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Abstract

Plants are dynamic systems that are integral to our existence and survival. Plants1

are faced with environment changes and adapt over time to their surrounding2

conditions. We argue that plant responses to an environmental stimulus are a good3

example of a real-world problem that can be approached within a reinforcement4

learning (RL) framework. With the objective of controlling a plant by moving the5

light source, we propose GrowSpace, as a new RL benchmark. The back-end of the6

simulator is implemented using the Space Colonisation Algorithm, a plant growing7

model based on competition for space. Compared to video game RL environments,8

this simulator addresses a real-world problem and serves as a test bed to visualize9

plant growth and movement in a faster way than physical experiments. GrowSpace10

is composed of a suite of challenges that tackle several problems such as control,11

hierarchical learning, fairness and multi-objective learning. We provide agent12

baselines alongside case studies to demonstrate the difficulty of the proposed13

benchmark.14

1 Introduction15

Advancements in Reinforcement Learning (RL) [35] are in part from comparing algorithms on16

commonly used benchmarks such as the Atari Learning Environment [1]. However, doubts have17

been raised on popular benchmarks since they do not always translate to real-world applications18

and inherently fail to capture the generalization performance of RL algorithms for real-world de-19

ployment [20]. The RL community needs new simulation-driven benchmark environments with20

real-world properties.21

Currently there are a limited number of benchmarks that represent real-world systems since they are22

hard to design and learning from the physical world is difficult [28, 12]. Their complexities stem from23

high operating costs, their slow movements, and their limited amount of data [13]. Simulators have24

provided a proxy to real-world systems and have demonstrated success in optimization of control25

tasks in robotics [33].26

We direct our interest on plants, which similarly to robots, need to interact with their environment.27

Plants are complex and sense their surroundings through actuation and sensing systems [16]. As28

biological systems, they actuate their movement as a response to an external stimulus such as light [7].29
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Figure 1: High-level Overview of the approach taken for designing the GrowSpace Environment.
(a) Plants orient themselves towards light. (b) A plant branching algorithm imitates this phototropic
behaviour. (c) We implemented an RL framework to reach goals (red)/shapes and enable plant
growing tasks around these properties.

Their spatial reorientation and growth towards light is a tropic response because their movement is30

influenced by the direction of the light source [26]. Recently, the idea of controlling plant growth31

through light manipulation has been investigated for the development of bio-hybrid systems such as32

living structures [40]. The control of a biological agent, presents a set of interesting problems which33

translate well to the RL community, such as: continuous control [31], hierarchical learning [43],34

multi-objective learning [38], and fairness in a multiple plant setting [22].35

In this work, we introduce GrowSpace, a new RL environment that enables the control of procedurally36

generated plant structures. This benchmark is based on real plant responses to light and leverages this37

response to address a set of diverse challenges that are beyond the scope of bio-engineering. We bring38

attention to a set of four different challenges that range from classic control to fairness. GrowSpace is39

an environment that spans across different fields such as plant science, agriculture, RL, and robotics.40

The primary contributions of this paper include: (i) GrowSpace1, an OpenAI Gym-compatible41

environment [5] for RL, agricultural plant science, and robotics research, (ii) the release of 4 different42

challenges that encompass control, hierarchical learning, fairness, and multi-objective learning, see43

Table 1,(iii) trained baseline agents using Proximal Policy Optimization (PPO) [34] with a CNN44

state encoder and a case study of the behavior and weaknesses of the agents. We do not claim that45

the environment allows for easy transfer of policies to real plants but we argue that this constitutes an46

important step towards more realistic RL environments, and supports developing agents for noisy47

biological settings.48

2 Background49

We first cover the RL framework of a Markov Decision Process (MDP), learning with fairness50

constraints, and learning multiple-objectives. These topics are reviewed to lay the foundation of51

GrowSpace and the different challenges it provides to the RL community.52

2.1 Markov Decision Process53

A MDP is a framework used to study the control of sequential decision processes for dynamic54

systems [30]. A MDP is represented as a tupleM = 〈S,A,R,P, γ〉 that includes a state space S,55

an action space A, a transition function P : S × A 7→ S, a reward function r : S × A 7→ R, and56

a scalar discount factor γ. For each time step t, a RL agent is in a state st ∈ S, interacts with the57

environment and chooses an action at ∈ A which leads to a reward rt ∼ r(st, at) and transitions to58

a new state st+1 ∼ P(st, at). The goal of a RL agent is to learn a policy π : S ×A 7→ [0, 1] such as59

to maximize the discounted sum of rewards.60

1https://github.com/YasmeenVH/growspace
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2.2 Fairness in RL61

Fairness is of concern in RL when actions selected by the agent affect the state and latter rewards.62

In a MDP setting, several constraints of fairness have been introduced over the past years. In the63

multi-armed bandit learning framework, fairness has been studied in the setting where the selection64

of an arm with lower expected reward over another arm is considered unfair [23]. Jabbari et al. [22]65

implement this constraint in an MDP setting, stipulating that in any state s, an algorithm cannot favor66

action a that has a lower probability of a expected reward than action a′. Wen, Bastani, and Topcu67

[41] propose fairness constraints that provide equality of opportunity [19] and have observed that68

parity between groups reduces rewards more than equal treatment.69

2.3 Multi-objective RL70

Multi-objective reinforcement learning involves having two or more objectives that may conflict with71

each other and need to be achieved by an agent [37]. Rewards in this context are a feedback signal72

that are represented as a vector of length equivalent to the number of objectives to attain [6]. Conflicts73

amongst objectives are observed when certain objectives are being favored over others. To reduce74

conflicts, trade-offs are used between objectives. The most widely used optimality criterion is the75

Pareto dominance relation [38]. Pareto dominance happens at the policy level, when a policy surpasses76

all other policies for all objectives. Learning policies that meet all preferences has been shown to be77

a challenging task and consequently the problem is often reformulated as a single-objective problem78

in the literature [42]. This comes with limitations because certain behaviours can emerge and show79

preferences to one of the objectives.80

3 Related Work81

The proposed GrowSpace environment complements current RL benchmarks and existing plant82

modelling platforms.83

3.1 RL Benchmarks84

The Arcade Learning Environment (ALE) [1] has long been used as a benchmark for evaluating85

AI agents on a variety of tasks. These tasks have pushed our knowledge and the direction of86

research notably in representation learning, exploration, transfer learning, model learning, and off-87

policy learning [27]. Similarly, StarCraft II [39] presents harder tasks than prior video game-based88

environment. However, as mentioned earlier the usage of common benchmarks has been put into89

question and how they could translate to the real world [20]. Recently, interest has been pushed on90

procedurally generated environments such as Procgen Benchmark [10] and the NetHack Learning91

Environment [24] both with the intent of tackling generalization with large amount of tasks and levels.92

The focus of these benchmarks are not real world-orientated. The closest RL benchmark to real-world93

interaction is Mujoco [36], a physics engine that enables testing of robotic simulations with contacts.94

Although Mujoco can adapt different types of bodies and movements, no task formulation has been95

addressing a greater challenges such as fairness. GrowSpace fills this gap.96

3.2 Plant Modeling97

Plants are interesting subjects to simulate as they are self-organizing systems that have the ability to98

adapt to dynamic environments by sensing their surroundings and directing their growth to preferable99

regions [8]. Plant models have evolved throughout the past two decades and have been incorporating100

the effects of environmental conditions [4]. Simulation of realistic virtual plants and trees have101

been explored through different algorithms such as L-systems [29], Functional–Structural Models102

(FSMs) [11] and Space Colonization Algorithms (SPA) [32]. Plant modeling has received increased103

interest and has primarily focused on: the reconstruction of plant architectures overtime, discovery of104

underlying ecophysiological mechanisms driving certain plant traits, and the movement of nutrients105

and their allocation throughout the plant body [14]. The development of these models are beneficial106

to understand the functioning, manipulation and hypotheses of plant growth. However, they are not107

feasible for generating and controlling behavioral patterns that a plant may exhibit [3]. We’re basing108

our simulator on the Space Colonization Algorithm, adding a controllable light source and target109

points and shapes for the plants to grow towards.110
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Figure 2: Steps for branching in the Space Col-
onization Algorithm, where (a) all photons are
filtered (b) trough a radius of attraction (c) and
their normalized vectors from the plant tip to
the photons (d) are summed and normalized to
find the direction of growth (e) for the new plant
segment to be attached (f) process is repeated
for all existing plant tips

4 GrowSpace Learning Environment111

We present GrowSpace, a new procedurally generated RL environment that is built with the OpenAI112

gym interface [5]. The simulator is inspired by a real-world problem of optimizing plant physiology113

and direction of growth over time. In the real-world, plant growth is dictated by several variables,114

an important one is light availability. GrowSpace incorporates a plant’s behavioral response to light115

and provides control over the branching by means of a mobile light (either beam light or small point116

light). The objective is to guide the growing plant to a desired target or shape depending on the117

challenge. Figure 1 provides an overview of our approach for designing GrowSpace. Much like in the118

real world, the light directly influences the direction of growth of a plant (1a). A branching algorithm119

is chosen to mimic a plant’s relationship to light (1b). Finally, the branching algorithm is formulated120

as a RL problem where an agent’s objective is to shape a plant towards a target (red) or a desired121

configuration through means of a mobile light (1c).122

4.1 Plant Branching123

The Space Colonization Algorithm (SCA) [32] is implemented for simulating the branching at each124

time step in GrowSpace. Through the attachment of plant segments to a plant structure, this algorithm125

facilitates the iterative growth of a virtual plant. The direction of growth is determined by the location126

of the attraction points. In GrowSpace, to imitate phototropic behaviour of a plant, the attraction127

points are thought of as available photon particles. To avoid predetermined shapes in GrowSpace, the128

photon particles are scattered at random to facilitate stochastic branching. The number of particles129

are user-defined and can be compared in a real life setting to the available light intensity: the higher130

the light intensity, the greater the density of photon particles, the more branching occurs.131

Figure 2 (inspired by [32]) illustrates the algorithm. The algorithm begins with a set of photon132

particles N and an initial plant segment with tip v (a). The plant segment tip eventually become133

a set as the plant grows, where v ∈ V . In order for a plant tip to grow, photons n ∈ N must be134

located within a predefined radius of influence ri, as seen in (b) where n1, n2 and n3 attract segment135

tip v. When a photon is too close to a plant segment, the photon is removed and is not considered.136

The normalized vectors from tip v towards photons n ∈ N are computed (c). Once summed, the137

normalized vector n̂ is found for v (d). The vectors representing the direction of growth are:138

−→n =

N∑
n

n− v
‖n− v‖

. (1)

The final normalized vector for a plant segment tip is: tip is:139

n̂ =
−→n
‖−→n ‖

. (2)

Vector n̂ represents the direction of growth of plant segment tip v which is towards photon n2 in this140

example. The plant grows a new segment v′ of a length that is user determined and fixed throughout141

the plant growth (e). The procedure is then repeated on both of the plant segment tips (f), we can142

observe that n2 is too close to v′ and will not be considered for branching.143
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Simulations of the space colonization can vary due to initial configurations chosen by the user (see144

Appendix A. In GrowSpace, we limit the amount of observable photons to the plant with a light145

source. The light source illuminates photons within a certain range, this consequently restricts the146

direction of growth. We introduce the concept of light direction in order for the artificial plant to147

grow unidirectional towards the light source. To grow towards the light source, shading needs to take148

place as to not allow the light beam to illuminate the photons that are below existing parts of the149

plant foliage. These hypotheses are based on phototropism, a response process, that enables plants to150

adjust their growth towards the direction of the light [17].151

4.2 Reinforcement Learning Framework152

We formulate GrowSpace as a MDP described by a state space S that is accessed by the agent as153

a pixel observation, an action space A that can be discrete or continuous, a transition function P154

and a reward function R. On each time step t of a learning episode, the agent observes the state155

st ∈ S, takes an action at ∈ A, moves to a new state st+1 ∼ P(st, at), and receives a reward156

rt+1 ∼ R(st, at, st+1). The probability of a plant segments tips to branch in a specific direction157

given action at in state st is incorporated into the transition probability P (st+1|st, at). In this158

environment, much like in the real world, the light directly influences the direction of growth of a159

plant. The agent’s objective is to shape a plant towards a target or a desired configuration through160

means of a mobile and adjustable light source.161

States and Observations: For every step taken in the environment, the agent observes the obser-162

vation of its current state prior to selecting an action. Once an action is selected by the agent, the163

new state becomes the observation for the next time step. States and observations are an image164

representation of the environment which display the plant structure, the light source and the target.165

The observations are available to the agent as an RGB image that contains the plant, the target and166

the light beam at time step t. The dimensions are of of 84 × 84 × 3 , except for the plant shaping167

challenge where the dimensions are of 28 × 28 × 3.168

Actions: GrowSpace provides a discrete action space and a continuous action space. In the discrete169

action space the agent can execute five discrete actions. The agent can move the light beam to the170

right, the left or stay put. The agent can equally increase or decrease the available light beam to the171

plant. The movement of the light beam is set at a default of 5 pixels in any given direction and can172

be customized by the user. The continuous action space has two actions, the light velocity, speed at173

which the light is displaced, and the width of the light beam. This could be a more realistic and more174

complex set-up, and it will help to transfer the problem from simulation to real world. The actions175

chosen will influence the available scattering to the plant and will impact the direction of growth of176

the plant. For example, if the beam of light is not close enough the plant will not be able to branch177

out because the attraction points and will be dormant. If the light reveals several points, branching178

will be occur in multiple places in the illuminated area.179

In the multiple-objective task, the action set changes due to the circular light beam. Similarly, the180

agent can increase or decrease the light beam radius, it can move left and right and, can move up and181

down. The default radius of the beam is 10% of the width of the environment.182

Rewards: The reward will be dense and will be received at each time step. Rewards will depend on183

the challenges in which the agent is trying to solve. Rewards are task specific and explained below in184

Section 5.185

Episode and Reset: The episode length is fixed and is set to 50 steps. At the beginning of each186

episode, the scattering of photons, and the initial plant stem, as in Section 4.1, and the target(s) are187

procedurally generated in order to ensure the agent will not have visited the exact state previously in188

other episodes.189

5 Tasks190

We propose an initial set of tasks that can be tackled in the GrowSpace environment, all of which with191

several levels of difficulty. The combination of tasks released encompass some known challenges192

to the RL community, such as control, hierarchical learning, fairness, and multi-objective learning.193

Table 1 provides an overview of the tasks and their respective challenges.194
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Challenges

Tasks Control Hierarchy Fairness Multi-objective

Grow Plant to Goal X X X X

Find Plants X X X

Grow Multiple Plants X

Grow Plant to -Shape X

Table 1: Reinforcement learning challenges arising from each task within GrowSpace.

195 Grow Plant to Goal: The task consists in growing the plant with the light beam towards a target196

positioned at random in the upper 25% of the environment. Every episode begins with the light197

beam positioned above the original plant stem. The agent must displace the light beam to control and198

direct the growth of the plant towards the target. After each action, the agent is rewarded based on199

the smallest distance between any of the branch tips and the target. Let db,g denote the Euclidean200

distance between a branch tip b and a target goal g:201

db,g =
√
(xb − xg)2 + (yb − yg)2. (3)

The reward obtained at time step t is inversely proportional to this distance of the branch tip closest202

to the goal among the current branch tips Bt:203

Rt = max
b∈Bt

1

db,g
. (4)

Rewards are therefore in the range ]0, 1[. This typical control problem [31] is considered the simplest204

of the tasks since the light movements directly impact the plant from the beginning of the episode.205

The difficulty of this task is proportional to the distance between the target and the original plant stem206

tip; as the distance increases, the harder the task becomes.207

Find Plant: The task consists in finding the original plant stem with the light source, either the beam208

or circular light. An episode starts with the light source and the original plant stem positioned at209

different random locations in the environment. This becomes a hierarchical learning problem [43]210

where the agent has to first locate the original plant stem by displacing the light source in order to211

increase the reward signal. The reward is computed using Equation 4. The difficulty of this task212

is proportional to the distance between the target and the original plant stem tip (as in the Grow213

Plant task), and to the distance between the original plant stem and the initial light source position.214

Displacing the light source multiple times before finding the plant reduces an agent’s ability to attain215

the highest amount of rewards.216

Grow Multiple Plants: The task consists in finding two or more plant stems with the light beam and217

growing them to similar maturities throughout the episode. In this task, the agent must grow n > 1218

plants towards a target. The target is placed at random in the upper 25% of the environment, the light219

beam and initial plant stems are initialized randomly within the environment. As in the Find Plant220

task, the agent must displace the light beam to find all the existing plants in order to initiate a reward221

signal. The reward consists in the minimum distance reward (Eq. 4) over all plants:222

Rt = min
1≤i≤n

R
(i)
t , (5)

where R(i)
t is the grow plant reward (Eq. 4) associated with plant 1 ≤ i ≤ n. As seen in Section 2.2,223

different fairness constraints can be adopted in a MDP setting and could be integrated within224

GrowSpace. We set our first fairness task with a fairness constraint that is similar to [41], which225

suggests that the agent should provide equal opportunity for each plant to grow towards the target at226

every step of the episode. The difficulty of this task is in sharing the amount of available photons227

adequately between plants when they start growing closely to each other. As different plants start228

approaching each other the photons may run out in the desired direction of the target and the plants229

may never reach the target (see Appendix F).230

Grow Plant to Shape: This task consists in growing plants into specific shapes by using a circular231

light source that can navigate to precise locations in the environment. As default shapes for bench-232

marking purposes we consider the MNIST dataset [25], which is widely used in machine learning.233
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MNIST contains 28× 28 pixel binary images of handwritten digits (0-9). Given an MNIST image,234

the goal is to grow a plant such that its shape matches the drawn digit as best as possible. For this task,235

the environment is reshaped to a width and height of 28× 28 pixels (i.e. the size of a MNIST image).236

The agent has to grow the plant into multiple directions to best cover the outline of the MNIST digit237

without growing out of bounds. This is a multi-objective task, since the agent has to cover multiple238

areas in any order, while also keeping the overall goal of limiting the amount of branching in mind.239

The reward for this task is crafted using the Jaccard Index [15] similarity score. Let At and G240

respectively denote the set of pixels that the plant occupies at time steps t and the set of pixels that241

belong to the target shape. The reward at time step t is given by the similarity score:242

Rt =
At ∩ G
At ∪ G

. (6)

6 Experiments and Results243

We demonstrate in this section how GrowSpace presents a set of challenging tasks for RL algorithms244

through a set of case studies.245

Baselines: We evaluated several gradient-based policy methods in the general control setting (Grow246

Plant task): Proximal Policy Optimization (PPO) [34], Advantage Actor Critic (A2C) [18], and247

Rainbow DQN [21]. The plots of average reward per episode can be found in Appendix C.248

For each of these agents, a state is represented by a tensor of (3, w, h) wherew and h are the width and249

height of the observed image in the task. These representations are fed through three convolutional250

layers, a fully connected layer and a final layer using the ReLU activation function. The output of251

the policy network is a probability of each action belonging to the action space. Results obtained252

on the Grow Plant task indicated that PPO was the most promising strategy for this problem (see253

Appendix C). We therefore conducted a hyperparameter search for PPO across all challenges and with254

three different seeds. The details of the final chosen PPO parameters can be found in Appendix B.255

A random agent and an oracle agent have also been implemented. No training was performed for the256

random and oracle agents. The random agent selects actions uniformly at random from the action257

space. For each challenge, a unique oracle agent is implemented. More information about the oracle258

solutions can be found in Appendix D.259

Performance metrics: To understand if learning is successful, we compare the mean episodic260

reward as our performance metric. To better interpret the agent’s behaviour, we include other metrics261

such as the selection of actions and the overall number of branches produced throughout an episode.262

Results are always averaged over three runs (different random seeds).263

6.1 Case Studies264

We present a set of case studies to display a spectrum of behaviors the agent can display and where265

challenges are shown to be difficult. Each case study consists in one easy and one hard configuration266

(in terms of difficulty), to be described below. Figure 3 shows the cumulative rewards (averaged and267

one standard deviation) for the three baselines in easy and hard configurations of each case study.268

Control: We define an easy setting when the target is above the original plant stem (Grow Plant task)269

and a hard setting when the stem and target are at opposite extremities of the environment (Find Plant270

task).271

Figure 3(a) shows that the easy control reward curve from PPO is closer to the oracle solution and that272

learning can be improved. The hard control challenge is indeed more difficult as the highest reward273

achieved by the oracle is much lower than in the easy setting. For both difficulties we observe that274

the PPO reward curve is midpoint between the oracle and random action selection, suggesting that275

PPO’s behaviour can be optimized further. The video renderings show the agent displacing the light276

away from the plant to quickly, loosing steps with stagnating rewards instead of growing new closer277

branches and does not succeed in guiding the plant to target. Equally, the episodic action selection as278

seen in Figure 6(a) in Appendix D demonstrates that agent does not favor decreasing the light beam279

resulting in a plant with multiple branches competing for the same photons in the direction of the280

target and thus resulting in slower growth and lower rewards. The action distribution in the easy case281
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(a) Control Case Studies
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(b) Hierarchy Case Studies
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(c) Fairness Case Studies
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(d) Multi-Objective Case Studies

Figure 3: PPO Baseline Performance. For each environment variation, we are plotting the lower
bound (random baseline) and upper bound (oracle), as well as the performance of a PPO agent.

is relatively similar amongst actions, however in the hard setting it is noticeable that the right and left282

actions are used more (see Figure 6 in Appendix D). This can be explained as the plant does not283

need to simply grow vertically but laterally to the opposite side of the environment.284

Hierarchical Learning: We present two case studies similar to control with the exception that the285

initialisation of the episode starts with the light placed at random and not above the plant as the agent286

needs to first find the plant.287

Figure 3(b) shows that the hard hierarchy reward curve from PPO yields a smaller amount of rewards.288

Similar to control, the hard setting has a lower reward due to the distance between the initial plant289

stem and the target. With the initial task of finding the plant first, the low reward in the hard setting290

can be explained by the agent receiving the same reward while trying to find the plant and, the greater291

distance between the target and the initial stem. The action of increasing the light is more utilized292

within the harder setting to find the initial plant stem (see Figure 7 in Appendix D). With the video293

renderings, we also see that the light width is not changed dramatically once the initial stem is found294

and the agent learns to drag the light towards the target. The video renderings equally show that the295

plant gets bushy and the smaller light width is not utilized efficiently to try and reduce competition296

amongst branches for available photons (see Appendix F).297

Fairness: We present two case studies. For the hard setting, the initialization of an episode starts298

with the plants at the opposite extremities of the environment and the target is placed in the middle of299

the environment. For the easy case study, the episode initialization starts with both plants at a distance300

that is set to the default light width and the target is in the middle. This case study is particular301

because the plants are very close and competing for available photons in order to reach the target. As302

a fairness challenge, the objective is to produce plants of similar size.303

Figure 3(c) shows that the easy fairness reward curve from PPO produces the highest amount of304

rewards. Both PPO reward curves are between closer to the oracle bound than the random agents305

for both cases. We investigate if the agent’s behaviour is fair by looking at the median amount of306

branches per plant, where the numbers are relatively close (see Figure 8 in Appendix D. The easy307

case produces a smaller amount of branches, this can be explained by the small pool of photons that308

are available to both plants branching and thus limiting additional branching in the right direction.309

In the middle case, the branching is higher and can be explained by the greater amount of photons310

available to both plants while reaching the target as they do not need to compete for the majority of311

the episode.312
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Multi-objective Learning: We first compare all Mnist digits to better understand the proposed313

challenge. The digits are compared by their median reward values from PPO as seen in 4(a). The314

order of the digits presented in the curriculum from easiest to hardest is 3, 6, 2, 1, 4, 5, 7, 8, 9, 0. The315

curriculum consists of 2000 episodes with the two first easiest digits and for every increment of 2000316

episodes a new new digit is added. The last 6000 episodes of training have all the MNIST digits.317
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(a) MNIST digit comparison
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(b) Curriculum comparison

Figure 4: Comparison of digits to design the curriculum for training

In Figure 4(b) the learning seems at a higher rate in the first episodes of training for the curriculum318

approach however, the reward curve decreases as the addition digits are added. The random selection319

of digits seems to be a better fit over time. We can see that the agent is focused on density on plant vs320

overall shape as the light width fluctuates a lot in the video renderings but it does not visit the full321

trajectories of the MNIST digits.322

7 Limitations323

The limitations of GrowSpace are translating plant growth control into practice. The benchmark324

provides a modest first step to modeling a plant response that occurs in the physical world however,325

under the assumption of all other environmental conditions being constant (water supply, wind,326

nutrient availability, etc). The transfer of an optimal policy in simulation may not succeed when327

reproducing the experiment in the real-world however, high-level intuition can be extracted from the328

optimal policies [9]. GrowSpace implements one plant model for a generalized perspective into plant329

growth, specific models for different plant species could enable better precision and simulations that330

are specific to researchers needs.331

8 Conclusion and Future Work332

GrowSpace is a procedurally generated environment with a set of challenges that can help the333

advancement of reasearch in RL and agriculture. It encompasses real-world behaviour of plants in a334

low representation setting and provides a series of challenges that address issues such as fairness. We335

provide gradient based agent baselines for the control challenge to display the difficulty of the easiest336

challenge within GrowSpace. Case studies with our base performing baseline, PPO, are layed out to337

give insights on the type of behaviour an agent can adopt in easy and hard settings. We demonstrate338

that indeed GrowSpace is a environment that is complex and proposes different settings which enable339

different skills to be learnt such as sharing ressources in the fairness constraint, patience for displacing340

a light to grow the plant and limiting available resources to a growing plant for precision.341

Further add-ons can be attainable in order to recreate a full growing environment dynamic with water,342

nutrients, wind and even specific plant models. We plant to support GrowSpace after its release as343

well as introduce new environment parameters. In sum, plant growth is a grounded and intricate topic344

and its full control is not fully understood. GrowSpace provides a first step in the direction of plant345

growth control through a known plant response, phototropism.346
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