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Abstract

Despite recent progress, machine learning for the
audio domain is limited by the availability of high-
quality data. Visual information already presented
in a video should complement the information
in audio. In this paper, we leverage a state-of-
the-art (SOTA) LLM to perform data augmenta-
tion, bypassing the need for costly human anno-
tation; We also leverage audio encodec model
to allow for extremely efficient adaptation of a
pre-trained text-to-image generation latent diffu-
sion model to perform text-to-audio generation.
Our approach exemplifies a promising method
for augmenting low-resource audio datasets. The
samples, models, and implementation will be at
https://audiojourney.github.io.

1. Introduction
The field of machine learning for the audio domain, despite
making significant strides, is currently constrained by the
scarcity of high-quality data. The largest datasets available,
including AudioSet (Gemmeke et al., 2017), CLAP (Wu*
et al., 2023), and VGGSound (Chen et al., 2020), comprise
in total less than 3 million examples, falling orders of mag-
nitude short of datasets in other domains, such as the Laion
5B Image-Text dataset (Schuhmann et al., 2022). Even
for these datasets, the majority of annotations are collected
through weak labeling, which may introduce noise. Our pri-
mary goal, therefore, is to efficiently augment the training
resources based on the limited existing resources.

To achieve this goal, we harness the power of generative
models to efficiently create large amounts of diverse, high-
quality audio captions. Recent work has demonstrated the
ability of Large Language Models (LLMs) to extract an
enormous amount of knowledge from billions of text inputs
(Brown et al., 2020; Taori et al., 2023). The in-context gen-
eration capabilities of these models are so convincing as
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to raise a concern about their ability to “hallucinate” false
responses that mislead human users (Bender et al., 2021).
As part of a careful data augmentation strategy, however,
these hallucinations can be used effectively to generate cap-
tions that can significantly enrich the existing weak labels
that annotate audio datasets. To make full use of exist-
ing datasets that were sourced from videos, we believe the
visual information in the videos can complement the au-
dio. Video-to-Text (VTT) models can efficiently extract and
transcribe visual cues into text representation, and state-of-
the-art (SOTA) models such as BLIP2 (Li et al., 2023) have
demonstrated robust performance at this task. We apply
BLIP2 to frames sampled from the video to generate a set
of possible captions that capture visual information.

We generated audio captions by prompting an LLM (quan-
tized) with existing weak label annotations. Independently,
we have also generated video captions using a VTT model.
We once again leverage LLMs to generate a merged audio-
visual caption that provides an enriched annotation for the
audio clip. Our methodology so far is visualized in the
left half of Figure 1, starting with the Raw Audio and Raw
Video and leading up to the Audio+Visual (A+V) Caption.
Altogether, applying our methodology to AudioSet (Gem-
meke et al., 2017) produces a dataset of over 2 million audio
clips with significantly-enriched captions, allowing us to
avoid the exorbitant expenses associated with hiring human
annotators. Our human evaluation suggests that our captions
are quantitatively better than previously-generated captions
(Mei et al., 2023) and qualitatively comparable to human
annotations released by AudioCAPs (Kim et al., 2019).

Having constructed a substantially enriched audio-text
dataset, we can train a powerful generative model for audio.
We encode each audio clip into a post-quantization embed-
ding space (Défossez et al., 2022) for efficiency purposes,
and train a score-based latent diffusion model to reconstruct
the audio, conditional on a T5(Raffel et al., 2020) encod-
ing of our generated captions. We delve deeper into our
modeling choices and motivations in Section§ 4. Our entire
system is illustrated in Figure 1.

Our experimental results reveal that our diffusion model
outperforms baseline models such as AudioLDM (Liu et al.,
2023; Kong et al., 2021) in generating higher-quality out-
puts. Additionally, we prove that this model can replicate all
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Figure 1. Our overall system diagram. BLIP2:(Li et al., 2023), T5:(Raffel et al., 2020), Conv_in and Conv_out layers are modified to 128
channels. Audio Encoder, decoder and residual vector quantized (RVQ) layers are pretrained by Encodec (Défossez et al., 2022).

the supplemental capabilities of Stable Diffusion (Rombach
et al., 2022), including efficient fine-tuning like Control-
Net (Zhang and Agrawala, 2023) and Dreambooth (Ruiz
et al., 2022), among others1.

Our work, motivated by the need to augment low-resource
audio datasets, makes the following contributions:

1. We release a new large-scale audio dataset with effi-
ciently generated captions.

2. We efficiently train a diffusion model using a pre-trained
latent encoder-decoder, bypassing the need to train a
separate VAE and vocoder (e.g., HiFiGAN (Kong et al.,
2020a)), and still achieves competitive inference speed.

3. We showcase our diffusion model’s ability to generate
useful audio data.

2. Background & Related Works
Diffusion Models: Denoising Diffusion Probabilistic Mod-
els (Diffusion Models) (Ho et al., 2020) are a class of score-
based generative models to predict how a data point diffuses
over set time steps. The motivation for these models is as
follows: given an image and a known forward diffusion
process, model and predict the reverse diffusion process.
Once trained, the reverse diffusion process can map random
noise into new samples from the training data’s distribution.
While accurately modeling the proper probability density

1Refer to the Appendix for more details.

function (PDF) of a sufficiently complex dataset P (X) is
intractable, diffusion models instead model the gradient or
stein score of the PDF: ∇xlogP (X). Through integration,
this score function conserves the information stored within
the PDF without being intractable to compute (Song and Er-
mon, 2020), allowing for superior data coverage compared
to other generative models.

Diffusion models have excelled at tasks including image
synthesis (Dhariwal and Nichol, 2021) and audio generation
((Liu et al., 2023; Yang et al., 2023; Kong et al., 2021)).
In contrast to other generative models, diffusion models
suffer from a significant drawback: the extended duration
required for sampling. This happens because the iterative
denoising process requires multiple steps instead of a single
forward pass employed by GANs and VAEs for generation.
Many modern diffusion models address this limitation by
operating in the latent space of an autoencoder, significantly
reducing the dimensionality required for generation (Rom-
bach et al., 2022). This approach improves image quality
while simultaneously lowering sampling and training time.

Latent Diffusion: Several recent works have used latent
diffusion models for audio generation. AudioLDM and Diff-
Sound (Liu et al., 2023; Yang et al., 2023) generate audio by
applying diffusion to spectrogram representations of sound.
However, in addition to the denoising network, these ap-
proaches require training both a new VAE and an entirely
separate vocoder (e.g., HiFi-GAN (Kong et al., 2020a)) to
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Model Datasets FD IS KL

DiffSound AS+AC 47.68 4.01 7.76
AudioGen AS+AC+8 - - 2.09
AudioLDM-L-Full AS+AC+2 23.32 8.13 1.59
Ours-CLAP AS 67.6 1.63 0.127
Ours-CLAP-masked AS 55.5 1.64 0.134
Ours-T5-masked AS 13.14 1.64 0.209
Ours-T5 AS 12.09 1.64 0.259

Table 1. comparison between our models and current SOTA mod-
els. These models are scored on frechet distance (FD), inception
score (IS), and kullback–leibler divergence (KL). Our scores are
computed by comparison against AudioCaps (Kim et al., 2019) test
set. Scores for DiffSound (Yang et al., 2023), AudioGen (Kreuk
et al., 2022), and AudioLDM are from (Liu et al., 2023).

convert from the generated spectrograms back into wave-
forms. This requires significant engineering effort and may
be difficult to reproduce or generalize to new domains (e.g.,
if FFT parameters for spectrograms are hard-coded).

In this work, we dramatically reduce the engineering effort
and GPU hours needed to train an audio diffusion model.
Rather than training our own VAE and vocoder, we use
Encodec (Défossez et al., 2022), an off-the-shelf VQ-GAN
model which has demonstrated competitive MUSHRA (Se-
ries, 2014) in high-fidelity audio generation. This allows
us to focus all our training resources on the denoising U-
Net. While using the pretrained VQ-GAN prevents us from
jointly learning the latent space and the diffusion model, our
model is still able to adapt to the Encodec model’s latent
space. Our use of the Encodec model is similar to that of
AudioGen (Kreuk et al., 2022), except they instead train an
auto-regressive model. AudioGen also does not have public
training code, making it a blackbox model and difficult to
replicate.

Automatic Caption Generation: Another common issue
for audio datasets is the lack of high quality captions. Other
efforts, such as WavCaps (Mei et al., 2023) and AudioCaps
(Kim et al., 2019), have taken various approaches to this
challenge. AudioCaps employed human judges to create
audio-text pairs for over 46 thousand samples taken from
AudioSet, whereas WavCaps used ChatGPT to generate
captions based on the weak labels resulting in a new dataset
of approximately 400k samples. Both methods fail to scale
effectively due to the often prohibitive cost of human judges
and premium closed-source APIs.

3. Harnessing LLMs to generate Audio+Visual
Captions: Prompt Engineering

We leverage the power of LLMs to increment the descrip-
tiveness of the audio captions on datasets such as Au-
dioSet(Gemmeke et al., 2017), which only contains weak
labels without descriptive captions. We use Alpaca (Taori
et al., 2023) (INT8-quantized) and engineered prompts to

generate a richer caption for every sample in AudioSet bal-
anced and unbalanced sets, unifying the list of audio classes
and introducing the relevant concepts. Alpaca is an open-
source instruction-following model fine-tuned on the Llama-
7b model (Taori et al., 2023). To generate text captions
from class label lists, we used the following prompt: “For
each of these, summarize the sounds into a single sentence:
\n describe a situation with all of these sounds together:
[LIST OF LABELS]”. A limitation of the Alpaca model is
its tendency to add unnecessary details or ignore relevant
labels when generating captions. By adding examples to
the prompt, we leveraged the in-context learning ability of
Alpaca to enrich our captions. The appendix covers more
details on these prompts and provides examples.

Building upon the potential of LLMs, this study signifi-
cantly improved the descriptiveness of captions in AudioSet
using Alpaca, an open-source instruction-following model.
Notably, our strategy also involved a novel integration of
video-based captions generated from the state-of-the-art
BLIP2 model with our enriched audio captions. We utilized
Alpaca again to merge these disparate data sources, effec-
tively consolidating audio and visual context while reducing
inaccuracies. This approach yielded more nuanced and rich
captions, demonstrating the value of merging LLMs, Alpaca,
and video-to-text models to elevate data representation and
quality.

4. Text-guided Diffusion in Quantized Latent
Space

Text Encoder τθ: We experimented with several text en-
coders for the prompt conditioned generation including
CLIP (Radford et al., 2021), CLAP (Wu* et al., 2023), and
T5 (Raffel et al., 2020). The model originally used CLIP but,
CLIP is trained on image-text pairs. Next we tested CLAP
for its textual-audio joint embedding, though we found it
performed worse than T5. T5 has a larger embedding space
than CLAP or CLIP, requiring an additional linear projec-
tion to connect it to the U-Net. We found this detail crucial
to changing the text encoder while preserving pre-training
knowledge.

The final consideration for text encoding is using an atten-
tion mask on the text embedding. We experimented with
and without attention masks with varying results. Experi-
mentally, as shown in Table 1, masking had different effects
on CLAP and T5-based models. Intuition would say that
masking the T5 embedding would yield a more significant
improvement as its fixed length is larger than CLAP; how-
ever, the addition of the linear projection layer between
the text embedding and the U-Net functions as a type of
masking resulted in inferior performance when combined
with an attention mask, as was also discussed in (Rombach
et al., 2022) as “unmasked" expert model. The second ma-
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jor benefit to adding a projection layer is it allowed us to
completely skip fine-tuning the text encoder model as this
layer functions as an adapter between T5 and our U-Net.
U-Net ϵθ Design: We refer to our U-Net as a Wide Channel
U-Net due to our choice to train and generate in a 128-
channel latent space instead of the typical one or three chan-
nels used in SOTA audio generation. We had two main
observations that informed this decision: first, the receptive
field of the U-Net convolutional blocks could not fully ex-
plore the 128 × 504 latent space representations from the
Encodec encoder; second, the latent encoding showed little
variance within the 128 dimensions. We were able to lever-
age the second observation to correct the first by reshaping
the latent vectors from a one-channel 128× 512 image to
a 128-channel 21 × 24 image. We then normalized each
channel to a mean of zero and std of one representation to
assist the U-Net in learning the noise: ϵ ∼ N (0, I). With
this new representation, the convolutional blocks are able
to contain the entire image in their receptive field without
losing resolution and result in higher fidelity audio. After
generation, these transformations can be fully inverted to
allow for decoding back into a waveform.

Another difference between our diffusion approach and that
of past work (e.g., AudioLDM (Liu et al., 2023)) is our
use of cross-attention instead of embedding adding. In self-
attention, the text embedding is first concatenated to the
image embedding, subjecting it to modifications at each
layer of the U-Net. For cross-attention, we instead use
the unmodified text for attention at each layer of the U-
Net, maintaining the text embedding’s fidelity throughout
generation and improving class guidance. The appendix
covers the details of our attention mechanism.

Format Batch
Size

Disk Z-Shape Train
Steps

Inference
Time

Waveform 8 1.4 TB 1 × 160k - -
Spectrogram 12 1.2 TB 128 × 1024 60k >30s
Encodec 192 63 GB 8 × 504 60k 14.7s
AudioLDM 8 2.3 TB 8 × 16 × 250 1.75M 25.8s
AudioGen 256 2.0 TB - 200k -
DiffSound 16 - 80 × 860 8days 49.6s

Table 2. Efficiency comparison. Our pipelins (top): Waveform
is prohibitively large, thus not successful; We regenerate wave
from spectrogram using Griffin-Lim Algo. Our training is done on
AudioSet 2M using 8 A100 GPUs, inference is 1 A100 GPU. SOTA
works (bottom) AudioLDM(Liu et al., 2023) DiffSound(Yang et al.,
2023) (Kreuk et al., 2022) respective papers or computed. (more
details clarified in the appendix)
Generation Latent Space: The Encodec model (Défossez
et al., 2022) we selected consists of an encoder, vector quan-
tizer, and decoder stages. (Figure 2) Initially, we attempted
to directly learn the discrete “codebook" of RVQ as this
has the highest degree of compression, at only 8 × 504,
and could leverage the generative benefits of the Encodec

codebook and decoder stage. We pre-computed the entirety
of AudioSet 2M into discrete vectors and saved these new
compressed versions to disk for training. However, during
experimentation, we observed nearly 0 decreases in train
loss over time, as diffusion is only suitable for continuous
vector space (Song and Ermon, 2020), suggesting an Au-
toRegressive model might better suit this. We trained our
next model on the decoder embedding, which is of larger
size, at 128 × 504, but is continuous. This slight change
improved training substantially, only requiring us to per-
form one forward pass of the pre-trained dequantizer while
having 2 huge advantages: First, the I/O read times became
significantly shorter as the files consist of 8× 504 features
instead of 160, 000 × 1, resulting in a complete copy of
AudioSet 2M that only takes 63 GB compared to 1.4 TB
before for a > 95% reduction. Second, without needing to
store these large waveforms in memory, we increased our
batch sizes significantly, greatly improving training time.

Figure 2. Encodec (Défossez et al., 2022) quantization process for
encoder latent representations. Encoder-decoder pair not included
in figure. Codebook stage is cropped in the figure to improve
visibility.

5. Experiment and Results
Table 1 presents quantitative comparisons between our mod-
els and previous SOTA models. We performed our evalu-
ation similarly to AudioLDM (Liu et al., 2023); first, we
extracted all captions from the AudioCaps (Kim et al., 2019)
test set and generated samples based on each of these cap-
tions. We then compare FD scores against the ground truth
audio from the AudioCaps (Kim et al., 2019) test set for
each model, IS and KL scores are similarly measured. This
shows two noteworthy trends: 1) our generative model holds
up to current SOTA models despite training exclusively on
AudioSet with Alpaca-generated captions, whereas previ-
ous SOTA works include multiple other datasets. 2) the
inverse trends of our FD vs. KL scores imply a trade-off
between quality and diversity. This intuition is reflected in
the models with said scores. CLAP model’s superior KL
scores are a reflection of the similarity between CLAP and
CLIP, which these models were pretrained on. T5-based
model’s superior FD scores imply T5 assists in generation
more than CLAP despite lower variance. Table 2 shows our
approaches efficiency advantage.
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A. Appendix
Notes on Table 1 Table 2: AudioGen (Kreuk et al., 2022)
employed separate data-cleaning and augmentation, we re-
ported our estimate. All disk spaces are calculated based
on the number of samples they reported in the paper. Each
work reported batch-size in a different way, DiffSound(Yang
et al., 2023) reported batchsize on each GPU, AudioGen did
not specify, using 64 GPUs. Train steps was not reported
in DiffSound, 200 epochs was reported (8 days). Ours 60k
steps took 2 days. DiffSound’s is also spectrogram regen-
eration, their spectrogram hyperparams are missing, their
VQVAE was on spectrogram with latent size 5 × 53.

Appendix Outline:

1. Section A will cover more details about prompt engi-
neering, and the usage of entailment scoring.

2. Section B will cover more details about our model
training and hyperparameters

3. Section C offers a further in-depth understanding of
our cross-attention mechanism as described in the
main paper, and why it produced the results in Table 1
in the main paper.

4. Section D includes more generation results from our
diffusion model.

5. Section E showcases our diffusion model could be
further used as a data-augmentation method. Clas-
sifiers trained with diffusion-generated data improve
over those trained only on the original data.

A. Harnessing LLMs to generate
Audio+Visual Captions: Prompt
Engineering

Prompting given audio-only weak labels: We leverage the
power of LLMs to increment the descriptiveness of the au-
dio captions on datasets such as AudioSet(Gemmeke et al.,
2017), which only contains weak labels without descriptive
captions. We use Alpaca (Taori et al., 2023) and engineered
prompts to generate a richer caption for every sample in
AudioSet balanced and unbalanced sets, unifying the list
of audio classes and introducing the relevant concepts. Ta-
ble A1 shows specific examples of the class list to caption
transformation.

Alpaca is an open-source instruction-following model fine-
tuned on the Llama-7b model (Taori et al., 2023). Utilizing
this model generates more grammatical captions that remain
faithful to the original labels.

To generate text captions from class label lists, we used
the following prompt: “For each of these, summarize the

sounds into a single sentence: \n describe a situation with
all of these sounds together:” followed by the clip’s la-
bels. A limitation of the Alpaca model is its tendency to
add unnecessary details or ignore relevant labels when gen-
erating captions. By adding examples to the prompt, we
leveraged the in-context learning ability of Alpaca to enrich
our captions. Table A1 covers more details.

Filter Hallucination and Obtain Visual Captions: De-
spite initial success with our approach, some captions con-
tain Alpaca hallucinations, particularly in the cases of a sin-
gle class caption. For example, in Table A1 line 4, “swamp"
is a hallucination, however plausible. To address this, we
filter captions to replace single-class captions with a simpler
non-LLM derived caption "The sound of [CLASS]". This
second pass does not invalidate the Alpaca-generated cap-
tions, which are far superior at capturing the complexity
of audio samples with multiple classes. Recognizing the
lack of detail in this single class captions, we utilized a
SOTA Video-to-text model BLIP2 (Li et al., 2023) to gen-
erate video-based captions for each video. These captions
were derived from 3 sampled frames within the video at
the 1

3 , 1
2 , and 3

4 points of the 10 second clips. We again
used Alpaca to combine these three captions into one with
the following merging prompt: “Create one sentence that
summarizes these three simply:”, allowing us to more ef-
fectively summarize the information of each video from the
frames sampled.

Merging Audio and Visual Captions: These video cap-
tions were then combined with the audio captions from
single-class labels with Alpaca to provide the needed visual
context within each caption and combat the hallucination
generated with single-label Alpaca audio captions. In our
prompt, we specifically focused on the audio-label while
using the visual caption as auxiliary information: “Summa-
rize these two captions conditioned on the second caption,
the second caption describes an audio class and is the main
concept:”. For all the prompts, we provided examples for
Alpaca to better utilize the strength of in-context learning.
Table A3,A4 show more examples.

Audio-visual False Positive and Entailment Scoring: By
observing the audio-visual captions generated while being
aware of the audio-visual false-positive issue, we noticed
that some of the captions in which the audio and video
were not aligned resulted in noisy captions with details un-
related to audio in the actual clip. To measure the alignment
between the visual caption and audio labels and test the
capabilities of a decoder-only language model, we created
an entailment score Alpaca prompt: “on a scale from 0
to 1, output the probability that these two captions hap-
pen together in float format:” In our in-context examples,
we emphasized similar concepts even if the exact audio la-
bel was not referred to, such as an “ukelele” in audio and
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Classes LLM Generated Captions

‘Singing’, ‘Yodeling’, ‘Speech’ ‘A person singing and yodeling while talking.’
‘Pump (liquid)’, ‘Water’ ‘The sound of a pump dispensing liquid and running water.’
‘Dog’, ‘Growling’, ‘Animal’ ‘A dog growling and making animal sounds.’
’Frog’ ’A frog is croaking in a dark, musty swamp.’

Table A1. Examples of conversions between class list and free text captions made to resemble image captions generated with an engineered
LLM prompt.

a “mandolin” in video receiving a high entailment score.
Nonetheless, we maintain the integrity of the video caption
by ensuring it did not introduce sounds not present in the
audio label, such as the implication of speech through the
depiction of a person, when the audio label did not include
speech.

We sought to investigate the fidelity of our AV entailment
score and overall usage of decoder-only LMs to calculate
textual similarity and other metrics. In parallel, we use
T5-sentence encoder (Raffel et al., 2020) and the BERT
sentence encoder and computed the embedding similarities
between the audio and video captions. The Pearson corre-
lation was then computed between the Alpaca entailment
score and the scores from both T5 and BERT encoders to get
0.13 for T5 and 0.14 for BERT. We also calculated the (min,
median, max) score for each metric with Alpaca having (0,
0.55, 1), T5 having (0.60, 0.75, 0.98), and BERT having
(−0.20, 0.34, 0.98).

These scores are not correlated which implies that a decoder
LM may be less reliable than an encoder LM when deter-
mining textual similarity and calculating metrics. Despite
this, using a caption similarity metric could ensure that fu-
ture audio-visual training data is less noisy and has clearer
relationships between different modalities and be used to
guide the merging of audio-visual captions to determine
when the visual context is useful to include in our caption.

Evaluation of Caption Generation: AudioSet’s label
coarseness and class imbalance are mitigated by our applica-
tion of multiple Alpaca LLM caption generations, yielding
2.2M detailed audio clip captions. 2 Previous efforts on
creating audio captions focused on automatic audio cap-
tioning(Mei et al., 2023), but with the small training set
size and imbalanced classes within the dataset § B.1, the
performance of their model is also limited. These are also
typically end-to-end with WavCaps(Mei et al., 2023) us-
ing a HTSAT-BART model (Mei et al., 2023) which lacks
the explainability and scalability compared to our human
language-focused approach with weak labeling. Our ap-
proach better considers different modalities and introduces
more flexibility in label generation due to the controlled
hallucination that Alpaca has.

2We will provide more details in the appendix and will release
all captions as open-source resources.

To assess the performance of our captions and the improve-
ments additional context provided in their generation we
analyzed a subset of AudioCaps (Kim et al., 2019) captions
(human generated captions) and their corresponding audio
clips against our generated captions, scoring each on a scale
from 0 to 1 on the similarity to AudioCaps(Kim et al., 2019)
while referencing the actual audio clip as shown in Table
A2. Since most automatic metrics are based on n-gram sim-
ilarity or LCS 3 and generally do not perform as well on
individual sentence comparisons (Awad et al., 2022), we
decided to use a human metric because of the large vocabu-
lary variation as shown in the subset vocabulary size shown
in Table A2. Additionally, the WavCaps (Mei et al., 2023)
model is fine-tuned on AudioCaps which helps boost their
automatic metric scores in comparison to our approach.

These results clearly display the qualitative improvements
gained from in-context prompting for LLMs with clear ex-
amples to guide text generation as well as the addition of
visual elements into the captions. One limitation is the ab-
sence of labels in the original AudioSet which the human
judges mentioned in the AudioCaps captions. Typically
this occurred with speech and wind sounds being present in
AudioCaps but not AudioSet labels. However, these cases
show the benefits of using LLMs for generation which was
able to use context clues and natural language understanding
to add these missing features. An example of this context-
aware enrichment can be seen in Figure 1 where the caption
“shuffling cards” is correctly extended to include a human
in the scene. Similarly, we observed that Alpaca would hal-
lucinate “at the park” or similar setting-specific details for
audio samples weakly labeled with ducks, water, or speech.
Such hallucinations are often correct, but even when false
they encode relevant domain-knowledge that helps improve
the quality of our captions.

A.1. Prompting given audio-only weak labels:

Table A3 shows the few-shot examples we feed Alpaca
model with to generate audio captions based on the labels
given.

3Longest common subsequence (LCS) and comparison of n-
gram overlaps perform poorly with vastly different vocabularies
and description styles as it is not able to capture semantic similarity
well or match with completely different caption structures and
scenarios
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Prompt Context Similarity Score BLEU1 BLEU4 METEOR ROUGEl CIDEr Vocabulary Size

Zero-Shot 0.474 0.128 0.006 0.079 0.128 0.094 -
One-Shot 0.605 0.178 0.014 0.100 0.182 0.193 -
Few-Shot 0.686 0.188 0.016 0.168 0.229 0.242 -
Audio-Visual Merge 0.750 0.165 0.013 0.109 0.178 0.183 1480
WavCaps(Mei et al., 2023) 0.667 0.231 0.056 0.136 0.277 0.682 509
AudioCaps(Kim et al., 2019) N/A N/A N/A N/A N/A N/A 871

Table A2. Average similarity scores ranging from 0.0 - 1.0 between captions generated with Alpaca prompts and ground truth captions
(AudioCaps) where zero-shot means no examples given to Alpaca, one-shot is one example, and few-shot is several examples, automatic
evaluation metrics compared to the ground truth, and vocabulary size for the sample captions generated.

Prompt Response

alarm, burp, inside, small room. burping while an alarm plays inside a small room.

dog, bark, howl, speech. a dog barking and howling with a person speaking as well.

Music, jazz, piano, singing, speaking. a person plays jazz piano with a singer while people talk.

engine, vehicle, wind, music, speech. people talking inside a car while driving and listening to music.

water, gargle, inside, small room. air is passing through the water in their mouth in a small room
with water.

scratch, hammer, metal. hammer striking a metal surface and scratching sounds can be
heard.

thunder, wind, bark, small room. a dog is barking in a small room during a thunderstorm with
audible wind.

gunshot, vehicle engine, siren, crash. a car chase with gunfire and sirens where a vehicle crashes.

waterfall, wind, sizzle, crackle. a fire is cracking with something sizzling near a waterfall with
wind.

stream, cough, cat, Purr. a cat purrs near a coughing person while a stream can be heard.

Table A3. Few-shot examples of Audio-only labels to captions. The list of audio labels is preceded by the prompt: "For each of these,
summarize the sounds into a single sentence: \n describe a situation with all of these sounds together:"

A.2. Filter Hallucination and Obtain Visual Captions:

We noticed that many of the single-label audio captions
often had hallucinations where there would be extra details
added (usually from one of the examples given). One ex-
ample of this would be “A person is sprinting while a dog
is barking and howling.” when only the “run” label was
given.

To address this, we created visual captions to help enrich our
audio data. Table A4 shows the specific examples we used
to join together the three visual captions that were generated
using BLIP2 (Li et al., 2023).

A.3. Merging Audio and Visual Captions:

Table A5 shows the specific examples that were used in the
prompt to join our single-label audio class and summarized
video captions. These examples help us filter the halluci-
nation generated when creating captions from audio-only
weak labels by utilizing visual information.

A.4. Audio-visual Entailment Score:

These scores can be used to address the audio-visual false
positive issue in which the audio of the video does not match
the visual frames presented. These scores also increase hu-
man understanding of image-audio-text correlations. We
can further utilize these scores to help perform caption filter-
ing, gating based on the entailment score between the audio
and visual concepts demonstrated within each video.

A.4.1. ENTAILMENT SCORING WITH ALPACA, T5, AND
BERT:

We conducted entailment scoring using Alpaca(Taori et al.,
2023), T5(Raffel et al., 2020), and BERT(Devlin et al.,
2018) on the balanced set of AudioSet(Gemmeke et al.,
2017). This allowed us to compare the results of the three
methods and how they would consider entailment differently.
Since Alpaca(Taori et al., 2023) is a decoder-only model, we
noticed that the entailment scoring was not always reliable,
scoring differently on additional runs. This is due to its auto-
regressive nature, which is highly dependent on its context.
To stabilize the scoring, we employ few-shot examples (in
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Prompt Response

a video game with a dragon in the water

final fantasy xv - the end of an era

final fantasy x-2 - the end of an era. The end of an era awaits in Final Fantasy XV
and X-2.

a person is using a printer to print out a document

a white cash register with a keyboard and a keypad

a person is holding a small piece of plastic on a plane. a person using a piece of plastic to make a pur-
chase at a cash register.

a man with a beard sitting on a bed

a man in a cowboy hat is playing an acoustic guitar

a man standing in the desert holding an acoustic guitar. A man in a cowboy hat is playing a guitar and
strumming away in the desert.

Table A4. Few-shot merging visual caption examples. Each set of captions is preceded by this prompt: "Create one sentence that
summarizes these three simply:"

Table A6, Table A7) to better utilize the in-context learning
ability of Alpaca. When conducting entailment scoring for
audios that only had one label, we utilized the AudioSet
ontology description (Gemmeke et al., 2017) and label due
to the hallucination in the default audio captions.

Despite using these examples, we still noticed that Alpaca
would sometimes output “incorrect” scores, e.g. given the
following pairing: (“A background of traditional Indian
music with lyrics from a bhangra song playing in the fore-
ground.”, “A bright star is twinkling in the night sky, shining
amidst the dark velvety backdrop.”) a score of 0.9 or (“A
person dribbling a basketball, slamming it on the ground,
and speaking.”, “A man in a purple shirt is playing basket-
ball, a man in a red shirt is playing soccer.”) a score of 0.1.
These cases are very counter-intuitive for human to explain.

On the other hand, we noticed that encoder-decoder models
(we only use the encoder) such as T5 (Raffel et al., 2020)
and BERT(Devlin et al., 2018) scoring tended to score some
single-label (ontology-based) captions lower than an alpaca-
generated caption that had less which audio-visual corre-
spondence. For example, when the caption pairing was (“An
ice cream truck outside a small room, playing music.”, “An
old digital audio box sits proudly on a table, displaying its
unique blue and white design.”), T5 gave it a score of 0.81
whereas when the pairing was (“Fire : Sounds resulting
from the rapid oxidation of a material in the exothermic
chemical process of combustion, releasing heat, light, and
various reaction products.”, “Firefighters are putting out a
blazing fire in a building.”), T5 only gave it a score of 0.80
despite the two captions being much closer in meaning.

Although there were some discrepancies when analyzing
these scores, we still found that overall, T5 scoring seemed
to be more consistent with the actual content of the captions.

The different score distributions for the three metrics uti-
lized on the balanced set can be found here (Figure 3(a),
Figure 3(b), Figure 3(c)).

These distributions reinforce how T5 had a generally higher
score range whereas BERT had scores in a lower range (even
below 0) as compared to Alpaca. It also shows how T5 and
BERT had similarly shaped distributions whereas Alpaca
tended to spread a bit more evenly across the spectrum (with
peaks at different points in the score distribution). The result
of the 3 different types of scoring on the balanced set can
be found on our open-source page4. We have also utilized
T5 scoring on the unbalanced set for AudioSet which will
also be made available.

A.4.2. EFFECT OF AUDIO-VISUAL ENTAILMENT
SCORES

To test the effectiveness of our entailment score, we employ
a similar audio-visual classification pipeline as described
in (Li et al., 2022a), which is illustrated in Figure 4. Our
audio encdoer is the same AST/DeiT model(Gong et al.,
2021) used in the main paper. The video is encoded by a pre-
trained R2+1D(Tran et al., 2018) model. The naive fusion
is pure concatenation. We plug in our entailment scores
in the attention mechanism by discounting the attention
score for the video portion. Specifically, ct =

∑T
i=1 αt,ihi

the corresponding embedding indexes’ attention score gets
discounted by the entailment score. The result is shown in
Table A8. Although our best score still lags the best SoTA
model on AudioSet, the point is our improvement over naive
fusion shows all three types of entailment scores outperform
the naive version of fusion.

4https://audiojourney.github.io/
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Prompt Response

man in a cowboy hat is throwing a rope while standing on a green field.

Whip An audio scene emphasizing the sharp sound of a whip,
set against a visual backdrop of a man in a cowboy hat
throwing a whip on a green field.

a man eating a cupcake at a table

Tick An audio scene centered around the subtle ticking sound,
with a backdrop of a man enjoying a cupcake at a table.

a person using a piece of plastic to make a purchase.

Cash register An audio scene capturing the distinctive sound of a cash
register, accompanying the moment when a person uses
a piece of plastic to make a purchase.

a man brushing his teeth

Toothbrush a man cleans his teeth with a toothbrush’s audible scrub-
bing.

man standing in the desert holding an acoustic guitar

Country An audio scene focused on the Country genre, featuring
a man standing in the desert holding an acoustic guitar.

Table A5. Few-shot audio and visual caption merge examples. Caption-label pair is preceded by the following prompt: "Summarize these
two captions conditioned on the second caption, the second caption describes an audio class and is the main concept:"

A.5. More Details about Caption Generation:

Similarity Score (Table A2) We recruited 5 human subjects
to evaluate 500 samples and report their average ratings for
zero-shot, one-shot, and few-shot and A-V Merge captions
and WavCaps (Mei et al., 2023) generated results in Table
2 of the main paper. When evaluating our captions, we ask
the human subject to provide a similarity score between the
generated captions and the AudioCaps(Kim et al., 2019)
ground truth, ranging from 0-1. In the cases of ambiguous
samples or when AudioCaps(Kim et al., 2019) labels are
not reliable, we also provide the original youtube links to
the evaluators and ask them to use the audio content as the
ground truth.

Key Statistics Comparison: To further compare the differ-
ent caption sets, we analyzed the vocabularies of AudioCaps
(Kim et al., 2019) versus the WavCaps (Mei et al., 2023)
and captions our system generated from the same clips. By
observing the top 20 words (Figure 7, Figure 5, Figure 6),
we can see that AudioCaps and WavCaps have many simi-
larities with 14 of the top 20 words being identical. These
similarities help support the closeness of vocabulary be-
tween the two sets (resulting in high automatic metrics),
meanwhile reducing the diversity and generalizability of
the captions. We also noticed that in the top 20 words of
our audio-video merged captions contain the term ‘audio
scene’ which reflects the examples we used when prompting
Alpaca. This shows a clear path that we could inject our
own inductive bias into any future LLM-based dataset aug-
mentations. In addition to the vocabulary size difference,

we also noticed a key difference in the length of captions
generated through our system versus those of AudioCaps or
WavCaps. The minimum caption length for all three main
types of captions were all 3. The maximum caption dif-
fered a lot, with the AudioCaps (Kim et al., 2019) samples
having a maximum of 31, WavCaps (Mei et al., 2023) sam-
ples having a maximum of 25, and our audio-video merged
captions having a maximum 45. Additionally, the average
length of AudioCaps is 10.49, for WavCaps is 6.89, and
for our audio-video merge was 17.07. This demonstrates a
drastic increase in length and thus richness of the captions
generated by our LLM-based audio-video merging methods.
We see that the WavCaps (Mei et al., 2023) captions are
generally the shortest which suggests a lack of variation in
structure when generating captions.

Some key examples of where utilizing audio-video merged
captions benefited our model over WavCaps(Mei et al.,
2023) are included in Table A9. We see that in these exam-
ples, our captions utilized details such as the flag or the cap-
tion on the video to determine what exactly the sound was,
adding key details that weren’t apparent in the WavCaps
captions. These also demonstrate how simple WavCaps
captions are overall.

Overall, we believe this is a very promising paradigm to
augment the existing audio dataset. In the future, if we
could leverage high-performance classifiers to auto-label
audio from the wild or to fine-tune the LLM to plug into
Automatic Audio Captioning system, it would be a clear
pathway to scale up audio training datasets.
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Prompt Response

a man in a cowboy hat is throwing a rope while standing on a green field.

Whip : The sound of whipping, i.e., the greatly accelerated motion of the tip of a flexible structure, as the result of
concentrated angular momentum.

0.85

a man eating a cupcake at a table

Tick : A metallic tapping sound.: A metallic tapping sound. 0.00

a person using a piece of plastic to make a purchase.

Cash register : Sounds of a mechanical or electronic device for registering and calculating transactions, usually attached
to a drawer for storing cash.

0.45

a man brushing his teeth

Toothbrush : Sound of an instrument used to clean the teeth and gums consisting of a head of tightly clustered bristles
mounted on a handle.

1.00

man standing in the desert holding an acoustic guitar

Country : A genre of United States popular music with origins in folk, Blues and Western music, often consisting of
ballads and dance tunes with generally simple forms and harmonies accompanied by mostly string instruments such as
banjos, electric and acoustic guitars, dobros, and fiddles as well as harmonicas.

0.90

Table A6. Alpaca audio-visual entailment score examples for single-label. The caption-label pair is preceded by the following prompt:
"on a scale from 0 to 1, output the probability that the first caption describes a scenario with the second caption’s sound description:"

B. Training Details
B.1. Datasets

Datasets: AudioSet contains 2 million 10-second YouTube
clips, each weakly annotated for 527 types of audio events.
Multiple events can occur in the same clip; a video of water
boiling might be labeled with both “Liquid” and “Boiling.”
The data contains three splits: a class-balanced training
subset (22K clips), an unbalanced training subset (2M clips),
and an evaluation set (20k clips). The size disparity between
training subsets highlights the underlying imbalance: there
are over one million clips each labeled with “Music” or
“Speech,” but the rarest class (“Toothbrush”) has only 127
clips. AudioSet uses a hierarchical ontology5 to categorize
sounds; for example, “Toothbrush” is fully categorized as
(“Sounds of things”→ “Domestic sounds, home sounds”
→ “Toothbrush”). Despite the complexity of this hierarchy,
many clips have only a single label that fails to capture the
full complexity of the video’s context. For example, a video
of a toothbrush might be labeled simply with “Toothbrush”
while containing the sounds of running water or speech.

We downloaded around 1.97M unbalanced training, 20K
balanced training, and 19K evaluation clips. Some samples
have been deleted from YouTube and could not be down-
loaded. For the AS-2M experiments in Table A11, we use
the union of unbalanced and balanced sets for pretraining
and fine-tuning. For the AS-20K experiments, we use AS-
2M for pretraining and the 20K balanced set for fine-tuning.
We report the testing mAP on the 19K eval set, and the same

5https://research.google.com/audioset/ontology/index.html

recipe as (Li et al., 2022b).

B.2. Implementation

We fine-tuned our models from models available on Hug-
gingFace Diffuser Library, specifically their v1.4 model
(Rombach et al., 2022). While we initialized our model
from the Stable Diffusion checkpoint, the model, training
code, and larger pipeline have been heavily modified to fit
our purposes. Most notably, we had to make changes to
work with non-HuggingFace models, such as the Encodec
model(Défossez et al., 2022), along with changes to the
U-Net to adapt to wide-channel inputs. All data for models
other than ours in Table B.2 was copied from their respec-
tive papers training details as they do not provide training
code as of the time of writing, only AudioLDM(Liu et al.,
2023) has public code for loading checkpoints.

For our training, we exclusively trained on individual ma-
chines with eight A100 GPUs. We chose most hyperpa-
rameters following (Rombach et al., 2022), with variations
to fit our hardware and model. We could use significantly
larger batch sizes due to the extremely high compression
from the Encodec (Défossez et al., 2022) model’s discrete
codebook; we lowered our memory overhead by 56.5% per
sample. Pre-computing the codebook codes made these
gains possible by allowing larger batches and faster training.
As Table 4 of the main paper described, we trained multiple
models, varying the text encoder with all other parameters
and stages remaining the same. However, as will be de-
scribed in Section C, the T5 models required an additional
linear projection layer from the length 1028 T5 encoding to
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Prompt Response

two young men wearing red and white shirts

A person is speaking while there is a loud gush of air. 0.10

goat grazing on grass in the mountains

A goat making music and someone speaking aswell. 0.75

a young boy is riding a skateboard down a sidewalk

A male is singing and a child is singing along to the same music. 0.05

a person is holding a gun with a glove on it

Gunfire and cap gun. 0.80

a screenshot of a game with three people in red and blue outfits

Gunfire and cap gun. 0.00

a person playing a ukulele with their hands

There is background music with a mandolin being played. 0.70

a man in a green shirt is talking to the camera

A cat meowing and a person speaking. 0.50

a person holding a snake in front of a door

A snake hissing. 0.60

Table A7. Alpaca audio-visual entailment score examples for multi-label. The caption pair is preceded by the following prompt: "on a
scale from 0 to 1, output the probability that the first caption describes a scenario with the second caption’s sound description:"

Model Backbone PT AS-20k (mAP) AS-2M (mAP)
A V A+V A V A+V

Naive Fusion DeiT-B/R2+1D IN+KI-SL 34.6±.20 18.1±.09 37.4±.18 45.4±.70 23.9±.12 46.5±.29

Alpaca score Fusion DeiT-B/R2+1D IN+KI-SL 34.6±.20 18.1±.09 38.4±.14 45.4±.70 23.9±.12 47.6±.33

T5 score Fusion DeiT-B/R2+1D IN+KI-SL 34.6±.20 18.1±.09 39.1±.10 45.4±.70 23.9±.12 49.5±.42

BERT score Fusion DeiT-B/R2+1D IN+KI-SL 34.6±.20 18.1±.09 38.7±.15 45.4±.70 23.9±.12 49.1±.37

AST (Gong et al., 2021) DeiT-B IN 34.6 - - 45.4 - -
MBT (Nagrani et al., 2021) ViT-B IN-SL 31.3 27.7 43.9 41.5 31.3 49.6
CAV-MAE (Gong et al., 2022) ViT-B SSL 37.7 19.8 42.0 46.6 26.2 51.2

Table A8. Comparison with other state-of-the-art models on audio-visual classification evaluated on AudioSet(Gemmeke et al., 2017)
test set, using both audio and visual features. Metrics are mAP for AS. For pre-training (PT) dataset, AS:AudioSet, KI:Kinetics (for
R2+1D(Tran et al., 2018)), and IN:ImageNet. SSL: self-supervised learning, SL: supervised learning; We gray-out baselines. Best single
models in AS-2M are compared (no ensembles).

the expected 786 input dimension for cross-attention. This
extra layer adds parameters to the model and would affect
training, but the added parameters are negligible compared
to the size of the U-Net. Due to our A100 GPUs are the
40GB version, without model parallel, we could not afford
to unfreeze and fine-tune the text encoder together with
training the UNet.

B.3. Encodec Latent Embedding Space

Figure 8 displays the Encodec (Défossez et al., 2022) latents
at each denoising stage. Perceptually the reconstruction
is excellent with a subjective evaluation (MUSHRA score)

of 88.06. As we could see, Diffusion is able to learn the
pattern of the latent space despite it being very subtle if not
imperceptible by human’s standard.

B.4. Training Instability from Frozen Blocks

One warning from the (Rombach et al., 2022) paper for
fine-tuning their models is catastrophic forgetting. While
we faced this issue when training our CLAP models, it did
not noticeably affect the training of our T5 models. Our
U-Net consists of a few major components: a conv_in block,
down blocks, a mid-block, up blocks, and a conv_out block.
During experimentation, we attempted to accelerate training

6https://en.wikipedia.org/wiki/MUSHRA
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Youtube ID Audio Label Video Caption Merged Caption WavCaps

BjWf0keANT8 Sine Wave 10,000 hertz sine wave au-
dio frequency.

10,000 hertz audio fre-
quency, represented by a
sine wave.

a continuous sine wave
sound

83IJft_3Z4E Throbbing An ultrasound image of a
baby in the womb, proof
of new life and potential
new beginnings.

An audio scene depicting
the throbbing sound of
a heartbeat, accompanying
the visual of an ultrasound
image of a baby in the
womb, proof of new life and
potential new beginnings.

a heartbeat is being
recorded

6hj2F5xvGYE Male singing A man is singing into a
microphone in front of an
American flag.

A male singing into a micro-
phone in front of an Ameri-
can flag, capturing the emo-
tion of the patriotic song.

someone is singing a song

Table A9. Examples of our Audio-Video merged captions versus WavCaps(Mei et al., 2023)

Diffusion (Denoising Network) Classification
Configuration DiffSound AudioGen AudioLDM Ours AS-20K AS-2M

Optimizer AdamW Adam - AdamW AdamW AdamW
Optimizer β1 - β2 0.9 - 0.94 - - 0.9 - 0.999 0.9 - 0.999
Base learning rate 3.0e-6 5.0e-4 1.0e-4 2.56e-4 0.001 2e-4
LR schedule Constant Inv Sqrt Constant CosDecay CosDecay CosDecay
Noise schedule Sc-Linear - Sc-Linear Cosine - -
ChannelMultiplier - 1,2,4,8 1,2,3,5 1,2,4,4 - -
Diffusion Steps - - 1K 1K - -
Warm-up epochs - - - - 1 4
Training Epochs 600 - - - 60 10
Warm-up steps - 3K - 1K 1K 1K
Training Steps - 200K 1.5M 40K - -
Batch size 16 256 8 192 256 32
GPUs 32 128 1 8 4 4
GPU Type V100 A100 A100 A100 V100 V100
SpecAug - - - - 192/48 192/48
Mixup - - - - 0.5 0.5
Loss Function - ℓ1,ℓ2,CE MSE MSE BCE BCE
Sampler DDIM - DDIM PNDM - -
Sample Steps 100 - 200 45 - -
Guidance Scale - 1 - 5 4.5 3.5 - 7.5 - -
Normalization - - - Channel (-4.27, 4.57) (-4.27, 4.57)

Table A10. Table comparing training hyperparameters between SOTA audio generation models, our model, and our classification models.
All "-" values are either unknown or not applicable to the given model. All values are from respective papers and appendices sections on
training. Inv Sqrt = Inversed Square root; Sc-Linear = Scaled Linear; CosDecay = Cosine with Decay. For normalization we include a "-"
if the values are unknown, channel for our per-channel normalization, or (µ, σ) for the dataset. Citations: DiffSound (Yang et al., 2023),
AudioGen (Kreuk et al., 2022), AudioLDM (Liu et al., 2023), SpecAug (Park et al., 2019), Mixup (Zhang et al., 2017), DDIM (Song
et al., 2020), PNDM (Liu et al., 2022)

and conserve the pre-trained weights of Stable Diffusion-1-4
by freezing the weights of all blocks other than conv_in and
conv_out for 5,000 training steps. This method proved infe-
rior to simply allowing the entire pipeline to learn together
in final loss value and training stability. Figure 10 shows an
example training loss graph for one of the aforementioned
experiments, clearly displaying the high degree of instability

that emerged after the blocks were unfrozen. This instability
alone would not be a reason to abandon this technique; how-
ever, the more troubling trend was the loss values plateauing
around 0.4 compared to 0.19 in our best models.
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(a) Alpaca-generated entailment score dis-
tribution for balanced set

(b) T5-generated entailment score distribu-
tion for balanced set

(c) BERT-generated entailment score dis-
tribution for balanced set

Figure 3. Comparison of entailment score distributions for differ-
ent models on AudioSet(Gemmeke et al., 2017) balanced set.

Figure 4. Entailment score penalizing attention score at the atten-
tion pooling layer

Figure 5. Top 20 words from the vocabulary of the AudioCaps
samples (not including stop words)

C. Cross Attention Mechanism
In Table 1 of our main paper, we observed our AudioJourney-
CLAP models generally under perform AudioJourney-T5
models, we believe there could be 2 main reasons:
1) CLAP(Wu* et al., 2023) was trained on 660k samples,
which is way smaller dataset than what T5(Raffel et al.,
2020) was trained on. Although the CLAP text encoder
demonstrated good performance on audio embedding (Wu*
et al., 2023), T5 may be superior in a general setting.
2) Since CLAP (Wu* et al., 2023) output matches with d, we
did not adapt its last layer. Using a frozen encoder would
solely depend on the Wq,Wk,Wv to learn the mapping,
which might be suboptimal.

Cross-Attention(Q,K,V) = softmax
(QK⊤
√
d

)
·V

where Q = W
(i)
Q · φi(zi), K = W

(i)
K · τθ(y),

V = W
(i)
V · τθ(y)

and W
(i)
Q ∈ Rdq×di

ϵ , W
(i)
K ∈ Rdk×dτ′ ,W

(i)
V ∈ Rdv×dτ′ ,

φi(zi) ∈ Rn×di
ϵ , τθ(y) ∈ Rm×dτ

in our case: dτ = 1024, dτ ′ = 768, dk = dv = dq = d = 768

(initialized from Stable Diffusion (Rombach et al., 2022) weights),

diϵ is the ithlayer of Unet φi’s output size
(1)
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Figure 6. Top 20 words from the vocabulary of the WavCaps sam-
ples (not including stop words)

Figure 7. Top 20 words from the vocabulary of the our audio-video
merged samples (not including stop words)

A surprising result in Table 4 of our main paper is that the
masked model performed worse than the unmasked model.
This is counter-intuitive, given that attention masking is a
common mechanism used to handle variable length inputs.
Figure 11 explains how masking negatively affects cross-
attention in the U-Net. As is illustrated, the white part of
the text embedding τθ(y) indicates the masked out content
because the max sequence length is larger than the number
of audio caption tokens. Towards the end, you can see
if we pass this mask to the U-Net, this would result in a
low-rank dot-product of the attention score A and the V
tensor, which result in a low-ranked Z. In an extreme case
of when token length is 1, this is reduced to a rank-1 vector
dot product of column by row. We believe this low-ranked
representation of Z is suboptimal to the full-ranked version
when unmasked.

Therefore, to compensate for the above issue, we reduce our
max token length to 50, and use the unmasked versions in
our best-performing recipe.

D. Additional Samples and Demos
For overall listening experience, we put our listening
samples and spectrogram visualizations to our web-
site: https://audiojourney.github.io/ and
the code and implementations are at: https://github.

Figure 8. Latent space representations created throughout the de-
noising process. These images notably display the lack of inter-
pretability in our generation space.

Figure 9. Generation comparison between model trained with
frozen blocks (top) and model trained without (bottom). Com-
paring this to other examples, such as Figure 2 clearly shows the
lack of quality from frozen models.

com/audiojourney/audiojourney.github.io

Our Audio-journey models could serve as the base model
similar to Stabel Diffusion (Rombach et al., 2022) in vi-
sion, and it would allow a separate smaller network to
learn new concepts from new dataset (ControlNet) (Zhang
and Agrawala, 2023), and would also allow finetuning
through low-rank approximation like Dreambooth (Ruiz
et al., 2022).

E. Diffusion as Augmentation
To further validate the quality of both our generated captions
and the trained diffusion model, we generate a large dataset
of new audio samples and use it to train a classifier from
scratch. Furthermore, we can also use our generated data to
supplement, rather than replace, the existing AudioSet train-
ing data; we show that the combination of real and generated
data results in improved SOTA classification accuracy.

Using a pretrained text-to-audio diffusion model, we gen-
erated over 80,000 new audio samples randomly divided
among the 527 audio classes in the AudioSet-20K balanced
set. A random value N ∈ [1, 2, 3] was selected and mapped
to N random classes from the AudioSet-20K class list for
each sample. With these samples generated, we combined
them into the datasets shown in Table A11.

Due to the unbalanced distribution of AudioSet labels, we
adopted the balanced sampling strategy as mentioned in
Chapter (Li et al., 2022b). Note here, the weights for the
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Figure 10. Training loss graph for model. This model started with
all layers other than conv_in and conv_out frozen, then unfroze
these blocks after 5,000 training steps.

Figure 11. Illustration of the cross-attention mechanism under
masking scenario, the white-colored portions indicate masking.

lowest performing 100 classes are amplified as a control set
for the experiment. When mixing real and synthetic data,
we adopt the same strategy as (Trabucco et al., 2023):

i ∼ U({1, . . . , N}), j ∼ U({1, . . . ,M})

Bl+1 ← Bl ∪

{
Xi with probability (1− α)

X̃ij otherwise

(1)

Note here X ∈ RN×H×W×1 denotes a dataset of N real
audio latents, and i ∈ Z specifies the index of a particular
latent Xi. For each latent, we generate M augmentations,
resulting in a synthetic dataset X̃ ∈ RN×M×H×W×1 with
N ×M augmentations, where X̃ij ∈ RH×W×3 enumerates
the jth augmentation for the ith latent in the dataset. Indices
i and j are sampled uniformly from the available N real
audio latents and their M augmented versions respectively.
Given indices ij, with probability (1−α) a real audio latent
Xi is added to the batch B, otherwise its augmented latent
X̃ij is added.

To closely match the original AS-20K dataset, these new
samples do not have LLM-generated captions, the naive
approach is to generate them with a simple prompt format-
ted as "The sound of [LIST OF AUDIO CLASSES]." This
configuration was used in (Liu et al., 2023) to convert labels
to captions and provide prompts. We believe it is subopti-
mal for data augmentation, since everything needs to start
generate from random Gaussian noise, and it is trading class

accuracy off for diversity. If the class is not accurate, diver-
sity in this case will be in vain. Therefore, we use Textual
Inversion (Gal et al., 2022; Trabucco et al., 2023) to up-
date the token of the class name of each of the AudioSet
classes, and fine-tune their embeddings. At the generation
step, we use the same prompted "The sound of [LIST OF
AUDIO CLASSES]." but perform image-to-image diffusion,
so that our denoising U-Net does not have to denoise all the
way from pure Gaussian noise, but from a noisy version of
ground-truth latent.

As shown in Table A11, we can see the classification mod-
els trained on augmented audio datasets improve with the
growing size of the dataset. These results display the value
of additional diffusion-generated samples as a form of data
augmentation.

Classification Accuracy: Table A11 lists classifier perfor-
mance when trained on our diffusion-augmented datasets
showing a clear image that additional samples generated
with diffusion measurably improve classifier accuracy. Due
to the large number of parameters of AST, it struggles to
train from scratch, diffusion augmentation visibly allevi-
ated this training difficulty and complemented pretraining.
The most significant improvement comes from augmenting
AudioSet-20K with an extra 20K generated samples, and
the benefits slowly attenuate with more examples. However,
it is important to note that diffusion cannot entirely replace
ground truth data, as demonstrated by the inferior scores for
AS-20kG. Nonetheless, it does yield measurable improve-
ments when used as augmentation, especially when used in
conjunction with other augmentation methods.
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Model PT Aug AS-20kG AS-20k +20kG +40kG +60kG +80kG AS-2M

PANNs (Kong et al., 2020b) CNN - - - 22.1 - - - - 37.5
PANNs (Kong et al., 2020b) CNN - mx+sp - 27.8 - - - - 43.1
TALtrans (Li et al., 2022b) CNN+T - - - 22.4 - - - - 38.3
TALtrans (Li et al., 2022b) CNN+T - mx+sp - 28.0 - - - - 43.7
Our TALtrans CNN+T - - 10.1±.50 22.4±.16 25.8±.11 27.0±.13 28.1±.06 30.1±.03 38.3±.15

Our TALtrans CNN+T - mx+sp 11.2±.40 28.0±.20 29.4±.31 29.5±.13 30.7±.21 32.3±.14 43.7±.25

AST (Gong et al., 2021) DeiT - - - 14.8 - - - - 36.6
AST (Gong et al., 2021) DeiT IM mx+sp - 34.7 - - - - 45.9
Our AST DeiT - - 3.2±.20 14.8±.17 15.4±.22 16.7±.14 18.1±.01 20.2±.18 34.6±.20

Our AST DeiT - mx+sp 8.2±.61 16.9±.12 18.4±.32 19.5±.12 20.7±.22 22.4±.31 37.6±.10

Our AST DeiT IM mx+sp 13.5±.50 34.7±.77 35.1±.18 36.1±.42 36.9±.03 37.5±.12 45.4±.70

Table A11. Comparison with other state-of-the-art models on audio and speech classification tasks. All datasets, other than AS-20k
and AS-2M, are based from AS-20k with diffusion augmentation to add samples, details in section § 4. Metric is mean average precision
(mAP). For pretraining (PT) dataset, AS:AudioSet, and IM:ImageNet. For augmentation (aug), mx+sp:mixup(Zhang et al., 2017) and
SpecAug(Park et al., 2019). Generation model and classification accuracy for each augmented dataset showing the improvements
measured from diffusion as augmentation. Dataset AS-20kG consists exclusively of generated samples with 0 real samples from AudioSet.
Our TALtrans Model (CNN+T: CNN+Transformer) has 12.1M params, and our AST model (DeiT/ViT-B) has 88M params.
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