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Abstract

Sparse variable selection improves interpretability and generalization in high-
dimensional learning by selecting a small subset of informative features. Recent ad-
vances in Mixed Integer Programming (MIP) have enabled solving large-scale non-
private sparse regression—known as Best Subset Selection (BSS)—with millions of
variables in minutes. However, extending these algorithmic advances to the setting
of Differential Privacy (DP) has remained largely unexplored. In this paper, we in-
troduce two new pure differentially private estimators for sparse variable selection,
levering modern MIP techniques. Our framework is general and applies broadly to
problems like sparse regression or classification, and we provide theoretical support
recovery guarantees in the case of BSS. Inspired by the exponential mechanism,
we develop structured sampling procedures that efficiently explore the non-convex
objective landscape, avoiding the exhaustive combinatorial search in the exponen-
tial mechanism. We complement our theoretical findings with extensive numerical
experiments, using both least squares and hinge loss for our objective function, and
demonstrate that our methods achieve state-of-the-art empirical support recovery,
outperforming competing algorithms in settings with up to p = 10*. Code is avail-
able athttps://github.com/petrosprastakos/DP-variable-selection,

1 Introduction

High-dimensional datasets are increasingly common, but extracting meaningful models is challenging
due to overfitting and lack of interpretability. Statistical regularizations that encourage model
simplicity from certain perspectives have been successful in addressing such challenges, becoming
a staple of high-dimensional statistics and machine learning. One such common regularization is
sparsity [16415]], where one seeks to choose a small subset of features in the data to form the statistical
model.

In this paper, we focus on the problem of sparse variable selection. Given the data matrix X € R"*?P
and the observations y € R", we seek to obtain an estimator (3 that describes the data well with only
a few coordinates of 3 being nonzero. A natural first formulation for this problem is

n

. T
jin > oo 2lB) st 1Bl <5 I8II3 < r* M
1=
where || - ||o counts the number of nonzero coordinates of a vector. In the case where (y;, =7 3) =

(yi — =I'3)2, the objective becomes least squares, and the problem is referred to as Best Subset
Selection (BSS, Miller [27]). The constraint ||3]|o < s enforces sparsity via the sparsity budget
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s > 0, and the constraint ||3]|3 < r2 for some 7 > 0 serves as an additional (ridge) regularization. A
sparse linear estimator can be more interpretable and have better statistical performance [15} 16} 134].

Real-world datasets often contain confidential and personal information, that should be protected.
Hence, recent years have seen a surge in private learning algorithms, hoping to preserve sensitive in-
formation while extracting useful statistical knowledge. In particular, Differential Privacy (DP, Dwork
[9) has garnered significant interest in the machine learning and statistics literature. On a high level,
DP aims to ensure one cannot obtain too much information from the private dataset, via querying
the statistical model in an adversarial way. A significant body of work is dedicated to designing DP
algorithms for general machine learning tasks [25, |10, |14} |11} [12], as well as specialized algorithms
for specific statistical problems. Particularly, there is a long line of work studying the sparse linear
regression problem [31} 132} 23] 24} 29].

In this paper, we develop two scalable pure DP algorithms for variable selection under a broad
framework where one releases the optimal support in (I) (i.e., the location of nonzero coordinates
in the optimal 3). To our knowledge, we are the first to incorporate MIP techniques for this task.
While our support recovery results are derived specifically for the Best Subset Selection (BSS) setting,
we provide pure DP guarantees for our methods that hold for general loss functions (not just least
squares). Specifically, we make the following contributions:

1. Our first method, named top-R, satisfies pure DP under only a standard boundedness assumption
on the data (achievable via clipping). For BSS, it achieves support recovery with high probability

whenever Byin = minje(.p-20y 65| 2 v/max{1, s2/e}(log p)/n, matching the non-private
minimax-optimal 4/ (log p)/n threshold in the low-privacy regime.

2. Our second method, named mistakes, also satisfies pure DP, but requires an additional separation
assumption on the objective gap for pure-DP guarantees. In BSS, this condition holds with
high probability under fp,in 2 +/s1og p/n, with the milder condition for support recovery of
Bmin = y/max{1,1/e}(slog p)/n, which aligns with the condition of [29] in the high-privacy
regime.

3. Empirically, our methods outperform the other DP variable selection methods in the literature,
including the state-of-the-art approximate DP MCMC approach of [29]] for BSS, under a wide
range of parameter values and up to p = 10,000. We also show strong empirical performance
in wider settings, including sparse classification with hinge loss. Our results demonstrate that
DP variable selection with provable guarantees and practical scalability is possible by combining
optimization and privacy.

1.1 Related Work

DP variable selection. Most of the existing DP literature focuses on non-sparse linear regression,
or {5 risk excess in sparse regression [31}, 33, 21}, [7, 22]]. For the specific problem of DP variable
selection, previous works have focused on the sparse regression setting. As Lasso tends to promote
sparsity, an interesting line of work is based on releasing the variables selected by Lasso in a private
fashion [32, [23]]. [32] introduce two propose-test-release algorithms for variable selection. However,
the failure probability for support recovery for these methods does not approach 0 with growing
sample size. [23] propose a computationally efficient resample-and-aggregate [28] algorithm, which
underperforms compared to our methods in practice, and requires a stronger [3,,;, condition than
in our methods in the case of BSS. Lei et al. [24] propose an algorithm based on the exponential
mechanism, requiring to enumerate all feasible supports in (TJ), limiting the scalability of their method.
Recently, Roy and Tewari [29]] have proposed a new method based on the notion of Markov chain
mixing to obtain approximate DP solutions for BSS, resulting in a statistically strong estimator. While
our Sy conditions are comparable with theirs in the low-privacy regime of top-R or high-privacy
regime of mistakes, we note that we achieve pure-DP guarantees for general loss functions, our
algorithms have scope beyond BSS, and our empirical performance is stronger across a broad range
of parameters.

Modifications to the exponential mechanism. The methods we introduce in this paper involve
modifications to the exponential mechanism, a fundamental DP algorithm, in order to reduce the
outcome set of our sampling distribution. Some other truncations of the exponential mechanism
have existed in the DP literature. First, the Restricted Exponential Mechanism (REM) [6]] for private



mean estimation samples from the exponential mechanism restricted to points of sufficiently large
Tukey depth, together with a private “safety” check that the restricted set is well behaved. Second, the
Truncated Exponential Mechanism (TEM) for metric-DP on text [30]] restricts selection to a «-ball
around the input and collapses the remainder of the domain into a single L bucket—equivalently,
assigning the outside set a shared score. While the spirit of truncation is analogous to the modifications
proposed in this paper, our methods target combinatorial support selection under pure DP, rather than
metric-DP over text data or mean estimation.

Notation. We let [p] = {1,--- ,p}. Data points follow (x;,y;) € Z = X x Y C R? x R, with
D = (X,y) € Z™ for a dataset containing n observations.

2 Method

Background on Differential Privacy Before continuing with our selection procedure, let us
formalize the notion of differential privacy.

Definition 1 ([9]]). Given the privacy parameters (¢,d) € RT x R, a randomized algorithm A(-) is
said to satisfy the (e, §)-DP property if

P(AD) € K) <efP(AD') € K) +§
for any measurable event K C range(.A) and for any pair of neighboring datasets D and D’.

We note that in Definition[I] the probability is taken over the randomness of the algorithm A. When
d > 0, the (&, §)-DP property is also commonly referred to as approximate differential privacy, while
the special case where § = 0 is commonly referred to as pure differential privacy.

Next, let us briefly review the exponential mechanism [25]], a general mechanism to achieve pure
DP. Consider a general task where the dataset D € Z" is given, and we seek to design a procedure
suchas A : Z™ — O to choose the outcome of the task, where O is the set of possible outcomes. We
also assume we are given an objective function such as R : O x Z™ — R, where a smaller objective
indicates a more desirable outcome. The global sensitivity of the objective is then defined as

A = max max R(0,D) — R(o, D). 2

0O D,D'cZ"
D, D’ are neighbors

Lemma 1 (Exponential Mechanism, McSherry and Talwar [25]]). The exponential mechanism Ag(-)

that follows

eR(0,D)
2A

P(Ag(D) = 0) x exp (— > , YoeO 3)

ensures (€,0)-DP.

2.1 Selection Procedure

2.1.1 Top-R Method

The main inspiration for our selection procedure is the exponential mechanism, defined in LemmalT}
In particular, in the BSS problem we seek to select a subset of features with size s that are a good
linear predictor of n observations y. Therefore, a natural choice for the outcome set in BSS is the set
of all subsets of [p] with size s, O = {S C [p] : |S| = s}. Next, a natural choice for the objective in
the BSS problem for each S is the least squares loss, when the regression coefficients can only be
nonzero for features in S. Formally,

R(8,D) = min » Ly (x:)58) st |Bl3 <r? Q)
BERIS| —
where (x;)g is the vector &; with columns indexed by S.

Note that, if the elements of the dataset D are unbounded, the global sensitivity of R(S, D) may be
unbounded. We thus make the following boundedness assumption on D.

Assumption 1. There exist positive constants by, b, such that sup, ¢y, [y| < by, supgcx [|Z] 0 < bs-



We note that, in practice, one might not know the exact values of b;, by, or such values might not
exist. In such cases, one can clip the values of X,y to satisfy the boundedness requirements of
Lemma@ In Section@]in the appendix, we show that, for the special case where our objective
function is least squares, assumption|l|yields A < Qbi + 2b2r2s.

Our Proposal With a bounded global sensitivity, one can directly apply the exponential mechanism
on R(S, D) and achieve a (e, 0)-DP procedure for problem |1} The difficulty in variable selection
under DP constraints arises from the need to enumerate all feasible solutions in (0. However, one
can argue that if a support S is far from the optimal one, the least-squares objective R(S, D) is
likely to be large, therefore, the probability mass of .S in (3)) should be small. Therefore, one might ask:

Is it necessary to have access to R(S, D) for all S € O in the exponential mechanism?
Specifically, for the moment, suppose we have access to an oracle that for a fixed R > 1, can return

R feasible supports from O that have the smallest objectives. Formally, assume we can access
S1(D),- -, Sr(D) where

Sx(D) € argmin R(S,D) s.t. SC[p|, |S|=s, S#S;(D),i=1,--- ,k—1. 5)
S

In particular, Sy (D) is the optimal support for BSS in (I)). Then, based on our discussion above, if
R is sufficiently large, the values R(Sy (D), D) for k > R are expected to be significantly larger
than R (S (D), D) for k < R. Therefore, most of the probability mass of the distribution in (3) is
concentrated around Sy, (D) for k < R. Hence, we might not need to have access to the exact values
of R(Sy(D), D) for k > R, as long as we can replace them with a suitable lower bound. This lower

bound can be taken as R(Sk (D), D). To this end, we propose the sampling procedure M, shown as
Algorithm [T|below, where IP is the probability distribution following

exp <75R(§k(D),D) /(QA)) ifk <R

(() = B exp (~eR(3a(D). D)/(24)) ik = R+ 1. ©

IPQ(k‘) 0.8

Algorithm 1 Top- R method

1: procedure M(D, 8, bz, by, m, R, T)
2: Clip X,y to by, b,, respectively, as in Lemma|[A.T} Take A as in Lemma[A.T} Form 1P,
in (6).

3 Draw a(D) ~ IPg

4 if a(D) < R then

5: return S”a(p) (D)

6 else

7: return My (D, R, T)

8: procedure My(D, R, T)

9: fort < T do
10: Draw S € O uniformly at random, independent of IPy.
11: if S € {Si(D), k > R} then
12: Break
13: return S

Intuitively speaking, M replaces R(Sx(D), D) for k > R with R(Sg(D), D) and then “approxi-
mately” samples from the exponential mechanism. To this end, let

(SJ»D) if § € {S1(D),- -+, Sr(D)}

. R
R(S,D) = {R(SR(D),D) otherwise ™

where we substitute R(Sy (D), D) for k > R with R(Sg(D), D). Suppose Apg is the exponential
mechanism that uses the objective R. If a(D) < Rin Algorithm we return S, p) (D). Note that
P(Ap(D) = ga(p) (D)) = Po(a(D)) in this case, showing M mimics the exponential mechanism



Ap. Ifa(D) = R+1, to mimic A, we have to sample uniformly from the set S = {Sy(D), k > R}
as IP(Ag) is uniform on S, by the definition of R in (7). However, S is exponentially large in general.
Therefore, we invoke M, that in the limit of 7" — co, samples uniformly from S.

Observe that, in the case where R = (’: ), we have that the distribution 1P is the same as the
exponential mechanism that uses objective R as in [29]], which is (¢, 0)-DP by Lemma Below, we
show this procedure satisfies pure DP for any R € {2, ..., (’; ) — 1} as well. We defer all proofs to the
appendix.

Theorem 1 (Privacy for top-R method). Suppose T > 1,1 < R < (*), and that assumptionholds.
The procedure M in Algorithm is (¢',0)-DP where

7 1oe (& £ Cos (1T :exp(—nebg/(QA)) _ R
o (¢ + 5 ) w14, G 0w

In particular, if T' = oo, the procedure M is (e,0)-DP.

Theorem shows that, regardless of the choice of R, as T' — oo, we have that ¢ — ¢. However, we
note that €’ increases with R, so there is more privacy loss with increasing R, as we have that

0 <log (65 + %) —log (1— qT)) - 1
=Tq¢" ! + > 0.
dq So(es +qT/%)  1—qT

The privacy loss is in contrast to the effect on accuracy, as we note that a larger R in Algorithm I]
should intuitively lead to better support recovery. We formalize this intuition in Lemma[A.5]in the

appendix. For k > R, we underestimate R (S, D) with R(Sr, D), consequently increasing the
probability mass given to supports S, in the procedure Ag. This reduces the probability mass for

the best support Sy. Therefore, in practice, we like to choose a larger R to explore the objective
landscape better, however, a very large R can make the computation slower.

The sampling procedure in Algorithm |If only requires sampling from 1Py (which is supported on
R + 1 different values), and sampling sparse supports from a uniform distribution (in procedure
M), which can be done efficiently. Therefore, this procedure circumvents the need to sample from a
non-uniform distribution with exponentially large support. Importantly, Algorithm|[I]satisfies pure
(¢’,0)-DP, with ¢ = € as T' — oo. To our knowledge, no such algorithm exists for BSS that can scale
to problems with tens of thousands of variables.

2.1.2 Mistakes Method

Our second proposed mechanism assigns probabilities based on the number of mistakes from the
optimal solution. Namely, we define So(D) = S; (D) = arg ming R(S, D), and then we proceed to
partition the (i’ ) — 1 supports based on the number of mistakes from Sy (D). We denote the partition
Pi(D), Py(D), ..., P(D). Let Py(D) = {So(D)}. We then have that for i € [s]

S;(D) = argmin R(S, D). @®)
SeP;(D)

Our mistakes method, denoted M, assigns probabilities according to the element of the partition that
a support belongs to. Namely, if S € P, (D) for k € {0, 1, ..., s}, we have that

~ —eR(Sk(D),D) —eR(Sk(D),D)
P[M(D) _ S} _ exp( 2A ) _ exp( 2A )

Sio [P(D) exp(ZFEGEEERY) - 530 (77°) (7) exp(=FGEPERY)
For S € Py (D), define R(S, D) = R(Sx(D), D).

Below, we show this method is (¢, 0)-DP under a lower bound assumption on the gap in objective
value between S1(D) and Sa2(D).

Theorem 2 (Privacy for mistakes method). Suppose assumption holds and that R(S(D), D) —
R(S1(D),D) > 2A. Then, the mistakes method is (e, 0)-differentially private.




We note that, unlike the privacy of our top-R method in Theorem [} which requires no additional
assumptions aside from assumption [T} Theorem 2]requires stronger conditions for the privacy of the
mistakes method. In Lemma@]in the appendix, we show that, under the sufficient condition that
TZ Slo%, where 7 is defined in the following section, and the additional assumptions we have
that the inequality R(Sy(D), D) — R(S1(D), D) > 2A holds with high probability.

Remark 1. While the privacy of our mistakes method relies on an additional assumption that occurs
with high probability (as shown in Lemmal[A.6]in the appendix), providing a privacy guarantee with
additional assumptions is not uncommon in the literature. For example, the privacy guarantees of [29],
which is the closest competitor to our method, depends on assumptions that hold with high probability.
More specifically, the privacy proof of the Markov Chain Monte Carlo (MCMC) algorithm in [29]
relies on the assumption that the mixing of the Markov Chain used for sampling with its stationary
distribution has happened. However, this mixing can only be guaranteed with high probability, and
under additional assumptions on the underlying model—see Theorem 4.3 of [29] for more details. In
contrast, our top-R method is always private (assuming b,, b, are finite), and our mistakes method is
private under assumptions that are similar to the ones in Theorem 4.3 of [29].

As another example, [32] uses the stability of Lasso, to present a DP method for support recovery in
sparse linear regression. However, the stability of Lasso only holds under certain assumptions on
the data, such as the boundedness of the noise and restricted strong convexity. Such assumptions
might only hold with high probability in practice, resulting in privacy guarantees that hold with high
probability. For more details, we refer to Theorem 8 of [32].

3 Statistical Theory

For the theoretical results in this section, we focus on the setting of BSS. Consider the model

y=XpB" +e
where {€;};¢[,) are i.i.d. zero-mean sub-Gaussian random variables with parameter o, and the feature
vector 3* is unknown but is assumed to be s-sparse (i.e. its support size |S*| = |{i : ¥ # 0} =

s < p). In the remainder of this section, we provide sufficient conditions for our proposed methods
to recover S* with high probability. We first state our additional assumptions.

Assumption 2. There exists positive constant M such that ||3*||2 < M.

Assumption 3. There exist positive constants x_, £ such that, for all S such that |S| = s, we have
R— § )\min(X;'rXS/n) S )\max(X;'—XS/n) S Ry.

Assumption 4. The sparsity level s follows the inequality s < n/logp, and p > 3.

Assumption ] tells that the true parameter 3* lies inside an ¢ ball. Similar boundedness assumptions

are fairly standard in the DP literature [35} 24} [7]. AssumptionE]is the Sparse Riesz Condition (SRC),

which is a well-known assumption in the high-dimensional statistics literature [36} 20, 26]. Finally,
Assumptionessentially assumes that s = o(n), i.e., sparsity grows slowly relative to sample size.

Define the set of supports that make ¢ € [s] mistakes from the true support as
Ay ={SC[p]:|5]=s,|5\S*| =t}

Let 3 = n~ 1 X7 X be the sample covariance and 3 51,5, be the submatrix of 3 with row indices in

Sy and column indices in S3. Let Px, = Xg(X gX 5)*1X5Tv denote the projection to the column
space of X g. Then we have that

Yy = Xs*ﬁg* + €= PXSXS*ﬁg'* + (In — PXS)XS*BZ* + €
and (I, — Px4)X g+ 3%. describes the part of the signal that cannot be linearly explained by X .
Define also . A A A .
D(5) = Xg-\5,5\5 — Ls\5,585 525,545
which is the covariance of the residuals of Xg-\g after being regressed on X5. We have that

1
n

2 A~
(I, — PXs)XS*\Sﬁg*\SHQ = ﬁgI\SD(S),Bg*\S which we can intuitively consider as the




discrimination margin between S and the true support S*. The larger this quantity, the easier it is for
BSS to discriminate between S* and any other candidate model .S.

We now introduce the central quantity of interest in analyzing support recovery, the identifiability
margin, defined as

D)
Seu;_| A, [S*\ S|

T =

We observe that, the more correlated the features, the closer 7 is to 0, and harder it is for BSS to
distinguish between the true model and any other candidate support, so exact support recovery is
harder. If the features are more uncorrelated, 7 increases so exact support recovery is easier.

This intuition is made rigorous in Theorem 2.1 of [[13]], where it is shown that 7 2> 10% is a sufficient
condition to have

) = i D), wh D) = min ||y — XsPB|3
{S } argrsnelgRols(Sa )7 where Rols(‘97 ) ﬁné}Rps Hy S/8H2

with high probability, i.e. to have S* be the unique minimizer for the BSS problem (with unconstrained
{5 norm on 3) with high probability. Such a theorem offers us support recovery guarantees for the
non-private £y-sparse ordinary least squares problem.

We now transition to the private setting of the ¢2-constrained version of BSS, and offer support
guarantees for our proposed methods under this setting. In the following theorem, we provide
sufficient conditions for our private top- R method to recover the true support with high probability.
Theorem 3 (Support recovery for top-R method). Suppose that assumptions hold. Setr >
(Z5)M + 4%. Set A = 2b§ + 2b2r2s. Then, there exists universal constant C' > 0 such that,
whenever

SA 1
7 > max{Co? — ng,
€ n
we have that
N 1 —10sp~2

P(M(D) = 5*) >

= 11
Comparison with previous work: Theorem [3]shows that, using the appropriate global sensitivity
bound and lower bound on 7, a sufficient condition for recovering the true support with high

probability is 7 2 max{ lofp = :’fp }, compared to 7 2 max{-* logp ) SIT(EP } for the exponential
mechanism apphed to R(S, D) as in Theorem 3.5 of [29] Observe that, in a low privacy regime,
the 105 P term dominates, aligning with the [13] sufficient condition in the non-private setting. The
extra factor of s in the second term of our condition is expected, as we are not making any additional

assumptions on the choice of R or on the number of mistakes of the enumerated supports.

In the following theorem, we provide weaker sufficient conditions for our private mistakes method to
recover the true support with high probability.

Theorem 4 (Support recovery for mistakes method). Suppose that assumptions hold. Set
r> (Z5)M + 4%. Set A = Qbi + 2b272s. Then, there exists a universal constant C > 0 such
that, whenever

16A .1
7 > max{Co?s, — ng,
€ n
we have that 5
~ 1—18sp~
P D)=8>——"—""=__
MD) =57 = 50

Comparison with previous work: Theorem ] shows that, using the appropriate global sensitivity
bound and lower bound on r, a sufficient condition for recovering the true support with high
probability is 7 > max{ 91(;“ , 2 12gp }, compared to 7 2 max{ 105” ) SIng } for the exponential
mechanism apphed to R(S D) as in Theorem 3.5 of [29] Our condition thus matches that in
their paper for high privacy regimes. The strength in our result lies in noting that, unlike the
exponential mechanism in [29], which requires access to R(S, D) for all (’S’) supports S C [p] such
that [S| = s, our method only requires access to the s + 1 supports that solve minge p,(py R(S, D)

foralli € {0,1, ..., s}.



4 Optimization Algorithms

In this section, we discuss how the top R supports, S (D),---, S r(D), which are solutions to the
problems in (5), can be obtained by solving a series of MIPs.

For clarity, we present the case of least squares objective. However, it is worth noting that a key
benefit of our MIP approach is its generalizability across different loss functions. Specifically, the
only property that we need to have for the loss function / is that it is a convex function of 5. We
discuss any needed modifications for the case of hinge loss in Appendix [C] and our method works
with Huber or quantile loss as well, and the MIP algorithm would remain unchanged.

To obtain S (D) for k € [R] consider:
(2™, 8" 0" € argmin ||y — X8|I ©)

z,8,

P p
st. B,0 Rl z€{0,1}7, 0 >0, Zzi:s, 29i§r2,
i=1 i=1
1
2 < 0.2 Vi < s— =, ] —1].
B; < 0;z; Vi€ |[p], Z %< 8— o, jelk—-1]
1ESJ(D)

In the following proposition, we show that Problems (B)) and (9) are equivalent.
Proposition 1. Fork > 1, {i : zi(k) #0} = Si(D).

Problem (9) can be solved to optimality using off-the-shelf solvers like Gurobi for moderately-sized
datasets. In order to run our DP methods in even higher dimensions, where p = 10,000, we present a
more tailored algorithm for solving the MIPs in the remainder of this section. This adds to the line
of work on developing specialized discrete optimization algorithms for solving sparse regression
problems and relatives in the non-private setting—see for eg L8} [17,[19} 14} [1].

We first add a ridge penalty term to the objective, which makes it strongly convex and a function of z.
To obtain Sy (D) for k € [R], we define

1

2, AN B
elz) = min solly—XBI3+ 5 ; .

and we seek to solve
min ¢(z) (10)

z

P
1
subjectto z € {0,1}7, Zzl =s, Z zi <s— 3 Vi e [k—1].
i=1 i€5;(D)

Forany z € {0,1}?, let 2; = z; if z; = 1 and 2; = z; + Unif|a, b] if z; = 0, where @ > 0 and b < 1.
Let

Be in |y — XBJ3+ Ep 5
arg min —|ly — — .
% 18lz<re 2n"Y S

By Danskin’s theorem [3]], we then have
. A (Bi)?
v i =—— .
(Ve(2))i = 55

Taking 2o, 21,...,2¢ € (0,1]?, we have by convexity of ¢ that for all x € (0,1]? and for all
k€ {0,...,t},

c(x) > c(2) + Ve(z) T (2 — 23).
So then the map

ci(x) = max{c(20) + Ve(20)T (x — 20), ..., c(2¢) + Ve(2)T (2 — 2,)}



is a lower bound on the map c. We can now present our outer approximation algorithm for solving
Problem [I0} based on [8 4].

Algorithm 2 Outer approximation for S, (D)
1: procedure A(D, \,r, s, a, b, tol)
2 Initialize 2o € {0, 1}P s.t. D7 2, < s,mp < 0,t < 0
3: 2o + add_noise(zp)
4 while <=0l > (ol do

n
1
5: Ze4 1,741 4 ATGMIN e g 130, 4 ST ZZL <s, ) m<se 5 Vi€ [k—-1],
i€$;(D)
n>c(Zp) + Ve(ze) (2 — 21) VE €t

6: 2411 < add_noise(zi11)

7: t—t+1

return z;

Intuitively, this approach seeks to solve Problem[I0|by constructing a sequence of MIP appr0x1mat10ns
based on cutting planes. At each iteration, the cutting plane ) > c(2k) + Ve(2p)T (2 — 23) is added,
cutting off 2, the current noisy version of the binary solution z;, unless z; happened to be optimal

as defined by our stopping criterion, which is % < tol. As the algorithm progresses, the

outer approximation function ¢;(z) = max;ep ¢(2;) + Ve(2;) T (z — 2;) becomes an increasibly
better approximation to the loss function ¢, making our lower bound 7, converge to the upper bound
obtained by evaluating c(z;). Please refer to Appendix E] for additional algorithmic details for the
setting of BSS, and refer to Appendix [C|for the necessary modifications in the case of hinge loss.

Remark 2. The approach for obtaining Sp(D (D), where k € [ |, is very analogous to Algorlthml
except instead of having the constraints ) s (D) z; < s— % Vj €[l — 1], where | € [R], we have

the constraint } ;5 (py2i < s — (k—1) —

S Numerical Experiments

In our experiments, we draw the data points as y; = :viT,B* +¢; for i € [n], where @1, , @, S
N(0,X) € R? and the independent noise follows € ~ A (0, 02I,,) where I, is the identity matrix of
size n. Moreover, for i j € [p], we set 3; = p”_j| and set nonzero coordinates of 3* to take value
1/4/s atindices {1,3,--- ,2s — 1}. We define the Signal to Noise Ratio as SNR = || X 3*||3/|/€[|3.
In Algorlthm' we set R =24+ (p—s)s, by =b, =0.5,7 = 1.1 and T' = oo for all our experiments
in this paper. In Algorithm[2] we set a = 0. 001 b = 0.005,7 = 1.1 and tol = 0.005, and consider
various values of the other parameters.

In Figure[Ta] we plot the average proportion of draws from 10 independent trials that recovered the
right support for our top- R and mistakes methods using least squares as our objective for p = 10, 000.
We compare with the MCMC algorithm from [29] and the Samp-Agg algorithm in [23]], wherein
we use Lasso for the Ag,p, subroutine. In Figure we show the analogous results for hinge loss,
comparing with Lasso Samp-Agg. More experimental results with varying values of SNR, p, s, p,
and e for least squares and hinge loss, as well as results on prediction accuracy, utility loss, and
ablation studies are provided in Appendix [D] For each trial, we drew 50 times from the distribution
corresponding to each algorithm and gathered the proportion of correct supports. For MCMC, we
similarly used 50 independent Markov chains from random initialization and gathered the proportion
of correct supports after a number of iterations that was chosen to make the runtime comparable to
our methods.

We have that in all settings, both of our methods outperform other algorithms for large enough n.
The proportion of draws that recover the right support increases with n, since a larger sample size
reduces the threshold required for the identifiability margin 7 (discussed in Section [3) to have enough
separation between the true support and other supports. Furthermore, performance improves at much



larger values of n when p or s is greater or € is lower, since the lower bound on 7 is harder to satisfy
in those settings. Moreover, we observe that, keeping s, n, p, and € fixed, smaller values of SNR and
larger values of p make recovery harder, as 7 decreases with lower signal strength or more correlation
between features. Furthermore, the mistakes method numerically outperforms top-R, aligning with
Section 3] which shows it succeeds under a milder identifiability condition.

1.0 1.0 1
%) v
= ©
S 08 508
] ol
2 3 2
2 061 Top R » 0.61 —— TopR
£ Mistakes = )
2 Lasso Subsample a Mistakes
o ] = ] Lasso Subsample
a 04 % McMC S04 —+ p
-t +
o o
o o
£ 021 502
[9) (9]
#* #
0.0 &—/—= 0.0 #® - - 3
7000 8000 9000 10000 11000 6000 7000 8000 9000
n n
(a) Least squares (b) Hinge loss

Figure 1: Simulations for p = 10,000, s = 5, SNR=5, p = 0.1, and € = 1 for least squares and
hinge loss. The penalty parameter \ in Algorithm 2] was set to 600 and 170 for figures|Ia) and
respectively, and the number of MCMC iterations was set to 100,000 for[Ta} On the z-axis, we vary
the value of n and plot the average proportion of draws across 10 independent trials that recovered
the right support for each corresponding algorithm. Error bars denote the mean standard error.

Computational resources and license information: All experiments were conducted on a computing
cluster using 20 cores and 64 GB RAM. The Gurobi Optimizer is used under the Gurobi End User
License Agreement. CVXPY is distributed under the Apache License, Version 2.0. ABESS package
is distributed under GNU General Public License, Version 3.

6 Conclusion

In this paper, we introduced two scalable pure DP estimators for variable selection in sparse high-
dimensional settings. While we provide utility guarantees specific to the BSS setting, we demonstrate
how our methods can be applied more broadly, yielding favorable support recovery in the additional
setting of sparse classification with hinge loss. Our contributions enhance privacy-preserving practices,
enabling safer use of sensitive datasets in critical areas such as medicine, public health, finance, and
personalized recommendation systems.

One limitation of our work is that Theorem [2] requires an additional assumption that holds with
high probability for 7 large enough, and it remains an open question whether a lighter assumption
can be made to yield privacy guarantees for the mistakes method. Furthermore, our theoretical
support recovery results yield sufficient conditions for support recovery, but an interesting direction
of research may be to find necessary conditions as well, to see if our bounds on 7 are tight.
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A Proofs of Main Results

Al LemmalA]
Lemma A.1. Suppose Assumption[l|holds, with
R(S,D) = min |y — XsB|3 st |83 <. (A.1)
BERISI

Then,
A< 2b§ + 2b2r?s.

Proof. Suppose D, D’ are two neighboring datasets. Fix a support S € O and suppose

B € argmin ||y’ — X5BII3 st [|BII3 < r*.
pere

Then, . R
R(S,D) —R(S, D) < [ly — X585 — [ly' — Xs8]5.

Let us assume without loss of generality that D, D’ differ in the n-th observations. Hence, we have
that

n—1

ly = XsBII3 — Iy’ = X583 = Y _[(vi — (@)EB)* — (yi — (€:)§8)*]

i=1
+ (o — (€2)58)° = (v, — (x) 5 B)°
< (yn — (z0)58)*
< 2y +2((20)§8)
< 2b§ + 2b%r%s
where the last step uses the Cauchy-Schwartz inequality and the fact that |S| = s. O

A.2  Proof of Theorem Il
First, we prove some technical results that will be used in the proof of Theorem|1] Define

(*?vD) if S € {Sl(D)v aSR(D)}

(Sr(D),D) otherwise. (A.2)

R(S,D) = {z

Lemma A.2. Let A 10 be taken as in ). Then,
max  max  R(Sp(D),D) — R(Sk(D'), D) < A.

k>1 D,D'ezZ"
D, D’ are neighbors

Proof. Fix k > 1 and let us consider the following cases:
Case 1: R(S;(D),D’) < R(Sk(D’),D’). Then, by the definition of A,
R(Sk(D), D) — R(5x(D'), D) < R(5x(D),D') — R(Sk(D'),D') + A
< A. (A.3)

Case 2: R(Si(D), D) < R(Sx(D'), D). Then,

R(Sk(D), D) — R(Sx(D'), D) < R(S5x(D), D) — R(Sx(D'), D) + A
< A. (A4

Case 3: R(S,(D),D) > R(Sx(D'), D) and R(Sx(D),D’) > R(Sx(D’),D’). Trivially, in this
case we must have (¥) > k > 2. Then, there must exist Sy C [p], [So| = s such that

R(S0, D) > R(Sk(D),D),R(So,D') < R(Sk(D'), D).
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To this end, define
$1={S1(D), -, Sh-1(D)}, S2 = {Sks1(D), -}, 8 = {S1(D'), -+, Sp—1(D")}.
As R(Sk(D), D) > R(Sx(D'), D'), we have that S;(D) ¢ §' so S’ € S; U'S,. On the other hand,

as R(Sk(D), D) > R(Sk(D'), D), Si(D') € Sy and as S,(D') ¢ S/, we have [S' N S;| < k — 2.
As |S'| = k — 1, we must have S’ N'Sy| > 1 which proves the existence of Sy. Next, note that

R(Sk(D), D) = R(Sk(D"), D’) < R(So, D) — R(Sp, D') < A. (A.5)
O
Lemma A.3. Let A 10 be taken as in [2). Then,
max max ’}AQ(S, D) — 7%(5’, D) < A.

SClp] D,D'ez"
|S|=s D, D’ are neighbors

Proof. Suppose S = Sy, (D) = Si,(D'). Let us consider the following cases:

Case 1: ky, ky > R: Then, we have R(S, D) = R(Sg(D),D) and R(S,D’) = R(Sr(D'),D’).
Therefore,

R(S, D) = R(S, D) = R(Sr(D), D) — R(Sr(D'), D) < A (A.6)
by Lemma[A2]
Case 2: k; < R,ky > R: Then, we have R(S, D) = R(S,D) < R(Sr(D),D) and R(S,D’) =
R(Sgr(D'), D). Then,

R(S,D) — R(S,D') < R(Sr(D),D) — R(Sg(D'), D) < A. (A7)

Case 3: k; > R,ky < R: Then, we have R(S, D) = R(Sr(D), D) < R(S,D) and R(S,D’) =
R(S,D'). Then,

R(S,D) — R(S,D') < R(S,D) —R(S,D’) < A. (A.8)
Case 4: ki, ky < R: Then, we have R(S, D) = R(S, D) and R(S,D’') = R(S,D’). The result
follows. O

Lemma A.4. Suppose M is as defined in Algorithm and Ag is an exponential mechanism with
the objective R,

P(Ag(D) = S) x exp (W) , VS eo. (A.9)
Then, for S € O,
(1-¢")P(Ap(D) = S) <P(M(D) = §) < P(Ap(D) = ) +¢" (A.10)
where R
o

Proof. Fix S € O and suppose S = S (D). Moreover, let Sg = {S(D) : k < R}. Consider the
following cases:
Case 1: k£ < R: Then, based on Algorithm T}
P(M(D) = S) = P ({a(D) = k} U{a(D) = R+ 1, Mo(D) = 5}).
Therefore,
P(a(D) = k) <PP(M(D) = S) =P ({a(D) = k} U {a(D) = R+ 1, Mu(D) = S})

Y Pa(D) = k) + P(Mo(D) € Sp)
@ P(a(D) = k) + " (A.11)
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where (a) is true as S € Sg, and (b) is true as M, return a support in Sg if it selects some
support from Sg for all T iterations, showing IP(M(D) € Sg) = ¢T. Note that for k < R,

P(a(D) = k) = P(Ag(D) = S), therefore,
P(Ap(D) = ) <TP(M(D) = §) <P(Ap(D) = S) +4¢". (A.12)

Case 2: k > R: Then, from (@),

P(a(D) = R+1) =

((7) = R) exp (~557R(5, D))
(SK(D). D)) + Yis gy exp (55 R(Sk(P). D))

- ((p) - R) P(Ap(D) = 9). (A.13)

Hence, one can write

P(M(D) = 8) =P ({a(D) = R+ 1} N {My(D) = S})

(a) T i-1
2 P(a(D) = R+ 1) (Z q(p) )
i=1 \s

_ 1 [(r\_ 1 _ o l—d”
=57 |(2) - 7| Pdeo) = 5) 52
=(1-¢"P(Ag(D) = S) (A.14)
where (a) is true as
T T i1
P(Mo(D)=S) = Z IP(Mo(D) = S, My stops after ¢ iterations ) = Z q(p) .
i=1 i=1 \s
The proof is complete by (A-12)) and (AT4). O

Next, let us prove an important intermediate result on Algorithm [T}
Theorem A.1. Suppose T > 1,1 < R < (). The procedure M in Algorithmis (¢',0)-DP where

e Q) ). o)

Proof. From Lemma and Lemma we know that A is an (e, 0)-DP procedure. Suppose D, D’
are neighboring datasets. Then, from Lemma

P(M(D) = S) <P(Ag(D) = S) +¢"
< eEP(Ag(D) = S) + ¢

1 5 ~ AN T
< T PMD) = 5) +g (A.15)

where the first and last inequality use Lemma[A-4] O

Proof of Theorem[I] Note that by definition, for S € O, we have 0 < R(S,D) < |ly[3 < nbZ.
Then,

N €xp <7i7?’(57 D))
P(Ap(D) = §) = — — —
S exp (— & R(SHD). D)) + Cys a0 (— 55 R(SHD). D))

exp(—neb? /(24))

- ()

= 8. (A.16)
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Then, from (A.T3),
P(M(D) = 8) < e P(Ap(D) = 5) +¢"

" Yy
= <e‘5 + > P(Ag(D') = 8) — —TP(Ag(D') = S) + ¢
50 60
a qT
< <e€ + 5) P(Ap(D') = 5)
0
QL (e DY poia) = A7
_1_qT(e+50)<<>—> (A1)
where (a) is by and (b) is by Lemma[A.4] O

A.3 Effect of choice of R on support recovery for top-R method

In this section, we formalize the intuition discussed in Section regarding the impact that the
choice of R has on the top-R recovering the optimal BSS support 51 (D). We show that, as R
increases, the probability of top-R outputting S1 (D) can only improve.

Lemma A.5. Take T' = oo in Algorithm|l| Denote My and My as two instances of the top-R
method, using R1 and Ry enumerated supports, respectively, where R1 < Rs. Then, we have that

B[N, (D) = §1(D)] < PIM(D) = $1(D)].

Proof. By Lemmal[A.4] we have that, when 7' = oo,
P[Ag(D) = 5,(D)] = P[M(D) = 51(D)]

Let AEI and AEz denote the exponential mechanisms with the objective R using 1 and R
enumerated supports, respectively. It then suffices to show that

P[Ap, (D) = 51(D)] < P[Ap, (D) = 51(D)).
Define G; := R(S;(D), D) — R(S1(D), D). Then, note that

. R 1
IP(AEI (D) - SI(D)) - 1+ Zf:lz exp(_GGi/(QA)) + ((Z) - Rl) exp(—eGRl/(QA))

R . 1
S1(D)) = .
" 14 3072, exp(—€Gi/(24)) + ((2) = Ry) exp(—€Gr, /(24))

‘We then have that

Ry
eG; eGr,
Z exp <_2A) < (Ry — Ry) exp (— 2£ )

i=Ri+1
and
p 6GR2 p EGRl
_ ) < _ _
(2)-mew (52 =((0) -me (52)
since the supports are sorted in increasing objective value. The result follows. O

A.4 Proof of Theorem

Proof. First, we claim that if R(Sy(D), D) — R(S1(D),D) > 2A, then S;(D) = S,(D') for
neighboring datasets D, D’.

Suppose, by way of contradiction, that S;(D) # S1(D’). Then we have that R(S(D'),D’) <
R(S1(D),D’) and R(S1(D'),D) > R(S2(D),D). By definition of A, we have that
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R(51(D), D) < R(51(D),D) + A and R(5:(D'),D) — A < R(S1(D’),D’). Combining we
have

R(51(D), D) +A = R(5(D), D') = R(S(D'), D) = R(S1(D'), D) = A = R(S5(D), D) - A.
Thus 2A > R( 2( ),D) — R(S1(D), D). This is a contradiction with the assumption that
R(8:(D), D) — R(51(D), D) > 2A.

Since 51 (D) = 51(D'), i.e. So(D) = So(D’), we have that P;(D) = P;(D’) forall i € {0,1,..., s}.

Suppose S € Py(D), P(D'). Then, by definition of R, we have R(S, D) = R(Sk(D)J D) and
R(S,D') = R(Sk(D'), D'). We have that R(Sy(D), D) = minge p, (p) R(S, D). Since S,(D’) €
P..(D), we have that R(Sy(D), D) < R(Sx(D'), D).

Then, by definition of A, we have that

R(

R(S,D)—R(S,D") = R(Sk(D),D)—R(Sk(D'), D) < R(Sx(D), D)—R(5x(D'), D)+ A < A.

Thus, we have that

max max R(S,D) —R(5,D') < A.
SClpl D,D'ez"
|S|=s D,D’ are neighbors

Since R has bounded global sensitivity A, we have ~that, by Lemma the mistakes method, which is
the exponential mechanism with scoring function R, is (¢, 0)-differentially private. O

A.5 Sufficient conditions for privacy of mistakes method

Below, we present sufficient conditions under which R(Sy(D), D) — R(S51(D), D) > 2A with high
probability, which, by Theorem implies that the mistakes method is (¢, 0)-DP with high probability.

Lemma A.6. Suppose that assumptions hold. Setr > (:{)M + 4%. Then, there exists a
universal constant C' > 0 such that, whenever

T> 00278 logp
- n b)

we have that .
P(R(S2(D), D) — R(S1(D), D) > 2A) > 1 — 10sp™ 2.

Proof. Following the proof of Theorem 2.1 from [[13]], we have that
n_l(RolS(Sa D) — Ras(5*,D)) = n_l{yT(I — Px,)y — yT(I — Px,. )y}
— n*l{ XS*\Sﬁg*\S +€) (I - Px,)(Xg\sB5\5 +€) —€ (I - Px,.)e}
= S*\S D(s )B5e\s +2n e (I — Pxg) X g\ 5855 —n '€ (Pxy — Px,.)e
ﬁS*\s D(5)B5-\s + Zﬁg*\sD(S)ﬁg*\s +2n" e (I - Pxo) Xs-\585\s

+ /BS*\S (S),Bg*\s_n_1€T(PXS —sz*)e.
We then argue that the following two inequalities are true with high probability

— * T 1 * - *
]271 1{(I—PXS)XS*\SﬁS*\S} ¢| < 71851, sD(S)B5- s (A.18)

n~te" (Pxy — Px,.)e< 55 LsD(9)B5-\ s (A.19)
so that n ™Y (Ro15(S, D) — Rois(S*, D)) > 2ﬂj‘g—r\sD( )ﬂg*\s.
Defining ug = n~/?(I — PXS)XS*\SBZ’*\S’ we have that l) is equivalent to

nl/2

u €
LR

[us ]2
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Note that since each of the entries of € are i.i.d. zero-mean sub-Gaussian random variables with
parameter o, we have that \||Z§ ﬁlz is sub-Gaussian with parameter o, so we can apply the Hoeffding

bound (Proposition 2.5 in [34]) with ¢ = oz to get that, for any z > 0,

-
P ( [usel > Ux) < 2~ /2,
[[wsll2

Now, applying union bound over all S € A;, we have that for any £ > 0,

T p—
P (35 € A, lug €l > Ets) < (p S) <S> 2e—Et5/2 < 2p2te—§ts/2.
l[wsll2 t t

Then we have that, whenever
. 1/2
infge 4, ||us||2 - 8 & /
/2 = n ’
we have that

T 1/2
|’us€| > n8 ||US||2> §2p2te_§ts/2.

P <E|S S .At,

[[us]l2

Regarding (A:T9), observe that, as shown in the proof of Theorem 2.1 of [[13]], we have that there
exists a universal constant ¢; > 0 such that, for any = > 0,

2

1 2 .
P <6T(sz — Px,.)el > = x) < ge—crmin{a?/t.a}
n

Then, we have that for ¢ = min{c;, %},

202z

1 ) o
P <6T(PXS . PXS*)€| > > < 4e= min{z?/t,z} < 4efcm1n{zz/t,x}.
n

Noting that s > 1, we have that for any £ > 1,

20%Ets

1
P (J(PXS — Px_.)e> ) < dem <8t
n

and applying union bound over S € A;, we have

1 202¢t _
P (ElS c At7 *GT(PXS _ PXS*)G > o f S) S (p t S> <i) 46—C£ts é 4p2te—cfts.
n n

Hence, whenever,

. 1/2
infsea, [[usll2 8¢o2s\ "/
t1/2 - n ’

we have that
1 1
P (35 e A, EGT(PXS — PXS*)e > 4||us||§> < 4p2te_c£ts.

Combining and taking union bound over all ¢ € [s], we have that, for any £ > 1, whenever

2&s
T > (80) —

we have that,

1
P (VS’ € U1 At, Rois(S, D) — Rois(S*, D) > 2n7‘> > 1 — 4sp®(e75/2 4 7%%),

Now note that, since ¢ < 3, we have that 1 — 4sp®*(e¢%/2 4 ¢7¢%) > 1—8sp?*e~°**. Furthermore,
choosing £ > 2 log p, we have that p?* e~ = ¢251°8P=<¢5 — ) as p — oco.
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Combining the above, define co = 2 + b2 + b2r?, where r > ()M + 42 as assumed, and let

C = max{82cy, 8020} Set £ = cg log p. Then, whenever

slo
> CJQﬂ,
n
we have that,

1
P (VS € Uj_1 A1, Rois(S,D) — Rois(S*, D) > 2nT> > 1 —8sp*,

where A\ = ccog — 2 > 2. Note that,

1 A
Co 2 8logp >C >(8b2—|—8b2 2) > 4=
n n n

where the first inequality uses that max{1, ;}02 > 1, second inequality uses that logp > 1 by
assumption[d} and the last inequality follows from Lemmal[A.T] Hence, we have that

P (VS € US_; As, Rots(S, D) — Rors(S*, D) > 2A) > 1 — 8sp™ 2.
Taking union bound using Lemmal[A.7] we have that
P (VS € Uf_; A;, R(S,D) — R(S*,D) >2A) >1—2p " —8sp 2 >1— 10sp >
and noting
P(R(S2(D), D) — R(51(D),D) > 2A) > P (VS € Us_, A, R(S, D) — R(S*, D) > 2A)
concludes the proof. O
A.6  Proof of Theorem 3land [

Before proving the theorems, we will first setup some preliminaries.

Observe that the solution to the unconstrained least squares problem with support restricted to S is
given by

XIx X1 Xg. 035, XIx x7T
ﬁS,ols = (XgXS)ing'y: ( S S)*l S “*S ﬁS +( S 5)71 g €
n n n n
= i=usg
and the constrained estimator on the same support is given by
Bs,r =arg min |y — XgB|3. (A.20)

B:1Bll2<r

For each support S, we define the event £, := {Bg, = (5,015} and the intersection of events across
all supports as & = Ng.|5|=s€s,r-

The lemma below shows that if a sufficiently high bound on the ¢5 norm of 3 in the constrained
optimization in[A.20|is chosen, the solution to the unconstrained OLS problem is the same as the
solution to[A.20] for all supports S with high probability.

Lemma A.7. Suppose assumptionshold. Ifr > (25)M +4%= then PE,] = P[Ng.5)=5E5,r] >
1—2p".

Proof. At a high level, we are seeking to bound ||3s ||, with high probability. First off, by
assumptionand we have that [|u ||, < [|(XT Xs/n)~Y, | X3 Xs/n||, 185, < (£5)M.

Next, note that
xXIx x! xXIx xI
fall, < | 2221 | 522) < va | F2R s¢
n 2l M 21l Ml
XTXS XTe
< s
2 n [e’e)
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K—‘/f . Now, define D; ; = X je; forall (¢,7) € [p] x [n]. Since

¢; is sub-Gaussian with parameter o, using assumption [[| we have that D; ; is sub-Gaussian with
parameter ob,. Applying the Hoeffding bound (Proposition 2.5 in [34]) with ¢ = 40b,.v/n log p, we

have that, for all ¢ € [p],
1 I
P [|Dm’| > 40695\/7 ngl <2p%.
n n

= maX;e[p %|Di7j|. Hence, by union bound, we have that

X'"e

Hence, we have |[us|, < —

Observe that H XTTE

oo

P {H XTTE > 4o0b, 105”] < 2p*7. By assumptionwe have that
T
P H X'e Z4(71),73] <25
no |l NG

This yields that || Bs,o1s]l2 < [Jw1]ly + [Juzll, < (25)M + 42 with probability at least 1 — 2p~".
Hence, we have that if r > (££)M + 422 then P[€,] > 1 — 2p~ 7 as desired. O

For the remainder of the paper, define Ro5(S, D) = mingegs ||y — Xs3||3 for all S C [p] such that
|S| = s. Define the event £y = (1;_; {VS € A, 2(Ro1s(S, D) — Rois(S*, D)) > 7}
Lemma A.8. Suppose p > 3. There exists a universal constant C' > 0 such that, whenever

log p

n

7> Co?

we have that

>1—8sp 2.
t=1

el =E lﬁ{vs € Aty = (Rats(S,D) ~ Rots(57,D)) 2 5t}

Proof. By Theorem 2.1 of [[13], we have that there exists constant ¢ > 0 such that for any £ > 1,
whenever

minge ., ﬂ;f\sﬁ(s)ﬂg*\s S < 4¢ )2 o?logp
n

t “\1l-—n
we have
PIVS € Ap, 5 (Rois(S, D)= Rous(S*, D)) > Tiﬂg\sb(s)ﬁg*\s} > 1—4p~ (67Dt _gp= (=21,

2
Letn = £, = max{2, %}, and C = (i—i}) . Then, we have that —(c{ — 2)t < —2t and

—(€2 = 2)t < —2t,50 1 — dp~ (€=t _ 2p=(€=2)t > 1 _ 45=2t _ 9,=2t > 1 _ 8p~2 Qbserve

also that
minge 4, ﬁ;I\SD(S)ﬁZ'*\S > min minge 4, ﬂgI\SD(S)IBg*\S

t T tels) t

Hence, we have that whenever
o logp
n b)

7> Co

we have
1 1 R
P [VS e Ay, ﬁ(Rols(Sa D) — Ros(S*,D)) > 2ﬁ§I\SD(5)ﬂ§*\S] >1-— 8p_2t.

Observe now that ﬁgj\ Sﬁ(S )ﬁg*\ g = t7 hence we have

1 1
P [VS € Ay, —(Roi1s(S, D) — Rois(S*, D)) > 2t7’} >1—8p 2.
n
Applying the union bound and the fact that t > 1, we get P[Eqp] > 1 — 8sp~
proof.

2. which concludes the

O
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We now proceed with the proof of the theorems.

Proof of Theorem 3] We will now show that the exponential mechanism with scoring function R
and R = 2, denoted as Ag,, recovers the true support with high probability.

We first define the event

2 1
&= {VS € A,,R(S,D) - R(S*,D) > 5mtT}.
t=1
Observe that £ N Egp C €. By Lemmas and [A.8] if we apply union bound, we have that
PIE] > PIE NEgp) > 1 —8sp~2 —2p~7 > 1 — 10sp~2. Furthermore, if we condition on &, we
have that R(S; (D), D) = R(S*, D).
Then, note that

P(Ap, (D) = 5°I€) = : : ).

Then, we have that, if we assume

7 > max{Co?, %s Ing,
€ n

we have the following:

(%) - Dexp(- 5 (READ)LD) - REGUD)LDY) < o exp(-53)
=G

< p° 0
< p*exp(=7%)
< p’ exp(—2slogp)
= p75
where the second inequality uses the fact that ¢ > 1 for all S € Uj_;.A;. Thus, we have

P(Ag, (D) = §*|&) > .
(Ag,(D) | )_Hp,s

Now consider any exponential mechanism with scoring function Rand R > 2, denoted Ag (D). By
the same argument used in Lemma[A.3] we have that

P(Ag, (D) = 5*|€) < IP(Ag(D) = S*|€).

Applying the law of total probability, we have that

P(Ap(D) = 5%) = P(E)P(Ap(D) = 57I€) + P(E)P(Ar(D) = 5*|€°)
> P(E)P(Ap(D) = S*|&)
S 1 —10sp~2
2 T
Now we apply Lemma Let ¢ = %. Then, we have that (1 — ¢7)IP(Ap(D) = S*) <

s

IP(M(D) = §*), and as T — oo, we have that P(Ag(D) = §*) < IP(M(D) = S*), and we
conclude that
S 1 —10sp~2

PM(D) =52 %,
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Proof of Theorem[d] Let A be the bounded global sensitivity of R as in Lemma First, define
the event Eoa = {VS € Uj_; At, Ro1s(S, D) — Rois(S*, D) > 2A}. In the proof of Lemma-
we show that, given assumptions|[TH4] whenever

T > 00275 logp
- n )

we have that
P (VS € US_1 As, Rois(S, D) — Reis(S*, D) > 2A) > 1 — 8sp~2.

Now consider the event

-

By Theorem 2} we have that if R(S, D) — R(S*,D) > 2A for all S € U;_; A, which implies
that R(S5(D), D) — R(S1(D), D) > 2A, then R has the same bound on global sensitivity as R in
Lemma[A.T} Hence, we have that £ N Egp N E2n C E. Then, by LemmasJE and if we apply
union bound, we have that P[E] > P[E, N Egap NE2n] > 1 —8sp™ 2 —2p~ " —8sp™= > 1 — 18sp™ 2.
Furthermore, if we condition on £, we have that R(So(D), D) = R(S*, D).

Then, note that

{VSeAt, R(S,D) — R(S*,D) > m)

SEDE

{max max  R(S,D) - R(S, A
SClpl D,D'czm
|S|=s D,D’ neighbors

1

L S (777) () exp( R RPN

P[M(D) = §*|§] =

Then, we have that, if we assume

16A . 1
7 > max{Co?s, 162 ng,
€ n

we have the following:

25: (p — s) (s> exp (—G(R(St(p),DZ)A— R(So(D), D < ZP% s —entT)

< Zp% —4t

< Zp‘zt <2p?
t=1

where we use assumption[din the last inequality. Thus, we have that

1

PIM(D) = 5*|€] > Trop2

Thus, we conclude that

P(M(D) = §%) = P(E)IP(M(D) = S*|€) + P(£°)P(M(D) = 5*[€°)
> P(E)P(M(D) = 5*(€)
1—18sp~2
> .
— 1+2p2
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A.7 Proof of Proposition 1

Proof. Take k > 1. Let S and (z, 3, 0) be feasible for Problemsand@]equivalently. Observe that,
since z € {0,1}F and Y ©_, z; = s, we have |{i : z; # 0}| = s. Furthermore, the constraint that
ZieS‘j(D) zi < s— % < s Vje [k— 1] implies that {i : z; # 0} # S;(D) Vi € [k — 1]. Finally,
observe that, from the constraint ﬁ,? < 0;z; Vi € [p] it follows that 3 can be nonzero only on indices
i for which z; = 1, and combined with the constraint ) >_, §; < r?, we have that ||3||3 < r%. We
then have that Problem [9] solves the problem of minimizing ||y — X 3|3 among all 3 such that
|82 < r2, and such that supp(3) C {i : z; # 0}. This then becomes analogous to restricting X to
the columns indexed by {i : z; # 0} and we have that the optimization formulations in Problems
and 9] are exactly equivalent, with S = {i : z; # 0}.

B BSS algorithmic details

Experimentally, we make a number of adjustments to Algorithm [2]to facilitate a faster process of
obtaining S (D) for k € [R]. We find that, very commonly in simulated experiments, the enumerated
supports So(D), ..., Sl+(p_s)s (D) are the (p— s)s supports that make 1 mistake from S; (D), and that
the largest gaps in objective value across two consecutive enumerated supports often occur when the
consecutive supports belong to different elements of the partition Py (D), Py (D), P>(D), ..., Ps(D).
Thus, in order to make the best choice of R to explore the objective landscape better but without
significantly increasing computational costs, we pursued the following strategy:

1. We use Algorithmto obtain S (D) = Sy(D).

A xr B
2n i=1 (zg)

2. We solve c(z)) = minjgz<,2 =~y — XB|3 +
vectors zj, corresponding to the supports in Py (D).

- for all (p — s)s binary

3. We use Algorithmto obtain the optimal support that makes at least 2 mistakes from Sy (D),
with corresponding binary vector Z5.

4. We check that maxyc(p—s)s] ¢(21) < ¢(22).

5. We run Algorithm [I] with (a) the optimal support, (b) all the supports with 1 mistake, and (c)
the optimal with 2 mistakes, i.e. R = 2+ (p — s)s.

Furthermore, to reduce the number of iterations of outer approximation needed in step 3 above, we
added additional cuts corresponding to some of the 1-mistake vectors zj, prior to the start of the while
loop in Algorithm 2| We selected cuts by first sorting the values of X 'y in absolute value, then
taking the top m% of the features from this sorting, and using those entries to make two swaps to the

binary vector corresponding to Sy (D), thus generating 1-mistake vectors that are then used for cuts.

B.1 Solving ¢(2) using PGD

At each iteration of outer approximation in Algorithm 2} we use projected gradient descent (PGD) to
solve

®= min Sly-xpR+ 2y E
" i< 2n Plms g
9(B)
‘We have that
1 A3 1 1 1
Vg(B)==-X"(XB-y)+ -2 = (X (XB—y)+ \Diag(—, ..., —)B)
n nz n 21 Zp
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where 7 for vectors v, u € R? denotes element-wise division. Then note that

1 1 1 1 1 1
I5(XT (X8 y) 4 ADiag(-, . £)8) — (X (X8 ) + ADig(-, ... )8
=113, (XX ADiag (. £))(8~ )]l
1
< (XX 4 ADing(5- 218~ B

3|

Then setting L = ;- Amax(X " X + ADiag(3-, ..., lp)), the PGD update is then

r(B: — £ V9(Be))

Pt = (1B = LVg(B)la)

B.2 Heuristic to kickstart outer approximation

In order to provide a good initialization for 2z, in Algorithm [2] we use the heuristic taken from
Algorithm 1 in [S]]. Specifically, we consider the problem

—(ly — X8Il + MIBIE)

h(B)
Note that Vi(8) = 1 (X T(X 8 — y) + AB) and that

BERP: Hg|\0< 2n

ILXT(XB —9) +28) — (XX~ y) + A3l = |- (XX + A1) - 8]

1
< *)\maX(XTX + )‘I)H/B - /B/HZ
Then, letting L = f/\maX(X T X + AI), we run the following heuristic:

1. Initialize 37 € RP such that ||B1|lo < s.
2. Fort > 1:

(a) Sort the entries of 3; — %Vh(ﬂt) in order of decreasing absolute value, let I denote
the index set of the s largest entries.

(b) Set (B41)i = (B: — £VA(By)); if i € I, and (By11); = 0 otherwise.

C Modifications pertaining to hinge loss

Similarly to BSS, we now consider the following sparse classification problem:

min —ZmaX{O 1—yi(x Tﬂ)} st I8llo < s, 1Bll2 <7 (C.1)

BeR? N

Our objective function then becomes

R(S,D) = min meaX{O 1—y((x)5B)} st |8l <7

where D = (X, y) as before, and (z;)s € R® is the i-th row of X with columns indexed by S.

We first present a result analogous to Lemma[A.T]in order to bound the global sensitivity for the case
of hinge loss.

Lemma C.1. Suppose that | X; ;| < b, fori € [n],j € [p]. Then,

A< (—&—rbf)
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Proof. Suppose D, D’ are two neighboring datasets. Fix a support S € O and suppose

n

. 1
3 € arg min — g max{0, 1 — y;((z})§8)}-
IBlla<r T i

Then note that
R(S,D) — R(S,D’) Zmax{o 1—y;((2:)§8)} — ZmaX{O 1—yi(()§8)}).

Let us assume without loss of generality that D, D’ differ in the n-th observations. Then we have that

ZmaX{Ol vil(@)58)) - Zmax{m—yx( 5B

- %<max{o, 1= yn((2n)58)} — max{0,1 - ()58
<~ max{0,1 - yal(20)58)}
< %(1 +1rby\/5)

where the last inequality uses the fact that |S| = s and the Cauchy-Schwarz inequality, since

~yn((€0)58) < lya((@n)58)| = () EB] < (n)slal|B]a- O
C.1 Optimization formulation

As in the BSS case, we consider the penalized form of Problem in order to obtain Sy (D) for
k € [R]. We define

2
)= gt ZmaX{O A Z 2

and we seek to solve

min ¢(z)
z

p
subjectto z € {0,1}7, ZZZ = s,

1
Z S5 Vj e[k —1].

i€5;(D)

Given z € {0, 1}, define 2z € (0,1]” as in Section[4] Let

B €arg min Zmax{O 1—yi(x] B)} + :\LZBAZQ

2<r2 mn
1813 %

‘We then have

2 (B)?

(Ve(2))i = — 2

-
and we run Algorithm [2] with these modifications.

C.2 Solving ¢(2) using Projected Subgradient method

At each iteration of outer approximation, we solve

min ZmaX{O 1—y(x]B)} + = Zﬁz

I8l13<r2 1
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using a projected subgradient method. Using the subgradient

d@=21 Yy r2oigl . Lis|.

— T
n z z
! b
yiB i<l

we run the update

(B — 1:9(Bt))
max{r,||B; — n:9(B¢)||2}

Bit1 =

where 1, = ﬁ

D Additional experimental results

D.1 BSS
D.1.1 Prediction accuracy and utility loss

In an effort to compare prediction accuracy across methods, we performed a 70/30 random train/test
split and implemented Algorithm 2 in [23]] on the training data, using half of the privacy budget
(i.e., €/2) for variable selection with the top-R, mistakes, Samp-Agg, or MCMC methods, and the
remaining half for model optimization via objective perturbation (Algorithm 1 in [23])) to obtain the
regression coefficients under the privacy budget (priy). We ran experiments with p = 100, s = 5,
€ = 2,SNR = 5, and p = 0.1, and conducted 10 independent trials for each value of n. For each
trial, we drew 100 samples from the distribution corresponding to each algorithm. For MCMC, we
used 100 independent Markov chains per trial. After running objective perturbation over the selected
supports, we obtained 1000 distinct coefficient vectors for each method and each n, and computed
the average MSE on the test data. The choices of A = 120 and MCMC iterations = 1000 were made
to keep the runtimes comparable, as in our support recovery results. We summarize the results below,
showing that our top-R and mistakes methods outperform the competitor algorithms in prediction
accuracy for sufficiently large n.

p=100 p=1000
2.00
—4— TopR 181 —4— TopR
1.75 Mistakes Mistakes
Lasso Subsample 1.6 Lasso Subsample
1.501
- MCMC 14/ -3 McMC
w 4 w
& 125 815
Ev; 1.00 1 %10
0.75 1 0.81
0.50 1 .\\’l’\_‘_\—‘ 0.6 -\i—ﬂ\—-
0.251 = — 0.41 e —
3000 4000 5000 6000 7000 8000 6000 7000 8000 9000 10000 11000
n n
(a) p =100 (b) p = 1,000

Figure D.1: Numerical experiments for p = 100 and p = 1,000, with s = 5, SNR=5, p = 0.1,
and € = 2. The penalty parameter A in Algorithm [2| was set to 120 and 250 for figures and
respectively. On the x-axis, we vary the value of n and plot the average test MSE across 10
independent trials. Error bars denote the mean standard error.

Furthermore, we ran experiments to evaluate the utility loss, defined as the gap between the objective

at Byriv and the objective at B (the optimal BSS solution), using the same parameters as in the
experiments above. As with the prediction accuracy results, our top-R and mistakes methods
outperform the competitor algorithms in terms of utility loss when n is large enough.
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(a) p = 100 (b) p = 1,000

Figure D.2: Numerical experiments for p = 100 and p = 1,000, with s = 5, SNR=5, p = 0.1,
and € = 2. The penalty parameter A in Algorithm 2] was set to 120 and 250 for figures and
[D.2b} respectively. On the z-axis, we vary the value of n and plot the average utility loss across 10
independent trials. Error bars denote the mean standard error.

D.1.2 Ablation studies

In this section, we present several ablation studies in order to show the effect of changing R, ), and
(bz, by) on the fraction of correctly recovered supports and on the F1 score. For the following results,
we ran 10 independent trials and drew 100 samples from the distribution corresponding to each of
our algorithms.

Ablation study of R. As noted in Appendix [B] we observe empirically in the results below that
the largest gaps in objective value across two consecutive enumerated supports often occur when the
consecutive supports belong to different elements of the partition Py (D), Py (D), P»(D), ..., Ps(D).
Moreover, as intuitively expected and shown formally in Lemma[AZ3]of the appendix, increasing R
has a positive effect on support recovery. We used A = 120 and (b, b,) = (0.5,0.5).

0.8 1
0.7 1
0.6 1

0.5 1
(3]
liafi——i_}—i

0.4+

03 FAEgE

0.21 ’E‘i~i—f
% F1

-#- Fraction correct

0.14
0.0 1

0 3000 6000 9000 12000 15000
R

Figure D.3: Numerical experiments for n = 1,000, p = 100, s = 3, SNR=5, p = 0.1, e = 1. Vertical
bars denote an objective gap corresponding to an increase in Hamming distance from the optimal
support. On the x-axis, we vary the value of R and plot the average F1 score and average fraction of
correct supports across 10 independent trials for the top-R algorithm. Error bars denote the mean
standard error.
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Ablation study of \. We present results below for tuning A\. We used R = 2 + (p — s)s and
(bz,by) = (0.5,0.5). We observe that choosing a very large A can have a negative effect on support
recovery. However, increasing A is beneficial for the runtime of our outer approximation solver.
Therefore, we choose a moderate value for A\ to ensure that the runtime of our method remains
comparable to that of MCMC.

1.00 1.000
)
0.98 0975
0.961 I
£ 0950
0.941 =
s 0 0.925
? 0.921 s
o £0.900
0.90 2
© 0.875
0.88 1 g
ogel £ TPR o 0807 % mpr
Mistakes 0.825 Mistakes
120 140 160 180 200 120 140 160 180 200
A A
(a) F1 score (b) Proportion correct supports

Figure D.4: Numerical experiments for n = 4,000, p = 100, s = 5, SNR=5, p = 0.1, ¢ = 1. On the
x-axis, we vary the value of A, and in Figures and [D.4b|and respectively plot the average F1
score and average fraction of correct supports across 10 independent trials for the top- R and mistakes
algorithm. Error bars denote the mean standard error.

Ablation study of (b,,b,). We present results below for tuning (b, b, ). For simplicity, we set
by = by. Weused R =2+ (p — s)s and A = 300. Our results indicate that choosing the clipping
constants too small or too large can negatively affect support recovery quality. In practice, these
hyperparameters can be tuned via cross-validation.
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0 0.7
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(0] 06_
=
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Figure D.5: Numerical experiments for n = 4,000, p = 100, s = 5, SNR=5, p = 0.1, e = 1. On
the x-axis, we vary the value of (b, b, ), and in Figures and and respectively plot the
average F1 score and average fraction of correct supports across 10 independent trials for the top-R
and mistakes algorithm. Error bars denote the mean standard error.

D.1.3 Support recovery

In this section, we present additional experimental results for support recovery in BSS, for varying
values of s, p, e, and SNR. As noted in Section |5} the magnitude of the penalty parameter A in
Algorithm 2]and the number of MCMC iterations for the algorithm by [29] were chosen such that the
average runtimes of the methods across different trials were comparable. That is, our average runtime
for each value of n was at most the runtime of the MCMC algorithm.
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To demonstrate the power of our MIP-based estimator, we note that for p = 1000, s = 8, which
is one of the settings that we ran, we have (10800) ~ 10'°. To put this in perspective, to use the
standard exponential mechanism and enumerate all feasible supports, assuming computing each
feasible support takes 10~ seconds and 16 bits of storage, one would need 764 thousand years and
48 million terabytes of storage. This shows the usefulness of our MIP-based estimator in practice,
enabling us to solve BSS with DP for problem sizes that otherwise would be prohibitive.
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Figure D.6: Numerical experiments for different values of s, p, e and SNR, with p = 1,000. The

penalty parameter A in Algorithm 2] was set to 250 for figures
The number of MCMC iterations was set to 8000 for figures

ID.6afD.6d|and 600 for figure |D.6¢]
D.6al{D.6d|and 10000 for figure|D.6¢

On the z-axis, we vary the value of n and plot the average proportion of draws across 10 independent
trials that recovered the right support for each corresponding algorithm. Error bars denote the mean

standard error.
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Figure D.7: Numerical experiments for different values of s, p, e and SNR, with p = 1,000. The

penalty parameter \ in Algorithm [2] was set to 250 for figures [D.7a}
The number of MCMC iterations was set to 8000 for figures
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[D.7al{D.7d|and 10000 for figure

D. /el

D. /el

On the x-axis, we vary the value of n and plot the average F1 score across 10 independent trials for
each corresponding algorithm. Error bars denote the mean standard error.
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Figure D.8: Numerical experiments for different values of s, p, e and SNR, with p = 100. The
penalty parameter \ in Algorithm [2] was set to 120 for figures [D.8a{D.8d| and 350 for figure
The number of MCMC iterations was set to 1000 for figures[D.8allD.6e] On the z-axis, we vary the
value of n and plot the average proportion of draws across 10 independent trials that recovered the
right support for each corresponding algorithm. Error bars denote the mean standard error.
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Figure D.10: Numerical experiments for p = 10, 000, with s = 5, SNR=5, p = 0.1, and € = 1. The
penalty parameter A in Algorithm 2] was set to 600, and the number of MCMC iterations was set to
100, 000. On the x-axis, we vary the value of n and plot the average F1 score across 10 independent
trials for each corresponding algorithm. Error bars denote the mean standard error.

D.2 Hinge Loss

In this section, we present our experimental results in the setting of sparse classification, presented in
Problem

To generate our data, we first generate z; = x 3* + ¢; for i € [n], where x1,- - - , @, S (0,%) €
R” and the independent noise follows € ~ A'(0, 02 I,,) where I,, is the identity matrix of size n. We
then draw u; ~ Uniform[0, 1] for ¢ € [n], and we set

1 ifu; > o(z;) 1
P = . h = .
Y {—1 otherwise where o(z) 1+e =
Moreover, for 4, j € [p], we set 32; ; = pl*~7| and set nonzero coordinates of 3* to take value 1/+/s
atindices {1, 3,--- ,2s — 1}. We define the Signal to Noise Ratio as SNR = || X 3*||3/|/€3.

As with the BSS results, our methods show favorable empirical support recovery in both low and
high-dimensional settings, with our mistakes method outperforming our top- R method.
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Figure D.11: Numerical experiments for p = 100 and p = 1,000, with s = 5, SNR=5, p = 0.1, and
¢ = 1. The penalty parameter ) in Algorithm [2]was set to 90 and 100 for figures [D.1Ta)and
respectively. On the z-axis, we vary the value of n and plot the average proportion of draws across
10 independent trials that recovered the right support for each corresponding algorithm. Error bars
denote the mean standard error.
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Figure D.12: Numerical experiments for p = 100 and p = 1,000, with s = 5, SNR=5, p = 0.1,
and € = 1. The penalty parameter A in Algorithm [2] was set to 90 and 100 for figures and
respectively. On the x-axis, we vary the value of n and plot the average F1 score across 10
independent trials for each corresponding algorithm. Error bars denote the mean standard error.
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Figure D.13: Numerical experiments for p = 10,000, with s = 5, SNR=5, p = 0.1, and € = 1. The
penalty parameter X in Algorithm[2] was set to 170. On the z-axis, we vary the value of n and plot the
average F1 score across 10 independent trials for each corresponding algorithm. Error bars denote
the mean standard error.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and introduction we claim that we present two pure-DP methods
that can be broadly applied to loss functions and yield strong theoretical guarantees in
the case of BSS. We also claim they achieve state-of-the-art empirical performance. This
matches with the theoretical and experimental demonstrations in the paper.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We point out some of the limitations of our work and potential future research
directions in Section

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We explicitly mention all the assumptions in the statement of the theorems and
lemmas. The proofs of these results can be found in the supplementary materials sections.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.
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* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We clearly state the values of all the parameters needed to reproduce our
experimental results in Section [5]and in the additional experiments section of the appendix.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: Our code is provided in the supplementary materials.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.
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* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Our experiments are run on simulated data. Therefore, technically, we just
have the testing step. We clearly define our data generation process in Section [5]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Our experiments include error bars reflecting the standard error of the mean
across independent trials, capturing variability due to randomness in the experimental setup.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

 The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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8.

10.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have added information about the computational resources we used for our
experiments in Section 3]

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This research work does not violate any NeurI[PS Code of ethics.
Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We point toward the potential positive impacts of our work in Section[6] To
the best of our knowledge, we could not think of any negative societal impact of our work.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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13.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We clearly cite the relevant papers for any used code in the paper along with
the license information.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
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Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
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Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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