
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TURNIP: A “NONDETERMINISTIC” GPU RUNTIME
WITH CPU RAM OFFLOAD

Anonymous authors
Paper under double-blind review

ABSTRACT

An obvious way to alleviate memory difficulties in GPU-based AI computing is
via CPU offload, where data are moved between GPU and CPU RAM. While CPU
offload is useful, it can greatly slow down a computation due to the relatively slow
transfer rate between CPU RAM and GPU RAM. To address this, overlapping
memory transfer and compute is a necessity, but this asynchronicity introduces non-
determinacy, and hence it is impossible to know beforehand what is the best order
of operations. We describe TURNIP, which is a system for running AI computations
using CPU offload, designed to handle this nondeterminacy. The key innovation
in TURNIP is the compilation of the AI computation into a dependency graph that
gives the TURNIP runtime freedom to run operations such as GPU kernel calls in
many different orders; at runtime, TURNIP chooses the best order on-the-fly, in
response to real-time events. We find that TURNIP outperforms standard, PyTorch-
based systems supporting constrained GPU RAM by a significant margin, and also
avoids out-of-memory errors in a severely memory constrained environment.

1 INTRODUCTION

Memory management for modern AI computations is difficult. In the LLaMA large language model
(Touvron et al., 2023), for example, the attention computation on a sequence of length n produces
an intermediate result with 128 × n2 floating point numbers. Thus, for a long input sequence of
100,000 tokens, the attention computation will result in 1.2 trillion numbers, which would require
2.4 terabytes to store at half-precision. It is for these reasons that out-of-memory errors plague AI
programmers (FAQ).

CPU offload—where data are moved to CPU RAM for storage—can help. As CPU RAM is much
more inexpensive than GPU RAM and it is possible to install many terabytes of CPU RAM in a
GPU server essentially “for free”,1 it makes sense to leverage CPU RAM to temporarily store data.
This idea has been explored in several systems such as pofo (Beaumont et al., 2021), AutoTM
(Hildebrand et al., 2020), SwapAdvisor (Huang et al., 2020), Capuchin (Peng et al., 2020), and POET
(Patil et al., 2022). These systems view a GPU computation as a dataflow graph, and plan how to fit
the computation into GPU RAM by making use of CPU RAM offload.

While CPU offload is an obvious idea, it can greatly slow down a computation, due to the relatively
slow transfer rate between CPU RAM and GPU RAM. Thus, any system for CPU offload must ensure
that when such a transfer happens, no computation is blocked waiting for the transfer to finish.

In this paper, we propose TURNIP (short for “nondeTerministic gpU RuNtime wIth cPu offload”)
which is a runtime for multi-GPU servers, designed to systematically support CPU RAM offload.
The key innovation of TURNIP is its combination of a pre-computed memory access plan called a
MEMGRAPH with a “nondeterministic,” event-driven system runtime. A MEMGRAPH is a dependency
graph where vertices represent tasks (such as the execution of a GPU kernel to perform a small part
of attention computation in a layer of a large language model) and edges represent data or memory
dependencies. Any execution order that respects the dependencies in the MEMGRAPH is valid, and
tasks are dispatched at any time that their dependencies have been met and the appropriate resources
are free. Thus, two executions of the same MEMGRAPH may lead to different sequences of operations

1At current prices, a single state-of-the-art H100 GPU costs the same as approximately 10TB of CPU
RAM—more than 100× the RAM available on a H100 GPU

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

being executed on a GPU, or different sequences of tensors being paged to CPU RAM—hence the
non-determinacy. However, the dependencies in the MEMGRAPH are such that the final output is
always correct, no matter the execution order. TURNIP’s event-driven, fully asynchronous runtime is
unique. Because operations can be dispatched whenever the dependencies are fulfilled and are not
constrained to any specific ordering, it lowers the chance that any GPU will be stalled waiting for a
memory transfer to complete. If one task cannot run due to an un-met dependency in the MEMGRAPH,
it is possible that there is another task that can run.

The key technical challenge is how to effectively build a MEMGRAPH with as few dependencies as
possible, to allow the runtime as much freedom as possible to dispatch operations so that it is never
blocked, waiting for a memory transfer to complete. TURNIP builds a MEMGRAPH by simulating
an execution of the computation, mapping tensors to GPU memory locations and, when necessary
adding edges that represent memory dependencies, as well as offload and reload operations.

2 WHY IS NON-DETERMINACY OF EXECUTION ORDER CRUCIAL?

The design of TURNIP is based on a simple hypothesis: When running a GPU-based computation that
utilizes CPU RAM, asynchronous operations such as offload and reload will have a seemingly
nondeterministic running time that is difficult to pre-plan for. The system runtime must accommodate
the resulting non-determinacy, or else performance can suffer.

Figure 1: A simple MEMGRAPH.

Consider Figure 1, which depicts a MEMGRAPH for a single
GPU system with an offload (data movement from GPU
RAM to CPU RAM) and a reload (from CPU RAM to
GPU RAM). Vertices are operations (for example, GPU kernel
calls) that produce data. Black edges indicate data or consump-
tion dependencies; red edges indicate memory dependencies
(MEMGRAPHs will be described in detail in Section 4). Note
the memory dependency from offload1 to 4. This exists
because the output of 4 will be written to the location of the
output of 1, and so 4 cannot execute until the offload1

completes. The data dependency from reload3 to 5 exists
because the kernel associated with vertex 5 will consume the reloaded tensor.

Imagine that a system has executed GPU kernels associated with vertices 1 and 2. It is currently
executing the offload1 and the reload3. At this point, it is impossible to know which kernel
should run next (4 or 5) as this depends on which memory transfer finishes first. Ideally, this decision
will be made at runtime. If the system deterministically decides to run 4 before 5 at compile time, and
the reload3 finishes first, the GPU will sit, idle, waiting for the offload1 to complete. This is
why a special-purpose, “nondeterministic” runtime is needed: to properly handle the non-determinacy
induced via the addition of memory operations.

3 RELATED WORK

There are two approaches taken by systems dealing with limited GPU memory. Some, like TURNIP,
accept an abstracted version of a generic GPU computation. Other systems are more specifically
targeted to certain categories of models, optimization algorithms, or to specific tasks such as training or
inference. Unlike TURNIP, none of these existing systems consider the effect of the non-determinism
of offload and reload operations on system performance, nor do any focus on the system
runtime.

Figure 2: A decomposition of
matrix multiplication.

Using the first, more general approach, are systems that accept a
generic dataflow graph and, like TURNIP, plan for execution in
limited memory: pofo (Beaumont et al., 2021), AutoTM (Hilde-
brand et al., 2020), SwapAdvisor (Huang et al., 2020), Checkmate
(Jain et al., 2020), Capuchin (Peng et al., 2020), and POET (Patil
et al., 2022) all assume an input dataflow graph for a machine
learning computation, and then plan for execution in limited mem-
ory. Checkmate considers only tensor re-materialization, whereas

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 3: Example TASKGRAPH consisting of six GPU
kernel calls and three GPU-to-GPU transfers.

Figure 4: Possible mapping of the out-
put of all of the operations in Figure 3
to memory locations.

POET, pofo, and Capuchin consider re-materialization and of-
fload; AutoTM and SwapAdvisor consider only offload.

The more targeted approach is taken by the DeepSpeed project (Deepspeed) and the various ZeRO
optimizations. For transformers and other, similar models, DeepSpeed inference (which includes
ZeRO-Inference) (Aminabadi et al., 2022) has two key ideas. First, DeepSpeed inference “offload[s]
some activation from GPU to CPU memory while not in use.” Second, DeepSpeed inference “pins
the model weights either in DRAM (if large enough) or NVMe, and streams each layer into GPU
memory for computation when needed.” FlexGen (Sheng et al., 2023) seeks to use a variety of
methods to speed transformer inference given limited hardware, including model weight offload to
CPU, quantization (Yao et al., 2022; Frantar et al., 2022), and sparse attention (Child et al., 2019).
The latter two ideas are orthogonal to the ideas in this paper. For CPU offload, FlexGen optimizes
a “zig-zag” block scheduling that works through transformer layers and sequences in the batch,
offloading and reloading the KV-cache (Pope et al., 2023) and model weights. PagedAttention (Kwon
et al., 2023) deals with low memory utilization in transformers, developing a paging system for the
KV-cache.

ZeRO-Offload (Ren et al., 2021) is a comprehensive solution for limited-memory training that can be
seen as primarily using CPU RAM for running the ADAM optimizer, moving weights to GPU RAM
on a carefully-controlled schedule. ZeRO-Offload is an enhancement on ZeRO (Rajbhandari et al.,
2020), which is designed to be memory-efficient, partitioning both the optimizer and the data across
multiple GPUs. ZeRO-Infinity (Rajbhandari et al., 2021) is similar, and includes a CPU offload
engine, as well as tiling of operators to utilize the RAM of multiple GPUs.

4 TASKGRAPHS AND MEMGRAPHS IN TURNIP

TURNIP takes is input a TASKGRAPH. A TASKGRAPH is a dataflow graph (a directed, acyclic graph)
that describes how to perform multi-GPU computations. In a TASKGRAPH, edges represent data flow,
and vertices represent operations over tensors. A vertex without any inputs (called an input vertex)
is associated with an input tensor. An operation associated with a non-input vertex may be either a
kernel call that is to be executed on a specific GPU, or a GPU-to-GPU data transfer.

TURNIP is agnostic as to how the TASKGRAPH is created; it could, for example be created using
a framework such as FlexFlow (Jia et al., 2019) or Alpa (Zheng et al., 2022). Consider a matrix
multiplication X × Y, and assume we wish to execute this matrix multiplication on three GPUs.
To produce a TASKGRAPH, a framework such as FlexFlow may choose to decompose this matrix
multiplication as depicted in Figure 2, perhaps corresponding to the TASKGRAPH of Figure 3.

Given such a TASKGRAPH, TURNIP first compiles the TASKGRAPH into a MEMGRAPH, which it will
eventually execute. Like a TASKGRAPH, a MEMGRAPH is also a directed acyclic graph. Every vertex
in the original TASKGRAPH will be present in a corresponding MEMGRAPH. Further, the compilation
process may add additional offload and reload operations that move memory from GPU RAM
to CPU RAM, and vice versa. During the compilation process, the output associated with every vertex
in the MEMGRAPH is mapped to a memory location. Unlike the input TASKGRAPH, the MEMGRAPH

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

is not a dataflow graph; it is a dependency graph. If there is an edge from v1 to v2, it means that
v2 depends on v1 and v2 may not execute until after v1 has been executed. In a MEMGRAPH, there
are two types of dependencies. One is a data dependency, which is inherited from the TASKGRAPH
(or is created via the addition of an offload or reload; see below). The second is a memory
dependency, which is added to ensure that there are no race conditions in the graph. A race condition
occurs when there is some vertex for which two valid executions of the graph may produce a different
output. This can happen when two vertices write to the same memory location, and it is possible for a
third vertex to read either output, depending upon the execution order.

Figure 5: MEMGRAPH corresponding to Figure 3.

Let us illustrate a possible compilation of the
TASKGRAPH of Figure 3 to a MEMGRAPH.
Imagine that our three GPUs each have five
memory locations, and for simplicity, each ten-
sor is the same size and occupies exactly one
memory location. During compilation, the ten-
sor associated with the output of each operation
in the TASKGRAPH is assigned to a memory lo-
cation, as depicted in Figure 4. GPU 1 must deal
with seven tensors total (two input tensors and
five additional tensors that are created via the
execution of some operation), and we cannot fit
all seven of those tensors in memory, given our
five locations. Thus, the tensors output by oper-
ations A and 4 are both mapped to GPU1-Loc1,

and the tensors output by operations 1 and 8 are both mapped to GPU1-Loc3.

Figure 6: Possible mapping of ten-
sors to GPU RAM.

A corresponding MEMGRAPH is shown in Figure 5. Note
that two new edges representing memory dependencies have
been added. These edges guarantee that the graph is free
of race conditions. Specifically, a graph will be free of race
conditions, if, whenever the outputs of vertices v1 and v2 have
both been mapped to the same memory location, either v1
safely overwrites the result of v2, or v2 safely overwrites the
result of v1. We say that “v1 safely over-writes the result of
v2” if and only if, for every v3 that consumes the output of v2,

there is a memory dependency from v3 (or some descendent of v3) to v1 (or to some ancestor of v1).
Why? If v1 is to safely over-write the result of v2, we need to ensure that v1 cannot execute until all
of the consumers of v2 have finished execution—such memory dependencies ensure this.

Figure 7: MEMGRAPH with less GPU RAM.

For example, from Figure 4 we see that the out-
put of vertex 4 is mapped to the same location
as the output of vertex A. In the associated MEM-
GRAPH of Figure 3, to ensure that 4 safely over-
writes the result of A, we add a memory depen-
dency from 3 (the only consumer of A) to 4.
From Figure 4 we also see that the results of
1 and 8 are mapped to the same location. To
ensure that 8 safely over-writes the result of 1,
we add a memory dependency from 3 (the only
consumer of 1) to 8. Note that this memory
dependency is shown as a dashed line; this in-
dicates that it is superfluous, as there is already
a data dependency from 3 to 8, so this memory
dependency is not needed for correctness.

Things can become more intricate if the memory
is more constrained. Consider the case where

we have only four memory locations on each GPU, and we wish to compile the same TASKGRAPH.
One possible mapping of the vertices TASKGRAPH of Figure 3 to memory locations for GPU 1 is
shown in Figure 6; the associated TASKGRAPH is shown in Figure 7. Note in particular the addition
of an offload-reload pair. Both the offload and the reload are new operations that are

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

added to the MEMGRAPH during compilation, to facilitate execution in memory-constrained scenarios.
We can always compile v1 → v2 in a TASKGRAPH to v1 → offloadv1 → reloadv1 → v2 in
a MEMGRAPH. After the offloadv1 , the result of v1 takes up no GPU memory, but it cannot be
used until the reloadv1 , where it is again mapped to a GPU memory location. The reason for the
inclusion of the offload-reload pair in this case is that it allows the result of A to be removed
from GPU RAM for a time. Thus, vertex 4 can execute and write its result on top of the result of A,
which is subsequently reloaded so that vertex 3 can be executed.

In Figure 6 we see that there are four pairs of vertices whose results are mapped to the same GPU
memory locations, and so memory dependencies must been added to the MEMGRAPH to ensure that
there are no race conditions. Consider A and 4, which are both mapped to GPU1-Loc1. To ensure
that 4 safely over-writes the result of A, we have a memory dependency from the offloadv1 (the
only consumer of A) to 4. Or, consider reloadv1 and 2, which are both mapped to GPU1-Loc4. To
ensure that the reloadv1 safely over-writes the result of 2, there is a memory dependency from the
only consumer of 2 (vertex 4) to the reloadv1 .

5 THE TURNIP EXECUTION ENGINE

Once a MEMGRAPH has been produced, it is executed by the TURNIP engine using a nondeterministic,
event-based framework. As soon as a GPU is unused or a tensor is ready to be offloaded to
RAM, the TURNIP runtime can immediately assign any available work to the GPU or begin the
transfer, without regard to the overall state of the computation. Also note that there are no calls to
memory-management routines such as cudaMalloc or cudaFree during MEMGRAPH execution,
as memory management is no longer dynamic. Tensor placement is pre-determined before execution,
and if dependencies are respected, there can be no memory corruption due to race conditions.

To execute the MEMGRAPH, TURNIP runs a central event processing loop, that repeatedly processes
callback functions that are called response to completion of the work associated with a MEMGRAPH
vertex (completion of a GPU-to-GPU transfer, completion of the GPU kernel, or completion of an
offload or reload). When a vertex completes and a callback is invoked, the event loop checks
to see if any other vertex can be executed. That is, it searches for a vertex v1 where (a) all vertices v2
with an edge v2 → v1 in the MEMGRAPH have also completed; (b) if v1 is a kernel call, then the GPU
v1 is assigned is currently free. When the event loop finds such a vertex, it launches it, and searches
for another such vertex. When it can find no such executable vertex, it goes to sleep until woken by
another callback.

6 BUILDING A MEMGRAPH

The key technical question we address in this paper is: How to construct a MEMGRAPH from a
TASKGRAPH? The primary requirement for the compilation process is correctness. Correctness
requires that (a) every data dependency present in the TASKGRAPH is also present in the MEMGRAPH,
or is replaced with a sequence of offload-reload operations;2 (b) there are no race conditions in
the MEMGRAPH; (c) the MEMGRAPH has no cycles. In addition, it is desirable for the MEMGRAPH to
be performant. A MEMGRAPH will not be performant if memory dependencies severely constrain the
execution order of vertices. Such constraints may reduce parallelism and GPU utilization.

Our basic tactic during compilation is to rely on a simulated execution of the TASKGRAPH to
generate the MEMGRAPH. Given a serial ordering of the vertices in the TASKGRAPH that respects
all dependencies (so that if v1 → v2 is in the TASKGRAPH, v1 is before v2 in the ordering) we
simulate its execution, making calls to special variants of malloc and free that do not actually
allocate GPU RAM, but instead maintain a map of used and free RAM slots on the GPU that is
the target of the compilation. These implementations also maintain a history of which tensors
occupied which positions in simulated GPU RAM, to correctly generate memory dependencies. As
the simulation runs, the MEMGRAPH is constructed. Calls to the special malloc implementations
associate MEMGRAPH vertex outputs to GPU memory locations (effectively producing the mappings
depicted in Figure 4 and Figure 6). Whenever a call to the malloc variant fails because there is

2So, for example, if v1 → v2 is present in the TASKGRAPH, we may have v1 → offloadv1 →
reloadv1 → v2 in the MEMGRAPH

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

not enough GPU RAM, an offload vertex must be added to the MEMGRAPH. Whenever it is
time to simulate the execution of a TASKGRAPH vertex but one of the inputs is not in the simulated
GPU RAM, then a memory location for the corresponding reload vertex is allocated, and a data
dependency on that reload is added to the MEMGRAPH.

BUILDMEMGRAPH: Inputs: TASKGRAPH, sorted list of
TASKGRAPH vertices V = ⟨v1, v2, ..., vn⟩; Outputs: MEM-
GRAPH, GPU memory location vi.loc for i ∈ {1...n}———————————————————————-
Evicted← {}; execHzn← 1; allocHzn← 1;
while execHzn ≤ n do

if allocHzn <= n and (vallocHzn.loc ←
simMalloc(vallocHzn)) ̸= −1 then
/*successfully allocated space for future result*/
allocHzn += 1

else if allocHzn = execHzn then
/* unable to allocate for next execution w/o evict*/
vallocHzn.loc← simMallocOffld(vallocHzn)
allocHzn += 1

else
/* simulate execution of the next vertex */
/* first, compute set of vertices exec depends on */
Deps ← {v s.t. edge v → vexecHzn ∈ TASKGRAPH}

for v ∈ Deps do
/* reload dependency if evicted */
if v ∈ Evicted then

v.loc← simMallocForceReld(v)
end if
/* if dependency won’t be used again, free it */
if not ∃(fut > execHzn s.t. edge v →
vfut ∈ TASKGRAPH) then
simFree(v)

end if
add edge v → vexecHzn to MEMGRAPH

end for
execHzn += 1

end if
end while

Figure 8: Building a MEMGRAPH via execution simulation.

As the simulation runs, there are
two horizons, or counters that
mark progress through the serial-
ized TASKGRAPH. The first is the
allocHzn. Every vertex in the
TASKGRAPH that is older than the
allocHzn has had a space allo-
cated for it. The second is the
execHzn. Every vertex in the
TASKGRAPH that is older than the
execHzn has been “run” according
to the simulation. To ensure a high-
quality MEMGRAPH, our compila-
tion algorithm greedily tries to push
the allocHzn as far as possible
past the execHzn. Intuitively, this
will produce fewer constraints in the
resulting MEMGRAPH. A kernel as-
sociated with a vertex cannot run un-
til it has GPU RAM to write its out-
put. If this GPU RAM is available
very early in the simulation, then it
gives the TURNIP event processing
loop more freedom to choose a ver-
tex execution order that does not ex-
actly match the simulated ordering,
generating more opportunities to run
available kernels while waiting for
memory transfers.

The overall algorithm, BUILDMEM-
GRAPH, is given above in Figure 8.
Note that this variant of the algo-
rithm assumes each tensor takes up
exactly one slot in GPU RAM. In
the ”real life” case where tensors are
variably-sized, the algorithm does
not change appreciably—specifically, in the variably-sized case, freeing space for a tensor can evict
a variable number of tensors to CPU RAM—but assuming uniformly-sized tensors simplifies the
presentation.

At the highest level, the algorithm operates by first checking to see if it can allocate space for the
vertex at the current allocation horizon, vallocHzn. If it cannot, the algorithm makes sure there is
space available for the output of the next vertex to be executed (the only way there is no space is if
allocHzn = execHzn and the last allocation failed; this implies it is time to execute vexecHzn
and we just failed to allocate space for it). If there is space, the simulation “executes” vexecHzn.

There are four memory management subroutines used by the algorithm: three variants on malloc
(simMalloc, simMallocForceReld, and simMallocOffld) and one variant on free
called simFree. Like a traditional malloc, simMalloc finds an open slot for the allocation, but
it also adds the memory dependencies to the MEMGRAPH necessary to ensure that the vertex v that will
occupy the slot will safely overwrite the previous occupant of the slot. simMallocForceReld
is like simMalloc, but it is used in the case when a vertex must be reloaded because it is going
to be used immediately, and hence the allocation cannot fail. simMallocOffld is a variant of
simMalloc that cannot fail, as it finds a victim to offload to ensure the success of the allocation
for vertex v, adding the offload-reload sequence to the MEMGRAPH. Crucially, it renames all

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

instances of the victim v′ in the TASKGRAPH to refer to reloadv′ . In this way, all “future” accesses
to v′ will refer, in fact, to its reloaded version. The routine also adds a memory dependency from
the offloadv′ to v, as we cannot execute v until the offloadv′ has taken place, and freeing GPU
RAM for use.

simMalloc: Input: vertex v; Output: GPU
memory slot for v——————————————————
find open slot for v; return -1 if none
return slot if no previous occupant
v′ ← last owner of slot for v
Deps ← {v′′ s.t. edge v′ → v′′ ∈
TASKGRAPH}
for v ∈ Deps do

add edge v′′ → v to MEMGRAPH
end for
return slot

simMallocForceReld: Input: vertex v;
Output: GPU memory slot for v——————————————————
remove v from Evicted
slot← simMalloc(v)
if slot ̸= −1 then

return slot
end if
return simMallocOffld(v)

simMallocOffld: Input: vertex v; Output:
GPU memory slot for v——————————————————
find GPU RAM slot for v and determine vic-
tim (current occupant of slot) v′
add sequence v′ → offloadv′ → reloadv′

to MEMGRAPH
add edge offloadv′ → v to MEMGRAPH
Deps ← {v′′ s.t. edge v′ → v′′ ∈
TASKGRAPH and v′′ comes before v in V }
for v ∈ Deps do

add edge v′′ → v to MEMGRAPH
end for
rename all instances of v′ in TASKGRAPH to
reloadv′

add reloadv′ to Evicted
return slot

Figure 9: simMalloc variants used in MEM-
GRAPH construction.

Ensuring the “Unobtrusiveness” of Depen-
dencies. Even under nondeterministic execu-
tion, memory dependencies can cause periods
of time where a GPU is not used, as the GPU
is blocked on a memory transfer or on a depen-
dency related to two tensors being mapped to
the same location in GPU RAM. The likelihood
that dependencies added to the MEMGRAPH will
cause such stalls can be reduced by a careful
implementation of the various malloc vari-
ants. For example, when simMallocOffld
searches for a victim, we search for the victim
whose next use is furthest in the future—that
is, closest to the end of V (in the general case
where tensors have different sizes and there may
be more than one victim, we seek to maximize
the minimum age of any evicted tensor). When
simMalloc finds an open slot for a tensor, it
should choose the available slot whose last use
was furthest in the past (closest to the beginning
of V ).

7 CORRECTNESS
OF MEMGRAPH CONSTRUCTION

By construction, all edges present in the TASK-
GRAPH are present in the MEMGRAPH, as when
a vertex is “executed” during the simulation, all
of its incoming data dependencies are added to
the MEMGRAPH.

To ensure correctness with respect to race con-
ditions and the absence of cycles, the algo-
rithm relies on the total ordering of vertices
in V , the list input into BUILDMEMGRAPH.
Further, all new offload and reload ver-
tices produced by the compilation process also
have a consistent placement in this ordering.
Consider the case when simMallocOffld
or simMallocForceReld are called to ob-
tain data necessary to execute vertex v, and an
offload or a reload is produced. All of

those offloads and reloads take place just before v, with all of the offloads happening just
before the reloads.

This ordering ensures that there can be no race conditions in the output MEMGRAPH: if the outputs
of v1 and v2 are mapped to the same memory location and v1 comes before v2 in the ordering, then
the BUILDMEMGRAPH algorithm ensures that v2 safely overwrites the result of v1. Consider the
implementation of simMalloc. Whenever a tensor produced by v is mapped to a memory slot
previously occupied by the result of v′, we add edges to ensure that every consumer of v′ executes
before v. Also, consider simMallocOffld, where v′ is offloaded to CPU RAM to accommodate
v. Here, memory dependencies are added from the offloadv′ to v and from all consumers of v′ to
v (when those consumers appeared before v in the list V ). Note that the TASKGRAPH is modified

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 10: Time for LLaMA first token (prefill) inference, A100 server. “OOM” is out-of-memory.

Figure 11: Time for LLaMA first token (prefill) inference, P100 server. “OOM” is out-of-memory.

so that all “future” consumers of v′ will consume reloadv′ rather than v′, so they cannot induce a
race condition over v and v′.

Also, consider why there can be no cycles in the output MEMGRAPH: all edges added to the
MEMGRAPH point forward in the total ordering. Consider the edges added by simMalloc. v can
only be mapped to the location used by v′ if v′ has been previously free’ed. This implies that
any vertices using the output of v′ have already been “executed”, and so come before v in the total
ordering. Thus, any edge from a consumer of v′ to v must point forward in V . Also consider the
edges added by simMallocOffld. A similar argument holds here, as we explicitly only add edges
that point forward in V .

8 EXPERIMENTS

Our experiments evaluate the ability of TURNIP to deal with Meta AI’s LLaMA large language model
(LLM) (Touvron et al., 2023), with severely constrained memory. LLM training and inference are
chosen as representative, challenging computational workloads encountered by modern ML systems,
particularly difficult given the large memory footprint. We assessed TURNIP’s performance on 7
billion and 65 billion parameter models.

Figure 12: Single-sequence infer-
ence times.

The system is implemented in C++, with most GPU kernels
generated using Nvidia cuTensor. Experiments were conducted
on two machines: (i) an older 4 × P100 GPU server (16
GB RAM each) and 22, 64GB DDR4 2666MHz CPU RAM
modules, for a total of 1.3TB of RAM, and (ii) an Amazon
Web Services p4d.24xlarge instance, equipped with eight
A100 GPUs (40 GB RAM each) and 1.15TB of RAM. We
were particularly interested in seeing the ability of TURNIP
to operate in a difficult environment with extremely limited
GPU RAM, hence the P100 GPUs, with only 64 GB of GPU
RAM total on the server. Key quesitons are: Can software
help bridge the gap—particularly the lack of GPU RAM—
between older and newer hardware? Can TURNIP facilitate
model training and inference in a situation with limited RAM?

(1) LLaMA first token inference. Our experiments target
“first token” inference (also known as ”prefill”): How long does it take to produce the first output
token, given an input prompt? We focus on prefill as it is exceedingly expensive in terms of the

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 13: Comparing TURNIP and ZeRO Infinity for LoRA training.

memory required, scaling quadratically with the size of the prompt. On both machines, we run
TURNIP, ZeRO Inference (Aminabadi et al., 2022) (using weight partitioning and model weight
offload), and FlexGen (Sheng et al., 2023). Note that these are PyTorch-based systems, whereas
TURNIP is not. For FlexGen, we use full CPU offload for activations. All testing is done using batched
input, as batching is required for FlexGen and ZeRO (as TURNIP simply runs a dataflow graph, it is
agnostic to batching). For the smallest batch sizes considered, we test prefill input sequence lengths:
1K, 2K, 4K, 8K, and 16K tokens. For larger batches we use 1K, 2K, 4K and 8K. For TURNIP, all
model weights and computations were performed using 16-bit floating points, though FlexGen uses
very low precision arithmetic to save RAM and speed compute. Results for the A100 GPU server are
given in Figure 10. Results for the P100 GPU server are Given in Figure 11.

One of the advantages of TURNIP is that it executes arbitrary dataflow graphs in limited memory.
Thus, as long as a computation is appropriately decomposed to run on multiple GPUs, TURNIP
can execute it. This means, for example, that TURNIP does not need to perform inference over
batches of input sequences and supports arbitrary combinations of model and data parallelism (unlike
FlexGen and in ZeRO Inference). While batching tends to increase computational efficiency, the
RAM used by a large batch means it is not possible to run inference over long sequences in limited
memory (batching precludes that all 320GB of GPU RAM on be dedicated to prefill for a single long
sequence). To investigate the ability of TURNIP to perform inference over a single long sequence, we
test sequences sizes of up to 32K tokens, on both GPU servers and on both the 7B and 65B parameter
models. Results are shown in Figure 12.

Experiment Avg. Speedup
A100 Inference 4.02%
P100 Inference 6.45%
A100 Training 13.4%
P100 Training 14.5%

Figure 14: Observed speedup due to
nondeterministic ordering, compared to
(partially) deterministic ordering.

(2) LoRA training for LLaMA. We also experiment with
LoRA training (Hu et al., 2021). We use a LoRA rank of 16,
and train LoRA adaptors for the K, V , Q, and feedforward
mapping matrices. Here we run TURNIP and ZeRO Infinity
(Rajbhandari et al., 2021); ZeRO is executed using all three
“stages” (gradient partitioning, model weight partitioning,
optimizer state partitioning) as well as CPU offload. Both
TURNIP and ZeRO use checkpointing during the forward
pass to reduce the memory footprint. We measure the
time it takes to run the forward and backward pass for one
batch, with varying batch sizes and sequence lengths. All
TURNIP model weights are stored as single precision (32
bits). Results for training using both the P100 and the A100
server at 7B parameters are given in Figure 13. Both systems had a difficult time training the 65B
parameter model. TURNIP was faster for the one case it was able to run (1K length sequence, batch
size eight took 58.5 seconds using TURNIP and 72.9 using ZeRO Infinity) but Zero Infinity was more
robust to larger batch sizes, where TURNIP failed.

(3) The effect of nondeterminism. One of the key hypotheses of this paper is that nondeterminism
can help performance, by allowing the system to react to the observed state of the computation. To
test this, we implement a (semi-)deterministic version of TURNIP and run the same set of experiments
using this new version. Specifically, we add dependencies to fix the order of operations at each of
the GPUs to be exactly the order that is input into BUILDMEMGRAPH. Unfortunately, this does not

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

remove all nondeterminism from the system because of the way that reductions (summations) of
tensors are handled by the system; fully removing all nondeterminism from TURNIP is not easily
possible. Still the experiment may be instructive. Figure 14 shows the speedup obtained by the
nondeterministic version compared to the deterministic, over all experiments.

Discussion. Throughout the first token inference experiments, TURNIP typically performed the best
in terms of latency, with ZeRO Inference generally much slower but outperforming FlexGen, except
for larger sequence sizes. This would seem to validate the highly non-deterministic, dataflow-based
approach advocated for in the paper, at least if the goal is low latency.

To be fair, we note that FlexGen is designed for high throughput, as opposed to low latency, and
FlexGen utilizes multiple GPUs only via pipelined parallelism. Note that FlexGen does not seem
to get any slower when moving from batch size of eight to 16 on the A100 server. This suggests
that filling the pipeline leads to substantial latency. Further, pipelined parallelism is more effective
with more work in each pipeline stage, due to the high synchronization overhead and the need to try
to overlap communication with computation, perhaps explaining FlexGen’s better performance for
larger sequences, which are more dense computationally.

ZeRO Inference takes a much different approach, but it uses a highly synchronized form of model
parallelism as it traverses the levels in a transformer, also carefully trying to overlap communication
and computation, which may simply be more effective when there is more work to at each level.
TURNIP, on the other hand, is radically different. It does not “understand” the levels in a transformer,
does not need to synchronize processing of the various levels, and simply tries to asynchronously
process kernels as fast as it can. If it is stuck waiting for communication, it simply tries to do
something else.

For training, there were clear advantages of TURNIP over ZeRO Infinity, especially for smaller
sequence lengths. This was particularly true on the A100 server, where TURNIP was often much
faster. For batches of sequences of length 1K, TURNIP often took less than 50% of the time to process
each batch, compared to ZeRO (at a batch size of 8, the time to process 1K sequences was 5.6 seconds
for TURNIP and 12.5 seconds for ZeRO, for batch size of 32 it was 12.1 seconds for TURNIP and
17.8 seconds for ZeRO). The differences in performance were much less pronounced on the P100
server, though there TURNIP was still faster. Finally, we note that both systems suffered significant
out-of-memory errors during training. Interestingly, TURNIP seemed to have more problems with
memory on the A100 server, whereas ZeRO Infinity had more problems with memory on the P100
server. We conjecture that some of that could be solved in TURNIP with a better input dataflow graph,
which cuts the input problem into smaller pieces.

9 CONCLUSIONS

We present TURNIP, a system and runtime for executing memory-intensive computations on GPU
servers, supporting CPU offload. The key innovation of TURNIP is its reliance on a “nondeterministic”
runtime where a dependency graph is used to guide execution of the computation; any order of
operations is acceptable, if the dependencies are respected. We argue that this is necessary when CPU
RAM offload is used, or else the system will often be stalled, waiting for CPU-to-GPU transfers.

Limitations. As currently implemented, the biggest limitation of TURNIP is that the input computa-
tion (in the form of a TASKGRAPH) must be static, and known completely beforehand, so that the
MEMGRAPH can be constructed. This is not of consequence during model training, but can be an
issue during any recursive, generative AI computation. This includes LLM inference, where the
next token must repeatedly be generated and the KV -cache increases in size. There are some naive
solutions to this (such as pre-compiling a MEMGRAPH for a specific number of token generations in
the case of an LLM) but more work will be necessary to create a satisfactory solution to recursive
computation.

Another limitation is that while our experiments did show that TURNIP has certain performance
advantages, it is not possible to be absolutely sure where those advantages come from. Our ablation
shows that a fixed execution order slows down TURNIP, suggesting that nondeterminism is important.
But unlike ZeRO and FlexGen, TURNIP was implemented from the ground up and does not rely on
Python or PyTorch—that fact alone could account for some of the performance differences.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Reza Yazdani Aminabadi, Samyam Rajbhandari, Ammar Ahmad Awan, Cheng Li, Du Li, Elton
Zheng, Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff Rasley, et al. Deepspeed-inference:
enabling efficient inference of transformer models at unprecedented scale. In SC22: International
Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–15. IEEE,
2022.

Olivier Beaumont, Lionel Eyraud-Dubois, and Alena Shilova. Efficient combination of rematerializa-
tion and offloading for training dnns. Advances in Neural Information Processing Systems, 34:
23844–23857, 2021.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Deepspeed. Deepspeed. https://www.microsoft.com/en-us/research/project/
deepspeed/. Accessed: 2024-05-12.

Pytorch FAQ. Pytorch frequently asked questions. https://pytorch.org/docs/stable/
notes/faq.html. Accessed: 2024-05-12.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Mark Hildebrand, Jawad Khan, Sanjeev Trika, Jason Lowe-Power, and Venkatesh Akella. Autotm:
Automatic tensor movement in heterogeneous memory systems using integer linear program-
ming. In Proceedings of the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 875–890, 2020.

J. Edward Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu
Chen. Lora: Low-rank adaptation of large language models. ArXiv, abs/2106.09685, 2021. URL
https://api.semanticscholar.org/CorpusID:235458009.

Chien-Chin Huang, Gu Jin, and Jinyang Li. Swapadvisor: Pushing deep learning beyond the gpu
memory limit via smart swapping. In Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems, pp. 1341–1355, 2020.

Paras Jain, Ajay Jain, Aniruddha Nrusimha, Amir Gholami, Pieter Abbeel, Joseph Gonzalez, Kurt
Keutzer, and Ion Stoica. Checkmate: Breaking the memory wall with optimal tensor rematerializa-
tion. Proceedings of Machine Learning and Systems, 2:497–511, 2020.

Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond data and model parallelism for deep neural
networks. Proceedings of Machine Learning and Systems, 1:1–13, 2019.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pp. 611–626, 2023.

Shishir G Patil, Paras Jain, Prabal Dutta, Ion Stoica, and Joseph Gonzalez. Poet: Training neural
networks on tiny devices with integrated rematerialization and paging. In International Conference
on Machine Learning, pp. 17573–17583. PMLR, 2022.

Xuan Peng, Xuanhua Shi, Hulin Dai, Hai Jin, Weiliang Ma, Qian Xiong, Fan Yang, and Xuehai
Qian. Capuchin: Tensor-based gpu memory management for deep learning. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming Languages and
Operating Systems, pp. 891–905, 2020.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Jonathan
Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling transformer inference.
Proceedings of Machine Learning and Systems, 5, 2023.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models. In SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–16. IEEE, 2020.

11

https://www.microsoft.com/en-us/research/project/deepspeed/
https://www.microsoft.com/en-us/research/project/deepspeed/
https://pytorch.org/docs/stable/notes/faq.html
https://pytorch.org/docs/stable/notes/faq.html
https://api.semanticscholar.org/CorpusID:235458009


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yuxiong He. Zero-infinity:
Breaking the gpu memory wall for extreme scale deep learning. In Proceedings of the international
conference for high performance computing, networking, storage and analysis, pp. 1–14, 2021.

Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase, Shuangyan Yang, Minjia
Zhang, Dong Li, and Yuxiong He. {Zero-offload}: Democratizing {billion-scale} model training.
In 2021 USENIX Annual Technical Conference (USENIX ATC 21), pp. 551–564, 2021.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi Chen, Percy Liang,
Christopher Ré, Ion Stoica, and Ce Zhang. Flexgen: High-throughput generative inference of
large language models with a single gpu. In International Conference on Machine Learning, pp.
31094–31116. PMLR, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong
He. Zeroquant: Efficient and affordable post-training quantization for large-scale transformers.
Advances in Neural Information Processing Systems, 35:27168–27183, 2022.

Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng Chen, Yanping Huang, Yida
Wang, Yuanzhong Xu, Danyang Zhuo, Eric P Xing, et al. Alpa: Automating inter-and {Intra-
Operator} parallelism for distributed deep learning. In 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22), pp. 559–578, 2022.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A TURNIP ENGINE DETAILS

Our execution engine consists of a central event loop that “launches” each vertex in the MEMGRAPH.
A vertex can be launched when (1) all dependencies have been completed and (2) the required
resources are obtained. When a vertex is launched, the corresponding operation is executed and then
a provided callback is called to notify the event loop that the vertex has completed. In turn, the event
loop frees up the obtained resources and keeps track of when vertices complete execution so that
subsequent vertices can be launched. In practice, when launched, a vertex will execute one or more
asynchronous CUDA operations on CUDA stream and will then call cudaStreamAddCallback.
As such, every vertex requires as a resource a stream, where a single stream can only be used by a
single launched vertex at a time. We use 5 streams per GPU. offload, Reload and inter-GPU
communication vertices will call cudaMemcpyAsync. For CPU storage, we allocate a single, large
contiguous block of memory with cudaHostAlloc with flags cudaHostAllocPortable and
cudaHostAllocWriteCombined. When executing Offload vertices, we allocate into the
CPU storage memory using our custom allocator; when executing Reload vertices, we free from our
custom allocator. All compute vertices are executed using either cuTensor functions or hand-written
CUDA kernels. An example where a hand-written CUDA kernel is beneficial is for executing portions
of softmax so that less workspace memory and fewer vertices would be required. Two additional
resources may be required for computing vertices: workspace memory as required for executing
multiple cuTensor functions and locks around write-protected memory. As an example, we would
execute a summation of n tensors with n calls to tensor increment sum-into kernels. However, the
output memory would be protected by a resource so that only one sum-into can happen at a time.
This implementation is designed to support non-determinism. We use CUDA version 11.8.0 and
cuTensor version 2.0.1. All other code is C++.

13


	Introduction
	Why Is Non-Determinacy of Execution Order Crucial?
	Related Work
	taskgraphs and memgraphs in Turnip
	The Turnip Execution Engine
	Building a memgraph
	Correctness of memgraph Construction
	Experiments
	Conclusions
	Turnip Engine Details

