baseline, and a sparse-reward RL baseline that
 1065 optimizes only format and accuracy rewards, each weighted equally at 0.5. These ablations allow us
 1066 to isolate the contribution of our proposed multi-objective dense spatial reward function.

1067 **Evaluation Setting.** We report accuracy as the primary evaluation metric across all benchmarks.
 1068 All models are evaluated under zero-shot settings, using greedy decoding (temperature = 0.0,
 1069 max_new_tokens = 2048) to ensure deterministic and reproducible outputs. For models with spe-
 1070 cific reasoning templates such as VLAA-Thinker, SpaceThinker, and SpaceOm, we utilize their
 1071 corresponding structured prompts. In line with their original training setup, SpatialRGPT receives
 1072 depth inputs, while all other models are evaluated using RGB images alone. Our evaluation pipeline
 1073 builds upon OpenVLThinker’s evaluation framework (Deng et al., 2025), adapted to support our new
 1074 benchmark and dataset formats.

1075 B.3 SPATIALTHINKER PROMPT FORMAT

1076 We use a structured prompt to guide the model through a four-stage reasoning process, explicitly
 1077 separated using the tags `<observe>`, `<scene>`, `<think>`, and `<answer>`. This format is
 1078 enforced during training via a binary format reward $R_f \in \{0, 1\}$, with weight $w_{\text{format}} = 0.1$, which

1080 verifies the presence, ordering, and validity of all required tags. The `<scene>` section must contain
 1081 a JSON-encoded subgraph with object IDs, bounding boxes, and relational triplets, while the final
 1082 answer must be clearly placed within the `<answer>` tags.

1083 Each prompt also includes the input image dimensions in the form `Image size: {Width}`
 1084 \times `{Height}`, which are dynamically replaced with actual values. Including this information
 1085 helps the model constrain predicted bounding box coordinates within image bounds, enabling better
 1086 spatial localization. These coordinates are directly evaluated using IoU-based spatial rewards such as
 1087 Complete IoU (CIoU), making dimension-aware prediction essential for optimizing structured spatial
 1088 grounding.

1089

1090 SpatialThinker Prompt

1091 You FIRST observe the image in `<observe>` `</observe>` tags, then visualise the relevant scene
 1092 graph in `<scene>` `</scene>` tags, followed by thinking about the reasoning process as an internal
 1093 monologue within `<think>` `</think>` tags and then provide the final answer. The final answer
 1094 MUST BE put within `<answer>` `</answer>` tags, and only return the final choice including the
 1095 correct option and answer within the answer tags, e.g., `<answer>` (C) The red cube is left of the
 1096 green sphere `</answer>`.

1097 Image size: `{Width} \times {Height}`

1098

1099 B.4 DETAILS ON SFT TRAINING

1100 To establish a comprehensive baseline for comparison with our reinforcement learning approach, we
 1101 conduct supervised fine-tuning (SFT) experiments using the same base models (Qwen2.5-VL-3B
 1102 and Qwen2.5-VL-7B) and training dataset (STVQA-7K). The SFT implementation utilizes LLaMA-
 1103 Factory framework (Zheng et al., 2024) with Low-Rank Adaptation (LoRA) for parameter-efficient
 1104 fine-tuning.

1105 The training configuration employs LoRA with rank 8 applied to all available modules within the
 1106 model architecture, enabling comprehensive adaptation while maintaining computational efficiency.
 1107 Models are trained for 3 epochs totaling 645 training steps, using a context window length of 2048
 1108 tokens. We adopt BF16 mixed precision training with a learning rate of 1×10^{-4} , following a cosine
 1109 learning rate schedule with a warmup ratio of 0.1.

1110 For the SFT experiments, we train models directly on question-answer pairs without intermediate
 1111 reasoning traces or chain-of-thought prompting. This design choice reflects the practical constraint
 1112 that generating ground-truth reasoning traces would require additional dataset processing, annotation,
 1113 and API credits budget. In contrast, reinforcement learning approaches with verifiable rewards
 1114 (RLVR) naturally enables training with answer supervision alone, as the model learns to generate
 1115 its own reasoning strategies through environmental feedback rather than imitating pre-specified
 1116 reasoning patterns.

1117 The SFT baseline serves a critical role in our experimental evaluation, providing direct evidence of
 1118 the generalization advantages offered by reinforcement learning with dense spatial rewards compared
 1119 to traditional supervised learning on the same dataset.

1120

1121 B.5 DETAILS ON RL TRAINING

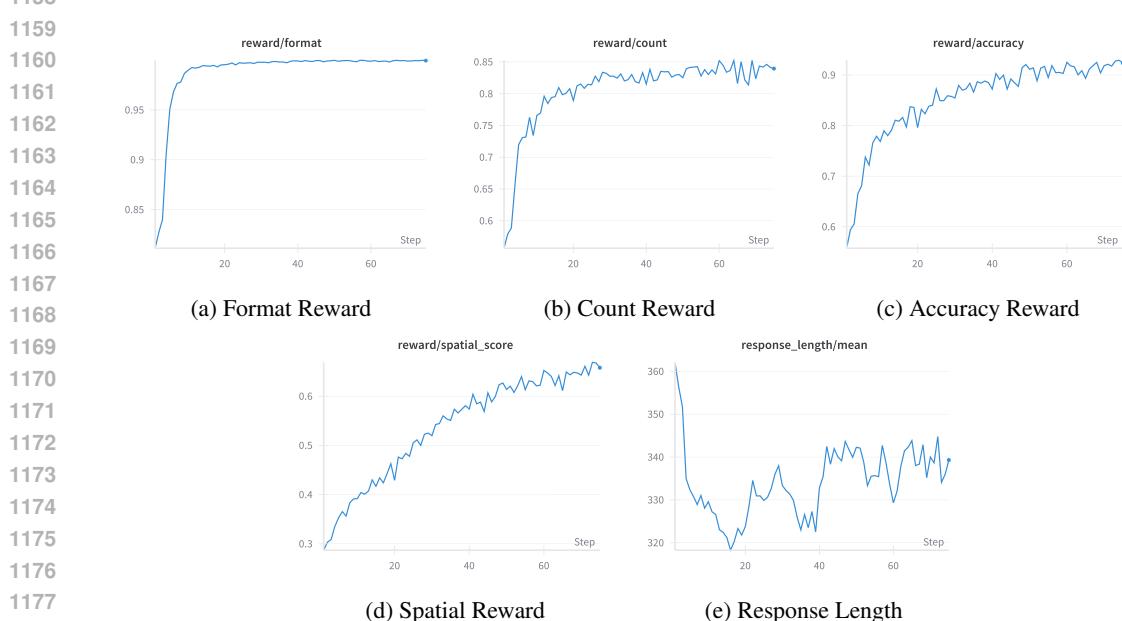
1122 We implement reinforcement learning training using the EasyR1 framework (Zheng et al., 2025),
 1123 building upon Qwen2.5-VL-3B and Qwen2.5-VL-7B as base models without any prior supervised
 1124 fine-tuning. This direct application of RL to the base models enables us to isolate the effects of
 1125 reward-driven learning from potential confounding factors introduced by intermediate training stages.
 1126 Additionally, performing an SFT stage prior to RL would require generating ground-truth reasoning
 1127 traces, which is limited by API budget. Moreover, explicit reasoning supervision is not strictly
 1128 necessary—our multi-objective dense spatial rewards encourage the model to acquire structured
 1129 reasoning and self-reflection abilities directly during RL training.

1130 The training employs Group Relative Policy Optimization (GRPO) (Shao et al., 2024) as the advantage
 1131 estimation method, configured with a rollout size of 8 samples per query at a sampling temperature

1134 of 1.0. This configuration balances exploration diversity with computational efficiency, allowing the
 1135 model to discover multiple reasoning strategies while maintaining stable convergence. The training
 1136 process utilizes a rollout batch size of 512 and a global batch size of 128, processing data through
 1137 75 training steps (approximately 5 training episodes) to achieve convergence. The entire training
 1138 pipeline runs on $4 \times$ NVIDIA H100 80GB GPUs, requiring approximately ~ 13 hours for the 3B
 1139 model and ~ 15 hours for the 7B variant.

1140 To preserve fine-grained spatial information critical for accurate object localization and spatial
 1141 reasoning, models process high-resolution image inputs ranging from 512×512 to 2048×2048 pixels.
 1142 The training configuration updates all model parameters including the vision encoder, enabling
 1143 comprehensive adaptation to spatial reasoning tasks. Optimization employs AdamW with BF16
 1144 mixed precision, a conservative learning rate of 1×10^{-6} , and weight decay of 1×10^{-2} . The KL
 1145 penalty coefficient is set to 10^{-2} to prevent excessive divergence from the base model distribution
 1146 while allowing sufficient exploration for spatial reasoning strategies. The training utilizes a 90/10
 1147 train-validation split of the STVQA-7K dataset, with a maximum context length of 16,384 tokens to
 1148 accommodate detailed scene descriptions and reasoning traces.

1149 For baseline comparisons, we train vanilla GRPO models (Qwen2.5-VL-3B + Vanilla GRPO and
 1150 Qwen2.5-VL-7B + Vanilla GRPO) using a simplified reward structure consisting solely of accuracy
 1151 ($w_{acc} = 0.5$) and format rewards ($w_{format} = 0.5$), without the spatial grounding and count penalty
 1152 components. This configuration represents standard RLVR approaches that rely on sparse final-
 1153 answer supervision (DeepSeek-AI et al., 2025; Shen et al., 2025b; Chen et al., 2025a). The full
 1154 multi-objective reward design employed for SPATIALTHINKER training, incorporating format, count,
 1155 accuracy, and spatial rewards with lexicographic gating, is detailed in Section 3.1. The substantial
 1156 performance improvements of SPATIALTHINKER over vanilla GRPO baselines demonstrate the
 1157 critical importance of dense spatial supervision in teaching models to perform visually-grounded
 1158 reasoning.



1179 Figure 4: RL training dynamics of SPATIALTHINKER. All reward components (a–d) improve
 1180 consistently, reflecting stable optimization. Response length (e) shows a non-monotonic trend,
 1181 indicating emergent reasoning strategies.

1182

1183 B.5.1 SPATIALTHINKER RL TRAINING CURVES

1184 Throughout reinforcement learning, all four reward components: format, accuracy, count, and
 1185 spatial; demonstrate consistent and interpretable improvement, reflecting stable learning under our
 1186 lexicographically gated, multi-objective reward structure. The format reward quickly converges early
 1187 in training, indicating the model learns to produce structurally valid outputs that adhere to the required

scene-grounded reasoning format. Accuracy steadily improves across steps, highlighting the model’s increasing ability to provide correct answers. Count reward rises consistently, showing that the model learns to focus on predicting only question-relevant objects and relations, rather than describing the entire scene. The spatial reward also improves gradually, indicating better object localization and grounding, as the model increasingly aligns predicted bounding boxes with ground truth annotations. Together, these trends reflect how each reward component scaffolds a different stage of the reasoning process, enforcing structure, correctness, focus, and grounding in tandem.

Response length initially declines, then rises again as it begins producing more deliberate, structured reasoning, signaling an “aha moment” where the model starts to produce more deliberate reasoning traces (DeepSeek-AI et al., 2025; Zhou et al., 2025). This emergent behavior suggests the development of internal problem-solving strategies, as the model learns to spend more “thinking time” before answering, consistent with the emergence of self-reflection and structured planning in its spatial reasoning process.

C REWARD DESIGN RATIONALE

Our reward design emerged from iterative refinement to address systematic reward hacking behaviors observed during training. Early experiments revealed that models readily exploit loopholes in reward functions—particularly when spatial localization rewards were provided without proper constraints. This section details our approach to designing a robust reward system that guides models toward genuine spatial reasoning while preventing degenerate solutions.

Preventing Spatial Reward Hacking. Our initial reward formulation, which directly rewarded spatial localization quality, led to unexpected model behavior. Without constraints on generation quantity, models discovered they could maximize spatial rewards by generating numerous bounding boxes with varying coordinates. Through Hungarian matching that selects the best-matching boxes, even random predictions would occasionally yield high Complete IoU (CIoU) scores. This reward hacking manifested as models producing excessive, hallucinated objects while achieving poor task accuracy—the spatial reward was inflated despite the clutter of irrelevant predictions degrading actual performance. To address this exploitation, we introduced the Count Reward that penalizes deviations from expected object and relation counts. This reward serves dual purposes: (1) preventing reward hacking by constraining the generation space, and (2) encouraging models to focus on question-relevant scene elements rather than exhaustively describing the entire image. The count reward formulation provides a linear penalty proportional to relative deviations from ground truth counts, normalized to prevent domination by scenes with many objects.

Scene Graph Filtering. Another form of overfitting emerged when training with complete Visual Genome scene graphs. Models would memorize exhaustive scene descriptions, including irrelevant background objects, leading to poor generalization. We addressed this by filtering ground truth scene graphs to retain only objects and relations relevant to the given question, focusing supervision on task-critical information.

CIoU over IoU for Spatial Reward. For spatial localization, we adopt Complete IoU (CIoU) instead of standard IoU to compute the spatial reward. Unlike IoU, which returns zero when predicted and ground-truth boxes do not overlap, CIoU provides meaningful gradients by incorporating center distance, aspect ratio, and overlap (Zheng et al., 2020). This makes CIoU a denser and more robust supervisory signal during training.

Balancing Supervision and Exploration. Our experiments reveal a crucial insight: models learn simple reward functions significantly faster than complex ones. Tasks with straightforward rewards (e.g., format compliance) show rapid improvements, while multi-component rewards require careful balancing. However, counterintuitively, highly detailed reward functions that attempt to supervise every aspect often degrade performance. Models overfit to maximize minute reward components, converging to template-style answers that score well on individual metrics while losing flexibility. We observed accuracy drops mid-training when rewards became too prescriptive, as models focused on reward optimization rather than genuine task understanding. Effective reinforcement learning requires providing guidance while preserving exploration space. Our final design addresses this by

1242 providing soft signals through format checks, count constraints, and accuracy rewards, with spatial
 1243 localization rewards activated only for correct answers. This maintains the delicate balance between
 1244 guidance and exploration necessary for robust learning.

1245
 1246 **Sequential Optimization via Lexicographic Gating.** To prevent models from gaming individual
 1247 reward components at the expense of task accuracy, we implement lexicographic gating (Skalse et al.,
 1248 2022). Rewards are applied in a strict hierarchy: format \succ {count, accuracy} \succ spatial. This forces
 1249 models to first master output formatting, then simultaneously learn to control generation scope and
 1250 achieve correctness, before optimizing spatial grounding:

$$1252 \quad R_{\text{total}} = \mathbb{I}[R_{\text{format}} = 1] \cdot (w_{\text{format}} \cdot R_f + w_{\text{count}} \cdot R_c + w_{\text{accuracy}} \cdot R_a + \mathbb{I}[R_{\text{accuracy}} = 1] \cdot w_{\text{spatial}} \cdot R_s)$$

1253
 1254 where $\mathbb{I}[\cdot]$ is the indicator function, with weights $w_{\text{format}} = 0.1$, $w_{\text{count}} = 0.2$, $w_{\text{accuracy}} = 0.5$,
 1255 $w_{\text{spatial}} = 0.2$. This gated design ensures spatial rewards are only applied when the final answer is
 1256 correct, aligning grounding quality with task success and preventing scenarios where models achieve
 1257 high spatial scores through precise but irrelevant localizations.

1258 D ABLATION ON DIVERGENCE CONSTRAINTS

1259
 1260 Recent works such as DAPO (Yu et al., 2025; Vassoyan et al., 2025) argue that KL regularization can
 1261 unnecessarily constrain policy updates and recommend removing the KL penalty entirely to allow
 1262 freer exploration. In contrast, Huang et al. (2024) revisit divergence regularization and propose using
 1263 a chi-squared penalty to better control overoptimization. Motivated by these findings, we ablate the
 1264 effect of different divergence constraints in our reinforcement learning setup for spatial reasoning.

1265
 1266 Table 6 reports results on CV-Bench 2D and 3D tasks (Tong et al., 2024a) for three variants of
 1267 SPATIALTHINKER-3B: (i) no KL penalty, (ii) chi-squared divergence penalty with a coefficient of
 1268 0.01, and (iii) our default KL divergence penalty with a coefficient of 0.01. Removing the KL penalty
 1269 leads to a noticeable drop in performance, particularly on 3D tasks. Using a chi-squared divergence
 1270 penalty underperforms both the no-penalty and KL variants on several subtasks, especially depth
 1271 and distance reasoning. The KL-regularized model achieves the best overall performance, yielding a
 1272 CV-Bench average of 73.7% and providing the strongest results on 3D reasoning tasks.

1273
 1274 These findings suggest that a modest KL penalty stabilizes policy updates and prevents reward
 1275 overoptimization in our spatial reasoning setting, leading to more reliable improvements. While
 1276 recent language-only alignment work has advocated for removing divergence constraints, our results
 1277 indicate that retaining a small KL term remains beneficial for multimodal reasoning tasks where
 1278 stability and coherent spatial grounding are crucial.

Model Variant	Count	Relation	Depth	Distance	CV-Bench 2D	CV-Bench 3D	CV-Bench Avg.
SpatialThinker-3B + No KL Penalty	65.5	76.8	74.8	70.2	71.2	72.5	71.9
SpatialThinker-3B + Chi ² (0.01)	64.5	73.7	71.2	66.2	69.1	68.7	68.9
SpatialThinker-3B + KL (0.01)	68.5	73.5	79.7	72.8	71.0	76.3	73.7

1279
 1280 Table 6: Ablation on divergence constraints for SPATIALTHINKER-3B on CV-Bench tasks. KL-
 1281 regularization with $\beta = 0.01$ yields the highest overall average and strongest 3D reasoning perfor-
 1282 mance.

1283 E ADDITIONAL RESULTS: ABSTRACT REASONING

1284
 1285 To further evaluate the generalization capacity of SPATIALTHINKER, we examine its performance
 1286 on two abstract reasoning benchmarks: **Lego Puzzles** (Tang et al., 2025), which test compositional
 1287 object reasoning and multi-step spatial reasoning, and **BLINK Multi-View** (Fu et al., 2024), which
 1288 requires integrating spatial cues across multiple viewpoints, including visual-spatial understanding
 1289 and perspective understanding. These tasks are not part of the training distribution and measure the
 1290 ability of models to extrapolate structured reasoning skills to abstract domains.

1296	Model	Lego Puzzles	BLINK Multi-View	
1297	<i>Proprietary and Open-Source MLLMs</i>			
1298	GPT-4o	57.7	54.1	
1299	Claude 3.5 Sonnet	53.6	51.9	
1300	Qwen2.5-VL-3B	29.9	42.9	
1301	Qwen2.5-VL-7B	35.8	44.4	
1302	VLAA-Thinker-7B	33.4	51.1	
1303	SpaceThinker	31.5	50.4	
1304	SpaceOm	32.0	48.9	
1305	<i>Method Comparison (Trained on SpatialThinkerVQA)</i>			
1306	Qwen2.5-VL-3B + SFT	34.7	42.1	
1307	Qwen2.5-VL-3B + Vanilla GRPO	27.0	45.9	
1308	SpatialThinker-3B (Ours)	33.9	45.1	
1309	Qwen2.5-VL-7B + SFT	36.6	44.4	
1310	Qwen2.5-VL-7B + Vanilla GRPO	29.7	51.9	
1311	SpatialThinker-7B (Ours)	37.7	52.6	

Table 7: Results on abstract reasoning benchmarks. Lego Puzzles measure compositional reasoning over object arrangements, while BLINK Multi-View requires integrating multi-view spatial cues.

Across both tasks, SPATIALTHINKER-7B achieves the highest open-source performance improving over generalist and spatial MLLMs, and scoring 37.7% on Lego Puzzles and 52.6% on BLINK Multi-View, closely approaching GPT-4o and surpassing Claude 3.5 Sonnet on the latter. Interestingly, we observe that vanilla GRPO provides competitive performance on BLINK Multi-View but underperforms on Lego Puzzles, suggesting that dense spatial rewards offer complementary signals that better support compositional reasoning. These results demonstrate that the spatial grounding learned through reinforcement learning transfers to more abstract domains that require compositional and multi-view integration skills.

F DETAILED RESULTS: CV-BENCH

1324	Model	Count	CV-Bench Tasks	2D	3D	Avg.	
1325	<i>Proprietary Models</i>						
1326	GPT-4o	65.9	85.7	87.8	78.2	75.8	
1327	Gemini-1.5-Pro	70.4	85.2	82.4	72.8	77.8	
1328	Claude 3.7 Sonnet	-	74.2	85.8	84.2	-	
1329	<i>Open-Source General MLLMs</i>						
1330	Qwen2-VL-2B	54.7	22.6	16.7	31.7	38.7	
1331	Qwen2.5-VL-3B	61.5	58.3	67.3	53.0	59.9	
1332	Qwen2.5-VL-7B	55.9	82.2	70.0	66.0	69.1	
1333	VLAA-Thinker-3B	61.6	83.5	53.0	46.8	72.6	
1334	VLAA-Thinker-7B	47.0	74.6	61.3	59.2	60.8	
1335	LLaVA-NeXT-34B	-	-	-	-	73.0	
1336	Mini-Gemini-HD-34B	-	-	-	-	74.8	
1337	Cambrian-1-34B	-	-	-	-	73.9	
1338	<i>Open-Source Spatial MLLMs</i>						
1339	Spatial-LLaVA-7B	-	-	57.3	52.2	-	
1340	VisualThinker-RL-2B	59.6	66.8	54.2	56.7	63.2	
1341	Spatial-RGPT-7B w/ depth	-	-	62.3	59.0	-	
1342	RoboPoint-13B	-	75.6	77.8	44.5	-	
1343	SpaceThinker-3B	61.0	69.2	70.5	61.3	65.1	
1344	SpaceLLaVA-13B	-	63.7	66.8	70.2	-	
1345	SpatialBot-3B	-	69.4	77.3	60.8	-	
1346	<i>Method Comparison (Trained on STVQA-7K)</i>						
1347	Qwen2.5-VL-3B + SFT	30.2	77.5	61.2	75.5	53.9	
1348	Qwen2.5-VL-3B + Vanilla GRPO	67.5	73.7	64.0	69.2	70.6	
1349	SpatialThinker-3B (Ours)	68.5	73.5	79.7	72.8	71.0	
1340	Qwen2.5-VL-7B + SFT	33.3	78.9	64.8	77.7	56.1	
1341	Qwen2.5-VL-7B + Vanilla GRPO	58.9	78.8	79.3	73.7	68.9	
1342	SpatialThinker-7B (Ours)	68.7	86.7	81.2	76.2	77.7	

Table 8: Detailed breakdown of CV-Bench (Tong et al., 2024a) results across Count, Relation, Depth, and Distance subtasks.

1350
1351
1352
1353 **G DETAILED RESULTS: 3DSRBENCH**
1354
1355
1356
1357
1358

Model	3DSRBench Tasks				Avg.
	Height	Location	Orientation	Multi-Object	
<i>Proprietary Models</i>					
GPT-4o	53.2	59.6	21.6	39.0	44.3
Claude 3.5 Sonnet	53.5	63.1	31.4	41.3	48.2
Gemini 2.0 Flash	49.7	68.9	32.2	41.5	49.9
Gemini 2.0 Flash (thinking)	53.0	67.1	35.8	43.6	51.1
<i>Open-Source MLLMs</i>					
Qwen2.5-VL-3B	45.2	56.8	35.7	35.7	44.0
Qwen2.5-VL-7B	44.1	62.7	40.6	40.5	48.4
Qwen2.5-VL-72B	53.3	71.0	43.1	46.6	54.9
Cambrian-1-8B	23.2	53.9	35.9	41.9	42.2
LLaVA-NeXT-8B	50.6	59.9	36.1	43.4	48.4
VLAA-Thinker-7B	54.0	60.2	42.9	49.1	52.2
<i>Open-Source Spatial MLLMs</i>					
SpatialBot-3B	40.4	54.4	31.9	33.5	41.1
SpaceLLaVA-13B	49.3	54.4	27.6	35.4	42.0
SpatialLLM-8B	45.8	61.6	30.0	36.7	44.9
SpatialRGPT-7B w/ depth	55.9	60.0	34.2	42.3	48.4
SpaceThinker-3B	53.1	57.3	41.9	49.6	51.1
<i>Method Comparison (Trained on STVQA-7K)</i>					
Qwen2.5-VL-3B + SFT	51.1	58.3	42.7	48.1	50.8
Qwen2.5-VL-3B + Vanilla GRPO	48.9	57.9	42.5	47.2	50.1
SpatialThinker-3B (Ours)	52.6	61.8	43.4	49.8	52.9
Qwen2.5-VL-7B + SFT	50.6	66.3	43.8	47.9	53.6
Qwen2.5-VL-7B + Vanilla GRPO	54.3	64.7	45.5	50.4	54.7
SpatialThinker-7B (Ours)	52.0	70.3	45.5	50.9	56.4

1375
1376 Table 9: Detailed Breakdown of 3DSRBench (Ma et al., 2024b) Height, Location, Orientation, and
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
Multi-Object tasks.