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Abstract

Group Relative Policy Optimization, a critic-free, per-prompt REINFORCE-style
method with within-prompt standardization, reliably stabilizes RL for LLM reason-
ing, but the mechanism is unclear. We show that within-prompt reward variance
estimates the local curvature of the sequence-level policy gradient, so standard-
deviation normalization implements a prompt-wise adaptive step size. Under a
mild orthogonality assumption we prove faster convergence than unnormalized
REINFORCE, and validate the effect on synthetic tasks and GSM8K.

1 Introduction

Lightweight, critic-free policy gradients (e.g., GRPO) are widely used to fine-tune large language
models for multi-step reasoning because they avoid learning a value critic and are computationally
cheap. GRPO samples multiple responses per prompt, subtracts the group mean, and normalizes
advantages by the within-prompt standard deviation, which is a simple recipe that empirically
improves stability and sample efficiency [17, 6].

What does this normalization actually do? Our key observation is that the reward variance for a prompt
serves as a local estimate of the gradient’s curvature: high-variance prompts correspond to regions
where the policy gradient can be steep or noisy, requiring smaller effective step sizes. Standard-
deviation normalization therefore behaves like a prompt-wise, iteration-wise adaptive learning-rate
that rescales updates inversely to local curvature, improving both stability and convergence when
curvature varies across prompts and over training.

We formalize this view in a sequence-level bandit framework. First, we relate per-prompt variance
to a local Lipschitz/smoothness measure of the prompt-specific policy gradient. Second, under a
mild orthogonality assumption on prompt representations (which decouples cross-prompt gradient
interference), we prove that GRPO’s variance normalization yields provably faster convergence than
a single, global learning rate (REINFORCE). Finally, we corroborate our theory empirically via
orthogonality checks, a difficulty-sliced evaluation on GSM8K, and synthetic high-variance tasks,
where standard-deviation normalization consistently improves stability and final accuracy.

∗Author order is alphabetical denoting equal contributions.
†Co-last authors
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Contributions.

• We identify within-prompt reward variance as a proxy for local gradient curvature and show
normalization implements an adaptive per-prompt step size.

• We prove faster convergence of normalized GRPO vs. unnormalized REINFORCE under a mild
orthogonality assumption.

• We empirically validate the theory on synthetic regimes and GSM8K (difficulty-sliced), demon-
strating improved stability and convergence under high variance.

2 Preliminaries and problem setting

We present a concise formulation of sequence-level RL with verifiable rewards (RLVR), along with
the policy parameterization and update rules for GRPO and REINFORCE. Extra notations and update
expressions are deferred to Appendix B.

Notation. For finite X , let ∆(X ) denote distributions over X . All vectors are column vectors, and
∥ · ∥ denotes the Euclidean (or spectral) norm. For v ∈ Rm, diag(v) ∈ Rm×m is the diagonal matrix
with entries given by v. We write [m] = {1, . . . ,m} and define the Euclidean ball B(v, r) := {x ∈
Rm : ∥x− v∥2 ≤ r}. We adopt standard notions of Lipschitz continuity and Lipschitz smoothness,
and use “smoothness constant/curvature” interchangeably.

Problem setup We adopt sequence-level RL with verifiable rewards for LLM training. Let Q =
{q1, . . . , qn} be the set of questions and O = {o1, . . . , oK} be the set of candidate output sequences.
A deterministic reward r : Q × O → {0, 1} evaluates whether an output is correct for a specific
question. πθ : Q → ∆(O) represents the LLM generation policy, which induces expected reward

Ji(θ) = Eo∼πθ(·|qi)[r(qi, o)]

for question qi. The goal of RLVR is to learn a policy that maximizes J(θ) := 1
n

∑n
i=1 Ji(θ).

In this paper, we analyze a simplified on-policy setting with exact parameter updates: at step t, a
question i(t) is sampled uniformly from Q and ∇Ji(t)(θ) can be computed exactly. We also impose
the assumption that each question in Q admits a unique correct answer in O [9, 13, 14]:
Assumption 1. For any q ∈ Q, there exists a unique o∗(q) ∈ O such that r(q, o∗(q)) = 1.

Furthermore, we consider the log-linear policy parameterization with feature vectors xi,j ∈ Rd. The
policy and the feature matrices are given by:

πθ(oj | qi) =
exp(x⊤

i,jθ)∑
l∈[K] exp(x

⊤
i,lθ)

, Xi = [xi,1, . . . , xi,K ]⊤.

In the exact on-policy setting, all critic-free policy gradient (PG) methods, including REINFORCE,
reduce to gradient ascent on Ji(t) at step t:

θt+1 = θt + η∇Ji(t)(θt).
Similarly, on-policy GRPO also performs gradient ascent on Ji(t) but rescales the per-question
gradient by the within-prompt Bernoulli standard deviation:

θt+1 = θt + η
∇Ji(t)(θt)√

π∗
θt
(i(t))

(
1− π∗

θt
(i(t))

) ,
where π∗

θ(i) represents the probability that the correct answer is generated.

3 Main theoretical results

In this section, we provide the convergence analysis for REINFORCE-style PG methods and GRPO in
the exact setting, and show that GRPO achieves provably faster convergence. We outline the intuition:
per-question reward variance upper-bounds the local Hessian norm of Ji, so variance normalization
implements a curvature-matched step size. Under an orthogonality condition on features, this local
adaptation yields faster convergence. Full proofs appear in Appendix C and D.
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Connection between local curvature and variance.
Lemma 1 (Local Hessian bound; informal). Under Assumption 1,

∥∇2Ji(θ)∥ ≤ 4X2
max π∗

θ(i)
(
1− π∗

θ(i)
)
= 4X2

max Varπθ
(r | qi).

Thus the local smoothness (curvature) of Ji is proportional to the within-prompt Bernoulli variance.

Cross-question interaction. To ensure that gradients for different prompts do not interfere destruc-
tively, we control interference between questions via:
Assumption 2 (Orthogonal representation). For all i, j ∈ [n] with i ̸= j, we have X⊤

i Xj = 0.

This assumption decouples per-question gradients. Empirical checks are shown in Section F.1.

Convergence rates. Let T be the total updates and n the number of questions. The following
theorems establish the convergence guarantee for REINFORCE-style PG methods and GRPO:
Theorem 1 (REINFORCE; informal). Under Assumptions 1 and 2, for REINFORCE-style policy
gradient methods with step size η = Θ(1/X2

max), we have

min
t∈{0,...,T−1}

E
[
∥∇Ji(θt)∥2

]
= O

(
n
T

)
, ∀i ∈ [n].

To show the convergence guarantee for GRPO, we further impose the following assumption on the
bound of within-prompt Bernoulli variance at every step:
Assumption 3 (Bounded variance). For all i ∈ [n], there exists a constant sequence {Ci(t)}∞t=1√

π∗
θt
(i)
(
1− π∗

θt
(i)
)
≤ Ci(t) ≤

1

2
Theorem 2 (GRPO; informal). Under Assumptions 1–3, for GRPO with step size η =
Θ(1/(2X2

max)), we have

min
t∈{0,...,T−1}

E
[
∥∇Ji(θt)∥2

]
= O

(
n

T
· 1
T

T−1∑
t=0

Ci(t)

)
.

Note that we could use 1
T

∑T−1
i=0 E[

√
π∗
θt
(i)
(
1− π∗

θt
(i)
)
] as an estimation of 1

T

∑T−1
t=0 Ci(t) and is

typically much smaller than 1 if the curvature varies across iterations.

Proof sketch. Lemma 1 implies a local Lipschitz constant proportional to variance; scaling the gradi-
ent by its square-root normalizes local smoothness and yields a larger allowable step in high-curvature
directions. Orthogonality ensures these per-question gains add without destructive cancellation.
Formal proofs are in Appendix D.

4 Empirical studies

We validate two modeling assumptions central to our theory (near-orthogonality of prompt represen-
tations; variance↔ local curvature) and compare normalization strategies on GSM8K. The details
are provided in Appendix F.

4.1 Orthogonality of prompt representations

We extract sentence-level embeddings (penultimate hidden states) from Qwen2.5-MATH-1.5B for
1,000 random question pairs on GSM8K. Absolute cosine similarities concentrate near zero (mean
0.088, std 0.064), and over 90% of pairs have | cos | < 0.15. These statistics (Fig. 1) support the
orthogonality assumption.

4.2 Curvature proxy and temporal stability

We use the diagonal Fisher estimate as a practical curvature proxy (see Appendix F for estimator
and unbiasedness argument). In Table 1, prompt-level Fisher entries correlate with reward-variance
at the same iteration (mean Pearson ≈ 0.34, p<0.01) but not across different times, indicating the
curvature–variance link is local in time and supports an iteration-wise adaptive step-size.
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(a) Absolute cosine similarities (embeddings). (b) Inverse CDF of absolute cosine similarity (| cos |).

Figure 1: Empirical validation of near-orthogonality assumption. (a) Histogram of absolute cosine
similarities between question pairs. (b) Inverse CDF showing tail behavior.

Time Lag Mean Correlation Significant (p < 0.05)
Same time (∆t = 0) 0.342 Yes (0.008)
Different times (∆t ̸= 0) -0.028 No (0.18)

Table 1: Temporal Independence of Fisher Information and Reward Variance

4.3 Normalization comparison on GSM8K

Setup. Base model: Qwen2.5-MATH-1.5B finetuned with LoRA. We split GSM8K into Easy
(4,695) and Hard (1,909) by solution complexity (evaluator: Qwen2-7B-Instruct). We compare:

• GRPO-Std: per-question z-score (mean-subtract then divide by std).

• No-Std: mean-centering only (no variance scaling).

Training hyperparams and LoRA ranks appear in Appendix F.

Results. Figure 2 shows training accuracy trajectories (smoothed). On Easy both methods converge
quickly with minor gap (final ≈ 92% vs 91%). On Hard GRPO-Std yields a clear advantage (final
≈ 81% vs 76%) and noticeably more stable learning. The benefit is smallest near the ≈ 50% region
(maximal Bernoulli variance) and grows as training moves away from that regime.
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(a) GSM8K Easy split
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(b) GSM8K Hard split

Figure 2: Smoothed GSM8K training accuracy on Easy/Hard: GRPO-Std (red, solid) vs No-Std
(blue, dashed). GRPO yields 5% gain and more stable learning on Hard; little gap on Easy.
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5 Conclusion

We reinterpret GRPO’s within-prompt standardization as a curvature-matched adaptive gradient:
within-prompt reward variance proxies local smoothness and rescales step sizes accordingly. Under a
mild orthogonality assumption we prove improved convergence constants compared to unnormalized
REINFORCE. Experiments on synthetic tasks and GSM8K corroborate greater stability and up to
∼5% gains on harder problems. This connection motivates adaptive, critic-free updates for efficient
LLM fine-tuning.
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A Related works

REINFORCE-style PG methods. ReMax proposes a simple sequence-level REINFORCE objec-
tive for LLM alignment with strong performance and minimal complexity [8]. RLOO extends this by
sampling multiple responses per prompt and using a leave-one-out baseline to further reduce variance
[1]. REINFORCE++ continues this line, emphasizing simplicity and efficiency at scale [5].

GRPO and its variants. GRPO has become the default in state-of-the-art reasoning systems,
combining a per-prompt baseline with within-prompt standard-deviation normalization [17]. Large-
scale systems work (e.g., DAPO) has consolidated GRPO-style training across diverse tasks and
compute regimes [23]. Related analyses examine design choices in normalization and sampling [12].

Emerging theory for GRPO. Recent studies analyze what GRPO optimizes and how it behaves
in on- and off-policy regimes [15], its implicit alignment objective [20], and trajectory-corrected
variants with convergence guarantees [16]. Other work highlights a trade-off between normalization
and calibration, showing that removing the std term can improve probability calibration at the cost
of optimization speed [2]. We contribute a new perspective: interpreting the std term as an adaptive
gradient mechanism tied to local curvature, thereby unifying disparate empirical observations.
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RLVR. Reinforcement learning with verifiable rewards (RLVR) has emerged as an effective
paradigm for reasoning-intensive domains. Unlike RLHF, which relies on a learned reward model,
RLVR uses deterministic, verifiable rewards such as correctness checks [7, 4, 19, 21]. This avoids
reward-model bias and simplifies training, while scaling effectively with compute and dataset size.
Strong results have been reported on GSM8K, MATH, Omni-MATH, and FormalMATH [24, 11].
In this paper, we study GRPO in the RLVR setting, where deterministic rewards enable sharper
theoretical analysis of normalization and its role in adaptive gradient updates.

B Extra Notations and Update Formulae

In this section, we show extra notations that are used in the proofs, deductions that are omitted in the
problem setup, and update details when applying REINFORCE-style PG methods and GRPO. Under
Assumption 1, we use ai to denote the index of correct answer for question qi ∈ Q:

r(qi, oj) =

{
1, if j = ai
0, if j ̸= ai,

(1)

and use ri ∈ RK to denote the reward vector for question qi: [ri]j = r(qi, oj) ∀j ∈ [K]. We
consider the on-policy scenario where πθ = πθold , and the reward function has a unique correct answer.
Therefore, the importance ratio remains to be γi(o) = 1, and

Ai(o) =
r(qi, o)− π∗

θ(i)√
π∗
θ(i)

(
1− π∗

θ(i)
) . (2)

where π∗
θ(i) := πθ(oai

| qi) denotes the success probability of policy πθ on question qi. The GRPO
objective can be further simplified as:

JGRPO(θ) =
1

n

n∑
i=1

J i
GRPO(θ) :=

1

n

n∑
i=1

Eo∼πθ

[
Ai(o)

]
=

1

n

n∑
i=1

Eo∼πθ

 r(qi, o)− π∗
θ(i)√

π∗
θ(i)

(
1− π∗

θ(i)
)
 .

We also denote πθ(i) ∈ RK as the probability vector for πθ in question i, that is, [πθ(i)]j := πθ(oj |
qi), ∀j ∈ [K].

Under the exact parameter updates setting, the gradient of GRPO does not change when removing
the baseline. We term such an algorithm as on-policy GRPO. Our key observation is that the variance
normalization in (on-policy) GRPO implicitly implements an adaptive step size. In particular,

∇J i
GRPO(θ) = Eo∼πθ

[Ai(o)∇ lnπθ(o | qi)] = Eo∼πθ

 r(qi, o)√
π∗
θ(i)

(
1− π∗

θ(i)
)∇ lnπθ(o | qi)


=

Eo∼πθ
[r(qi, o)∇ lnπθ(o | qi)]√
π∗
θ(i)

(
1− π∗

θ(i)
) =

∇Ji(θ)√
π∗
θ(i)

(
1− π∗

θ(i)
) .

(3)

for all i ∈ [n]. The first and last equalities follow from the policy gradient theorem [18]. The second
equality holds because subtracting a constant baseline does not affect the gradient calculation. The
third equality follows from the fact that Ai(o) is treated as constant in the gradient propagation.

For ease of notation, we simply drop t from i(t) whenever it clear in context. The update of
REINFORCE takes the following form [9]:

θt ← θt−1 + ηX⊤
i

(
diag

(
πθt−1

(i)
)
− πθt−1

(i)π⊤
θt−1

(i)
)
ri. (4)

Under Assumption 1, the update of REINFORCE can be simplified as:

θt ← θt−1 + η
(
π∗
θt−1

(i)(1− π∗
θt−1

(i)xi,ai
− π∗

θt−1
(i)
∑
j ̸=ai

[πθt−1
(i)]j · xi,j

)
. (5)
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Similarly, the update of GRPO can be simplified as:

θt ← θt−1 + η
(√

π∗
θt−1

(i)(1− π∗
θt−1

(i))xi,ai
−

√
π∗
θt−1

(i)

1− π∗
θt−1

(i)

∑
j ̸=ai

[πθt−1
(i)]j · xi,j

)
. (6)

C Analysis of the Local Smoothness Constant

In this section, we provide the full description of the lemmas related to the local smoothness constant
and provide their proofs.
Lemma 2 (Formal Version of Lemma 1). Under Assumption 1, for all i ∈ [n] and θ ∈ Rd,

∥∇2Ji(θ)∥ ≤ 4X2
max · π∗

θ(i)
(
1− π∗

θ(i)
)
= 4X2

max ·Var(πθ(i)). (7)

Proof. According to Lemma 17 in [9], for any y ∈ Rd, we have

y⊤∇2Ji(θ)y = (H (πθ(i)) ri)
⊤
(Xiy ⊙Xiy)− 2 (H (πθ(i)) ri)

⊤
(Xiy)

(
π⊤
θ (i)Xiy

)
where H(πθ(i)) is defined as H (πθ) := diag (πθ(i)) − πθ(i)π

⊤
θ (i) ∈ RK×K and ⊙ denotes the

Hadamard (component-wise) product. Using the triangle inequality and Cauchy-Schwarz inequality,
we get

|y⊤∇2Ji(θ)y| ≤ | (H (πθ(i)) ri)
⊤
(Xiy ⊙Xiy)|+ 2| (H (πθ(i)) ri)

⊤
(Xiy)| · |

(
π⊤
θ (i)Xiy

)
|

≤ ∥ (H (πθ(i)) ri) ∥∞∥Xiy ⊙Xiy∥+ 2∥H (πθ(i)) ri∥ · ∥Xiy∥ · ∥πθ(i)∥ · ∥Xiy∥
= ∥ (H (πθ(i)) ri) ∥∞∥Xiy∥2 + 2∥H (πθ(i)) ri∥ · ∥πθ(i)∥ · ∥Xiy∥2

≤ ∥ (H (πθ(i)) ri) ∥∞∥Xiy∥2 + 2∥H (πθ(i)) ri∥ · ∥Xiy∥2.
(8)

The last inequality follows because ∥πθ(i)∥ ≤ ∥πθ(i)∥1 = 1. According to Assumption 1, we have

[H(πθ(i))ri]j =

{
π∗
θ(i)(1− π∗

θ(i)), if j = ai
−π∗

θ(i)[πθ(i)]j , if j ̸= ai

With this expression, we get

∥H(πθ(i))ri∥∞ = π∗
θ(i)(1− π∗

θ(i)), (9)

and

∥H(πθ(i))ri∥ = π∗
θ(i)

√
(1− π∗

θ(i))
2 +

∑
j ̸=ai

[πθ(i)]2j

≤ π∗
θ(i)

√
(1− π∗

θ(i))
2 +

∑
j ̸=ai

[πθ(i)]j(1− π∗
θ(i))

=
√
2π∗

θ(i)(1− π∗
θ(i)).

(10)

Combining (9) and (10) with (8), we get

|y⊤∇2Ji(θ)y| ≤ ∥ (H (πθ(i)) ri) ∥∞∥Xiy∥2 + 2∥H (πθ(i)) ri∥ · ∥Xiy∥2

≤ (2
√
2 + 1)π∗

θ(i)(1− π∗
θ(i))∥Xiy∥2

≤ (2
√
2 + 1)π∗

θ(i)(1− π∗
θ(i))∥Xi∥2∥y∥2

≤ 4π∗
θ(i)(1− π∗

θ(i))X
2
max∥y∥2

where the third inequality is due to the definition of operator norm, and the last inequality is by
definition of Xmax. Note that

∥∇2Ji(θ)∥ = max
y

|y⊤∇2Ji(θ)y|
∥y∥2

for symmetric Hessian matrix ∇2Ji(θ), which completes the proof.
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Corollary 1. Under Assumption 1, for all i ∈ [n] and θ ∈ Rd,

∥∇2Ji(θ)∥ ≤ X2
max, (11)

so that Ji(θ) is X2
max-smooth on Rd.

Lemma 3. Under Assumption 1, for all i ∈ [n], Ji(θ) is 1
2Xmax−Lipschitz over Rd.

Proof. According to (5), the gradient of Ji(θ) takes the following form:

∇Ji(θ) = x⊤
ai
(1− π∗

θt(i))π
∗
θt(i)−

∑
j ̸=ai

x⊤
j πθt(i)j · π∗

θt(i).

Note that a matrix’s operator norm is larger than the norm of any of its row vector, we get

∥∇Ji(θ)∥ ≤ ∥xai∥(1− π∗
θt(i))π

∗
θt(i) +

∑
j ̸=ai

∥xj∥πθt(i)j · π∗
θt(i)

≤ ∥Xi∥(1− π∗
θt(i))π

∗
θt(i) +

∑
j ̸=ai

∥Xi∥πθt(i)j · π∗
θt(i)

= 2∥Xi∥(1− π∗
θt(i))π

∗
θt(i)

≤ 1

2
Xmax

where the last inequality is due to the definition of Xmax, finishing the proof.

Lemma 4 (Non-uniform local smoothness). Under Assumption 1, for all i ∈ [n] and θ ∈ Rd, Ji(θ)
is 5

2X
2
max ·

√
π∗
θ(i)(1− π∗

θ(i))−smooth over B(θ, 1
Xmax

·
√

π∗
θ(i)(1− π∗

θ(i))).

Proof. By Assumption 1, the objective Ji(θ) is same as π∗
θ(i). From Lemma 3, Ji(θ) is 1

2Xmax-

Lipschitz. Consequently, for any θ′ ∈ B
(
θ, 1

Xmax

√
π∗
θ(i)

(
1− π∗

θ(i)
))

, we have∣∣π∗
θ′(i)− π∗

θ(i)
∣∣ ≤ 1

2Xmax · 1
Xmax

·
√

π∗
θ(i)

(
1− π∗

θ(i)
)
= 1

2

√
π∗
θ(i)

(
1− π∗

θ(i)
)
.

Combining with Lemma 2,

∥∇2Ji(θ
′)∥ ≤ max

l
4X2

max · l(1− l)

over B
(
θ, 1

Xmax

√
π∗
θ(i)

(
1− π∗

θ(i)
))

, where l satisfies∣∣ l − π∗
θ(i)

∣∣ ≤ 1
2

√
π∗
θ(i)

(
1− π∗

θ(i)
)
.

We denote π∗
θ(i) as a. Thus, proving Lemma 4 is equivalent as proving

f(a) := max
l∈[a−

√
a(1−a)

2 ,a+

√
a(1−a)

2 ]

4l(1− l)√
a(1− a)

≤ 5

2
.

WLOG, we assume a ∈ [0, 1
2 ] and consider two cases.

Case 1: When a ∈ [ 12 −
√
5

10 ,
1
2 ], we know that

1

2
∈ [a−

√
a(1− a)

2
, a+

√
a(1− a)

2
],

which implies that

f(a) =
1√

a(1− a)
≤ f(

1

2
−
√
5

2
) =
√
5 ≤ 5

2
.

Case 2: When a ∈ [0, 1
2 −

√
5

10 ], we know that

1

2
̸∈ [a−

√
a(1− a)

2
, a+

√
a(1− a)

2
],

9



which implies that

f(a) =
(a+

√
a(1−a)

2 )(1− a−
√

a(1−a)

2 )√
a(1− a)

= 3
√

a(1− a) + (2− 4a).

f(a) takes its maximum when a = 1
10 and f(a) = 5

2 .

Combining the above two cases, we conclude the lemma.

D Convergence Analysis of the Main Result

D.1 Auxiliary Lemma

Lemma 5. Under Assumption 1 and 2, for any i, j ∈ [n], i ̸= j and θ ∈ Rd, we have

∇Ji(θ)⊤∇Jj(θ) = 0 (12)

Proof. According to (4), we get

∇Ji(θ)⊤∇Jj(θ) = r⊤i
(
diag (πθ(i))− πθ(i)π

⊤
θ (i)

)
XiX

⊤
j

(
diag (πθ(j))− πθ(j)π

⊤
θ (j)

)
rj

= r⊤i
(
diag (πθ(i))− πθ(i)π

⊤
θ (i)

)
0
(
diag (πθ(j))− πθ(j)π

⊤
θ (j)

)
rj

= 0,

where the second step is by Assumption 2.

Theorem 3 (Convergence rate of REINFORCE, formal version of Theorem 1). Under Assumption 1
and Assumption 2, with the step size η = 1

X2
max

, the sequence {θt}T−1
t=0 generated by REINFORCE

satisfies:

min
t∈{0,1,...,T−1}

E[∥∇Ji(θt)∥2] ≤
2n(1− π∗

θ0
(i))X2

max

T
(13)

for any i ∈ [n].

Proof. We consider a specific question ql. Combining Lemma 5 with log-linear policy parameteriza-
tion in our setting, if question qi(t) is selected on iteration t in REINFORCE, we get

Jj(θt) = Jj(θt−1 + η∇Ji(θt−1))

= Jj(θt−1)
(14)

for any i(t) ̸= l. That is, the parameter update on question qi(t) will not affect the expected reward
on other questions.

If question i(t) = l is selected on iteration t in REINFORCE, we have

Jl(θt)− Jl(θt−1) ≥ ⟨θt − θt−1,∇Jl(θt−1)⟩ −
X2

max

2
∥θt − θt−1∥2

= (η − X2
max

2
η2)∥∇Jl(θt−1)∥2

=
1

2X2
max

∥∇Jl(θt−1)∥2

(15)

where the first step is by Corollary 1, which also indicate that Ji(θ) is X2
max-weakly convex. Taking

expectation of (15) on i(t), we get

E[Jl(θt)]− E[Jl(θt−1)] ≥
1

2nX2
max

∥∇Jl(θt−1)∥2. (16)

Summing up (16) for t = 1, . . . , T , we get

1

2nX2
max

T−1∑
t=0

E[∥Jl(θt−1)∥2] ≤ E[Jl(θT )]− Jl(θ0) ≤ 1− π∗
θ0(l).

10



This directly leads to

min
t∈{0,1,...,T−1}

E[∥∇Jl(θt)∥2] ≤
2n(1− π∗

θ0
(l))X2

max

T
.

Theorem 4 (Convergence rate of GRPO, formal version of Theorem 2). Under Assumption 1–3,
with the step size η = 1

2X2
max

, the sequence {θt}T−1
t=0 generated by GRPO satisfies:

min
t∈{0,1,...,T−1}

E[∥∇Ji(θt)∥2] ≤
2n(1− π∗

θ0
(i))X2

max

T

8
∑T−1

t=0 Ci(t)

3T
(17)

for any i ∈ [n].

Proof. Similar to (14) in the proof of Theorem 3, the gradient update based on question qi does not
affect the objective for question ql if i ̸= l. That is,

Jl(θt) =

{
Jl(θt−1), if i(t) ̸= l

Jl(θt), if i(t) = l.
(18)

Consider the case where i(t) = l, from the parameter update rule in GRPO, we get

θt = θt−1 + η
(√

π∗
θt−1

(l)(1− π∗
θt−1

(l))xl,al
−

√
π∗
θt−1

(l)

1− π∗
θt−1

(l)

∑
j ̸=al

[πθt−1(l)]j · xl,j

)
.

Also, by setting η = 1
2X2

max
, we have

∥η
(√

π∗
θt−1

(l)(1− π∗
θt−1

(l))xl,al
−

√
π∗
θt−1

(l)

1− π∗
θt−1

(l)

∑
j ̸=al

[πθt−1
(l)]j · xl,j

)
∥

=
1

2X2
max

∥
(√

π∗
θt−1

(l)(1− π∗
θt−1

(l))xl,al
−

√
π∗
θt−1

(l)

1− π∗
θt−1

(l)

∑
j ̸=al

[πθt−1
(l)]j · xl,j

)
∥

≤ 1

2X2
max

(√
π∗
θt−1

(l)(1− π∗
θt−1

(l))∥xl,al
∥+

√
π∗
θt−1

(l)

1− π∗
θt−1

(l)

∑
j ̸=al

[πθt−1
(l)]j · ∥xl,j∥

)

≤ 1

2X2
max

(2

√
π∗
θt−1

(l)

1− π∗
θt−1

(l)
Xmax)

=
1

Xmax
·
√
π∗
θ(l)(1− π∗

θ(l)).

This implies that θt ∈ B(θ, 1
Xmax

·
√
π∗
θ(l)(1− π∗

θ(l))). According to Lemma 4, we obtain

Jl(θt) ≥ Jl(θt−1) + ⟨θt − θt−1,∇Jl(θt−1)⟩ −
5

4
X2

max ·
√
π∗
θ(l)(1− π∗

θ(l))∥θt − θt−1∥2

= Jl(θt−1) +
3

16X2
max

√
π∗
θ(l)(1− π∗

θ(l))
∥∇Jl(θt−1)∥2

≥ Jl(θt−1) +
3

16X2
maxCl(t− 1)

∥∇Jl(θt−1)∥2

(19)

where the last step is by Assumption 3. Taking expectation of (19) on i(t), we have

E[Jl(θt)] ≥ E[Jl(θt−1)] +
3

16nX2
maxCl(t− 1)

E[∥∇J(θt−1)∥2]. (20)

because the objective Jl remains unchanged if i(t) ̸= l according to (18). Summing up (20) for
t = 1, . . . , T , we get

E[Jl(θT )] ≥ Jl(θ0) +

T−1∑
t=0

3

16nX2
maxCl(t− 1)

E[∥∇J(θt−1)∥2]. (21)

11



According to the Cauchy-Schwarz inequality, we obtain

min
t∈{0,1,...,T−1}

E[∥∇Jl(θt)∥2] ≤
2n(1− π∗

θ0
(l))X2

max

T

8
∑T−1

t=0 Cl(t)

3T
.

E Discussion on C(n, T )

We are interested in the meaningful small-constant regime where C(n, T ) = o(1). Let εi,j :=
1− πθj

(i) ∈ [0, 1]. Then

C(n, T ) =
8

3nT

n∑
i=1

T−1∑
j=0

√
πθj

(i)
(
1− πθj

(i)
)
≤ 8

3n

n∑
i=1

1

T

T−1∑
j=0

min
{

1
2 ,
√
εi,j
}

︸ ︷︷ ︸
=:Ai(T )

. (22)

Hence C(n, T ) = o(1) whenever each prompt’s Cesàro mean Ai(T )→ 0. A convenient pointwise
bound is

0 ≤
√
π(1− π) ≤ min

{
1
2 ,
√

1− π
}
.

A sufficient (and essentially necessary) condition is that, for every fixed δ > 0,

1

T

∣∣∣{ j < T : εi,j ≥ δ }
∣∣∣ −−−−→

T→∞
0 for all i ∈ [n].

We provide improvement regimes under which Ai(T )→ 0 below.

(i) Exponential improvement. If εi,j ≤ ciρ
j
i with ρi ∈ (0, 1), then

1

T

∑
j<T

√
εi,j ≤

√
ci
T

∑
j<T

ρ
j/2
i = O

(
1
T

)
,

so C(n, T ) = O(1/T ) = o(1).

(ii) Polynomial improvement. If εi,j ≤ ci j
−αi for some αi > 0, then

1

T

∑
j<T

√
εi,j ≤

√
ci
T

∑
j<T

j−αi/2 =


O
(
T−αi/2

)
, 0 < αi < 2,

O
(
(log T )/T

)
, αi = 2,

O
(
1/T

)
, αi > 2,

hence C(n, T ) = o(1) for any αi > 0. A notable special case is the harmonic regime εi,j = Θ(1/j),
which yields

C(n, T ) = O
(√

log T
T

)
= o(1).

Note. This refines the example following Eq. (14): the intended assumption is 1− πθj
(i) = Θ(1/j)

(not Θ(1/T )).

Observe that

T−1∑
j=0

√
π∗
θj
(i)(1− π∗

θj
(i)) ≤

√√√√T ·
T−1∑
j=0

π∗
θj
(i)(1− π∗

θj
(i)) ≤

√√√√T ·
T−1∑
j=0

(1− π∗
θj
(i)).

For instance, if (1− π∗
θj
(i)) = O(1/T ), then C(n, T ) = O(

√
log T/T ).

(iii) Log-slow improvement. If εi,j ≍ 1/ log(j + e), then

1

T

∑
j<T

√
εi,j ≍

1√
log T

, ⇒ C(n, T ) = O
(
1/
√
log T

)
= o(1).
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(iv) Persistent hard prompts (plateau). If for some i there exists ε0 > 0 such that εi,j ≥ ε0
on a non-vanishing fraction of iterations, then Ai(T ) is bounded away from 0, and C(n, T ) ̸→ 0.
Thus, for fixed n, every prompt must become (asymptotically) easy in Cesàro mean in order to have
C(n, T ) = o(1).

(v) Mixed populations (curriculum/heterogeneity). Suppose the prompts split into E (easy) with
εi,j → 0 sufficiently fast (any of (i)–(iii)), andH (hard) with lim supT Ai(T ) ≥ c > 0. Then

C(n, T ) ≤ 8

3

( |E|
n
· o(1) +

|H|
n
·Θ(1)

)
.

Therefore C(n, T ) = o(1) iff |H| = 0 (for fixed n); if n grows with T , one additionally needs
|H|/n→ 0.

A universal upper bound. Since
√
π(1− π) ≤ 1

2 , we always have

C(n, T ) ≤ 8

3nT
· n · T

2
=

4

3
.

Thus the multiplicative factor in Eq. (14) is at worst a constant; the benefit over the unnormalized
baseline is most pronounced when C(n, T ) = o(1), i.e., when success probabilities approach 1 on
(almost) all prompts.

In summary, any training dynamic in which πθj
(i) → 1 for every prompt, no matter how slowly

(even logarithmically), drives C(n, T ) → 0. Faster per-prompt improvement directly tightens
Eq. (14), quantifying how GRPO’s normalization converts heterogeneous per-prompt “curvature”
into a vanishing multiplicative constant in the convergence bound

F Detailed empirical studies

F.1 Validation of orthogonality assumption

Formally, for two distinct questions i ̸= j, we expect ⟨vi,vj⟩
∥vi∥∥vj∥ ≈ 0, where vi denotes the repre-

sentation vector (e.g., penultimate-layer hidden state) of question i. This assumption simplifies the
analysis by ensuring cross-question interference is negligible. We validate Assumption 2 on GSM8K
[3] using Qwen2.5-MATH-1.5B [22]. For 1,000 random pairs of distinct questions, we extracted
penultimate hidden states, pooled them into sentence-level embeddings, and measured absolute cosine
similarities. As shown in Figure 1a, similarities are sharply concentrated near zero (mean ≈ 0.088,
std ≈ 0.064). The inverse CDF in Figure ?? further shows that over 90% of pairs have similarity
below 0.15, supporting the orthogonality assumption.

F.2 Validation of Local Curvature-Variance Connection

In our implementation, we compute the Fisher Information matrix following the efficient esti-
mator proposed by [10]. Given a batch of prompts {qi}Bi=1 at iteration t, we: 1. Sample re-
sponses ôi ∼ πθt(·|qi) for each prompt qi 2. Compute the mini-batch gradient: ∇L̂B(θt) =
1
B

∑B
i=1∇ log πθt(ôi|qi) 3. Estimate the diagonal Fisher Information using the efficient estima-

tor: h(θt) = diag(F̂eff(θt)) = B · ∇L̂B(θt) ⊙ ∇L̂B(θt), where this estimator remains unbiased:
Eô[diag(F̂eff(θ))] = Eô[diag(F̂ (θ))](the expectation is taken over the sampled responses).

The resulting Fisher Information h(θt) serves as our curvature proxy, capturing the local smoothness
of the loss landscape. This aligns with our theoretical framework where higher Fisher Information
(larger curvature) corresponds to regions requiring smaller step sizes, justifying GRPO’s variance-
based normalization strategy.

F.3 Comparisons on LLM Reasoning Task

Building upon the theoretical foundations established earlier, we conduct empirical evaluations
to validate the effectiveness of different advantage normalization strategies in GRPO. Our exper-
iments compare two normalization approaches across varying dataset difficulties on the GSM8K
mathematical reasoning benchmark.
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Experimental setup. We employ the Qwen2.5-Math-1.5B model as our base model, enhanced
with Low-Rank Adaptation (LoRA) for parameter-efficient fine-tuning.

To study the effect of task difficulty, we partition the GSM8K training set by solution complexity into
two splits: Easy (4,695 examples), and Hard (1,909 examples). We employ Qwen2-7B-Instruct as
an evaluator to partition the dataset into distinct difficulty levels, thereby enabling a controlled study
of how normalization behaves under varying difficulty regimes.

Normalization strategies. We evaluate three group-level (per-question) normalization approaches:

• Standard GRPO (Nstd): per-question z-score normalization: Âi,t =
ri−mean(r)

std(r)

• No-Std (Nno-std): mean-centering without variance scaling: Âi,t = ri −mean(r).

Evaluation metrics. We report complementary metrics: sample accuracy: fraction of correct
solutions among all generations.

Results and Discussion. Across difficulties shown in Figure 2, we observe a clear variance-dependent
pattern consistent with our theory:

• Easy (low variance). Both methods converge rapidly and achieve high accuracy. GRPO Norm
shows a slight advantage, reaching a final accuracy of ≈ 92%, while No Normalization achieves
≈ 91%. The performance gap remains small throughout training, with both curves following
similar trajectories after the initial steps.

• Hard (high variance). GRPO Norm’s benefits become increasingly apparent in harder questions.
It significantly outperforms No Normalization in the final stages, achieving ≈ 81% accuracy
compared to ≈ 76%. GRPO Norm not only reaches higher final accuracy but also demonstrates
more stable learning, entering the 70–80% accuracy band earlier and maintaining a consistent
advantage of approximately 5 percentage points during mid-to-late training phases.

In general, the impact of normalization becomes clearer overall, but around the 50% accuracy region,
where Bernoulli reward variance is maximal, the advantage of GRPO-Norm is comparatively small
and the improvement is not obvious.
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