
Knowledge Graph Construction
with R2RML and RML:

An ETL System-based Overview

Julián Arenas-Guerrero1 , Mario Scrocca2 , Ana Iglesias-Molina1 ,
Jhon Toledo1 , Luis Pozo-Gilo1, Daniel Doña1 , Oscar Corcho1 , and

David Chaves-Fraga1

1 Ontology Engineering Group, Universidad Politécnica de Madrid, Spain
{julian.arenas.guerrero,ja.toledo,ana.iglesiasm

luis.pozo,daniel.dona,oscar.corcho,david.chaves}@upm.es
2 Cefriel – Politecnico di Milano, Italy

mario.scrocca@cefriel.com

Abstract. Knowledge graphs have proven to be a powerful technology
to integrate and structure the myriad of data available nowadays. The
semantic web community has actively worked on data integration sys-
tems, providing an important set of engines and mapping languages to
facilitate the construction of knowledge graphs. Despite these impor-
tant efforts, there is a lack of objective evaluations of the capabilities of
these engines in terms of performance, scalability, and conformance with
mapping specifications. In this work, we conduct such evaluation consid-
ering several R2RML and RML processors to identify their strengths and
weaknesses. We (i) perform a qualitative analysis of the distinctive fea-
tures of each engine, (ii) examine their conformance with the mapping
language specification they support, and (iii) assess their performance
and scalability using the GTFS-Madrid-Bench benchmark.

Keywords: Knowledge Graphs · RML · R2RML · GTFS-Madrid-Bench

1 Introduction

In recent years, knowledge graphs (KGs) have become one of the most widely
used technologies in data integration reaching the top positions of the Gartner
Hype Cycle for Artificial intelligence in 20203. This popularity has resulted in
open KGs like Wikidata [25] or YAGO [12], and in the adoption of this tech-
nology by major technology companies such as Facebook, Google, or eBay [19].
To construct KGs from non-RDF data sources, mapping languages allow practi-
tioners to define the relationships between input data sources and ontologies in

Copyright© 2021 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

3 https://www.gartner.com/smarterwithgartner/2-megatrends-dominate-the-g

artner-hype-cycle-for-artificial-intelligence-2020/

https://orcid.org/0000-0002-3029-6469
https://orcid.org/0000-0002-8235-7331
https://orcid.org/0000-0001-5375-8024
https://orcid.org/0000-0002-2924-7272
https://orcid.org/0000-0002-5603-6390
https://orcid.org/0000-0002-9260-0753
https://orcid.org/0000-0003-3236-2789
https://www.gartner.com/smarterwithgartner/2-megatrends-dominate-the-gartner-hype-cycle-for-artificial-intelligence-2020/
https://www.gartner.com/smarterwithgartner/2-megatrends-dominate-the-gartner-hype-cycle-for-artificial-intelligence-2020/


Arenas-Guerrero et al.

a declarative and maintainable manner [17]. Although there are several mapping
languages in the state of the art (e.g., SPARQL-Generate [16] or ShExML [9]),
there are two of them that stand out: R2RML [5], which is the W3C standard
language for RDB2RDF mapping, and RML [8], which is a well-known extension
of R2RML for data formats beyond relational databases (RDBs).

KGs can be constructed with [R2]RML-compliant engines that can imple-
ment two strategies: materialization or virtualization [20]. The former is the
ETL approach that generates the entire KG (i.e., all the triples), while the lat-
ter generates results for SPARQL queries by translating them to the native query
language of the input data source (e.g., SQL queries in the case of RDBs) [3,21].
Given the high number of engines available [7,13,3,23,22,10], it is easy for any
practitioner to get lost in deciding which one best fits their use case. While
there are comprehensive and structured evaluations for the virtualization ap-
proach [4,15] that ease the user’s choice, there is a lack of such an evaluation for
materialization engines.

In this paper, we evaluate knowledge graph construction (KGC) engines that
implement the materialization approach and support the [R2]RML mapping
languages. First, we identify the most relevant engines available and provide a
qualitative analysis of their features. Next, we assess their conformance to the
language specification considering the test cases defined by each language [11,2].
Finally, we test the engines using the GTFS-Madrid-Bench benchmark [4] to
evaluate their performance in terms of execution time, memory used and the
number of triples generated using different data source formats and sizes.

The remainder of the article is structured as follows. Section 2 describes the
related work on KGC systems and existing work evaluating them. Section 3
shows a qualitative analysis of several declarative KG engines where we high-
light their strengths and weaknesses. Section 4 presents the quantitative ex-
perimental evaluation, using the test cases of each mapping language and the
GTFS-Madrid-Bench benchmark. Finally, Section 5 provides a set of relevant
conclusions extracted from the present work and the future lines of research.

2 Related Work

The emergence of different engines tackling KGC fosters the definition of bench-
marks to evaluate their capabilities. The Berlin SPARQL Benchmark (BSBM) [1],
based on fabricated data considering the e-commerce domain, allows the compar-
ison of SPARQL queries performance posed against triplestores but also virtual
KGC engines. The Norwegian Petroleum Directorate Benchmark (NPDB) [15],
relying on real relational data from the oil industry, focuses on the requirements
for virtualization and defines different test cases considering the parameters that
impact the performance of KGC engines (different sizes of the data sources, types
of queries, mappings, etc.). The GTFS-Madrid-Bench benchmark [4] considers
data from the Madrid subway network and, reusing ideas from NPDB, defines
a comprehensive set of test cases analyzing multiple requirements and consid-
ering data formats beyond relational DBMSs, namely CSV, JSON, and XML.



KGC with [R2]RML: An ETL System-based Overview

Despite the growing number of engines relying on the ETL approach, the efforts
available in the literature analyzing KGC engines are mainly confined to the
virtualization approach over RDB [26].

Materialization engines have been tested by their respective authors using
ad-hoc evaluations. In consequence, the extracted conclusions are often limited,
and cannot be generalized to all engines. SPARQL-Generate [16] relies on the
SPARQL syntax to define mappings from heterogeneous data sources to RDF
and it has been compared with RMLMapper4 considering CSV datasets of dif-
ferent sizes. The authors of RMLStreamer [10] evaluated their tool against the
SPARQL-Generate engine using artificial CSV, XML and JSON datasets and
different sizes for these sources. The evaluation of RocketRML [23] considered
a custom testbed using real touristic data on accommodations in JSON and
XML formats, and was compared to RMLMapper. SDM-RDFizer [13] has been
evaluated against RMLMapper and RocketRML using custom CSV datasets
and considering different parameters beyond the data size, such as the factor of
duplicates in the input data or different typologies of mappings. Finally, Fun-
Map [14] defined a tabular-based testbed to assess the impact of transformation
functions [6] in RML mappings, and the capability of their proposal executing
functions in the initial phase of the KGC process. To the best of our knowledge,
no comprehensive and structured evaluation has been carried out to assess the
performance and scalability of materialization engines.

3 Knowledge Graph Construction Engines

In this section, we introduce the description and qualitative analysis of knowledge
graph construction engines that implement the materialization approach. In the
analysis, we limit ourselves to open-source [R2]RML systems. We assume that
the reader is familiar with R2RML and RML. Table 1 shows a summary of the
most relevant features of the selected engines.

3.1 R2RML Engines

The selected R2RML engines that we take into account are Ontop, Morph-RDB,
db2triples, and R2RML-F. We excluded r2rml4net5 as it only supports SQL
Server (we use MySQL as the underlying DBMS for RDB in our evaluation). For
each tool, we describe its main features and the strategies that they implement
to improve the knowledge graph construction process.
Ontop [3]. Ontop is a virtual knowledge graph system over relational databases
developed at the Free University of Bozen-Bolzano and also supported by On-
topic s.r.l.6. Ontop focuses on translating SPARQL queries to SQL (i.e. virtual-
ization). Nevertheless, the engine also has a materialization mode, which allows
retrieving all the triples in a relational database. In order to achieve this, Ontop

4 https://github.com/RMLio/rmlmapper-java
5 https://github.com/r2rml4net/r2rml4net
6 https://ontopic.biz/

https://github.com/RMLio/rmlmapper-java
https://github.com/r2rml4net/r2rml4net
https://ontopic.biz/


Arenas-Guerrero et al.

T
a
b

le
1
:

S
u

m
m

ar
y

of
th

e
fe

a
tu

re
s

o
f

k
n

ow
le

d
g
e

g
ra

p
h

co
n

st
ru

ct
io

n
sy

st
em

s.

O
n
to

p
M

o
rp

h
-R

D
B

d
b
2
tr
ip
le
s

R
2
R
M

L
-F

S
D
M

-R
D
F
iz
e
r

R
M

L
M

a
p
p
e
r

C
h
im

e
ra

C
A
R
M

L
R
o
ck

e
tR

M
L

R
M

L
-s
tr
e
a
m
e
r

D
a
ta

fo
rm

a
ts

R
D

B
R

D
B

R
D

B
R

D
B

,
C

S
V

R
D

B
,

C
S

V
,

J
S

O
N

,
X

M
L

R
D

B
,

C
S

V
,

J
S

O
N

,
X

M
L

C
S

V
,

J
S

O
N

,
X

M
L

C
S

V
,

J
S

O
N

,
X

M
L

C
S

V
,

J
S

O
N

,
X

M
L

C
S

V
,

J
S

O
N

,
X

M
L

R
e
la
ti
o
n
a
l

D
B
M

S

P
o
st

g
re

S
Q

L
,

M
y
S

Q
L

,

S
Q

L
S

er
v
er

,
O

ra
cl

e,
D

b
2

O
ra

cl
e,

M
y
S

Q
L

,
H

2

P
o
st

g
re

S
Q

L
,

M
y
S

Q
L

,

S
Q

L
S

er
v
er

,
O

ra
cl

e,

M
a
ri

a
D

B
a
n

d
o
th

er
s

P
o
st

g
re

S
Q

L
,

M
y
S

Q
L

,

a
n

d
O

ra
cl

e
M

y
S

Q
L

,
P

o
st

g
re

S
Q

L
M

y
S

Q
L

,
P

o
st

g
re

S
Q

L
,

O
ra

cl
e,

a
n

d
S

Q
L

S
er

v
er

-
-

-
-

In
p
u
t
d
a
ta

so
u
rc

e
s

R
D

B
In

st
a
n

ce
R

D
B

In
st

a
n

ce
R

D
B

In
st

a
n

ce
R

D
B

In
st

a
n
ce

,
F

il
e

R
D

B
In

st
a
n

ce
,

F
il

e
R

D
B

In
st

a
n
ce

,
F

il
e,

S
P

A
R

Q
L

en
d

p
o
in

ts

F
il

e,

N
a
m

ed
S

tr
ea

m
s

F
il

e,

N
a
m

ed
S
tr

ea
m

s
F

il
e

F
il

e,

N
a
m

ed
S
tr

ea
m

s

M
a
p
p
in
g

la
n
g
u
a
g
e
s

R
2
R

M
L

,

O
n
to

p
m

a
p

p
in

g
s

R
2
R

M
L

R
2
R

M
L

R
2
R

M
L

R
M

L
R

2
R

M
L

,
R

M
L

,
C

S
V

W
R

M
L

R
M

L
R

M
L

R
M

L

F
u
n
c
ti
o
n
s

n
o

n
o

n
o

y
es

y
es

y
es

y
es

y
es

y
es

n
o

O
u
tp

u
t
fo
rm

a
ts

rd
f/

x
m

l,
tu

rt
le

,

n
-t

ri
p

le
s,

n
-q

u
a
d

s,

tr
ig

rd
f/

x
m

l,

rd
f/

x
m

l-
a
b

b
re

v
,

n
-t

ri
p

le
s,

tu
rt

le
,

n
3

R
D

F
/
X

M
L

,
n

3
,

n
-t

ri
p

le
s,

tu
rt

le

n
-t

ri
p

le
s,

rd
f/

x
m

l,

rd
f/

x
m

l-
a
b

b
re

v
,

n
3
,

rd
f/

js
o
n

,
js

o
n

-l
d

,

n
-q

u
a
d

s,
tr

ig

n
-t

ri
p

le
s,

n
-q

u
a
d

s
n

-q
u

a
d

s,
tu

rt
le

,

tr
ig

,
tr

ix
,

js
o
n

-l
d

,
h

d
t

b
in

a
ry

,
js

o
n

-l
d

,
n

3
,

n
-q

u
a
d

s,
n

-t
ri

p
le

s,

rd
f/

x
m

l,
tu

rt
le

,
rd

fa

R
D

F
4
J

M
o
d

el
n

-t
ri

p
le

s,
n

-q
u

a
d
s,

js
o
n

-l
d

n
-q

u
a
d

s,
js

o
n

-l
d

N
a
m
e
d

g
ra

p
h
s

y
es

y
es

n
o

y
es

y
es

y
es

y
es

y
es

y
es

y
es

In
te

g
ra

te
s

m
u
lt
ip
le

d
a
ta

so
u
rc

e
s

n
o

n
o

n
o

In
te

g
ra

te
s

d
iff

er
en

t

C
S

V
fi

le
s.

y
es

y
es

y
es

y
es

y
es

y
es

T
ri
p
le
st
o
re

o
u
tp

u
t

n
o

n
o

n
o

n
o

n
o

n
o

y
es

n
o

n
o

n
o

O
n
to

lo
g
y

in
p
u
t

y
es

n
o

n
o

n
o

n
o

n
o

y
es

(R
D

F
S

in
fe

re
n

ce
)

n
o

n
o

n
o

D
a
ta

e
rr
o
rs

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

C
h
u
n
k

p
ro

c
e
ss
in
g

y
es

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

Im
p
le
m
e
n
ta

ti
o
n

la
n
g
u
a
g
e

ja
va

sc
a
la

ja
va

ja
va

p
y
th

o
n

ja
va

ja
va

ja
va

n
o
d

e
ja

va

In
c
re

m
e
n
ta

l

w
ri
ti
n
g
re

su
lt
s

y
es

y
es

n
o

n
o

y
es

n
o

y
es

n
o

n
o

y
es

D
u
p
li
c
a
te

re
m
o
v
a
l

y
es

p
a
rt

ia
ll

y
y
es

y
es

y
es

y
es

y
es

y
es

y
es

n
o



KGC with [R2]RML: An ETL System-based Overview

creates a set of SPARQL queries that together generate all the triples of the
knowledge graph. These SPARQL queries are then translated to SQL using the
query translation capabilities of the system and are later executed against the
underlying DBMS. The main advantage of this strategy is that Ontop generates
efficient SQL queries thanks to the implementation of several optimizations. The
engine is Java-based and supports the main DBMSs and RDF serializations. In
addition, it allows processing SQL queries by chunks, avoiding the retrieval of
large result sets at once.
Morph-RDB [21]. Written in Scala, it is a virtual knowledge graph engine over
relational databases developed at Universidad Politécnica de Madrid. Similarly
to Ontop, it implements several query optimizations and provides a materializa-
tion mode. However, Morph-RDB does not generate SPARQL queries like Ontop,
but it directly builds the necessary SQL queries for materialization. Namely, the
engine generates one SQL query per triples map. If a triples map is composed
of multiple referencing object maps, a join condition will be added to the SQL
query per each of them. Hence, complex SQL queries with many join conditions
may be generated. During materialization, Morph-RDB does not apply any of
the optimization implemented for the virtualization mode. This results in queries
that cannot be efficiently processed by DBMSs in some cases. Triples are writ-
ten to a file using N-Triples format. Other serialization formats are supported
by delegating to Apache Jena. Materialization of relational sources performed
by the Morph-xR2RML [18] engine works similarly to Morph-RDB, but Morph-
xR2RML additionally supports the materialization of NoSQL databases and
processes the xR2RML mapping language [18], an R2RML extension.
db2triples7. db2triples is a Java materialization engine developed by Antidot8.
The materialization is done using the algorithm proposed in the R2RML specifi-
cation9. This algorithm independently executes each referencing predicate object
map in a triples map, reducing the number of join conditions in the generated
SQL queries w.r.t. Morph-RDB. As far as we know, the engine does not imple-
ment materialization optimizations.
R2RML-F [7]. R2RML-F is an extension of db2triples developed at Trinity
College Dublin. It allows executing additional data transformations encoded in
the mappings via functions. Additionally, R2RML-F further extends db2triples
to support named graphs and CSV data sources. In order to process CSV sources,
these are previously loaded into an in-memory RDBMS, creating a native RDB
schema using the column names of the CSV files.

3.2 RML Engines

The selected RML engines that we take into account for this analysis are RMLMap-
per, CARML, RMLStreamer, SDM-RDFizer, RocketRML, and Chimera. The
selection criteria is the RML implementation report10, which is up-to-date, in

7 https://github.com/antidot/db2triples
8 https://www.antidot.net/
9 https://www.w3.org/2001/sw/rdb2rdf/r2rml/#generated-triples

10 https://rml.io/implementation-report/

https://github.com/antidot/db2triples
https://www.antidot.net/
https://www.w3.org/2001/sw/rdb2rdf/r2rml/#generated-triples
https://rml.io/implementation-report/


Arenas-Guerrero et al.

contrast to the R2RML one. Similarly to R2RML engines, for each tool we
provide a description of its main characteristics together with the approaches
implemented to make the materialization process more efficient.

RMLMapper11. RMLMapper is the reference implementation for an RML pro-
cessor. It aims at being a feature-complete engine and ensuring compliance with
the RML specification. The system, developed at Ghent University, is an in-
memory Java-based processor that also supports R2RML mappings and can
process different local and remote data sources (CSV/JSON/XML files, RDBs,
SPARQL endpoints). RMLMapper supports the integration of RML and trans-
formation functions, defining mechanisms to preload or dynamically load at run-
time the functions referenced in the RML mappings. A set of in-memory caches
are implemented to avoid multiple parsing procedures on the same input data
source and multiple executions of the same triples map.

SDM-RDFizer [13]. Written in Python and developed by TIB Leibniz In-
formation Center for Science and Technology, SDM-RDFizer provides a set of
physical data structures for the efficient construction of the knowledge graph.
More in detail, SDM-RDFizer provides two different structures: i) the Predicate
Tuple Table that stores the triples associated with each predicate and, ii) the
Predicate Join Tuple Table that stores the values of the subjects generated by
a triples map that are involved in simple and complex referencing predicate ob-
ject maps. Associated with these two structures, SDM-RDFizer also implements
efficient physical operators to manage those tables. These structures and oper-
ators are focused on efficiently removing duplicated triples and contributing to
improve the performance of join conditions.

RocketRML [23]. RocketRML is a Node-based RML parser developed by STI
Innsbruck that supports CSV, JSON, and XML data sources. The engine intro-
duces optimizations over join conditions for improving their execution perfor-
mance. Before starting the mapping process for a triples map, the implemen-
tation checks whether it is in the join condition of another triples map. If it
is, the parent triples map of the join condition is evaluated and the obtained
values are cached. Then, all triples maps are parsed iteratively and at the end
of the execution, the cached hash table is used to generate the triples associated
with rules with join conditions. RocketRML constructs an in-memory knowledge
graph and its principal output format is JSON-LD. When N-Triples is required,
it delegates the removal of duplicates to an external library.

CARML12. CARML, currently developed by Skemu13, is an engine supporting
CSV, JSON, and XML data sources. The system is available as a Java library,
and it relies on the RDF4J library generating an RDF4J Model as a result of the
mapping processing. CARML introduces two extensions (prefix carml:) to the
RML specification in order to support: (i) named streams as input data sources
for the transformation (carml:Stream), (ii) specification of XML namespaces
used in XPath expression for XML data sources (carml:declaresNamespace).

11 https://github.com/RMLio/rmlmapper-java
12 https://github.com/carml/carml
13 https://skemu.com

https://github.com/RMLio/rmlmapper-java
https://github.com/carml/carml
https://skemu.com


KGC with [R2]RML: An ETL System-based Overview

Moreover, the engine defines a simplified mechanism based on Java annotations
to bind the implementation of transformation functions. CARML defines an
extensible mechanism to easily change the implementation of the logical source
resolvers to access the input data sources. In contrast to other engines, such
as RMLMapper, it optimizes the parsing procedure by adopting different Java
libraries to access CSV, JSON and XML data sources.

RMLStreamer [10]. RMLStreamer is a system developed at Ghent University
that incorporates parallelization in the RDF generation process. Implemented in
Scala, it is built on top of the distributed processing framework Apache Flink.
RMLStreamer considers three main tasks: i) ingestion: implemented as an input
operator on a Flink channel that depending on the data source can use a parallel
or sequential input operator, ii) mapping processor: implemented as a transfor-
mation operator that reads data records from the ingestion task buffers, and
generates RDF in its own buffer, iii) combination: it implements an output op-
erator where it merges all the intermediate results in all the mapping processor
buffers.

Chimera [22]. Chimera is a framework developed by Cefriel14. It is imple-
mented on top of Apache Camel and provides a set of building blocks to com-
pose conversion pipelines based on Semantic Web solutions. A basic conversion
pipeline is based on a lifting block to convert heterogeneous data sources into an
RDF representation, and a lowering block to convert the obtained triples to the
target data format. The default implementation of the lifting block is based on
RMLMapper. To better support the Apache Camel framework, Chimera adds
support for named streams as input data sources. Differently from CARML, it
does not extend the RML specification, but it introduces an alternative and con-
figurable access mechanism for the input data sources specified in the RML map-
pings. To improve the execution time, Chimera extends RMLMapper to define a
multi-thread safe materialization procedure and introduces different options for
concurrently processing the mappings. Moreover, it optimizes the parsing pro-
cedure for JSON and XML data sources. In order to improve memory consump-
tion, the engine implements output writing to an external triplestore/SPARQL
endpoint, and a mechanism for incremental/concurrent writes to optimize the
processing of large datasets. Furthermore, it implements options to avoid the
usage of caches when not needed.

4 Comparison Framework

In this section, we address the capabilities of the engines previously presented.
First, we address the conformance of the engines w.r.t. the mapping languages
specifications, and then we empirically analyze their performance. The versions
of the engines used in this comparison are the following: Ontop v4.1.0, Morph-
RDB v3.12.5, db2triples v2.2, R2RML-F v1.2.3, RMLMapper v4.9.1, CARML
v0.3.1, RocketRML v1.8.2, SDM-RDFizer v3.5, RMLStreamer v2.0 and Chimera

14 https://www.cefriel.com/

https://www.cefriel.com/


Arenas-Guerrero et al.

Table 2: R2RML conformance of state of the art engines. The results provide
the number of test cases passed and failed.

PostgreSQL MySQL

passed failed passed failed

Morph-RDB 27 35 31 31

Ontop 59 3 45 17

DB2Triples 13 49 24 38

R2RML-F 13 49 24 38

Table 3: RML conformance of state of the art engines. The results provide the
number of test cases passed and failed. Minus symbol denotes that the test-case
is not applicable to an engine (the input data source is not supported).

CSV JSON XML PostgreSQL MySQL

passed failed passed failed passed failed passed failed passed failed

RMLMapper 38 1 38 2 36 2 53 7 50 10

CARML 25 14 23 17 23 15 - - - -

RocketRML 29 10 30 10 29 9 - - - -

SDM-RDFizer 24 15 23 17 21 17 11 49 20 40

RMLStreamer 39 0 40 0 38 0 - - - -

Chimera 36 3 37 3 35 3 - - - -

v2.1. The resources used for the comparison of the engines are available in a
public repository15.

4.1 Specification Conformance

To assess the conformance of the engines with their corresponding mapping
language specifications, we rely on the test cases defined for R2RML [24] and
RML [11]. These consist of a collection of tests that are used to check whether
the engines support the requirements defined in the specifications. The results
of these test cases also provide useful information for practitioners to select the
engine that best fits their use cases. Additionally, they help developers to identify
possible issues when parsing mapping rules.
R2RML test cases. Table 2 shows the number of R2RML tests passed and
failed by the engines. Since R2RML-F is based on the code from db2triples,
their results are similar. These two systems fail in most of the test cases because
they do not support delimited identifiers in SQL. Although Morph-RDB usually

15 https://github.com/oeg-upm/kgc-eval

https://github.com/oeg-upm/kgc-eval


KGC with [R2]RML: An ETL System-based Overview

outputs an error when it is expected by the test case, the engine also generates
an empty graph which causes many of them to fail. Ontop performs well over
PostgreSQL but it presents problems when the RDBMS is MySQL. Particu-
larly, it fails when using rr:graphMap, and also in those test cases assessing the
correctness of subject URIs.
RML test cases. Table 3 presents the results obtained by RML engines.
RMLMapper, RMLStreamer, and Chimera cover most of the mapping language
specification. The failed tests for RMLMapper are related to the automatic
datatyping of literals in RDB [11]. Although RocketRML supports rr:graphMap,
most of the reported failures occur when this property is included in the mapping
rules. SDM-RDFizer does not pass some test cases because it does not support
the generation of blank nodes. Additionally, in the same manner as Morph-RDB,
SDM-RDFizer generates an empty graph when an error occurs. Finally, CARML
failures are related to the possibility to define multiple subject maps, multiple
predicate maps, and named graphs in the mapping rules.

4.2 Performance and Scalability with GTFS-Madrid-Bench

To test the performance and scalability of KGC engines, we rely on the GTFS-
Madrid-Bench benchmark [4]. This benchmark provides a generator to create
several distributions in different formats and sizes of the data.
Datasets and Mappings. Using the generator provided by the benchmark, we
generate 5 different distributions based on the data format: GTFScsv, GTFSrdb,
GTFSxml, GTFSjson and GTFScustom. We also generate different data sizes of
these distributions considering the scaling factors: GTFS1, GTFS10, GTFS100,
and GTFS1000. We have used MySQL 8.0 as DBMS for GTFSrdb. The benchmark
already provides the mappings in [R2]RML languages. They are composed of 73
predicate object maps, of which, 12 are referencing predicate object maps. Most
engines were not being able to process the referencing object map that joins the
triples maps shapes and shapePoints. For this reason, we have transformed it
into an equivalent predicate object map that does not affect the results.
Engines. The engines have been configured so that they do not generate dupli-
cated triples and write the output RDF in N-Triples format. For Java engines,
the heap size used for the different benchmark sizes has been configured ac-
cordingly to avoid heap errors. We have excluded RMLStreamer, which does
not support removing duplicated triples, and we have opened an issue with this
problematic in its public repository16.
Metrics. We consider three metrics for the evaluation: execution time, maxi-
mum memory used and the number of triples generated. This last metric assesses
the correctness of the generated RDF. However, it is limited, since it does not
take into account aspects such as the generation of datatypes or whether data is
extracted properly from the sources. A timeout of 24 hours is used. The exper-
iments are executed in a CPU Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz,
20 cores, 128 Gb RAM and a SSD SAS Read-Intensive 12 Gb/s.

16 https://github.com/RMLio/RMLStreamer/issues/26

https://github.com/RMLio/RMLStreamer/issues/26


Arenas-Guerrero et al.

rdb csv xml json custom
GTFS-Format

0

1

2

3

4

TMO

Ti
m

e 
(lo

g 1
0(

s)
)

DB2Triples
Ontop
Morph-RDB

R2RML-F
RMLMapper
SDM-RDFizer

Chimera
CARML
RocketRML

(a) Execution time for GTFS1

rdb csv xml json custom
GTFS-Format

0

1

2

3

4

TMO

Ti
m

e 
(lo

g 1
0(

s)
)

DB2Triples
Ontop
Morph-RDB

R2RML-F
RMLMapper
SDM-RDFizer

Chimera
CARML
RocketRML

(b) Execution time for GTFS10

rdb csv xml json custom
GTFS-Format

0

1

2

3

4

TMO

Ti
m

e 
(lo

g 1
0(

s)
)

DB2Triples
Ontop
Morph-RDB

R2RML-F
RMLMapper
SDM-RDFizer

Chimera
CARML
RocketRML

(c) Execution time for GTFS100

Fig. 1: Total execution time of GTFS-Madrid-Bench. KGC time in
seconds (logarithmic scale) for nine engines runned over GTFScsv, GTFSrdb,
GTFSxml, GTFSjson and GTFScustom for three data size scaling factors: (a)
GTFS1, (b) GTFS10 and (c) GTFS100. The absence of the bar indicates an
out-of-memory issue. The bars reaching the top means a timeout issue.

Results. Because of the fact that all engines resulted in timeout or out-of-
memory for GTFS1000 in all data formats, we have omitted this data scaling
factor for the benchmark in the results. Figure 1 depicts the execution times
obtained. For the case of GTFSrdb, the execution times for db2triples, Ontop,
R2RML-F, and SDM-RDFizer are in the same order of magnitude. Nonetheless,
SDM-RDFizer needs more than twice as long as Ontop to generate all the results
for GTFSrdb

100, possibly due to SDM-RDFizer not pushing down the joins to the
DBMS. The high number of joins in the SQL queries used by Morph-RDB results
in high query execution times, and the inefficient duplicates elimination strategy
of RMLMapper causes the engine to reach timeout for data sizes greater than



KGC with [R2]RML: An ETL System-based Overview

rdb csv xml json custom
GTFS-Format

0

1

2

3

4

5

6

7

OOM

M
ax

im
um

 m
em

or
y 

(lo
g 1

0(
kB

))

DB2Triples
Ontop
Morph-RDB

R2RML-F
RocketRML
SDM-RDFizer

Chimera
RMLMapper
CARML

(a) Maximum memory for GTFS1

rdb csv xml json custom
GTFS-Format

0

1

2

3

4

5

6

7

OOM

M
ax

im
um

 m
em

or
y 

(lo
g 1

0(
kB

))

DB2Triples
Ontop
Morph-RDB

R2RML-F
RocketRML
SDM-RDFizer

Chimera
RMLMapper
CARML

(b) Maximum memory for GTFS10

rdb csv xml json custom
GTFS-Format

0

1

2

3

4

5

6

7

OOM

M
ax

im
um

 m
em

or
y 

(lo
g 1

0(
kB

))

DB2Triples
Ontop
Morph-RDB

R2RML-F
RocketRML
SDM-RDFizer

Chimera
RMLMapper
CARML

(c) Maximum memory for GTFS100

Fig. 2: Memory consumption peak of GTFS-Madrid-Bench. KGC max-
imum memory consumption in kB (logarithmic scale) for nine engines runned
over GTFScsv, GTFSrdb, GTFSxml, GTFSjson and GTFScustom for three data
size scaling factors: (a) GTFS1, (b) GTFS10 and (c) GTFS100. The absence of
the bar indicates a timeout issue. The bars reaching the top means an out-of-
memory issue.

GTFSrdb
1 . For GTFScsv, Chimera manages to be the fastest tool for GTFScsv

10

thanks to parallelization, but it runs out of memory for GTFScsv
100. R2RML-F

and SDM-RDFizer are the only engines capable of generating all the results for
GTFScsv

100, but the later is more than seven times faster than the former. For
the rest of the data formats, SDM-RDFizer stands out, being the only engine
capable of materializing GTFSxml

100 , GTFSjson
100 , and GTFScustom

100 .

Maximum memory used by engines is presented in Figure 2. Since most en-
gines keep the entire KG in memory to eliminate duplicated triples, the memory
consumption is high. The exception is Morph-RDB that uses a different strat-



Arenas-Guerrero et al.

Table 4: Number of triples generated by each engine per data format and size for
GTFS-Madrid-Bench benchmark. The absence of value means that the engine
does not support the format and zero value means that the engine outputs a
timeout or an out-of-memory error.

Morph- SDM- RML Rocket

Ontop RDB db2triples R2RML-F RDFizer Maper Chimera RML CARML

GTFS-1

RDB 395953 454661 395953 395953 395953 397622 - - -

CSV - - - 395953 395953 397622 395953 395953 395953

JSON - - - - 395953 397622 395953 397622 397622

XML - - - - 395953 397622 395953 395953 395953

CUSTOM - - - - 395953 397622 395953 395953 395953

GTFS-10

RDB 3959530 4546610 3959530 3959530 3959530 0 - - -

CSV - - - 3959530 3959530 0 3959530 0 3959530

JSON - - - - 3959530 0 3959530 0 3976220

XML - - - - 3959530 0 3959530 0 3959530

CUSTOM - - - - 3959530 0 3959530 0 3959530

GTFS-100

RDB 39595300 45466100 39595300 39595300 39595300 0 - - -

CSV - - - 39595300 39595300 0 0 0 0

JSON - - - - 39595300 0 0 0 0

XML - - - - 39595300 0 0 0 0

CUSTOM - - - - 39595300 0 0 0 0

egy for duplicate elimination. R2RML-F and db2triples are the ones with the
highest memory use for GTFSrdb, while Ontop and SDM-RDFizer require less
than half of the memory. For the rest of data formats, SDM-RDFizer is the most
memory-efficient engine as observed in the graphic of GTFS10.

Table 4 shows the number of triples generated by the engines. For GTFS1

it can be observed that the engines that do not generate the expected num-
ber of results are Morph-RDB, RMLMapper, and RocketRML and CARML
for GTFSjson. Morph-RDB attempts to remove duplicates by using the DIS-
TINCT clause in the SQL queries, which is not enough to remove all of them.
RMLMapper, and RocketRML and CARML for GTFSjson generate a higher
number of triples because they generate triples for empty data values. In addi-
tion, RMLMapper generates triples in GTFSrdb when columns contain NULLs,
which does not conform with R2RML specification.

5 Conclusions and Future Work

In this work, we address the problem of executing a comprehensive and struc-
tured evaluation over declarative knowledge graph construction engines that
implement the materialization approach. We present a qualitative analysis of



KGC with [R2]RML: An ETL System-based Overview

the engines including their main features, optimizations, and limitations. We
also carry out a quantitative evaluation of the engines by first assessing their
conformance with the mapping language specification using their test cases, and
then testing their performance using the GTFS-Madrid-Bench benchmark. The
results obtained suggest that: i) there are few systems with high coverage of
the features considered in our qualitative analysis; ii) several engines have a
medium-low conformance w.r.t. the mapping languages specifications; and iii)
most of the engines report performance and scalability problems for large input
data sources.

After our experience in testing the capabilities of KGC engines, we devise
a set of future working lines that can conduct the research and development of
a new generation of systems. First, new generalized optimizations for the ETL
approach are desirable to scale current systems to big data integration scenarios.
Second, work on the conformance of the systems with the specifications and
increase the efforts to have feature-rich systems. Finally, new versions of the
current mapping language specifications will be required for more complex data
integration problems (e.g., transformation functions) together with the extension
of benchmarks to assess them.

Acknowledgments

The work presented in this article is supported by the project Semantics for
PerfoRmant and scalable INteroperability of multimodal Transport (SPRINT
H2020-826172), by the Spanish Ministerio de Economı́a, Industria y Competi-
tividad and EU FEDER funds under the DATOS 4.0: RETOS Y SOLUCIONES
- UPM Spanish national project (TIN2016-78011-C4-4-R), and by an FPI grant
(BES-2017-082511).

References

1. C. Bizer and A. Schultz. The Berlin SPARQL Benchmark. International Journal
on Semantic Web and Information Systems, IJSWIS, 5(2):1–24, 2009.

2. V.-T. Boris and M. Hausenblas. R2RML and Direct Mapping Test Cases. Technical
report, RDB2RDF Working Group, W3C, 2012. https://www.w3.org/2001/sw/rdb2rdf

/test-cases/.
3. D. Calvanese, B. Cogrel, S. Komla-Ebri, R. Kontchakov, D. Lanti, M. Rezk,

M. Rodriguez-Muro, and G. Xiao. Ontop: Answering SPARQL queries over re-
lational databases. Semantic Web, 8(3):471–487, 2017.

4. D. Chaves-Fraga, F. Priyatna, A. Cimmino, J. Toledo, E. Ruckhaus, and O. Corcho.
GTFS-Madrid-Bench: A Benchmark for Virtual Knowledge Graph Access in the
Transport Domain. Journal of Web Semantics, 65:100596, 2020.

5. S. Das, S. Sundara, and R. Cyganiak. R2RML: RDB to RDF Mapping Language.
W3C Recommendation, W3C, 2012. http://www.w3.org/TR/r2rml/.

6. B. De Meester, W. Maroy, A. Dimou, R. Verborgh, and E. Mannens. Declarative
Data Transformations for Linked Data Generation: The Case of DBpedia. In
Proceedings of the 14th European Semantic Web Conference, ESWC, pages 33–48.
Springer International Publishing, 2017.

https://www.w3.org/2001/sw/rdb2rdf/test-cases/
https://www.w3.org/2001/sw/rdb2rdf/test-cases/
http://www.w3.org/TR/r2rml/


Arenas-Guerrero et al.

7. C. Debruyne and D. O’Sullivan. R2RML-F: Towards Sharing and Executing Do-
main Logic in R2RML Mappings. In Proceedings of the 9th Workshop on Linked
Data on the Web, 2016.

8. A. Dimou, M. Vander Sande, P. Colpaert, R. Verborgh, E. Mannens, and R. Van de
Walle. RML: A Generic Language for Integrated RDF Mappings of Heterogeneous
Data. In Proceedings of the 7th Workshop on Linked Data on the Web, volume
1184 of CEUR Workshop Proceedings, 2014.

9. H. Garćıa-González, I. Boneva, S. Staworko, J. E. Labra-Gayo, and J. M. C. Lovelle.
ShExML: improving the usability of heterogeneous data mapping languages for
first-time users. PeerJ Computer Science, 6:e318, 2020.

10. G. Haesendonck, W. Maroy, P. Heyvaert, R. Verborgh, and A. Dimou. Parallel
RDF Generation from Heterogeneous Dig Data. In Proceedings of the International
Workshop on Semantic Big Data, pages 1–6. Association for Computing Machinery,
2019.

11. P. Heyvaert, D. Chaves-Fraga, F. Priyatna, O. Corcho, E. Mannens, R. Verborgh,
and A. Dimou. Conformance Test Cases for the RDF Mapping Language (RML).
In Proceedings of the 1st Iberoamerican Knowledge Graphs and Semantic Web Con-
ference, pages 162–173. Springer International Publishing, 2019.

12. J. Hoffart, F. M. Suchanek, K. Berberich, E. Lewis-Kelham, G. de Melo, and
G. Weikum. YAGO2: Exploring and Querying World Knowledge in Time, Space,
Context, and Many Languages. In Proceedings of the 20th International Confer-
ence Companion on World Wide Web, pages 229–232. Association for Computing
Machinery, 2011.

13. E. Iglesias, S. Jozashoori, D. Chaves-Fraga, D. Collarana, and M.-E. Vidal. SDM-
RDFizer: An RML Interpreter for the Efficient Creation of RDF Knowledge
Graphs. In Proceedings of the 29th ACM International Conference on Information
and Knowledge Management, CIKM, pages 3039–3046. Association for Computing
Machinery, 2020.

14. S. Jozashoori, D. Chaves-Fraga, E. Iglesias, M.-E. Vidal, and O. Corcho. FunMap:
Efficient Execution of Functional Mappings for Knowledge Graph Creation. In
Proceeding of the 19th International Semantic Web Conference, ISWC, pages 276–
293. Springer International Publishing, 2020.

15. D. Lanti, M. Rezk, G. Xiao, and D. Calvanese. The NPD Benchmark: Reality
Check for OBDA Systems. In Proceedings of the 18th International Conference
on Extending Database Technology, EDBT, pages 617–628. OpenProceedings.org,
2015.

16. M. Lefrançois, A. Zimmermann, and N. Bakerally. A SPARQL Extension for
Generating RDF from Heterogeneous Formats. In Proceedings of the 14th European
Semantic Web Conference, ESWC, pages 35–50. Springer International Publishing,
2017.

17. M. Lenzerini. Data Integration: A Theoretical Perspective. In Proceedings of
the 21st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, PODS, page 233–246. Association for Computing Machinery, 2002.

18. F. Michel, L. Djimenou, C. F. Zucker, and J. Montagnat. Translation of Relational
and Non-Relational Databases into RDF with xR2RML. In Proceedings of the 11th
International Conference on Web Information Systems and Technologies, volume 1,
pages 443–454. SciTePress, 2015.

19. N. Noy, Y. Gao, A. Jain, A. Narayanan, A. Patterson, and J. Taylor. Industry-
scale Knowledge Graphs: Lessons and Challenges. Communications of the ACM,
62(8):36–43, 2019.



KGC with [R2]RML: An ETL System-based Overview

20. A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati.
Linking Data to Ontologies. Journal on Data Semantics X, pages 133–173, 2008.

21. F. Priyatna, O. Corcho, and J. Sequeda. Formalisation and experiences of R2RML-
based SPARQL to SQL query translation using morph. In Proceedings of the 23rd
International Conference on World Wide Web, WWW, page 479–490. Association
for Computing Machinery, 2014.

22. M. Scrocca, M. Comerio, A. Carenini, and I. Celino. Turning Transport Data to
Comply with EU Standards While Enabling a Multimodal Transport Knowledge
Graph. In Proceeding of the 19th International Semantic Web Conference, ISWC,
pages 411–429. Springer International Publishing, 2020.

23. U. Şimşek, E. Kärle, and D. Fensel. RocketRML - A NodeJS implementation of
a use-case specific RML mapper. In Proceeding of the 1st International Workshop
on Knowledge Graph Building, 2019.

24. B. Villazón-Terrazas and M. Hausenblas. R2RML and Direct Mapping Test Cases.
W3C Note, W3C, 2012. http://www.w3.org/TR/rdb2rdf-test-cases/.

25. D. Vrandečić and M. Krötzsch. Wikidata: A Free Collaborative Knowledgebase.
Communications of the ACM, 57(10):78–85, 2014.

26. G. Xiao, L. Ding, B. Cogrel, and D. Calvanese. Virtual Knowledge Graphs: An
Overview of Systems and Use Cases. Data Intelligence, 1(3):201–223, 2019.

http://www.w3.org/TR/rdb2rdf-test-cases/

	Knowledge Graph Constructionwith R2RML and RML:An ETL System-based Overview

