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ABSTRACT

The generalization of detectors for Al-generated images remains a critical chal-
lenge, as methods trained on one generative family often fail when tested on un-
seen architectures. To tackle this generalization challenge, we dive into the in-
herent distribution approximation nature of generative modeling and posit that
a universal forensic signal lies in the discrepancy between mathematically pre-
cise image rescaling traces and the imperfect approximations learned by genera-
tive models through training data. We introduce a novel contrastive pre-training
framework that sensitizes a feature extractor to these subtle rescaling artifacts by
leveraging their inherent periodic patterns and position shift properties, using only
real images for training. Our method sets a new state-of-the-art on both GAN and
diffusion-generated benchmarks, validating the efficacy of our method. We intro-
duce a new and robust perspective on detection generalization through the lens
of distributional fitting divergence. The code and models will be made publicly

available.

1 INTRODUCTION

The emergence of high-fidelity generative mod-
els, from Generative Adversarial Networks
(GANSs) (Goodfellow et al., 2014) to modern
diffusion processes (Ho et al. 2020), has en-
abled the synthesis of images possessing un-
precedented realism and diversity. As these
synthetic contents become increasingly indis-
tinguishable from real photographs, they not
only foster creativity across artistic and com-
mercial fields but also introduce profound
threats to digital trust and authenticity. The
unchecked spread of Al-generated forgeries ex-
acerbates issues such as large-scale disinfor-
mation and the undermining of evidentiary in-
tegrity in legal and journalistic contexts. These
challenges highlight the critical demand for re-
liable detection methods in the broader effort to
secure Al-generated media.
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Figure 1: Instead of learning model-specific or
semantic-specific features, our framework focuses
on the discrepancy of approximated preprocess
distribution.

Although detection methods achieve high accuracy in in-domain detection tasks, they often suffer
from substantial performance degradation when exposed to samples from unseen generative models.
Current research on improving detection generalization largely follows two paradigms: prior-based
methods and feature-based methods. Prior-based approaches leverage explicit prior hypotheses to
isolate discriminative forensic traces. For instance, Tan et al.| (2023) distinguished generated im-
ages from real ones in gradient feature space through gradient mapping, while Tan et al.| (2024b)
enhanced detection by analyzing the upsampling process in generative models and amplifying its
artifacts via residual learning. Feature-based methods leverage the powerful feature extraction capa-
bilities of large pre-trained models to enhance detection generalization. For instance, several studies
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(Ojha et al.} 2023} Tan et al.| [2025; |Cozzolino et al.| 2024} [Khan & Dang-Nguyen, |2024) utilize the
representational power of large pre-trained models to extract image features, thereby amplifying the
artifacts in generated images and improving generalization performance.

Although methods based on prior assumptions perform well on specific generative models, their
detection performance degrades significantly when confronted with unseen models that violate
those assumptions. For instance, [Durall et al.| (2020) detected images by leveraging high-frequency
anomalies caused by upsampling operations in GANs, which generalizes well across various GAN
variants but fails against diffusion-generated samples. Similarly, Wang et al.| (2023) discriminated
images by analyzing reconstruction residuals specific to the diffusion process, yet exhibits lim-
ited effectiveness when applied to GAN-generated content. Such performance drops stem from the
inherent limitation of prior-based approaches: observations designed for one class of generative
models often do not transfer effectively to others. Recent methods avoid manual prior engineering
by leveraging the feature extraction capabilities of large-scale pre-trained models. However, since
these pre-trained models are often optimized for high-level semantic tasks (Radford et al., [2021])
rather than forensic detection, they tend to overlook critical low-level or high-frequency artifacts,
thereby impairing generalization performance (Ojha et al., 2023). Although techniques such as or-
thogonal decomposition (Yan et al., 2025) attempted to disentangle semantic and forensic features,
they still fall short of fully addressing this fundamental mismatch. Therefore, improving detection
generalization necessitates solving two core challenges: broadening the coverage of prior-based as-
sumptions to encompass diverse generative classes, and aligning pre-trained feature representations
with semantically agnostic, forensically relevant cues.

Towards more generalizable prior assumption, we take inspiration from the intrinsic nature of data
distribution fitting in generative models. Generative models approximate the semantic distribution
of the given training data, yet inevitably introduce discernible discrepancies in the process. Most
existing detection methods focus on this semantic-level discrepancies, such as unnatural texture
smoothness (Chen & Yashtini, 2024) or anomalies in high-frequency details (Tan et al., [2024b).
However, such semantic discrepancies are highly dependent on the training data distribution and
exhibit distinct artifact patterns. Moreover, as generative models continue to evolve, semantic-level
discrepancies will gradually diminish, ultimately rendering detection methods that rely solely on
such features ineffective. Besides semantic distribution approximations, as indicated by |Corvi et al.
(2023a)), generative modeling also captures underlying distributional characteristics of the training
data. For instance, when a generative model is trained on JPEG-compressed images, it tends to
produce samples exhibiting similar compression artifacts. This phenomenon is consistently ob-
served across diverse generative frameworks, including both GANs and diffusion models. These
underlying distributions include JPEG compression, rescaling operation, and other image process-
ing transformations. Since such processing operations possess rigorous mathematical formulations,
the inevitable approximation errors introduced by generative models when fitting these processes
create measurable discrepancies from the true mathematical distribution.

In this work, we propose to leverage the discrepancies in generative models’ fitting of the underlying
distributions. Among these, rescaling stands out as the most widely adopted preprocessing step in
generative model pipelines. The prevalence of rescaling in generative training stems from two pri-
mary factors: 1) widely-used training datasets are web-sourced like ImageNet (Russakovsky et al.,
2015) and LSUN (Yu et al.| 2015) which inherently undergo rescaling during collection; 2) model
constraints (e.g., fully-connected layers, batching) require fixed input sizes, as Stable Diffusion
(Rombach et al., [2022) initially resizes images to 256 x 256 before upscaling to 512 x 512. Con-
sequently, these rescaling distributions become intrinsically embedded within the generated images.
We therefore select rescaling distribution discrepancy as the primary entry point for generalization
detection. Crucially, this discrepancy remains largely invariant to variations in semantic content
across datasets, thereby offering stronger generalization for detection tasks. Through further anal-
ysis of rescaling distribution properties, we construct a contrastive learning task sensitive to these
characteristics to pre-train the feature extractor. The trained extractor becomes highly responsive
to rescaling distribution discrepancies, enabling feature extraction from a non-semantic perspective.
This approach amplifies fitting divergences in generated images, thereby significantly improving
generalization in detection tasks. Our main contributions are as follows:

* We are the first to identify and exploit the pre-process distributional discrepancies between real
and generated data, which are independent from specific generative architectures, increasing gen-
eralization inherently.
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* We reveal the periodic patterns and position shift properties of the rescaling operation,
which derives a novel semantic-agnostic self-supervised contrastive pre-training task to extract
authenticity-oriented features, further enhancing our generalization capability.

* We establish new state-of-the-art on comprehensive benchmarks, outperforming recent methods
by a substantial margin. Extensive experiments in few-shot fine-tuning scenarios indicate that the
pre-trained feature extractor effectively focuses on authenticity-relevant characteristics.

2 RELATED WORK

2.1 GENERATIVE MODELS

Generative models have evolved beyond the capabilities of classical autoencoders (Masci et al.,
20115 [Vincent et al., 2008; [Salah et al., 2011)), primarily through their capacity to synthesize novel
data instances that reflect the true underlying distribution. Although GANs (Goodfellow et al.,[2014)
once set the standard for image generation with variants such as ProGAN (Karras et al,|2017) for
multi-scale learning, StyleGAN (Karras et al.,|2019)) for style-based control, BigGAN (Brock et al.,
2018) for high-capacity synthesis, and StarGAN (Choi et al., [2018) for cross-domain adaptation,
they suffer from persistent limitations in output fidelity. Despite advantages in speed and flexi-
bility, GANs frequently introduce perceptible semantic distortions that undermine their practical
utility. A paradigm shift occurred with the introduction of diffusion models (Ho et al., 2020; [Song
et al.| |2020azb)), which offer a principled probabilistic framework that not only stabilizes training
but also significantly enhances output diversity and coherence. Subsequent large-scale implemen-
tations (Rombach et al., 2022; [Ramesh et al.| [2022; |Saharia et al., [2022) have further established
the superiority of diffusion processes in producing high-resolution, semantically consistent imagery.
Consequently, the marked reduction in generative artifacts has rendered many conventional detec-
tion mechanisms increasingly inadequate, particularly those reliant on semantic inconsistencies.

2.2  GENERALIZATION DETECTION OF AI-GENERATED IMAGE

Generalization methods for detection can be broadly categorized into two paradigms: the first lever-
ages explicit priors assumptions to extract discriminative forensic artifacts. For instance, [Wang
et al.| (2020) employed data augmentation techniques to effectively enhance cross-model detection
performance against GAN-generated images. Subsequent analysis by |Durall et al.| (2020) demon-
strated that the upsampling mechanisms inherent in GAN-based generators produce characteristic
high-frequency artifacts, which can be reliably identified via spectral-domain analysis. [Tan et al.
(2023) leveraged gradient-based analysis to reveal distributional discrepancies between generated
and real data, enabling detection through classification in gradient feature space. Zheng et al.|(2024)
utilized patch-shuffling method to reduce the influence of semantic biases. |Liu et al|(2020) and
Shiohara & Yamasaki| (2022)) leveraged the characteristics of underlying textures and features. Al-
though methods based on prior assumptions perform effectively on specific models, their detection
efficacy diminishes significantly as new generative architectures emerge, since such priors may not
consistently generalize across model architectures.

The second approach utilizes the remarkable feature extraction capability of large-scale pre-trained
models for generalization detection. |Ojha et al.| (2023)) first proposed the use of the pre-trained
CLIP (Radford et al., [2021)) model for generalizable detection of generated images. Since CLIP is
trained on large-scale real-world data, it extract features effectively for discrimination. Furthermore,
Cozzolino et al.|(2024) and |Tan et al.|(2025)) incorporated the textual module into the visual branch
of the CLIP framework, capitalizing on its multimodal nature to further enhance the generalization
capability of pre-trained models in detecting generated data. However, pre-trained models tend
to prioritize high-level semantic information, often lacking in low-level or high-frequency features
that are critical for generated detection. Although methods such as |Yan et al|(2025) attempted to
disentangle semantic and detection-relevant features via orthogonal decomposition, this limitation
still adversely affects detection performance. In this work, we explicitly modeling the inherent
characteristics of generative models through pre-training on real data, effectively addressing the
generalization challenges across diverse generative models.
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3 PRELIMINARY

In this section, we provide a detailed analysis of rescaling distribution properties. Our examina-
tion reveals the rigorous mathematical foundation underlying rescaling operation, which motivates
the proposed contrastive learning framework. The rescaling process can be implemented through
various interpolation methods. In this work, we focus on bilinear interpolation to elucidate the
underlying mechanisms, noting that other interpolation techniques exhibit analogous properties.

Rescaling via Bilinear Interpolation. The bilinear interpo-
lation operation consists of two primary stages: 1) mapping
of the pixel position, and 2) interpolation of pixel values. The
mapping process involves both row and column dimensions
and is defined as follows:

Tsre = (Xast + 0.5) - Ysie 05
Wdst
hare @ . :
Ysre = (Yast +0.5) - hoae 0.5 L= @A- ) A=+ 1 o+ i
dst i 1 =2+ (A-1) 2 !

where (Zgrc, Ysre) denote the corresponding coordinates in the
original source image for a pixel located at (qst, Yast) in the
rescaled image. (wWgrc, hsre) and (wqst, hasy) represent the
width and height of the original image and rescaled image,
respectively.

Figure 2: The interpolation re-
lationship between neighboring
pixels in bilinear interpolation
method.

Based on the results of the pixel position mapping, the subse-

quent step involves interpolating the pixel values. The bilinear interpolation process computes the
value for a mapped pixel in the source image by performing linear interpolation using its four near-
est neighboring pixels, weighted by their relative positional relationships. As illustrated in Figure
[l 1 and 7, represent the relative positional relationships between the mapped pixel and its four
nearest neighbors in the original image. They are computed as the fractional parts of the mapped
coordinates, obtained by:

1T = Tsrc — Lxsch T2 = Ysrc — Lyscha ()

where | -] denotes the floor function. These fractional components quantify the relative offsets within
the unit pixel cell along the horizontal and vertical directions, respectively. The detailed computa-
tional procedure is given by the formula shown in the figure.

Local Distribution Properties of Bilinear Inter- | | 1
polation. Owing to the mapping and interpolation ;g o o o o °
relationships of pixel positions, our further analysis 0 @7”7”@ 777777 @”WW@
reveals two key local distribution properties of bi- : ! |
linear interpolation: 1) the periodic distributions in =+ @@ © 0 —0 LO
interpolated pixel relationships, and 2) the local de- l 2 ]
pendency among adjacent interpolated pixels. We 1@t Iy N
illustrate both properties in detail using the exam- 2 °¢r l¢9 @ @
ple provided in Figure [3] which illustrates a bilinear
interpolation diagram from a 6 x 6 pixel grid to a
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From Equation (2), it can be observed that when zsc  Figure 3: Bilinear interpolation from a 6 x 6
and ys: are perturbed by integer offsets, the corre-  (plue) to 4 x 4 (red) pixel grid.

sponding interpolation ratios r; and ry remain un-
changed. As a result, the same neighboring pixel interpolation relationships are maintained during
the pixel value computation. Returning to Equation @), when x4st and yqs¢ are varied by multiples
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of the denominators of wd: and h“C in their reduced forms, the corresponding changes in xg;. and
Ysre Will be integer-valued. Consequently, when z44; and yqs¢ vary periodically with a specific pe-
riod, the resulting interpolation distribution also exhibits periodic behavior. As 111ustrated in Figure

by the points (1,1) and (3, 3) in the rescaled image, the scaling ratios /=< = Zl° = ¢ simplify to

5. Therefore, when x4s¢ and yqs¢ are altered with a period of 2, identical interpolation relatlonshlps
are maintained. Similarly, this property holds for the points (1, 3) and (3, 1).

The second characteristic of bilinear interpolation is its dependency on neighboring pixels during
the interpolation process. As shown in Figure[3] the interpolation of both column 0 and column 1 in
the rescaled image depends on the pixel values from column 1 of the original image. In contrast, the
interpolation of column 1 and column 2 in the rescaled image exhibits no connection and they are
entirely independent. This phenomenon arises from accumulated deviations during pixel position
mapping, leading to the position shift. The interval of these shifts are determined by the rescaling
ratio between original and rescaled images. Such variations in local dependency constitute one of
the distinctive features of rescaling distributions under different ratios.

4 METHODOLOGY

Through a detailed analysis of the rescaling process, we identify characteristic properties of inter-
polation distributions. Based on this, we leverage contrastive learning to enable classifiers to model
these interpolation distributions, thereby achieving generalized detection of generated images from
the perspective of distributional fitting discrepancies.

4.1 PROBLEM DEFINITION

Generalized detection of generated images is a binary classification problem aimed at determining
whether a given image is model-generated. Typically, the task is formulated as fine-tuning a clas-
sifier on data synthesized by a single generative model, while generalizing to detect images from
diverse unseen models (Wang et al.,|2020). This cross-model generalization encompasses both vari-
ants within the same model family (e.g., different GAN architectures) and transfers across distinct
families (e.g., from GANs to diffusion models).

Concretely, let x € R"*%*3 denotes an RGB input image with height h and width w. The source
label y of x belongs to the set J = {Ry,G1}. A classifier fy is trained on the dataset Dyyin =
(xi,y;) where y; € ). The trained classifier is then required to generalize to test images x’ drawn
from unseen sources { Rz, R, ..., Ry, G2, Gs, ..., Gy}, and make predictions according to:

- {real, if fo(x') > 7 @

fake, otherwise

where 7 is a decision threshold. Here, {G;}Y ; denote N distinct generative models, and {R;} Y ;
denote IV different real sources.

4.2 RESCALING-CONTRASTIVE PRE-TRAINING FOR GENERALIZED DETECTION

Pre-training via Rescaling Contrastive Learning. The pre-training process of the classifier con-
sists of three main stages: 1) applying bilinear interpolation to images according to given rescaling
ratios, thereby generating images with diverse rescaling distributions; 2) selecting image patches
to form positive and negative sample pairs based on their rescaling distributions and relative posi-
tional relationships; and 3) pre-training the model on the constructed sample pairs using supervised
contrastive learning. The detailed descriptions of the main stages of the pre-training procedure are:

During the image rescaling stage, we randomly select scaling ratios s € (1,2), and rescaling each
image according to its assigned ratio, as illustrated in Figure f[a). Here, s; and s, denote distinct
scaling factors. Although input images may have different original resolutions, those rescaled with
the same ratio exhibit identical local rescaling distributions. Due to the pixel position mapping
and local interpolation dependencies as analyzed in Section [3] patches from images rescaled with
different ratios exhibit distinct interpolation distributions at any location.
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Figure 4: Pipeline for constructing a contrastive learning setting via image rescaling. (a) Image
rescaling process using different ratio combinations. (b) Selection of positive and negative samples
based on rescaling ratios and positional relationships. (c) Pre-training a classification model with
contrastive learning to enhance sensitivity to rescaling distributions.

After rescaling different images with assigned ratios, the periodic property of rescaling distributions
necessitates that the selection of positive sample pairs must consider both the rescaling ratio and
the relative positional relationships of patches. Positive pairs are constructed by selecting patches
from images with identical rescaling ratios according to periodic positional relationships. Negative
samples comprise two types: 1) patches from images with different rescaling ratios (regardless of
position), and 2) patches from images with the same rescaling ratio but at aperiodic positions.

As shown in Figure[d[b), Image 1 and Image 2 share the same rescaling ratio s;, while Image 3 has a
different ratio so. For an anchor patch z; in Image 1, we compute its periodic positional relationship
based on ratio s;, and randomly select another patch z}) at a position corresponding to an integer
multiple of this period. Similarly, a patch zg is selected from Image 2 following the same periodic

relationship. Negative samples are constructed by selecting z! from aperiodic positions in Image 1
and 22 from an arbitrary position in Image 3.

We employ a contrastive learning approach to pre-train the model for rescaling distribution model-
ing, with the details shown in Figure f{c). The positive and negative sample pairs obtained during
the patch selection stage are fed into an encoder, followed by a projection head. The projection head
is implemented as a simple Multi-Layer Perceptron (MLP), which maps the encoded features to a
latent space where the supervised contrastive loss (Khosla et al, [2020) is computed. The objective
function is defined as follows:

N

-1 exp(z; - 2p/T)

Lcon = E —_— E log — L , “4)
P |P(3)| pePli) ijl 1pjq exp(z; - 25 /T)

where z; denotes the projected feature of the i-th sample, P (%) represents the set of indices belonging
to the same class as sample ¢ within the batch, 7 is a temperature parameter, and N is the batch size.

Inference. During inference, the projection head is discarded and replaced with a binary classifi-
cation head for fine-tuning. The fine-tuning process can be performed either by freezing the encoder
parameters and updating only the classification head, or by jointly optimizing the entire network.
Beyond generalization detection, since the features extracted by the encoder, which are grounded in
rescaling distributions, already capture the discrepancy between the rescaling distributions approxi-
mated by generative models and those derived through mathematical modeling, few-shot fine-tuning
proves highly effective. This enables incremental learning with minimal samples when encountering
unseen generative models.
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Table 1: Cross-GAN performance (ACC./A.P.) comparison on the Self-Synthesis dataset (9 GAN
variants). Bold and underline indicate the best and second-best results, respectively.

Method Ref AtGAN BEGAN  CramerGAN InfoMaxGAN MMDGAN RelGAN  S3GAN  SNGAN  STGAN Mean

CNNSpot  CVPR2020 (Wang et al.|2020) 51.1/83.7 50.2/44.9 81.5/97.5 71.1/947 72.9/944 53.3/82.1 552/66.1 62.7/90.4 63.0/92.7 623/82.9
Frank PMLR2020 (Frank et al.|2020) 65.0/74.4 39.4/39.9 31.0/36.0 41.1/41.0 384/40.5 69.2/96.2 69.7/81.9 48.4/479 254/340 47.5/547
Durall CVPR2020 (Durall et al.[[2020) 39.9/38.2 48.2/309 60.9/67.2 50.1/51.7 59.5/65.5 80.0/88.2 87.3/97.0 54.8/589 62.1/72.5 60.3/63.3
Patchfor ECCV2020 (Chai et al.||2020) 68.0/92.9 97.1/100.0 97.8/99.9 93.6/982 97.9/100.0 99.6/100.0 66.8/68.1 97.6/99.8 92.7/99.8 90.1/95.4
F3Net ECCV2020 (Qian et al.|2020) 85.2/94.8 87.1/97.5 89.5/99.8 67.1/83.1 73.7/99.6 98.8/100.0 65.4/70.0 51.6/93.6 60.3/99.9 75.4/93.1
GANDetect ICIP2022 (Mandelli et al.[[2022) 57.4/75.1 67.9/100.0 67.8/99.7 67.6/92.4 67.7/99.3 60.9/86.2 69.6/83.5 66.7/90.6 69.6/97.2 66.1/91.6
LGrad CVPR2023 (Tan et al.[2023)  68.6/93.8 69.9/89.2 50.3/540 71.1/82.0 57.5/67.3 89.1/99.1 78.5/86.0 78.0/87.4 54.8/68.0 68.6/80.8
UnivFD CVPR2023 (Ojha et al.|[2023)  78.5/98.3 72.0/989 77.6/99.8 77.6/98.9 77.6/99.7 78.2/98.7 852/98.1 771.6/98.7 74.2/978 77.6/98.8
NPR CVPR2024 (Tan et al.|[2024b)  83.0/96.2 99.0/99.8 98.7/99.0  94.5/98.3 98.6/99.0 99.6/100.0 79.0/80.0 88.8/97.4 98.0/100.0 93.2/96.6
Ours - 98.9/100.0 100.0/100.0 96.9/99.5 96.9/99.9 96.8/99.7 99.7/100.0 94.7/98.9 93.8/98.3 97.4/100.0 97.2/99.6

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Datasets. To evaluate the generalization performance of the proposed method in practical scenar-
ios, our dataset encompasses a diverse range of GANs, diffusion models, and various real image
sources. To assess cross-model generalization across GAN variants, we follow the setting of the
NPR (Tan et al., |2024b): classifier is trained on the ForenSynths (Wang et al., |2020)) dataset and
evaluated on the Self-Synthesis (Tan et al., | 2024a)) dataset. The ForenSynths dataset contains 20 se-
mantic categories, though only four (i.e., car, cat, chair, horse) are used during training to maintain
consistency with prior works. The Self-Synthesis dataset includes multiple GAN variants such as
AttGAN (He et al.| 2019) and BEGAN (Berthelot et al.| 2017)). We further examine generalization
capability across different diffusion models following C2P-CLIP (Tan et al., 2025), with validation
performed on the Genlmage (Zhu et al.l [2023) dataset. The training subset consists of data gener-
ated by the SDv1.4 model (Rombach et al.,2022)), while the test set includes samples from multiple
diffusion models (e.g., ADM (Dhariwal & Nichol, 2021), GLIDE (Nichol et al.| [2021))) as well as
the BigGAN model (Brock et al.,|2018)). Real images are sourced from the LSUN (Yu et al., [2015)
and ImageNet (Russakovsky et al.,2015) datasets.

Implementation Details. Our method is implemented utilizing the PyTorch (Paszke et al., [2019)
framework with 8 NVIDIA 3090 GPUs. The encoder architecture adopts the Xception (Chollet,
2017) backbone. During training, images are randomly cropped to 128 x 128 patches, while center
cropping is applied during testing. We use the Adam (Kingma & Bal 2014) optimizer with an initial
learning rate of 2 x 10~%. First order moment decay rate and second order moment decay rate are
set to 0.9 and 0.999, respectively, and weight decay is set to 2 x 10~%. The classifier is pre-trained
for 200 epochs with a batch size of 128 on ImageNet dataset. Unless otherwise specified, the entire
network is jointly fine-tuned by default in subsequent experiments.

Evaluation Metrics. Following existing works (Ojha et al., 2023} [Tan et al., [2024bj 2025), we
compare the effectiveness of different methods using Accuracy (Acc) and Average Precision (AP).
The Acc metric is computed with a fixed threshold of 0.5 across all benchmarks, ensuring a fair and
consistent comparison of detection performance.

5.2 MAIN RESULTS

Evaluation on Self-Synthesis Dataset. Table[I] presents the cross-model generalization accuracy
across nine GAN architectures. Following the training setting of NPR (Tan et al., [2024b)), all com-
peting methods are fine-tuned using ProGAN data across four semantic categories. Our method
significantly outperforms the UnivFD baseline (Ojha et al., [2023)) by 19.6% and exceeds the cur-
rent state-of-the-art NPR by 4.0% in classification accuracy, demonstrating strong generalization
capability across diverse GAN architectures.

Evaluation on Genlmage Dataset. Table |2[ summarizes the detection accuracy across multiple
methods, including those reported in Genlmage (Zhu et al., [2023), C2P-CLIP (Tan et al., [2025)),
DRCT (Chen et al., 2024) and Effort (Yan et al. 2025). All methods are trained using SDv1.4
in the Genlmage dataset. The Genlmage benchmark incorporates synthetic images produced by
advanced diffusion models, including commercial systems such as MidJourney and WuKong. A
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Table 2: Accuracy comparison on the GenImage dataset with SDv1.4 as the training dataset. Bold
and underline denote the best and second-best performance, respectively.

Methods Ref SDvl.4 SDvl.5 Midjourney ADM GLIDE Wukong VQDM BigGAN mAcc
ResNet-50 CVPR2016 (He et al.|[2016) 929.9 99.7 549 53.5 61.9 98.2 56.6 52.0 72.1
DeiT-S ICML2021 (Touvron et al.{2021) 99.9 99.8 55.6 49.8 58.1 98.9 56.9 53.5 71.6
Swin-T ICCV202T (Liu et al.[[2021) 99.9 99.8 62.1 49.8 67.6 99.1 62.3 57.6 74.8
CNNSpot CVPR2020 (Wang et al.[[2020) 96.3 95.9 52.8 50.1 39.8 78.6 534 46.8 64.2
Spec WIFS2019 (Zhang et al.![2019) 99.4 99.2 52.0 49.7 49.8 94.8 55.6 49.8 68.8
F3Net ECCV2020 (Qian et al.[|2020) 99.9 99.9 50.1 49.9 50.0 99.9 49.9 49.9 68.7
GramNet CVPR2020 (Liu et al.|[2020) 99.2 99.1 54.2 50.3 54.6 98.9 50.8 51.7 69.9
UnivFD CVPR2023 (Ojha et al.{[2023) 96.4 96.2 93.9 71.9 85.4 94.3 81.6 90.5 88.8
DIRE ICCV2023 (Wang et al.|[2023) 100.0 99.9 50.4 52.3 67.2 100.0 50.1 50.0 71.2
FreqNet AAAI2024 (Tan et al.|[2024a) 98.8 98.6 89.6 66.8 86.5 97.3 75.8 81.4 86.8
NPR CVPR2024 (Tan et al.|[2024b) 98.2 97.9 81.0 76.9 89.8 96.9 84.1 84.2 88.6
FatFormer CVPR2024 (Liu et al.|[2024) 100.0 99.9 92.7 759 88.0 99.9 98.8 55.8 88.9
DRCT ICML2024 (Chen et al.|[2024) 95.0 94.4 91.5 79.4 89.2 94.7 90.0 81.7 89.5
C2P-CLIP AAAI2025 (Tan et al.|[2025) 90.9 97.9 88.2 96.4 99.0 98.8 96.5 98.7 95.8
Effort ICML2025 (Yan et al.|[2025) 99.8 99.8 824 78.7 93.3 97.4 91.7 77.6 91.1
Ours - 929.9 99.9 92.1 942 98.8 99.7 99.7 99.9 98.0

Table 3: Evaluation on other setups for the proposed method, including ablation study, linear layer
fine-tuning and few-shot fine-tuning tasks.

Methods SDvl.4 SDvl.5 Midjourney ADM GLIDE Wukong VQDM BigGAN mAcc
Ablation Study

Xception 93.1 91.9 65.6 54.2 73.6 88.3 61.5 64.2 74.1
Xception+Pre-training(Ours) 99.9 99.9 92.1 94.2 98.8 99.7 99.7 99.9 98.0
Linear layer Fine-tuning

UnivFD(fc) 96.4 96.2 93.9 71.9 85.4 94.3 81.6 90.5 88.8
Ours(fc) 99.1 98.9 90.8 91.4 95.6 98.5 98.1 96.5 96.1
Few-shot Fine-tuning

UnivFD+4-shot 96.4 97.8 94.3 88.9 96.2 96.2 90.5 97.4 94.7
NPR+4-shot 98.2 98.6 94.5 923 95.7 97.5 88.6 81.8 93.4
Ours+4-shot 99.9 99.9 98.7 98.9 99.3 100.0 99.8 99.8 99.5
UnivFD+8-shot 96.4 97.8 95.7 91.6 97.3 96.7 93.9 99.0 96.1
NPR+8-shot 98.2 98.7 96.7 96.1 97.2 97.9 89.1 86.3 95.0
Ours+8-shot 99.9 99.9 99.3 99.5 99.8 100.0 100.0 100.0 99.8

notable characteristic of this dataset is the inclusion of high-resolution imagery (e.g., 1024x1024
pixels from MidJourney), whose divergence from conventional resolutions introduces significant
resolution bias, further challenging detection robustness. Our approach, based on rescaling distribu-
tion discrepancy, achieves a new state-of-the-art average accuracy of 98.0%, surpassing the UnivFD
baseline and prior best method C2P-CLIP by margins of 9.2% and 2.2%, respectively. The results
demonstrate the efficacy of our proposed method in detecting images generated by diffusion models.

Proposed Pre-training Improves Baseline Performance. We evaluate the generalization per-
formance of both the baseline method and our approach incorporating the proposed pre-training
strategy, as summarized in Table[3] All models are trained on SDv1.4. The results indicate that the
Xception model, similar to the ResNet-50 results reported in Table 2] fails to achieve generalization
in the baseline setting. However, when enhanced with our pre-training procedure, it attains strong
generalization by effectively leveraging distributional discrepancies.

Linear Layer Fine-tuning. We further evaluate the scenario where the pre-trained model parame-
ters are frozen and only the linear classification head is fine-tuned. As shown in Table[3] we compare
our method with UnivFD, which also fine-tunes a linear layer on top of a frozen CLIP model. The
comparative results demonstrate that our pre-training approach learns features more relevant to de-
tection tasks, leading to superior performance.

Few-shot Fine-tuning. To address scenarios where limited samples from unseen models available
for adaptation, we further evaluate few-shot incremental learning performance, as reported in Table
[Bl We compare our approach with UnivFD and NPR, which represent pre-training fine-tuning and
prior-based feature extraction paradigms, respectively. All models are first trained on SDv1.4, then
fine-tuned with either 4-shot or 8-shot samples from each target model before evaluation. The results
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Figure 5: Average cosine similarity map between image patches extracted by the pre-trained model.
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Figure 6: t-SNE visualization of features extracted by different encoders across varying data distri-
butions and post-processing strategies.

show that while UnivFD and NPR exhibit improvements, they struggle to achieve high accuracy on
specific categories. In contrast, our method consistently attains superior accuracy across all target
models, demonstrating the efficacy of the features learned by our pre-training framework.

Generated Data Exhibits Distinct Cosine Similarity Map. To visualize the relationships of the
local rescaling distributions within an image, we randomly crop a 256 X 256 region from each
image sample. Along the diagonal direction, we extract 128 patches of size 128 x 128 with a stride
of 1. Each patch is processed by our proposed pre-trained model to extract features, resulting in a
feature matrix of size 128 x 2048, where 2048 is the output dimension of the model. By computing
the pairwise cosine similarity between all patch features, we obtain a 128 x 128 similarity matrix.
This matrix is averaged over 1000 images to produce the final similarity map, as shown in Figure
[} The resulting visualization reveals that real images exhibit multiple bright bands parallel to the
diagonal, indicating the periodic nature of local interpolation distributions across different rescaling
operations. In contrast, generated images lack such distinctive patterns, revealing a distributional
fitting discrepancy which enables effective generalization detection.

Pre-trained Extractor Remains Robust against Post-rescaling. Figure[f|presents t-SNE visual-
izations of features extracted by different models under varying data categories and post-processing
conditions. (a) shows features from the CLIP used in UnivFD, which struggles to distinguish gener-
ative images. (b)-(g) show the features extracted from our proposed pre-trained model. Specifically,
(b), (d) and (f) display evaluations on different generative models using randomly cropped 256 x 256
patches from original images. (c), (e) and (g) show corresponding features of images rescaled be-
fore feature extracting, where images are rescaled from 256 x 256 to 224 x 224(c), 192 x 192(e),
and 160 x 160(g), respectively. The results demonstrate that our pre-trained model maintains clear
separability across both original and rescaled images, indicating that our approach does not rely
merely on the presence or absence of rescaling artifacts. Instead, it operates on more fine-grained
distributional discrepancies inherent in the approximations of generative models.

6 CONCLUSION

This paper proposes a novel detection method that leverages distributional discrepancies in rescaling
operations. By analyzing interpolation properties, we identify consistent fitting gaps between gener-
ative models and mathematical rescaling. Our contrastive pre-training framework enables models to
learn these fine-grained discrepancies rather than semantic features. Experiments show state-of-the-
art performance across GANs and diffusion models, with strong generalization in various settings.
Visualizations confirm the method captures fundamental distributional properties beyond superfi-
cial artifacts. This work provides a new perspective of distributional discrepancy for generalization
detection against evolving generative Al
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We employ large language models (LLMs) solely for text polishing and revision of the writing in our
paper. Their use is strictly limited to linguistic refinement and does not extend to the methodological
contributions, experimental design, or any substantive technical content presented in this work.

A.2 IMPLEMENTATION DETAILS OF OTHER INTERPOLATION APPROACHES

PyTorch provides several interpolation methods, including NEAREST, BOX, BILINEAR, BICU-
BIC, LANCZOS, and HAMMING. We have elaborated on the specific procedure of BILINEAR
interpolation and identified two key characteristics: periodic distributions and local dependency. In
this part, we analyze the detailed mechanisms of other commonly used interpolation methods and
demonstrate that, with the exception of NEAREST interpolation, all other methods exhibit these two
characteristics. Although NEAREST interpolation does not share these properties, it is not used in
data preprocessing of generative models due to the severe artifacts it introduces during rescaling.
Thus, NEAREST interpolation is not discussed in this section.

A.2.1 BOX INTERPOLATION

Given an output pixel at integer coordinates (x4st, Ydst ), its value is computed solely from the por-
tion of the input image that maps to it.

Compute the Input-Space Region of This Output Pixel. Let the input image size be (wgre, hsrc)
and the output size be (wqst, hast)- The scaling factors are

5. — Wsrc 5. — hsrc
z = s y = .
Wdst hdst

The continuous region in the input domain corresponding to this single output pixel is

Ry = [TastSz, (Tast +1)5z | X [YdstSys (Yast +1)sy].

Find All Input Pixels Overlapping This Region. An input pixel at integer coordinates (z,y)
spans the unit square

Poy = [z, e +1] X [y, y + 1].

It contributes to the output pixel (xgst, Ydst) if

PwyﬁRd 75 .
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Compute the Overlap Area. For each overlapping input pixel (z,y), compute the width and
height of the intersection:

Way = max(O, min(z + 1, (zast + 1)s,) — max(z, xdstsm)>,

hay = rnax(O, min(y + 1, (yast + 1)s,) — max(y, ydstsy)).
The intersection area is

Azy = Way - hay.

Compute the Output Pixel Value. Let I(x,y) be the input pixel value. The BOX interpolation
result of this single output pixel is

1
O(xdstv ydst) = 87 Z I(‘Ta y) ATy

S
7y overlapping (z,y)

Interpolation Characteristics. In the BOX interpolation technique, each output pixel is first
mapped back to the source image according to the scaling factors. The contribution of each source
pixel is then determined by its proportional overlap area with the pixel region, which serves as the
interpolation weight. Consequently, similar to BILINEAR interpolation, BOX interpolation exhibits
both periodicity and local dependency.

A.2.2 BICUBIC INTERPOLATION

Given an output pixel at integer coordinates (xgss, Ydst ), BICUBIC interpolation computes its value
by sampling a 4 x 4 neighborhood around the corresponding position in the source image.

Coordinate Mapping. Let the input image have size (wgc,hsc) and the output size be
(wqst, hast)- The scaling factors are

Wsrc 5 — hsrc
dst

The output pixel (zqgst, Yast) corresponds to the input coordinate

Sz = ;
Wdst

Zsre = (Tast + 0.5) s — 0.5, Ysre = (Yast +0.5) s, — 0.5.
Let
zo = lzs),  yo=lys)
Bicubic Kernel. The cubic convolution kernel with parameter a (typically a = —0.5) is
(a+2)tPP = (a+3)t+1, 0< |t <1,
k(t) = < alt]® — balt|* + 8alt| — 4a, 1<t <2,
0, [t| > 2.

Compute Horizontal and Vertical Weights. For the horizontal direction:
w; = k(gre — (X0 +1)), ie€{-1,0,1,2}.
For the vertical direction:

Uy :k(ysrci(yo +j))7 j S {717()’152}

Bicubic Combination Over a 4 x 4 Neighborhood. Let /(z,y) denote the source image pixel
value (per channel). The bicubic interpolated output pixel is

2 2

O(xase yast) = Y Y, I(wo+1i, yo + ) wi v;.

j=—1li=—1
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Interpolation Characteristics. In BICUBIC interpolation, the mapping of pixel positions follows
the same procedure as in BILINEAR interpolation. The key difference is that each mapped posi-
tion is reconstructed using a weighted combination of a 4 x 4 neighborhood of surrounding pixels.
Consequently, BICUBIC interpolation exhibits the same interpolation characteristics as BILINEAR
interpolation.

A.2.3 LANCZOS INTERPOLATION

Given an output pixel at integer coordinates (Z4st, Yast), LANCZOS interpolation reconstructs its
value by a separable, windowed-sinc filter with finite support parameter a (commonly a = 2 or
a=3).

Coordinate Mapping. Let the source image size be (wgye, hsic) and the destination size be
(wgst, hast ). Define the scaling factors

wSI‘C s _ h’SI‘C

Wast Y hast

Map the integer destination pixel to a source coordinate using the commonly used center-preserving
formula

Sy =

Zsre = (Tast + 0.5) s, — 0.5, Ysre = (Yast +0.5) 5, — 0.5.
Let
To = I_xSI‘CJ7 Yo = Lysch~

Lanczos Kernel. Define the normalized sinc function

t#0
sinc(t) = wt 70,
1, t=0.

sin(7rt)

The Lanczos kernel with window parameter a > 0 is

sinc(t) sing( %), [|t| < a,
. (4
0, [t| > a.
Determine the Contributing Source Samples. The kernel is nonzero only for offsets satisfying
|t| < a. Thus the integer source indices contributing in the horizontal direction are the set
IT={i€Z : |xg.—i| <a}l,

and in the vertical direction
T={Jj€Z : lysc —jl <a}.
Equivalently one can enumerate

i€{xo—(a—1), ..., z0+a}l, j€{yo—(a—1), ..., yo+a}.
Compute Separable Weights. For each contributing horizontal index ¢ and vertical index j, com-
pute the separable weights
w; = La(-%'src - Z)a Vi = La(ysrc - .7)
The combined 2D weight for source sample (¢, 7) is the product
Wij = w; vj.

Compute the Output Pixel Value. Let I(i, j) denote the source image sample value (per channel).
The Lanczos interpolated value for this single destination pixel is the normalized weighted sum over

the contributing neighborhood:
D> I65) Wy

JET €T

D2 Wi

JET i€

O(mdst 3 ydst) =
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Interpolation Characteristics. In LANCZOS interpolation, the mapping of pixel positions fol-
lows the same procedure as in BILINEAR interpolation. The key difference is that each mapped
position is reconstructed using a weighted combination of a 2a x 2a neighborhood of surrounding
pixels. Consequently, LANCZOS interpolation exhibits the same interpolation characteristics as
BILINEAR interpolation.

A.2.4 HAMMING INTERPOLATION

HAMMING interpolation is a windowed-sinc interpolation method in which the ideal sinc kernel
is multiplied by a Hamming window. For a single destination pixel located at integer coordinates
(ast, Ydst), the value is computed by sampling a finite neighborhood in the source image using this
kernel.

Coordinate Mapping. Let the source image have size (wsyc, hsrc) and the destination size be
(wqst, hast)- The scaling factors are

wSI‘C s _ h’SI‘C
Wdst ’ Y hast
Map the destination pixel center to a continuous source location:
Zsre = (Tast + 0.5) s, — 0.5, Ysre = (Yast +0.5) 5, — 0.5.

Sy =

Define
To = I_xsch7 Yo = Lysch~

Hamming Windowed Sinc Kernel. Define the normalized sinc:

) t 07
sinc(t) = mt 7
1, t=0.

sin(mt)

The Hamming window is
t
w(t) = 0.54 + 0.46 cos(”) . ltl<a,
a
where a is the window radius (typically a = 2).
The Hamming interpolation kernel is the product
sinc(t) w(t), |t < a,
H,(t) =
0, [t| > a.

Contributing Source Samples. The kernel has finite support |¢| < a. Thus, contributing horizon-
tal and vertical indices are

IT={i€Z||vsc—t| <a}, T ={j€Z||ysc—jl<a}.
Equivalently,
i€{xo—(a—1),...;20+a}, j€{yo—(a—1),...;90+a}.
Separable Weights. Compute the 1D horizontal and vertical weights:
w; = Hy(Tere — 1), vj = Ho(Ysre — J)-
The 2D separable weight is

Wij = W; Vj.

Compute the Output Pixel Value. Let I(i,5) denote the source pixel values. The Hamming-

interpolated destination pixel is
DD I Wy
JEJ €T

D2 Wi

JET i€

O(mdsta ydst> =
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Table 4: Accuracy and AUC comparison on the GenImage (unbiased) dataset with SDv1.4 as the
training dataset. Bold and underline denote the best and second-best performance, respectively.

Methods SDv1.4 SDv1.5 Midjourney ADM GLIDE Wukong VQDM BigGAN Mean

CNNDetect(Wang et al.;2020} 50.1/65.1 49.9/664 50.1/793 49.9/51.8 50.7/594 502/62.6 51.2/63.4 584/709 51.3/64.8
DMID(Corvi et al.||2023b}) 99.9/100. 99.8/100. 97.4/100. 513/785 56.6/949 99.6/100. 75.1/97.6 52.3/74.6 79.0/932
LGrad(Tan et al.|/[2023) 49.8/50.0 49.1/49.2 50.6/50.5 30.5/24.6 30.0/22.2 469/47.6 308/239 289/18.7 39.6/35.8
UnivFD(Ojha et al.|2023) 555/78.7 56.6/78.1 542/740 64.4/852 63.9/888 63.7/869 79.7/94.8 86.1/96.7 65.5/85.4
DeFake(Sha et al.|[2023} 85.1/933 854/934 79.2/87.7 48.5/49.3 80.4/879 81.8/89.8 64.4/71.1 64.4/72.6 73.7/80.6
DIRE(Wang et al.}[2023) 47.3/4177 473/39.8 475/38.0 46.7/253 47.0/299 47.7/454 47.7/350 469/26.6 47.3/352
AntifakePrompt(Chang et al.|[2023) 771/ - 766/ - 704/ - 81.6/ - 81.8/ - 716/ - 81.1/ - 81.7/ - 785/ -

NPR(Tan et al.|[2024b) 49.4/543 49.7/533 4747423 50.5/469 483/42.1 50.2/524 539/523 56.3/56.9 50.7/50.1
FatFormer(Liu et al.|12024) 52.0/49.8 53.3/48.7 51.6/462 60.4/69.1 65.1/784 58.1/61.6 71.5/84.5 80.1/885 61.5/65.9

FasterThanLies(Lanzino et al.[2024)  92.2/97.8 923/979 69.7/83.1 77.2/88.6 66.1/83.0 88.1/954 76.6/86.8 54.1/789 77.0/889
RINE(Koutlis & Papadopoulos/2024)  60.5/93.9 61.1/94.1 52.4/863 639/93.8 747/98.1 70.0/957 814/984 88.5/994 69.1/95.0

AIDE(Yan et al.]2024] 745/982 759/98.5 574/83.1 50.1/61.2 523/804 693/959 51.0/780 50.7/73.1 60.2/842
LaDeDéCavia et al. (2024) 548/556 53.0/53.6 S52.1/513 346/ 68 345/88 577/61.6 348/108 80.3/93.1 50.2/42.7
C2P-CLIHTan of al.|(2025) 80.5/944 79.1/943 559/763 71.3/86.7 74.8/936 81.0/931 741/922 87.5/972 75.5/91.0
CoDE(Baraldi et al.|| 2024} 96.6/99.4 965/992 69.6/86.0 51.9/537 58.0/78.1 950/99.1 56.0/668 50.0/702 71.7/81.6
B-Free(Guillaro et al.|[2025] 98.8/100. 98.8/100. 957/992 79.8/93.0 853/958 99.0/100. 88.7/97.0 68.7/94.1 89.3/97.4
Ours 992/99.8 98.7/99.8 96.7/99.5 98.7/99.7 98.9/99.8 982/99.6 98.5/99.7 98.7/99.8 98.4/99.7

Table 5: Average precision comparison on GANs from the UniversalFakeDetect dataset with Pro-
GAN as the training dataset.

Methods ProGAN StyleGAN StyleGAN2 BigGAN CycleGAN StarGAN GauGAN Deepfake Mean
CNNDet(Wang et al.||2020}) 99.2 91.4 96.7 73.3 88.2 90.7 92.2 62.3 86.7
FreDect(Frank et al.{[2020) 85.2 72.2 71.4 86.5 71.7 99.5 77.4 49.2 76.6
LGrad(Tan et al.[[2023) 100.0 99.9 99.9 90.5 94.7 100.0 79.2 67.8 91.6
UFD(Ojha et al.[[2023) 100.0 98.8 98.6 99.1 99.6 100.0 99.2 90.2 98.2
PatchCraft(Zhong et al.|[2023b) 100.0 98.7 97.7 99.3 85.1 100.0 81.8 79.6 92.7
FreqNet(Tan et al.[[2024a) 100.0 99.6 95.5 95.5 99.7 100.0 98.6 94.5 97.9
NPR(Tan et al.|[2024b) 100.0 100.0 100.0 94.5 95.7 100.0 88.2 86.1 95.6
FatFormer(Liu et al.[|2024) 100.0 99.6 99.8 100.0 99.8 100.0 100.0 97.6 99.5
SAFE(Li et al.|[2025) 100.0 99.8 100.0 95.4 99.8 100.0 97.0 97.5 98.7
CoD(J1a et al.|[2025) 100.0 99.9 99.9 98.0 99.9 100.0 99.9 98.5 99.6
Ours 100.0 100.0 100.0 99.3 99.2 100.0 98.6 91.7 98.6

Interpolation Characteristics. In HAMMING interpolation, the mapping of pixel positions fol-
lows the same procedure as in BILINEAR interpolation. The key difference is that each mapped
position is reconstructed using a weighted combination of a 2(a — 1) x 2(a — 1) neighborhood of
surrounding pixels. Consequently, HAMMING interpolation exhibits the same interpolation char-
acteristics as BILINEAR interpolation.

A.3 ADDITIONAL GENERALIZATION ANALYSIS

Evaluation on GenImage (unbiased) Dataset. TableE]presents the evaluation results on the Gen-
Image (unbiased) dataset. Following the experimental settings in |Guillaro et al.| (2025)) and |Grom-
melt et al.| (2024), we test the classifier’s detection performance on JPEG-compressed generated
images from the Genlmage dataset. Our method significantly outperforms current state-of-the-art
approaches, achieving an average accuracy improvement of 9.1% over the B-Free method. This
demonstrates that our approach does not rely on JPEG compression artifacts as shortcuts during
detection.

Evaluation on UniversalFakeDetect Dataset. Tables [5] and [6] present the evaluation results on
GAN and Diffusion models from the UniversalFakeDetect dataset, respectively. Following the ex-
perimental settings in |Ojha et al.| (2023) and [Jia et al.[ (2025), the model is trained on ProGAN-
generated data and tested on various other models. The results demonstrate that our method achieves
competitive performance across both GAN and Diffusion models, maintaining consistency with cur-
rent state-of-the-art results.

Evaluation on Synthbuster Dataset. Table [/| presents the evaluation results on the Synthbuster
dataset. Following the experimental settings in [Bammey| (2023)) and [Karageorgiou et al.| (2025),
we test our method on various high-resolution, high-quality diffusion model samples. The exper-
imental results demonstrate that our approach remains effective in detecting images generated by
high-quality diffusion models. Moreover, the detection performance on original images without
post-processing remains robust, as our method maintains the capability to capture the rescaling dis-
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Table 6: Average precision comparison on Diffusions from the UniversalFakeDetect dataset with
ProGAN as the training dataset.

Methods DALL-E Glide_100_10  Glide_10027 Glide 5027 ADM LDM_100 LDM_200 LDM_200cfg Mean
CNNDet(Wang et al.|[2020) 61.2 72.9 71.3 76.1 66.6 63.7 64.5 63.1 67.5
FreDect(Frank et al.|[2020) 62.5 44.3 40.8 42.3 52.5 51.3 50.9 52.4 49.6
LGrad(Tan et al.{|2023) 97.3 94.9 93.2 95.0 99.8 99.2 99.1 99.2 97.3
UFD(Ojha et al.[[2023) 96.5 96.5 97.0 97.2 84.5 97.0 97.0 88.6 94.3
PatchCraft(Zhong et al.|[2023b) 93.0 92.0 93.9 88.7 90.5 97.7 97.9 96.9 93.8
FreqNet(Tan et al.|[2024a) 99.5 96.1 96.6 95.0 74.5 99.6 99.0 99.0 94.9
NPR(Tan et al.|[2024b) 99.5 99.8 99.7 99.8 81.0 99.0 99.9 99.9 97.4
FatFormer(Liu et al.|[2024) 99.8 99.5 99.3 99.1 91.8 99.8 99.8 99.0 98.4
SAFE(Li et al.|[[2025} 99.7 99.4 98.9 99.2 95.7 100.0 100.0 99.8 99.0
CoD(J1a et al.||2025) 99.6 99.6 99.5 99.5 97.4 99.8 100.0 99.8 99.4
Ours 100.0 99.3 98.6 98.8 99.9 100.0 100.0 99.9 99.6

Table 7: AUC comparison on the Synthbuster dataset. Bold and underline denote the best and
second-best performance, respectively.

Methods Glide SD1.3 SD14 SD2 SDXL MIJv5 DALLE2 DALLE3 Firefly Mean
NPR(Tan et al.|2024b) 722 896 605 125 181 153 39 97.1 380 452
Dire(Wang et al.|[2023} 333 599 613 685 469 419 522 65.2 499 532
CNNDet(Wang et al.|2020} 592 590 612 575 674 488 715 235 734 579
FreqNet(Tan et al.]2024a) 436 923 927 425 665 369 474 02 809  60.6
Fusing(Ju et al.| 2022} 63.0 628 622 669 621 640 76.7 252 763 62.1
LGrad(Tan et al.|[ 2023} 765 824 834 607 702 692 85.7 30.0 420 667
UnivFD(Ojha et al.|[2023) 633 808 812 843 783 571 91.4 31.0 955 737
GramNe((Liu et al.| (2020} 782 839 843 667 718  63.8 85.2 2.9 380 690
DeFake(Sha et al.]2023) 86.1 642 636 662 523 670 414 93.3 394 63.7
PatchCr(Zhong ot al.][2023a) 784 957 962 957 967  79.0 81.8 28.1 79.1 812
DMID(Corvi et al.|[2023b} 731 100.0 1000 997  99.6  99.9 54.3 413 902 842
RINE(Kouilis & Papadopoulos|2024)  95.6 999 999 966 993  96.4 93.0 41.8 829 895
SPAI(Karageorgiou et al.|[2025) 902 996 996 965 974 945 91.1 90.2 9.0  95.0
Ours 9.1 997 997 100.0 100.0 100.0  97.1 93.0 915  97.0

tribution characteristics from the source data. Consequently, our approach surpasses current state-
of-the-art methods.

Robustness to Perturbations. In addition to evaluating on clean images, we also evaluate the
classifier’s detection capability under various image degradation scenarios. In real-world appli-
cations, images may undergo multiple perturbations during propagation, making robust detection
under degraded conditions crucial for practical deployment. Following prior works [Wang et al.
(2020) and |Ojha et al.| (2023), we test four types of perturbations: Rescaling (with scaling factor
«), JPEG compression (with quality parameter ¢), Gaussian blur (with standard deviation o), and
Gaussian noise (with standard deviation o). As shown in Figure[7] our method maintains strong de-
tection performance across different perturbation scenarios. Although our approach relies on rescal-
ing distributions, its fine-grained pretraining enables the model to remain unaffected by rescaling
post-processing while still effectively discerning differences in image rescaling distributions.

Consistent Performance under Patch Size Variations. Table |§| presents the generalization re-
sults of the proposed method under different patch sizes, with experimental settings consistent with
Table 2] The model was pre-trained using a patch size of 128, while fine-tuning and testing were

100 100 100
95
%0 90 %
90
9 9 —— Ours 9 —— Ours Q
o 80 80 80
€ 85 e NPR 2 NPR e
=} 2 =}
= UnivFD = UnivFD
Ts0 <, <, < 5
5] — ours
NPR 60 60 60
704 —— UnivFD
1 09 08 07 06 05 100 9% 8 70 60 50 0 1 2 3 4 5 0 005 01 015 02 025
q o o
(@) (b) © (d)

Figure 7: Robustness to perturbations: (a) Rescaling; (b) JPEG compression; (c) Gaussian blur; (d)
Gaussian noise.
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Table 8: Accuracy comparison with varying patch sizes on the GenImage dataset.

Patch-size SDvl.4 SDvl.5 Midjourney ADM GLIDE Wukong VQDM BigGAN Mean

128 99.9 99.9 92.1 94.2 98.8 99.7 99.7 99.9 98.0
64 99.9 99.8 92.1 89.7 99.6 99.6 99.1 99.3 97.4
32 99.6 99.7 91.3 87.8 97.7 99.2 98.0 99.2 96.6
16 95.6 95.8 88.1 84.4 88.8 93.8 89.8 924 91.1
8 89.7 91.3 83.6 73.9 83.2 86.7 78.7 79.8 83.4

o fake 256
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o fake 160

4 real 256
al

() (b) (©

Figure 8: Feature classification performance between generated and real images under different
rescaling post-processings: (a) ProGAN; (b) ADM; (c) SDv1.4.

conducted with smaller patch sizes. As shown in the results, the detection performance remains
relatively stable when the patch size is reduced to 64 or 32. However, further reduction in patch size
leads to a rapid decline in detection effectiveness. This is primarily because smaller patches contain
limited rescaling distribution information, making it difficult to extract features that characterize
the approximated distribution of generated images. Overall, the pre-trained model demonstrates ro-
bustness to variations in patch size, maintaining remarkable detection performance across different
configurations.

t-SNE Visualizations under Mixed Post-rescaling. Figure [8|presents a unified t-SNE visualiza-
tion incorporating all post-rescaling images from Figure [6] The three subfigures display generated
images and their real counterparts from ProGAN, ADM, and SDv1.4 models, respectively. Each
image group comprises the original images along with three variants processed with different rescal-
ing factors. The visualization reveals that real images maintain coherent clustering across various
rescaling factors while exhibiting clear separation from rescaled generated images. Furthermore,
generated images form distinct clusters corresponding to their respective rescaling factors. Although
different rescaling factors differentially affect the approximated rescaling distribution of synthetic
images, they fail to obscure the inherent distributional discrepancies. Consequently, the pre-trained
model effectively discriminates between post-rescaling generated images and real images. The ro-
bustness experiment in Figure[7(a) further confirms our method’s resilience to rescaling-based post-
processing perturbations.

Visualization of Periodicity in Rescaled Images. Rescaled images exhibit distinct periodic dis-
tribution patterns, which can be observed through cosine similarity maps derived from features ex-
tracted by the pre-trained model. As shown in Figure 0] we present cosine similarity maps of three
randomly selected real images after bilinear rescaling with different factors. For clearer visual-
ization, we magnify the top-left 32x32 region to highlight these characteristics. Consistent with
our theoretical derivation in the preliminary section, the minimal distribution period of rescaling
corresponds to the denominator of the rescaling factor’s reduced fractional form. In subfigure (a),
where 256/224 simplifies to 8/7, the minimal period is 7, and bright stripes indeed appear at 7-pixel
intervals. Similarly, subfigures (b) and (c) demonstrate periods of 3 and 5, respectively. These
observations validate our theoretical analysis regarding the periodic distribution properties of bilin-
ear interpolation and confirm the pre-trained model’s capability to effectively capture such periodic
features.
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(@ (b) (©

Figure 9: Cosine similarity maps of single images under different rescaling ratios, exhibiting distinct
periodicity. (a) Rescaling from 256x256 to 224x224; (b) Rescaling from 256x256 to 192x192; (c)
Rescaling from 256x256 to 160x160.

() (b (© (d)

Figure 10: Consistent periodicity across interpolation methods, compatible with BILINEAR-
pretrained feature extraction. Rescaling 256x256 to 224x224 via: (a) BOX; (b) BICUBIC; (c)
LANCZOS; (d) HAMMING interpolation.

Consistent Periodic Distribution Across Interpolation Methods. We employed various inter-
polation methods to process images and computed their corresponding cosine similarity maps. As
shown in Figure we present results from several PyTorch-provided interpolation approaches:
BOX, BICUBIC, LANCZOS, and HAMMING. Although the pre-trained model was exclusively
trained on bilinear interpolation distributions, it successfully captures periodic features from other
interpolation techniques. This observation aligns with our theoretical analysis that different interpo-
lation methods share similar periodic distribution characteristics. Furthermore, these results validate
our model’s generalization capability across diverse interpolation schemes.
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