
Foundation Models to the Rescue: Deadlock Resolution in Connected
Multi-Robot Systems

Kunal Garg Songyuan Zhang Jacob Arkin Chuchu Fan

Abstract— Connected multi-agent robotic systems (MRS) are
prone to deadlocks in an obstacle environment where the robots
can get stuck away from their desired locations under a smooth
low-level control policy. Without an external intervention, often
in terms of a high-level command, a low-level control policy
cannot resolve such deadlocks. Utilizing the generalizability and
low data requirements of foundation models, this paper explores
the possibility of using text-based models, i.e., large language
models (LLMs), and text-and-image-based models, i.e., vision-
language models (VLMs), as high-level planners for deadlock
resolution. We propose a hierarchical control framework where
a foundation model-based high-level planner helps to resolve
deadlocks by assigning a leader to the MRS along with a set
of waypoints for the MRS leader. Then, a low-level distributed
control policy based on graph neural networks is executed to
safely follow these waypoints, thereby evading the deadlock. We
conduct extensive experiments on various MRS environments
using the best available pre-trained LLMs and VLMs.

I. INTRODUCTION

Multi-agent robotic systems (MRS) are widely used in
various applications today, such as warehouse operations [1],
[2], self-driving cars [3], and coordinated drone navigation in
a dense forest for search-and-rescue missions [4], among oth-
ers. In various MRS applications for navigating in unknown
environments, such as coverage [5] and formation control [6],
robot agents must remain connected so that they can actively
communicate with each other to share information and build
the unknown or partially known environment collectively.
Additionally, ensuring safety in terms of collision avoidance
and scalability to large-scale multi-agent problems are also
crucial requirements of the control design of MRS. When
the requirements of connectivity and safety come together,
existing methods for multi-agent coordination and motion
planning [7] often result in deadlocks, where agents get stuck
away from their desired goal locations. Particularly, with the
additional requirement of connectivity, even one robot getting
stuck in a deadlock results in all the agents getting stuck,
making it crucial to resolve the deadlocks for connected
MRS. Without external intervention, a smooth low-level
control policy cannot resolve such deadlocks. A high-level
planner, on the other hand, can intervene in such situations
and suggest a set of intermediate waypoints to move the MRS
away from the deadlock situation. Since the environment
(in terms of locations, sizes, and shapes of obstacles) is
unknown, such planning must be done online based on the
currently available information. However, traditional path

The authors are with the Department of Aeronautics and Astronautics at
MIT, {kgarg, jarkin, szhang21, chuchu}@mit.edu. Project
website: https://mit-realm.github.io/VLM-gcbfplus-website/

planners, such as grid-based planners, cannot be used for
real-time path planning due to their computational demands.

This work proposes a hierarchical control architecture
in which a high-level planner can intervene and provide a
mechanism to resolve deadlocks. Our proposed planner first
configures the MRS in a leader-follower formation and takes
the environment information available to the MRS so far
and proposes a high-level command in terms of assigning
a set of waypoints for the MRS leader to navigate safely
in obstacle environments. Motivated by the generalizability
and low data requirements of foundation models [8] as well
as the recent success of foundation models in assisting a
control framework for complex robotics problems [9], [10],
we explore the possibility of using large language models
(LLMs) and vision language models (VLMs) as high-level
planners to resolve deadlocks in MRS. Instead of proactively
using foundation models, whether directly for planning,
translation, or reward design, we are instead interested in
using them reactively to resolve a class of failure modes
in low-level controllers for MRS, namely deadlocks. This
helps to ensure that the VLM or LLM does not lead to a
violation of safety as it is taken care of by the provably
safe low-level control policy. When a deadlock is detected, a
VLM or an LLM is prompted to generate a set of deadlock-
resolving navigation waypoints for the leader, conditioned on
a top-view image-based description (for VLM) or text-based
description (for LLM) of the so far observed environment.
This temporary high-level assignment aims to move the MRS
out of the deadlock so that the low-level controller can
continue progressing toward the goal. To the best of the
authors’ knowledge, there is no framework that solves the
considered problem of deadlock resolution in an arbitrary-
sized MRS in an unknown obstacle-cluttered environment
under safety and connectivity requirements. Related works
are presented in Appendix I.

II. PROBLEM FORMULATION

In this work, we design a distributed control framework
for large-scale multi-robot systems (MRS) with multiple
objectives. The MRS consists of N robots navigating in an
obstacle-cluttered environment to reach their goal locations
{pgoali }Ni=1. The environment X ⊂ R2 consists of stationary
obstacles Ol ⊂ R2 for l ∈ {1, 2, . . . ,M}, which denote
walls, blockades, and other obstacles in the path of moving
agents. Each agent has a safety distance r > 0 and a limited
sensing radius R > r such that the agents can only sense
other agents or obstacles if they lie within their sensing
radius. The agents use LiDAR to sense the obstacles, and the

https://mit-realm.github.io/VLM-gcbfplus-website/

Leader-
follower

assignmentLeader: Id,
Waypoints:

𝑥𝑥1,𝑦𝑦1 , … , 𝑥𝑥𝑃𝑃,𝑦𝑦𝑃𝑃

Low-level controller
Deadlock

Problem description + Expected output description
No deadlock

Foundation model

Fig. 1: Overview of the hierarchical control framework using a foundation model as a high-level planner. In the image on
the left, the robots are shown in blue, their goals in green, and obstacles in red. The planner assigns a leader and waypoints
(shown in purple) for the leader of the MRS, resulting in a leader-follower formation. A GNN-based low-level controller
provides a distributed control policy for safety and connectivity while the leader helps evade the deadlock.

observation data for each agent i consists of nrays evenly-
spaced LiDAR rays y

(i)
j originating from each robot and

measures the relative location of obstacles. The time-varying
connectivity graph G(t) = (V(t), E(t)) dictates the network
among the agents and obstacles. Here, V(t) = Va ∪ Vo(t)
denotes the set of nodes, where Va = {1, 2, . . . , N} denotes
the set of agents, Vo(t) is the collection of all LiDAR hitting
points at time t ≥ 0, and E(t) ⊂ Va × V denotes the set of
edges, where (i, j) ∈ E(t) means the flow of information
from node j to agent i. In addition to safety, the resulting
underlying graph topology for the MRS is required to remain
connected (see [11] for MRS connectivity) so that robots can
build team knowledge and share information, where given a
communication radius R > 0, two agents i, j are connected
if ∥pi − pj∥ ≤ R. The formal problem statement studied
in this paper is described next (see Appendix II for more
details).

Problem 1. Consider the multi-agent system with connected
initial topology G(0), safety parameters r > 0, a sensing
radius R > 0, a set of stationary obstacles {Oj}Mj=1, goal
locations {pgoali }Ni=1, and a terminal time TF > 0. Design
a distributed control architecture such that

• Safety: Each agent maintains a safe distance from other
agents and obstacles at all times, i.e., ∥pi(t)−pj(t)∥ ≥
2r, ∀j ̸= i and ∥y(i)j (t)∥ > r, ∀j for all t ≥ 0;

• Connectivity: Graph G(t) remains connected ∀t ≥ 0;
• Performance: Agents reach their respective goals, i.e.,

inf
t≤TF

∥pi(t)− pgoali ∥ = 0.

III. HIERARCHICAL CONTROL ARCHITECTURE

In an MRS problem with connectivity requirements, the
presence of obstacles can lead to deadlock situations for
the entire MRS, as illustrated in Figure 1. We propose a
hierarchical control architecture consisting of a low-level
control policy that accounts for safety and connectivity
constraints and a high-level planner that assists the low-level
controller with the goal-reaching requirement upon detection
of a deadlock. We first describe how we detect the deadlocks.

Deadlock detection In the proposed hierarchical archi-
tecture, the high-level planner is triggered upon detection of
a deadlock, which we define as a situation when the average
speed of the MRS falls below a minimum threshold δv > 0,

i.e.,
∑

i ∥ṗi∥
N < δv and the average distance of the agents from

their goals is at least δd > 0, i.e.,
∑

i ∥pi−pgoal
i ∥

N > δd. Since
the graph topology is connected, the average MRS speed can
be computed through consensus updates.

Leader-follower formation When a deadlock is detected,
the high-level planner assigns a leader among the N agents
along with a set of intermediate waypoints for the leader
so that the leader does not get stuck in a deadlock due
to obstacles on its path to its goal. The MRS remains in
the leader-follower mode for a fixed time TLF > 0, which
is a user-defined hyper-parameter. The details on leader-
follower formation for small-scale and large-scale MRS are
provided in Appendix IV. Once a leader and its waypoints
are obtained, the MRS reconfigures into a leader-follower
formation. Next, we provide the details of the VLM/LLM-
based high-level planner.

Foundation model based high-level planner Based on
the success of foundation models in a variety of robotic
tasks that require spatial understanding, we explore their
utility as the high-level planner for the leader and waypoint
assignment. To use a pre-trained foundation model for leader
and waypoint assignment, we provide the model with task-
relevant context that is expected to be helpful when generat-
ing a decision. In particular, the prompt to the model consists
of three main components: (1) the Task description, (2) an
Environment state, and (3) the Desired output. Details on the
individual components of the prompts, as well as example
prompts, are provided in Appendix V.

Distributed low-level policy The high-level planner
provides the leader and the waypoint information to the
low-level controller. One desirable property of the low-level
controller is scalability and generalizability to new environ-
ments (i.e., changing the number of agents and obstacles)
while keeping the MRS safe and connected. Given the leader
and goal information in terms of the immediate waypoint
to follow, the low-level controller synthesizes an input ui

to maintain connectivity, keep the system collision-free, and
drive the system trajectories toward its goals (and in the case
of the leader robot, toward its waypoint). While any low-level
controller that can satisfy the requirements from Problem 1
can be used, we extend the distributed graph-based policy
from [12] (see Appendix III).

IV. EVALUATIONS

To assess the effectiveness of the high-level planner,
we perform extensive experiments on a variety of MRS
environments to measure the performance in terms of i) the
reach rate or the percentage of agents reaching their goals;
ii) the number of high-level interventions needed during the
rollout; iii) the time taken in calling the high-level planner;
iv) the tokens used in each intervention (for assessing the
cost-efficiency of using proprietary pre-trained foundation
models) and v) the mean distance traveled by the MRS
normalized by their initial mean distance from the goals.

We perform experiments on two sets of environ-
ments, namely structured hand-crafted environments (termed
“Room”) with a small number of agents, i.e., N = 5, and
unstructured maze-like environments (termed “Maze”) with
a large number of agents, i.e., N = 25 or 50 (see Figure 7
in the Appendix).

“Room” environments: The “Room” represents an en-
closed warehouse or an apartment scenario where the agents
are required to reach another part of the environment while
remaining inside the boundary and avoiding collisions with
walls and other obstacles in the room.

“Maze” environment The “Maze” environment consists
of N initial and goal locations and M rectangular obstacles
of randomly generated sizes and locations. For testing, we
use 20 Maze environments with N = 25 and M = 100, and
11 Maze environments with N = 50 and M = 375.

The two sets of environments considered in the evaluations
represent a large variety of operating environments for multi-
robot systems. In particular, the first set of environments,
the "Room" environments represent structured environments
where obstacles and "walls" might have a structure and
can lead to a particular type of deadlock situation. On the
other hand, the randomly generated "Maze" environments
represent unstructured environments where the obstacles can
be of random shapes and sizes.

Foundation models and baselines Claude3-Sonnet
(or simply, Claude3S)1, Claude3-Opus (or simply,
Claude3O), GPT-4o2 and GPT4-Turbo (or simply,
GPT4) models are used as VLMs for the high-level planner,
and GPT4, GPT3.5, Claude23, and Claude3O as the
LLMs for the high-level planner. We use an A∗-based high-
level planner and a “Random” high-level planner where the
leader and the waypoints are drawn randomly, as baselines
for comparison. Figure 2 plots the various performance
criteria for each of the test environments for the considered
foundation models and baseline method. Note that for the
large-scale Maze environments with N = 50 and M =
375, the prompts for LLM-based planners GPT3.5 and
Claude2 exceed the maximum allowed context window,
so these models could not be used. The broad observations
and conclusions are summarized below.

1https://www.anthropic.com/news/claude-3-family
2https://platform.openai.com/docs/models
3https://www.anthropic.com/news/claude-2

Foundation models are more effective than the grid-
based and random method: An important feature we
note from the experiments is that foundation models do
not require any in-context examples to achieve such high
performance. It is also evident from all environments that
foundation models achieve better performance than A* in
terms of higher average reach rate. For the small-scale Room
environments, the mean reach rate for A* across 20 test
environments is lower than LLMs such as GPT4, GPT3.5
and Claude3, as well as Claude3-Opus LLM. For the
large-scale Maze environments, the mean reach rate for A*
is lower than most of the foundation models.

VLMs are cheaper and faster than LLMs for large-
scale MRS: It is evident that the average number of total
tokens required for VLMs remains similar (≈ 1000) across
the various environments. On the other hand, the tokens for
LLMs increase with the increased complexity of the envi-
ronment in terms of the number of obstacles. This directly
affects the cost of using proprietary foundation models, as
well as the speed of inference. This is also evident when we
compare the time of intervention for the same model (e.g.,
GPT4) used as VLM and LLM. Furthermore, the variance in
the average tokens used by VLMs across experiments is close
to zero, while LLMs have a significant amount of variance.
This is because as the MRS collects more information about
its environment (i.e., observes newer obstacles), the text-
based description becomes longer. On the other hand, all the
new information can be plotted on the same-sized graphic,
resulting in the same-sized input to the VLMs. This feature
of VLMs is advantageous as it provides predictable costs,
runtime, and scalability, especially for large-scale real-time
systems. We perform ablation on the available information as
well as on the utility of multi-leader assignment over just one
leader in large-scale MRS and report the results in Appendix
VI.

For the mean (normalized) distance traveled by the MRS,
for “Room" environment, “Random" baseline has the highest
mean distance traveled, while having a relatively lower reach
rate, compared to some of the foundation models. There is
not much variation in the distance traveled among LLM-
based high-level planners for “Maze" environments. While
GPT4-VLM has a relatively higher mean traveled distance,
the A*-based baseline has the highest distance traveled for
“Maze” environment with N = 25. For “Room” envi-
ronment, Claude3O-VLM has the highest mean distance
traveled by MRS. An interesting observation here is that
unlike other performance metric which seem to have a
stronger correlation among themselves, the mean distance
traveled does not have such property. As an example, for
“Room” environment and “Maze” environment with N = 50,
the distance traveled seems to follow the same pattern as the
number of calls for VLMs. However, the same cannot be
said about “Maze” environment with N = 25.

V. CONCLUSIONS AND DISCUSSION

In this work, we tested the hypothesis that text-based
and text-and-image-based foundation models can be used

Results for “Room” environments with 5 agents

0.0 0.5 1.0
Reach rate

Claude2-LLM
Claude3-LLM
GPT3.5-LLM

GPT4-LLM
Claude3S-VLM
Claude3O-VLM

GPT4o-VLM
GPT4-VLM

A*
Random

10 20 30
Interventions

0 20
Time (s)

0 2000
Tokens

2.5 5.0
Distance traveled

Results for “Maze” environments with 25 agents

0.0 0.5 1.0
Reach rate

Claude2-LLM
Claude3-LLM
GPT3.5-LLM

GPT4-LLM
Claude3S-VLM
Claude3O-VLM

GPT4o-VLM
GPT4-VLM

A*
Random

25 50
Interventions

0 20
Time (s)

0 5000
Tokens

2 3
Distance traveled

Results for “Maze” environments with 50 agents

0.0 0.5 1.0
Reach rate

Claude3-LLM

GPT4-LLM

Claude3S-VLM

Claude3O-VLM

GPT4o-VLM

GPT4-VLM

A*

Random

25 50 75
Interventions

0 25
Time (s)

103 104

Tokens
2 3

Distance traveled
Fig. 2: From left to right: 1) The bar shows the ratio of the trajectories where all the agents reach their goals over the total
number of trajectories, and the orange dot shows the ratio of agents that reach their goals over all agents; 2) Box plot of the
number of times the high-level planner intervened; 3) Box plot of the time spent for each high-level planner intervention;
4) Box plot for the input + output token per intervention; and 5) Box plot for the mean traveled distance by the multi-robot
system normalized by the mean initial distance from the goal locations. In the box plots, the median values are in orange
and the mean values are in green.

as high-level planners for deadlock resolution in MRS with
safety and connectivity constraints. We performed extensive
experiments on a variety of foundation models to understand
their utility in this task. In comparison to grid-based planners,
the foundation models generally performed better, resulting
in an affirmative answer to our hypothesis. Our experiments
also provided interesting observations and insights on the
relative performance of LLMs and VLMs for small- and
large-scale MRS problems, as well as their time and cost
efficiency. The high performance of the zero-shot foundation
model across various MRS environments is good evidence
that they are promising high-level planners for deadlock
resolution. We are encouraged that in many cases LLM-based
planners need to intervene less frequently, implying better

intervention quality. However, the prompt size for LLMs
increases significantly as the complexity of the environment
increases. The prompt design used in this work is the result
of manual trial and error while following generally accepted
practices for prompt engineering. Recently, there has been
an increasing interest in automatic prompt optimization for
black-box LLMs to find the best prompt design for a given
task [13], [14], [15] with results showing significant perfor-
mance improvement over human-designed prompts. Future
work includes applying such techniques to the problem of
deadlock resolution to maximize the performance of LLMs
as a high-level planner.

REFERENCES

[1] B. Li and H. Ma, “Double-deck multi-agent pickup and delivery:
Multi-robot rearrangement in large-scale warehouses,” IEEE Robotics
and Automation Letters, vol. 8, no. 6, pp. 3701–3708, 2023.

[2] P. R. Wurman, R. D’Andrea, and M. Mountz, “Coordinating hundreds
of cooperative, autonomous vehicles in warehouses,” AI magazine,
vol. 29, no. 1, pp. 9–9, 2008.

[3] J. Dinneweth, A. Boubezoul, R. Mandiau, and S. Espié, “Multi-
agent reinforcement learning for autonomous vehicles: a survey,”
Autonomous Intelligent Systems, vol. 2, no. 1, p. 27, 2022.

[4] Y. Tian, K. Liu, K. Ok, L. Tran, D. Allen, N. Roy, and J. P. How,
“Search and rescue under the forest canopy using multiple uavs,” The
International Journal of Robotics Research, vol. 39, no. 10-11, pp.
1201–1221, 2020.

[5] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control
for mobile sensing networks,” IEEE Transactions on robotics and
Automation, vol. 20, no. 2, pp. 243–255, 2004.

[6] F. Mehdifar, C. P. Bechlioulis, F. Hashemzadeh, and M. Baradarannia,
“Prescribed performance distance-based formation control of multi-
agent systems,” Automatica, vol. 119, p. 109086, 2020.

[7] H. Ma, W. Hönig, L. Cohen, T. Uras, H. Xu, T. S. Kumar, N. Ayanian,
and S. Koenig, “Overview: A hierarchical framework for plan gener-
ation and execution in multirobot systems,” IEEE Intelligent Systems,
vol. 32, no. 6, pp. 6–12, 2017.

[8] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa, “Large
language models are zero-shot reasoners,” in ICML 2022 Workshop
on Knowledge Retrieval and Language Models, 2022. [Online].
Available: https://openreview.net/forum?id=6p3AuaHAFiN

[9] A. Z. Ren, J. Clark, A. Dixit, M. Itkina, A. Majumdar, and D. Sadigh,
“Explore until confident: Efficient exploration for embodied question
answering,” arXiv preprint arXiv:2403.15941, 2024.

[10] W. Huang, F. Xia, D. Shah, D. Driess, A. Zeng, Y. Lu, P. Florence,
I. Mordatch, S. Levine, K. Hausman et al., “Grounded decoding:
Guiding text generation with grounded models for embodied agents,”
Advances in Neural Information Processing Systems, vol. 36, 2024.

[11] M. M. Zavlanos and G. J. Pappas, “Distributed connectivity control
of mobile networks,” IEEE Transactions on Robotics, vol. 24, no. 6,
pp. 1416–1428, 2008.

[12] S. Zhang, O. So, K. Garg, and C. Fan, “GCBF+: A neural graph control
barrier function framework for distributed safe multi-agent control,”
IEEE Transactions on Robotics, vol. 41, pp. 1533–1552, 2025.

[13] Q. Guo, R. Wang, J. Guo, B. Li, K. Song, X. Tan, G. Liu,
J. Bian, and Y. Yang, “Connecting large language models with
evolutionary algorithms yields powerful prompt optimizers,” in The
Twelfth International Conference on Learning Representations, 2024.
[Online]. Available: https://openreview.net/forum?id=ZG3RaNIsO8

[14] X. Wang, C. Li, Z. Wang, F. Bai, H. Luo, J. Zhang, N. Jojic, E. Xing,
and Z. Hu, “Promptagent: Strategic planning with language models
enables expert-level prompt optimization,” in The Twelfth International
Conference on Learning Representations, 2024.

[15] C. Fernando, D. Banarse, H. Michalewski, S. Osindero, and T. Rock-
täschel, “Promptbreeder: Self-referential self-improvement via prompt
evolution,” arXiv preprint arXiv:2309.16797, 2023.

[16] C. Dawson, S. Gao, and C. Fan, “Safe control with learned certificates:
A survey of neural lyapunov, barrier, and contraction methods for
robotics and control,” IEEE Transactions on Robotics, vol. 39, no. 3,
pp. 1749–1767, 2023.

[17] S. Zhang, K. Garg, and C. Fan, “Neural graph control barrier functions
guided distributed collision-avoidance multi-agent control,” in 7th
Annual Conference on Robot Learning, 2023.

[18] K. Garg, S. Zhang, O. So, C. Dawson, and C. Fan, “Learning
safe control for multi-robot systems: Methods, verification, and open
challenges,” Annual Reviews in Control, vol. 57, p. 100948, 2024.

[19] J. S. Grover, C. Liu, and K. Sycara, “Deadlock analysis and resolution
for multi-robot systems,” in Algorithmic Foundations of Robotics
XIV: Proceedings of the Fourteenth Workshop on the Algorithmic
Foundations of Robotics 14. Springer, 2021, pp. 294–312.

[20] J. Grover, C. Liu, and K. Sycara, “The before, during, and after
of multi-robot deadlock,” The International Journal of Robotics Re-
search, vol. 42, no. 6, pp. 317–336, 2023.

[21] Y. Chen, M. Guo, and Z. Li, “Deadlock resolution and recursive
feasibility in mpc-based multi-robot trajectory generation,” IEEE
Transactions on Automatic Control, 2024.

[22] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[23] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch, “Language models
as zero-shot planners: Extracting actionable knowledge for embodied
agents,” in International Conference on Machine Learning. PMLR,
2022, pp. 9118–9147.

[24] A. Brohan, Y. Chebotar, C. Finn, K. Hausman, A. Herzog, D. Ho,
J. Ibarz, A. Irpan, E. Jang, R. Julian et al., “Do as i can, not as i say:
Grounding language in robotic affordances,” in Conference on robot
learning. PMLR, 2023, pp. 287–318.

[25] K. Lin, C. Agia, T. Migimatsu, M. Pavone, and J. Bohg, “Text2motion:
From natural language instructions to feasible plans,” Autonomous
Robots, vol. 47, no. 8, pp. 1345–1365, 2023.

[26] W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng,
J. Tompson, I. Mordatch, Y. Chebotar et al., “Inner monologue:
Embodied reasoning through planning with language models,” in
Conference on Robot Learning. PMLR, 2023, pp. 1769–1782.

[27] Y. Chen, J. Arkin, Y. Zhang, N. Roy, and C. Fan, “Scalable multi-robot
collaboration with large language models: Centralized or decentralized
systems?” in International Conference on Robotics and Automation.
IEEE, 2024.

[28] ——, “Autotamp: Autoregressive task and motion planning with llms
as translators and checkers,” in International Conference on Robotics
and Automation, 2024.

[29] Y. Chen, R. Gandhi, Y. Zhang, and C. Fan, “NL2TL: Transforming
natural languages to temporal logics using large language models,” in
Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, 2023, p. 15880–15903.

[30] Y. Xie, C. Yu, T. Zhu, J. Bai, Z. Gong, and H. Soh, “Translating
natural language to planning goals with large-language models,” arXiv
preprint arXiv:2302.05128, 2023.

[31] T. Silver, V. Hariprasad, R. S. Shuttleworth, N. Kumar, T. Lozano-
Pérez, and L. P. Kaelbling, “PDDL planning with pretrained
large language models,” in NeurIPS 2022 Foundation Models
for Decision Making Workshop, 2022. [Online]. Available: https:
//openreview.net/forum?id=1QMMUB4zfl

[32] B. Liu, Y. Jiang, X. Zhang, Q. Liu, S. Zhang, J. Biswas, and P. Stone,
“Llm+ p: Empowering large language models with optimal planning
proficiency,” arXiv preprint arXiv:2304.11477, 2023.

[33] R. Sinha, A. Elhafsi, C. Agia, M. Foutter, E. Schmerling, and
M. Pavone, “Real-time anomaly detection and reactive planning with
large language models,” in Robotics: Science and Systems, 2024.

[34] M. Kwon, H. Hu, V. Myers, S. Karamcheti, A. Dragan, and
D. Sadigh, “Toward grounded social reasoning,” arXiv preprint
arXiv:2306.08651, 2023.

[35] X. Ma, S. Yong, Z. Zheng, Q. Li, Y. Liang, S.-C. Zhu, and S. Huang,
“Sqa3d: Situated question answering in 3d scenes,” in International
Conference on Learning Representations, 2023.

[36] L. Wen, X. Yang, D. Fu, X. Wang, P. Cai, X. Li, T. Ma, Y. Li,
L. Xu, D. Shang et al., “On the road with gpt-4v (ision): Early
explorations of visual-language model on autonomous driving,” arXiv
preprint arXiv:2311.05332, 2023.

[37] B. Chen, Z. Xu, S. Kirmani, B. Ichter, D. Driess, P. Florence,
D. Sadigh, L. Guibas, and F. Xia, “Spatialvlm: Endowing vision-
language models with spatial reasoning capabilities,” arXiv preprint
arXiv:2401.12168, 2024.

[38] J. Gao, B. Sarkar, F. Xia, T. Xiao, J. Wu, B. Ichter, A. Majumdar, and
D. Sadigh, “Physically grounded vision-language models for robotic
manipulation,” arXiv preprint arXiv:2309.02561, 2023.

[39] Y. Jiang, A. Gupta, Z. Zhang, G. Wang, Y. Dou, Y. Chen, L. Fei-
Fei, A. Anandkumar, Y. Zhu, and L. Fan, “Vima: General robot
manipulation with multimodal prompts,” in NeurIPS 2022 Foundation
Models for Decision Making Workshop, 2022.

[40] D. Shah, M. R. Equi, B. Osiński, F. Xia, B. Ichter, and S. Levine,
“Navigation with large language models: Semantic guesswork as a
heuristic for planning,” in Conference on Robot Learning. PMLR,
2023, pp. 2683–2699.

[41] V. S. Dorbala, J. F. Mullen, and D. Manocha, “Can an embodied agent
find your “cat-shaped mug”? llm-based zero-shot object navigation,”
IEEE Robotics and Automation Letters, vol. 9, no. 5, pp. 4083–4090,
2024.

[42] D. Shah, B. Osiński, S. Levine et al., “Lm-nav: Robotic navigation

https://openreview.net/forum?id=6p3AuaHAFiN
https://openreview.net/forum?id=ZG3RaNIsO8
https://openreview.net/forum?id=1QMMUB4zfl
https://openreview.net/forum?id=1QMMUB4zfl

with large pre-trained models of language, vision, and action,” in
Conference on robot learning. PMLR, 2023, pp. 492–504.

[43] Q. Xie, S. Y. Min, P. Ji, Y. Yang, T. Zhang, A. Bajaj, R. Salakhutdinov,
M. Johnson-Roberson, and Y. Bisk, “Embodied-rag: General non-
parametric embodied memory for retrieval and generation,” 2024.
[Online]. Available: https://arxiv.org/abs/2409.18313

[44] M. Mesbahi and M. Egerstedt, “Graph theoretic methods in multiagent
networks,” in Graph Theoretic Methods in Multiagent Networks.
Princeton University Press, 2010.

[45] L. Wang, A. D. Ames, and M. Egerstedt, “Safety barrier certificates for
collisions-free multirobot systems,” IEEE Transactions on Robotics,
vol. 33, no. 3, pp. 661–674, 2017.

[46] J. MacQueen et al., “Some methods for classification and analysis
of multivariate observations,” in Proceedings of the fifth Berkeley
symposium on mathematical statistics and probability, vol. 1, no. 14.
Oakland, CA, USA, 1967, pp. 281–297.

APPENDIX I
RELATED WORK

Related work: In recent years, learning-based methods
have shown promising results in computing a low-level con-
trol policy for complex robotic systems [16], [17], [18]. The
recent work [12] proposed a new notion termed graph control
barrier function (GCBF) for encoding safety in arbitrarily
large MRS, and a framework, GCBF+, for learning the
GCBF and a safe distributed control policy. However, that
work focuses on safety, i.e., collision avoidance, and does
not incorporate connectivity maintenance or goal-reaching
requirements. In this work, we modify the GCBF-based
distributed low-level control policy so that the new policy
can maintain both safety and connectivity for arbitrarily large
MRS. However, the resulting low-level control policy is still
prone to failure modes such as deadlocks, particularly in
obstacle environments. Many works have been proposed to
solve the problem of detecting and moving out of deadlocks
under safety constraints [19], [20], [21]. However, these
works do not consider connectivity constraints.

Pre-trained LLMs have been shown to exhibit gener-
alization to novel tasks without requiring updates to the
underlying model parameters [22], [8]. While originally
intended for language tasks, pre-trained LLMs have since
been adopted for use in robotics for planning and control
design. For planning, a class of approaches has investigated
the direct use of LLMs as planners by prompting them
to generate sequences of actions by which a robot could
accomplish a given task [23], [24], [25], [26], [27]; some
methods rank the possible next action according to the
probability of the LLM generating that action combined with
the likelihood that the action will succeed [24], even iterating
between LLM action proposals and estimates of individual
action success probabilities to handle long-horizon tasks
[25]. Instead, another class of methods relies on LLMs to
translate from a natural language task description to a formal
representation that can be provided as input to existing
planners [28], [29], [30], [31], [32]. Most similar to our
work, [33] uses an LLM to intervene on high-level planning;
however, this work addresses only a single agent and chooses
among a small set of control strategies. More recently,
VLMs have become popular in robotic applications due to
their strong semantic reasoning capabilities [9]. VLMs have
shown promising results in reasoning about future actions of

robotic systems with partial environment information [34],
[35], [36], [37], [38], [39]. In particular, VLMs have been
successfully employed in robot navigation tasks [40], [41],
[42], even when long-horizon reasoning is required [10]. In
addition, VLMs have also been used to convert images to
text descriptions for prompting LLMs with state information
[33], [43], [34], [40], [41]; in contrast, our work directly uses
the output of a VLM for planning.

APPENDIX II
DETAILED PROBLEM FORMULATION

We start with describing the dynamics of the individual
robots (referred to as agents henceforth), and then, we list
the individual as well as the team objective for the system.
The agent dynamics are given by ẋi = f(xi) + g(xi)ui,
where f, g are locally Lipschitz continuous functions with
xi ∈ X ⊂ Rnx denoting agents’ state space and ui ∈
U ⊂ Rnu the control constraint set for i ∈ {1, 2, . . . , N}.4.
The state xi consists of the position pi ∈ R2 in the global
coordinates along with other states, such as the orientation
and the velocity of the agent i. The state space X consists
of stationary obstacles Ol ⊂ R2 for l ∈ {1, 2, . . . ,M},
denoting walls, blockades and other obstacles in the path of
the moving agents. Each agent has a limited sensing radius
R > 0 and the agents can only sense other agents or obstacles
if it lies inside its sensing radius. The agents use LiDAR to
sense the obstacles, and the observation data for each agent
consists of nrays evenly-spaced LiDAR rays originating from
each robot and measures the relative location of obstacles.
We denote the j-th ray from agent i by y

(i)
j ∈ X for j ∈

{1, 2, . . . , nrays} that carries the relative position information
of the j−th LiDAR hitting point to agent i, and zero padding
for the rest of the states.

The time-varying connectivity graph G(t) = (V(t), E(t))
dictates the network among the agents and obstacles. Here,
V(t) = Va ∪ Vo(t) denotes the set of nodes, where Va =
{1, 2, . . . , N} denotes the set of agents, Vo(t) is the collec-
tion of all LiDAR hitting points at time t ≥ 0, and E(t) ⊂
Va × V denotes the set of edges, where (i, j) ∈ E(t) means
the flow of information from node j to agent i. We denote the
time-varying adjacency matrix for agents by A(t) ∈ RN×N ,
where Aij(t) = 1 if (i, j) ∈ E(t), i, j ∈ Va, and 0 otherwise.
The set of all neighbors for agent i is denoted as Ni(t) :=
{j | (i, j) ∈ E(t)}, while the set of agent neighbors of agent
i is denoted as N a

i (t) := {j | Aij(t) = 1}. The MRS is said
to be connected at time t if there is a path between each
pair of agents (i, j), i, j ∈ Va at t. One method of checking
the connectivity of the MRS is through the Laplacian matrix,
defined as L(A(t)) := D(t)−A(t), where D(t) is the degree
matrix defined as Dij(t) =

∑
j

Aij(t) when i = j and 0

otherwise. From [44, Theorem 2.8], the MRS is connected
at time t if and only if the second smallest eigenvalue of the
Laplacian matrix is positive, i.e., λ2(L(A(t))) > 0.

4In this work, we consider robots modeled using single integrator dy-
namics operating in 2D plane, i.e., nx = nu = 2

https://arxiv.org/abs/2409.18313

APPENDIX III
LOW-LEVEL CONTROL POLICY

Any low-level controller that can satisfy the requirement
from Problem 1 can be used as the low-level control policy,
such as one from a distributed CBF-QP method [45] or a
learned control policy. Since the low-level control policy is
supposed to be distributed with low computational complex-
ity, we choose to use the recently proposed learning-based
GCBF+ controller from [12]. Here, we briefly review the
GCBF+ controller and present the details of how the safety
and connectivity constraints are encoded.

A. Graph control barrier functions (GCBF)

Given sensing radius R and safety distance r, define
Ns − 1 ∈ N as the maximum number of neighbors that
each agent can have while all the agents in the neighborhood
remain safe. Define Ñi as the set of Ns closest neighboring
nodes to agent i which also includes agent i and x̄Ñi

as
the concatenated vector of xi and the neighbor node states
with fixed size Ns that is padded with a constant vector if
|Ñi| < Ns. Considering only collision avoidance constraints,
the safe set SN ∈ XN can be defined as:

SN :=
{
x̄ ∈ XN

∣∣∣ (∥∥∥y(i)j

∥∥∥ > r, ∀i ∈ Va,∀j ∈ nrays

)
∧(

min
i,j∈Va,i̸=j

∥pi − pj∥ > 2r
)}

,

where x̄ denotes the joint state vector for the MRS. The
unsafe, or avoid set can be defined accordingly as AN =
XN \ SN . We now introduce the notion of GCBF for
encoding safety for MAS. Considering the smoothness of
GCBF, we impose the condition that for a given agent i ∈ Va,
a node j where ∥pi − pj∥ ≥ R does not affect the GCBF h.
Specifically, for any neighborhood set Ni, let N<R

i denote
the set of neighbors in Ni that are strictly inside the sensing
radius R as

N<R
i := {j : ∥pi − pj∥ < R, j ∈ Ni}. (1)

Using these notations, the notion of GCBF is defined in [12]
as:

Definition 1 (GCBF). A continuously differentiable function
h : XM → R is termed as a Graph CBF (GCBF) if there
exists an extended class-K function α and a control policy
πi : XM → U for each agent i ∈ Va of the MAS such that,
for all x̄ ∈ XN with N ≥ M ,

ḣ(x̄Ni
) + α(h(x̄Ni

)) ≥ 0, ∀i ∈ Va (2)

where

ḣ(x̄Ni) =
∑
j∈Ni

∂h(x̄Ni)

∂xj
(f(xj) + g(xj)uj) , (3)

for uj = πj(x̄Nj
), and the following two conditions hold:

• The gradient of h with respect to nodes R away is 0,
i.e.,

∂h

∂xj
(x̄Ni

) = 0, ∀j ∈ Ni \ N<R
i . (4)

• The value of h does not change when restricting to
neighbors that are in N<R

i , i.e.,

h(x̄Ni) = h(x̄N<R
i

). (5)

It is proved in [12, Theorem 1] GCBF certifies the forward
invariance of its 0-superlevel set under control inputs in the
set

UN
safe :=

{
ū ∈ UN

∣∣∣ ḣ(x̄Ni
) + α(h(x̄Ni

)) ≥ 0, ∀i ∈ Va

}
.

(6)
We start with this formulation and modify it to additionally
account for the connectivity requirement, as explained below.

B. Learning GCBF with safety and connectivity constraints

Following [12], we use graph neural networks (GNN) to
parameterize GCBF. For agent i, the input features of the
GNN contain the node features vi and vj for j ∈ Ni, and
edge features eij for j ∈ Ni. The node features vi ∈ Rρv

encode information specific to each node. In this work,
we take ρv = 3 and use the node features vi to one-hot
encode the type of the node as either an agent node, goal
node or LiDAR ray hitting point node. The edge features
eij ∈ Rρe , where ρe > 0 is the edge dimension, are defined
as the information shared from node j to agent i, which
depends on the states of the nodes i and j. Since the safety
objective depends on the relative positions, one component
of the edge features is the relative position pij = pj − pi.
The rest of the edge features can be chosen depending
on the underlying system dynamics, e.g., relative velocities
for double integrator dynamics. However, apart from the
safety constraints considered in [12], we also consider the
connectivity constraints. Therefore, the design of the node
features and edge features needs to be modified for adding
the connectivity information. To this end, given the desired
connectivity of the MRS in terms of the desired adjacency
matrix Ad where the desired adjacency matrix is designed
such that the MRS is connected, we add the connectivity
information in the edge features of GCBF. In particular, we
append the edge features with [0, 1]⊤ in eij if the agents (i, j)
are required to be connected, i.e., Ad

ij = 1, and [1, 0]⊤ if they
are not required to be connected, i.e., Ad

ij = 0. Furthermore,
we add the connectivity constraint in the GCBF by redefining
the safe and the unsafe sets corresponding to the required
connectivity, such that the safe set is defined as

Sc
N :=

{
x̄ ∈ XN

∣∣∣ (∥∥∥y(i)j

∥∥∥ > r, ∀i ∈ Va,∀j ∈ nrays

)
∧(

min
i,j∈Va,i̸=j

∥pi − pj∥ > 2r
)∧

(
max

i,j∈Va,Ad
ij=1

∥pi − pj∥ < R
)}

. (7)

Consequently, the unsafe, or avoid set with the connectivity
constraint is defined as Ac

N = XN \ Sc
N . Since the GCBF

h certifies the forward-invariance of its 0-superlevel set, the
safety and connectivity constraints are satisfied.

The training framework is the same as [12]. In the original
GCBF+ training framework, it is essential that the initial
and goal locations are safe. In the current work, we also

need to make sure that the initial conditions and the goal
locations sampled for training the GCBF satisfy the MRS
connectivity condition, in addition to the safety condition in
the original GCBF+ framework. To this end, we sample the
initial and goal locations such that their corresponding graph
topology are connected, and define the desired adjacency
matrix Ad = A(0). The same loss function from [12] is
used to train the distributed control policy, with the safe set
definition modified as per (7).

APPENDIX IV
LEADER-FOLLOWER AND TEMPORARY GOAL

ASSIGNMENT

The leader-follower assignment is done by sequentially
assigning the closest unassigned follower to its closest as-
signed agent as its leader. First, describe the leader-follower
assignment for small-scale MRS, i.e., MRS with N ≤
NM = 10. Let Vlead(t, k) be the set of agents that have
been assigned as a leader at time t, iteration k, initiated as
Vlead(t, 0) = {ilead,0}, where ilead,0 ∈ V is the leader agent.
Then, the k−th follower with k ≥ 1 is chosen as

ifollow,k = argmin
j∈V\Vlead(t,k−1)

min
i∈Vlead(t,k−1)

∥pi − pj∥, (8)

and this follower is added to the set of the leaders, i.e.,
Vlead(t, k) = Vlead(t, k− 1)∪ {ifollow,k}. The leader for the
k−th follower is given as ilead,k = argmin

i∈Vlead(t,k−1)

∥pifollow,k
−

pi∥. The process is repeated till each agent i is assigned
an agent ilead to follow. Next, for each agent i that is
at a given minimum distance away from its goal, i.e., if
∥pi−pgoali ∥ ≥ dmin for some dmin > 0, their temporary goal
is chosen as the location of their leaders, i.e., p̄goali = pilead .

Multi-leader assignment using k-means clustering In
the cases of large-scale MRS, e.g., N ≥ 10, assigning one
leader to the MRS might lead to a sub-optimal performance.
To this end, we decompose the MRS into sub-teams and
assign a sub-leader to each of the sub-teams along with a
main leader for the complete MRS. The decomposition of the
MRS agents into K ≥ 1 disjoint clusters Va

k , k = 1, ...,K
such that Va = ∪K

k=1Va
k and Va

i ∩ Va
j = ∅ for i ̸= j, is

performed based on the inter-agent distances using k-means
clustering [46]. The main leader lM ∈ Va is chosen as the
agent with minimum distance to its goal. Once the clusters
of agents {Va

k} are obtained, a sub-leader lk is chosen based
on the vicinity of the agents in Va

k to the cluster of the main
leader Va

M . Note that for large-scale MRS, the high-level
planner is utilized only for the waypoint assignment as the
leader is assigned heuristically based on the distance to the
goal locations.

Then, a main leader is assigned for the MRS, and sub-
leaders are assigned for each of the clusters. The agents in
clusters will undergo a leader-follower formation with their
respective sub-leaders while these sub-leaders will follow
the main leader. The complete leader-follower assignment
algorithm is given in Algorithm 1.

Algorithm 1: Leader-follower and temporary goal
assignment

Data: {pi},K, dmin, N,NM

Result: lM , {lk}, {pgoaltemp}
/* Find the main leader */

lM = argmin ∥pi − pgoali ∥
/* Find the clusters using k-means

clustering */
if N < NM then

{Va
k} = {Va}

else
{Va

k} = kmeans({pi},K)
end
/* Find sub-leaders for each of the

cluster */
for k in range(K) do

lk = argmini∈Va
k
minj∈Va

M
∥pi − pj∥

end
/* Assign temporary goals to each

agent */
for k ∈ [1, 2, · · · ,K] do

/* Initial set of leaders to be
followed in cluster Va

k */
Vlead(k) = {lk}
/* Assign main leader’s location

as the temporary goal for
cluster leader */

pgoaltemp,lk
= plM

for i ∈ range|Vk
a | do

/* Find closest agent to the
set of leader as the new
follower */

ifollow =
argminj∈Va

k\Vlead(k)
minl∈Vlead(k) ∥pl − pj∥

/* Find leader for this
follower */

klead = argminj∈Vlead(k) ∥pifollow − pj∥
/* Assign temporary goal to the

follower */

if ∥pifollow − pgoalifollow
∥ ≥ dmin then

pgoalifollow,temp = pklead

else
pgoalifollow,temp = pgoalifollow

end
/* Update the set of leaders */
Vlead(k) = Vlead(k) ∪ {ifollow}

end
end

APPENDIX V
VLM AND LLM PROMPTS

First, we explain each of the prompt components in more
detail. Then, we provide examples of the exact prompts used
in the experiments.

Task description The initial part of the prompt consists
of a description of the deadlock resolution problem for a
multi-robot system. This includes the system requirements
of maintaining safety, connectivity, and each agent reaching
its assigned goal. Further, we include a description of the
planner’s role in providing high-level commands when the
MRS is stuck in a deadlock. The description also includes
the number of waypoints P > 0 that the planner is supposed
to suggest. This component of the prompt is created offline
and is fixed for all calls.

Environment state The environment state of the MRS is
a necessary context to make a good leader assignment deci-
sion, so we encode it in a textual description that is included
as a component of the prompt. Since the obstacle information
depends on the roll-out of the system, we construct this part
of the prompt online after a deadlock has been detected. For
VLMs, at any given time instant tq ≥ 0 when the VLM is
queried, the environment state is constructed via a base64
encoded JPEG image that includes the location of the agents,
their goals, and the obstacles seen by the MRS so far for
all t ≤ tq whose information comes from the LiDAR data
(see Appendix III for more details). An example input image
to the VLM is given in Figure 1. To assist the VLM with
the precise locations of the agent and the goals, we provide
their text description. For LLMs, the environment state is
represented in text as the tuple: (Number of agents, Safety
radius, Connectivity radius, Agent locations, Agent goals,
Locations of observed obstacles).

Desired output Finally, we describe the desired output,
both in terms of content and format. The high-level planner
is responsible for choosing a leader and a set of waypoints
for the leader. To help constrain the model’s output and
enable consistent output parsing, we request the generated
response to be formatted as a JSON object with fields
“Leader” and “Waypoints”, with an expected output of the
form {“Leader” : Id, “Waypoints” : [[x1, y1], . . . , [xP , yP]]}.

A. Task and output description prompts

The task description prompts used for VLMs are given in
Figure 3 while those used for LLMs are given in Figure 4.

Fig. 3: Description prompts used for vision-based (i.e.,
VLMs) high-level planners.

Fig. 4: Description prompts used for text-based (i.e., LLMs)
high-level planners.

B. Environment description

The environment description prompts used for VLMs are
given in Figure 5 while those used for LLMs are given in
Figure 6. For VLMs, an additional text prompt is appended
at the end with the location of the agent(s) and goal(s)
provided in the image prompt to aid the VLM with waypoint
assignment.

Fig. 5: Environment prompt for VLM for "Maze" environ-
ment with N = 50 and M = 375.

Fig. 6: Environment prompt for LLM for "Maze" environ-
ment with N = 50 and M = 375.

C. Output of foundation models

The output of the LLM or VLM is a JSON object. As
an example, for the input in Figure 5, the output from
Claude3-Opus VLM is: {“Leader” : 1, “Waypoint” :
[[2.8, 4.5], [5.5, 4.5], [5.5, 7.9]]}.

Fig. 7: “Room” environment with N = 5 (left) and “Maze”
environment with N = 25 (right). The agents are shown in
blue, the goals in green, and the obstacles in red color.

APPENDIX VI
ABLATION STUDIES

A. Effect of partial environment infromation

We evaluate the effect of providing partial environment
information to the foundation models to study the trade-
off between cost (in terms of the tokens) and performance.
Figure 8 compares the performance of querying a given
foundation model with all collected observations of obstacles
and querying it with only the most recent observations of
obstacles (50 for LLMs and 100 for VLMs). The rationale
behind choosing the last few observations is twofold: 1) it
reduces the number of tokens in the prompt provided to the
foundation model, thereby reducing the time and cost per
query, and 2) in the considered environments, the initially
observed obstacles do not play much role in determining the
waypoints for the leader.

GPT4o-VLM and GPT4-LLM perform better with
partial information We can observe that, with the exception
of GPT-4o VLM and GPT4 LLM, the performance drops
when partial information is used. It is not entirely clear why
GPT-4o VLM and GPT4 LLM perform better with partial
information. Our understanding is that the performance of
GPT-4o VLM and GPT4 LLM is poor with the complete
information due to their ability (or in this case, inability) of
utilizing the provided information to make a good decision
for this problem.

Smaller models perform better with partial informa-
tion From the results on Claude3-Sonnet-VLM, we can
observe that the performance of a smaller model (in terms of
the model parameters) improves when partial information is
used. On the other hand, for larger models like GPT4-VLM
and Claude3-LLM, the performance drops when only the
partial information is used. It provides evidence in support of
the intuition that smaller models do not perform well when
more information is provided.

Quality of high-level commands deteriorates with less
information As discussed in the main paper, the number
of high-level planner interventions is generally inversely
proportional to the quality of the plan they suggest. As
evident from the figure, the number of interventions with
partial information is, on average, more than the case when
all the known information is provided to the foundation
models. We infer that the quality of the plan provided drops
as the amount of data provided to the foundation models
decreases.

Inference cost and time improves significantly As
expected, the average query time to foundation models
(particularly LLMs) reduces significantly when using partial
information. This provides a good trade-off metric for the
user to determine how much data they should provide to the
LLMs based on the desired level of performance and how
much delay can be tolerated for a particular problem at hand.
As stated in the beginning of the section, the motivation of
conducting this ablation study is to see the cost-efficiency
of providing partial information to the foundation models.
While the average number of tokens used for VLMs does not
change, there is a significant (at least an order of magnitude)
reduction in the case of LLMs. Since the number of tokens is
directly proportional to the cost associated with querying the
proprietary foundation models, this trade-off study illustrates
that an optimal amount of information can be provided to the
foundation models to obtain desirable performance within a
given cost and time budget.

B. Effect of multi-leader assignment

Additionally, we evaluate the effect of using just one leader
for large-scale MRS instead of the proposed multi-leader
assignment as described in Appendix IV.

As can be seen from Figure 9, the performance in terms
of reach rate drops significantly when only one leader is
used and all the other robots in MRS directly follow that
leader as compared to the proposed multi-leader assignment
where robots follow their local leaders. The number of
interventions needed by the high-level planner is also higher
when one leader is used instead of the proposed multi-leader
framework. This illustrates the efficacy of the multi-leader
assignment in large-scale systems.

0.0 0.5 1.0
Reach rate

Claude3-LLM

Claude3-LLM-All

GPT4-LLM

GPT4-LLM-All

Claude3S-VLM

Claude3S-VLM-All

Claude3O-VLM

Claude3O-VLM-All

GPT4o-VLM

GPT4o-VLM-All

GPT4-VLM

GPT4-VLM-All

0 25 50 75
Number of interventions

5 10 15
Time (s)

103 104

Tokens

Fig. 8: Performance of various high-level planners for “Maze” environments with N = 50 agents with all known environment
information and partial information (the case with all known environment information is indicated with the suffix “-All", e.g.
“GPT4-VLM-All"). From left to right: 1) The bar shows the ratio of the trajectories where all the agents reach their goals
over the total number of trajectories, and the orange dot shows the ratio of agents that reach their goals over all agents; 2)
Box plot of the number of times the high-level planner intervened; 3) Box plot of the time spent for each high-level planner
intervention; and 4) Box plot for the input + output token per intervention. In the box plots, the median values are in orange
and the mean values are in green.

0.0 0.5 1.0
Reach rate

GPT3.5-One

GPT3.5-Multi

Claude3S-VLM-One

Claude3S-VLM-Multi

0 25 50 75
Number of interventions

2 4
Time (s)

103 104

Tokens

Fig. 9: Performance of Claude3-Sonnet-VLM planner for “Maze” environments with N = 50 agents and GPT3.5-LLM
for “Maze" environment with N = 25 with a single leader and multi-leader assignment (the case with one leader is indicated
with suffix “-One", and that with multi-leader with “-Multi”. From left to right: 1) The bar shows the ratio of the trajectories
where all the agents reach their goals over the total number of trajectories, and the orange dot shows the ratio of agents
that reach their goals over all agents; 2) Box plot of the number of times the high-level planner intervened; 3) Box plot of
the time spent for each high-level planner intervention; and 4) Box plot for the input + output token per intervention. In the
box plots, the median values are in orange and the mean values are in green.

	Introduction
	Problem formulation
	Hierarchical control architecture
	Evaluations
	Conclusions and Discussion
	References
	Appendix I: Related work
	Appendix II: Detailed problem formulation
	Appendix III: Low-level control policy
	Graph control barrier functions (GCBF)
	Learning GCBF with safety and connectivity constraints

	Appendix IV: Leader-follower and temporary goal assignment
	Appendix V: VLM and LLM prompts
	Task and output description prompts
	Environment description
	Output of foundation models

	Appendix VI: Ablation studies
	Effect of partial environment infromation
	Effect of multi-leader assignment

