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Abstract

While existing image-guided composition methods may help insert a foreground
object onto a user-specified region of a background image, achieving natural
blending inside the region with the rest of the image unchanged, we observe that
these existing methods often struggle in synthesizing seamless interaction-aware
compositions when the task involves human-object interactions. In this paper, we
first propose HOComp, a novel approach for compositing a foreground object
onto a human-centric background image, while ensuring harmonious interactions
between the foreground object and the background person and their consistent
appearances. Our approach includes two key designs: (1) MLLMs-driven Region-
based Pose Guidance (MRPG), which utilizes MLLMs to identify the interaction
region as well as the interaction type (e.g., holding and lefting) to provide coarse-
to-fine constraints to the generated pose for the interaction while incorporating
human pose landmarks to track action variations and enforcing fine-grained pose
constraints; and (2) Detail-Consistent Appearance Preservation (DCAP), which
unifies a shape-aware attention modulation mechanism, a multi-view appearance
loss, and a background consistency loss to ensure consistent shapes/textures of the
foreground and faithful reproduction of the background human. We then propose
the first dataset, named Interaction-aware Human-Object Composition (IHOC),
for the task. Experimental results on our dataset show that HOComp effectively
generates harmonious human-object interactions with consistent appearances, and
outperforms relevant methods qualitatively and quantitatively. Project page: https:
//dliang293.github.io/HOComp-project/.

1 Introduction

Considering a scenario in which a designer aims to create a perfume advertisement by compositing
the image of a product onto an existing photograph with a human person, as shown in row 1 of Fig.[T}
two critical objectives need to be satisfied in order to produce a visually convincing output. First, the
interaction between the person and the perfume bottle should appear ratural, such that the bottle
may seem to be appropriately related to (e.g., held by) the person. Second, visual consistency must
be maintained, preserving the original identities of both the person (including facial features and
makeup) and the perfume bottle (e.g., the logo, color, and shape).

TJoint corresponding authors.
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(a) Inputs: human image & object (f) Generated video frames

Figure 1: When compositing a foreground object onto a human-centric background image, existing
methods (b-d) typically rely on manually specifying the target region and text prompt, and often
produce unrealistic interactions and inconsistent foreground/background appearances. In contrast, our
proposed HOComp, automatically identifies the target region and generates a suitable text prompt
to guide the interaction, resulting in realistic, harmonious and diverse interactions. Note that the
text prompts used by the existing methods in the above three examples are: “A model is showing
a perfume bottle”, “A girl is holding a hat”, and “A woman is lifting a handbag”. By integrating
with an Image-to-Video (I2V) model, our approach can support applications like human-product
demonstration video generation (see results on the bottom region).

Some existing image-guided composition tasks [37, 183 may be most relevant to the above task
setting. They take a user-supplied foreground exemplar, typically accompanied by a textual prompt
and a user-defined target region, and aim to synthesize a harmonious composition. Within this
paradigm, they either incorporate identity-preservation modules [9,[68] to explicitly retain the original
foreground details or focus on adjusting the colors, shadows, and perspective of the foreground to
harmonize it with the background [49] [70} [92} [67], thereby producing photorealistic compositions.
Despite the success, when the composition involves human and object interactions, as depicted in
Fig. [T} existing methods [9. 67, 92] struggle to produce satisfactory results.

For our composition task, we observe that existing methods tend to fail in one or both of the following
ways: (1) they may produce inappropriate gestures for the background persons (e.g., most results
in Fig.[T[c,d)); and (2) they may change the contents/identities of the foreground objects (e.g., rows
2 and 3 of Fig.[I(b-d)) and/or the background persons (e.g., the face in row 1 of Fig.[T(b), and the
clothes in row 2 of Fig. [T(b,c) and row 3 of Fig.[T[b,d). To address these problems, we propose
HOComp, an interaction-aware human-object composition framework, to create seamless composited
images with harmonious human-object interactions and consistent appearances.

Our HOComp includes two key designs. The first design is the MLLMs-driven region-based pose
guidance (MRPG), which aims to constrain the human-object interaction. By utilizing the capabilities



of MLLMs, our method automatically determines suitable interaction types E] (e.g., holding, eating)
and interaction region. Here, we adopt a coarse-to-fine constraint strategy. We first use the interaction
region generated by MLLMs as a coarse-level constraint to restrict the region of the background
image for the interaction. We then incorporate human pose landmarks as a supervision to capture the
variation of the human pose in the interaction, providing a fine-grained constraint on the pose within
the interaction region. The second design is the detail-consistent appearance preservation (DCAP),
which aims to ensure foreground/background appearance consistency. For the foreground object, we
propose a shape-aware attention modulation mechanism to explicitly manipulate attention maps for
maintaining a consistent object shape, and a multi-view appearance loss to further preserve the object
textures at the semantic level. For the background image, we propose a background consistency loss
to retain the details of the background person outside the interaction region.

To train the model, we introduce a new dataset called Interaction-aware Human-Object Composition
(IHOC) dataset, which includes images of humans before and after interacting with the foreground
object, the interaction region, and the corresponding interaction type. We conduct extensive ex-
periments on this dataset, and the results demonstrate that our approach can generate accurate and
harmonious human-object interactions, resulting in highly realistic and convincing compositions.

The main contributions of this work include:

1. We propose a new approach for interaction-aware human-object composition, named HO-
Comp, which focuses on seamlessly integrating a foreground object onto a human-centric
background image while ensuring harmonious interactions and preserving the visual consis-
tency of both the foreground object and the background person.

2. HOComp incorporates two innovative designs: MLLMs-driven region-based pose guid-
ance (MRPG) for constraining human-object interaction via a coarse-to-fine strategy,
and detail-consistent appearance preservation (DCAP) for maintaining consistent fore-
ground/background appearances.

3. We introduce the Interaction-aware Human-Object Composition (IHOC) dataset, and con-
duct extensive experiments on this dataset to demonstrate the superiority of our method.

2 Related Works

Image-guided Composition. It aims to seamlessly integrate a user-provided foreground exemplar
onto a designated region of a background image, sometimes with textual guidance. Existing methods
either focus on appearance harmonization (i.e., adjusting colors, shadows, and perspective) in order
to integrate the foreground onto the background seamlessly [57, 98 |8, 160, 169} 611 39, [79} 117, [7]] or
emphasize identity preservation by introducing dedicated modules to maintain the identity consistency
of the object across scenes [9, 168, 184, 136} 99, |66]]. However, these methods primarily refine the
foreground and often fail to generate natural, realistic human gestures or poses in human-object
interactions (HOIs). While DreamFuse [26] adjusts the foreground to adapt to the background context,
it supports only limited hand actions and struggles with complex HOIs. Recent works [72, 74, 188! |80}
2}, 145]] propose unified frameworks to integrate multiple image generation/editing tasks. Similar to
multi-modality methods [86, 52, 144]], these approaches often unintentionally modify the background
human and introduce inconsistencies in the foreground object.

Multi-Concept Customization. It aims to generate images that align with both the text prompt and
user-specified concepts, facilitating the creation of personalized content. Tuning-based methods [34,
1, (71, 48, 147, 116, 41]] typically incorporate new concepts into diffusion models by fine-tuning
specific parameters, but each new concept requires a separate tuning process. Instead, training-based
methods [87) 156, 1103}, [77, 133} |10} 142} [12} 40| train additional modules to extract the identity of a
concept and inject it into the denoising network via attention layers. Training-free methods [14, 78,
96, 185] incorporate reference-aware attention mechanisms. These methods typically re-generate both
the foreground object and background human, leading to inconsistent background human appearance.

Human-Object Interaction (HOI) Generation. It aims to synthesize images that depict plausible
and coherent interactions between humans and objects. Recent diffusion-based methods generate HOI

*This interaction type is embedded in the text prompt. For example, “A woman is holding a hat”, and “A kid
is eating a donut.”
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Figure 2: Pipeline of HOComp. Our method includes two core modules: MRPG for constraining
human-object interaction and DCAP for maintaining appearance consistency. Inference Phase
(left): MRPG uses MLLMs to generate a text prompt C', object box B,, and interaction region B,..
Among these, B, and C are encoded and, together with the object ID, detail features, and background
features, are used to condition the DiT for final composition generation. Training Phase (right):
MRPG constrains the interaction by applying a pose-guided loss Lyos. With keypoint supervision.
DCAP enforces appearance consistency via: (1) shape-aware attention modulation to adjust the
attention maps to follow the object’s shape prior Mgpqpe; (2) a multi-view appearance 1oss Lappearance
to semantically align synthesized and input foregrounds (multi-views); and (3) a background loss
Lbpackground t0 preserve original background details.

images/videos by introducing extra cues, such as bounding boxes [20} 130, 25| or pose structures [[101}
381 16]], reference videos [89 82], 3D priors [46] and in-context samples of similar interactions [27,
102l 28]]. However, all these approaches require additional inputs during inference (e.g., human
poses or images describing the interaction). Some works [97, 91]] adjust human hand poses during
interactions, but this is often insufficient for complex scenarios. Other methods [63} 24} 154, [15} (93]
employ relation-aware frameworks to improve HOI generation in subject-driven settings, yet they
fail to preserve the background human appearance consistency. Concurrent works, DreamActor-
HI1 [76]] and HunyuanVideo-HOMA [29], explore human interaction in the contexts of human-product
demonstrations and animated human-object interactions. They incorporate additional modality
guidance and exploit the strong multi-modal fusion capabilities of the DiT framework for video
generation.

Several methods [[131165] 75} 35 194]] focus on 3D human—object interaction generation, aiming to
produce physically plausible 3D human—object interactions. These approaches typically generate
3D models or motion sequences conditioned on textual or semantic descriptions of the interaction.
However, due to their reliance on 3D information as training references, the range of interaction types
they can handle remains limited.

In summary, existing methods fall short in addressing the challenge of our interaction-aware human-
object composition task, which requires the model to produce harmonious human-object interactions
and consistent foreground/background appearances.

3 Method

Given a foreground object image I and a background image Iy, containing a human subject, our goal
is to synthesize a harmoniously composited image I, that integrates the foreground object onto the
human-centric background image. The composited image should exhibit harmonious interactions
and maintain appearance consistency between the foreground object and the background human.

To achieve this objective, we propose HOComp, an interaction-aware human-object composition
framework, as illustrated in Fig.[2] Our framework includes two key components: MLLM-driven
Region-based Pose Guidance (MRPG) and Detail-Consistent Appearance Preservation (DCAP).
MRPG leverages Multimodal Large Language Models (MLLMs) and human pose priors to constrain
human-object interaction in a coarse-to-fine manner. DCAP preserves the shape and texture of the



foreground object while maintaining details of the background human, ensuring faithful and coherent
appearance reproduction throughout the composited scene.

In the remainder of this section, we first introduce the preliminaries in Sec.[3.1] We then detail the
design of MRPG in Sec.[3.2] followed by DCAP in Sec.[3.3] Finally, we describe our Interaction-
aware Human-Object Composition (IHOC) dataset in Sec.

3.1 Preliminary

Diffusion Transformer (DiT) is a transformer-based diffusion model for image synthesis. Given a
noisy latent z; at timestep ¢, it predicts the denoised output via Zg = DiT(z, ¢, ¢), where ¢ denotes a
conditioning signal (e.g., text embeddings or visual prompts). Owing to its scalability and strong
generative capacity, DiT serves as a robust backbone for conditional image generation.

Attention Manipulation is a key strategy for improving semantic alignment and structural control in
diffusion models through attention map editing, external signal injection, or modified attention weight

computation. For a standard attention layer defined as A = softmax(QK " /v/d)V, manipulation

introduces a structured bias or conditioning modulation: A’ = softmax((QK " +M)/v/d)V, where
M € R™*™ encodes spatial priors or prompt-specific relevance (e.g., object masks).

3.2 MLLM-driven Region-based Pose Guidance (MRPG)

MRPG adopts a coarse-to-fine strategy to constrain the human-object interaction. At the coarse level,
it leverages the reasoning capabilities of MLLMs to automatically identify suitable interaction type
and corresponding interaction region through a multi-stage querying process. At the fine level, a pose-
guided loss is introduced to impose fine-grained constraints on human poses within the interaction
region, explicitly supervising the predicted image using human pose keypoints.

Generating Interaction Regions and Types. As illustrated in Fig. [2] we employ MLLMs (e.g.,
GPT-40) in a chain-of-thought, a step-by-step process to generate the interaction type (denoted as a
text prompt C') and the interaction region (represented by a bounding-box B;.). While the interaction
type specifies what interaction is to be performed by the background person on the foreground object
(e.g., holding), the interaction region specifies the location in the image that the interaction is to be
performed. Specifically, we send the foreground object and the background image to the MLLM and
query it in a three-stage approach: (1) With a set of initial prompts as the instruction guidance, we
ask the MLLM to envision a plausible interaction type and return the interaction type in the form of
a text prompt description C'; (2) Conditioned on C, we ask the MLLM to further infer a potential
region (i.e., bounding box B,) in the background image where the foreground object is to be placed;
(3) We ask the MLLM to identify the interaction region B,. by considering which human body parts
are involved in the interaction. The generated interaction region B, is converted into a mask, encoded
via a VAE [32]], and used alongside text embeddings . as conditioning inputs to the DiT model.

Imposing Fine-grained Pose Guidance. Considering the significant correlation between human-
object interactions and body poses, we introduce a pose-guided loss Ly, to impose fine-grained
constraints on poses within the interaction region. Let pgr and py,.q represent the i-th keypoint
detected by a pose estimator G, from the ground-truth image Igr and the predicted image I,
respectively. The pose-guided loss £, is formulated as:

1 . .
£y =~ 3 [Ipbr — Pl (1)
i€ B,

where n denotes the number of pose keypoints located within the interaction region B,., as illustrated
in Fig.[2] This localized pose-guided loss explicitly directs the model’s optimization efforts towards
accurately capturing human poses involved in the interaction, rather than globally adjusting the entire
human pose, thereby enhancing the realism and harmony of the generated interaction.

3.3 Detail-Consistent Appearance Preservation (DCAP)

To ensure fine-grained appearance consistency, for the foreground, we first extract identity and detail
information as conditioning inputs for the DiT model. To enforce shape consistency, we introduce a
shape-aware attention modulation mechanism to adjust the foreground-relevant attention maps in the



MM-DiT blocks, guiding the attention maps to align with the foreground object’s shape prior better.
For texture consistency, we propose a multi-view appearance loss to maintain semantic alignment
across multiple viewpoints. For the background, we leverage an unchanged region mask to identify
unaffected areas and impose a background consistency loss to preserve original background details.

Foreground Object Identity and Detail Extraction. We first preprocess the foreground object
by removing the background and centering it. To capture the identity information, we then employ
the DINOv2-based ID encoder [53]], renowned for robust semantic representations, to extract the
foreground ID features E;p. As the resulting identity tokens have a coarse spatial resolution and
therefore lack texture details, we extract a high-frequency detail map, 4,1, as an additional condition:
Tgerait = Lgray — GaussianBlur(Igmy), where Iy, is the grayscale foreground image. A lightweight
detail encoder [9] processes Igeril to extract detail features F4, which are then fused with foreground
ID features E;p to condition the DiT model. Input image & object Resul

Shape-aware Attention Modulation. To enhance shape 9

consistency, we modulate foreground-relevant attention maps ! g oA %

in the MM-DiT blocks, encouraging the attention maps to

align more precisely with the object’s shape prior. This design Figure 3: Visualization of attention
is motivated by the observation that these attention maps maps related to the foreground text
highlight object shapes (see Fig. [3), indicating that the model ~embeddings Agt ,x and the identity

is able to capture structural cues of the foreground objects. ~ features Ag, ,x , both exhibiting

. . strong alignment with object shape.
Specifically, we compute two foreground-relevant attention galg J P

maps: one based on the foreground ID features E1p, and the other on the foreground text embeddings
Ef, with X denoting the target image tokens. Here, Ef are extracted from the full text embedding
E.. For instance, if "foy" is annotated as a foreground object in the text prompt C "A boy is holding
a toy", Ef is the sub-embedding aligned with "toy” from E.. The attention maps are computed as:

QXK};f QXKT
AE£—>X = softmax (\/c—lc ,  Ap;,-x = softmax % , )

where Qx € RV *? are queries from the target image tokens, and Kge, Kg,p, € RMxd

are keys
projected from Ef and Ep, respectively.

To obtain the shape prior, as shown in Fig.|2] we extract a foreground object mask Mp,pe from the
ground-truth image. We aim to enhance the attention within the object region while suppressing
distractions outside it. Considering that directly modifying the attention maps may potentially
compromise the image quality of the pre-trained model [31], we adopt a residual-based modulation
strategy over the extracted attention maps Agr_,x and Ag,,,x to incorporate shape priors while
preserving the original attention distribution. The modulation is defined as:

A=A +a- (Mshape . (Amax - A) - (]- - Mshape) : (A - Amin)) s 3)
where A € {AEE x5 Arn—x ). Amax and Ay, are the per-query maximum and minimum values
computed row-wise. The scalar o € R™ controls the modulation strength. The modulated attention
map is then integrated into the DiT model to encourage shape-aware feature learning.

Multi-view Appearance Loss. To address texture inconsistencies caused by changes in viewpoint
during interactions, we encourage the predicted foreground object to maintain consistent semantic
appearance with the ground truth across diverse views. Specifically, we synthesis multi-view images
for both the predicted result and the input foreground, and measure their semantic similarity.

As shown in Fig. 2} we first segment the predicted foreground object from I,,. Given the segmented
output and the input foreground image Iy, we apply a multi-view generator G to synthesize k views:

Virea = {Vpred}z 1 = G(Segment(I,)), Vgr= {VGT i1 = G(Iy). “

We then extract CLIP [38] features from each synthesized view: F.. oed = CLIP(V prld) .7:((}? =
CLIP(V(Gi%). The multi-view appearance loss is then formulated as:
k () ()
1 ]:pred ‘FGT

Eappearance - E Z HJ’.'(Z) H ) (5)
=1 pred GT




which encourages semantic alignment of the predicted object with the ground truth across multi-views.

Background Consistency Loss. To preserve the appearance of the background human during the
process, we utilize an unchanged region mask Mchanged, Which is provided by our dataset and
indicates the region that remains unaffected throughout the interaction. By constraining the generated
image to match the ground-truth image in this unchanged region, we enforce consistency with the
original background appearance. The background consistency loss £ is defined as:

; ; ; 2
»Cbackground = Z Minchanged © HXZGT - X;anedH ’ (6)
iel
where xg7 and x,,.q denote the pixel values of the ground-truth image I¢r and of the predicted
image I, respectively.

Overall Training Objective. The model is optimized with the composite loss:
Lioal = ['denoising + o »Cp + asly + azly, @)

where Lyenoising 18 the standard denoising loss. £,,, Ly, L, are the pose-guided, background consis-
tency, and multi-view appearance losses. o, a2, aiz are the coefficients of the corresponding loss
terms.

3.4 Dataset Preparation

We introduce the Interaction-aware Human-Object Composition (IHOC) dataset to address the
lack of paired pre- and post-interaction data crucial for modeling realistic and coherent human-
object compositions. IHOC includes six components: (1) background human images (without the
object); (2) foreground object images; (3) composited images with harmonious interactions and
consistent appearances; (4) text prompts describing the interaction type; (5) interaction regions; and
(6) unchanged region masks to indicate unaffected background areas.

Our dataset is constructed through the following stages: @ Composited Images: To enhance data
diversity, we adopt the 117 human-object interaction types defined by HICO-DET [35] and include
both real and synthetic samples. For real data, we manually select 50 images per type (5,850 total)
from HICO-DET. To ensure the quality of our dataset and to reduce bias, we exclude images that (1)
contain multiple persons, (2) lack clearly visible persons (e.g., only a hand is shown), or (3) have
large parts of the foreground objects occluded or not visible (e.g., only one wheel of a bicycle is
visible), making it difficult to identify them. The final selection emphasizes diversity in object type,
scale, and human pose across diverse scenes. For synthetic data, we use GPT-4o to generate 50
prompts per type and synthesize 5,850 images using FLUX.1 [dev] [3]. These synthetic samples help
complement the real data by introducing a wider range of human appearances, poses, viewpoints,
and visual styles (e.g., cartoon, sketches). In total, we have collected 11,700 composited interaction
examples. @Foreground Object Images: Foreground objects are segmented from the composite
images using SAM [59]. To address occlusions caused by human-object interactions, we use GPT-40
to infer and complete missing regions, producing plausible and visually consistent object appearances.
® Background Human Images & Unchanged Region Masks: We manually inpaint composite
images using FLUX.1 Fill [dev] [4] to remove interacting objects and recover plausible human
poses without the interactions. An inpainting mask denotes an interaction-altered region; its inverse
produces the unchanged region mask, highlighting the area unaffected by the interaction. @ Text
Prompts & Interaction Regions: For real images, we use GPT-4o0 to generate text prompts. For
synthetic images, we reuse the generation prompts. In addition, we use GPT-40 to annotate each
prompt with foreground object tokens, indicating which words correspond to the foreground objects.
The interaction regions are derived by inverting the unchanged region masks. More information on
our dataset, including statistics and visualizations, can be found in Sec. [B|of the Appendix.

4 Experiments

Implementation Details. We adopt FLUX.1 [dev] [3] as the base model and fine-tune it using
LoRA [23] with rank 16, applied to the attention layers. All training images are resized to 512x512
resolution. The model is trained for 10,000 steps with a batch size of 2, using AdamW and a learning
rate of le-5. Training takes approximately 20 hours on 2x A100 GPUs. We employ DWPose [95] for
pose estimation, Zero123+ [64] for multi-view generation and GPT-40[52]] as MLLM in MRPG.



Table 1: Quantitative comparison of our method with nine SOTA methods. The user study reports the
averaged rank (lower is better) of nine methods in image quality (IQ), interaction harmonization (IH),
and appearance preservation (AP). The best and second-best results are shown in bold and underlined,
respectively. Training or tuning-based methods without released training codes are marked with a T.

Category ‘Metrics ‘AnyDoor PbE [92] FreeComp. [I1] FreeCustom [14] PrimeComp. OmniGen [88] GenArt. UniCom. [74] GPT-4o' [52] Ours
FID | 18.57 1591 22.55 18.57 17.48 12.13 14.52 11.55 9.98 9.27
CLIP-Score 1 27.65 29.03 27.56 28.43 28.31 29.77 29.11 29.28 29.35 30.29

Automatic | HOI-Score 1 25.69 38.71 22.81 45.72 32.66 62.33 51.83 5891 75.22 87.39
DINO-Score 1 58.83 54.83 44.67 42.02 48.12 43.92 53.96 51.02 65.23 78.21
SSIM(BG) 1 90.71 88.72 86.65 43.22 85.22 82.08 57.83 88.24 47.22 96.57
Q. 9.72 7.47 8.20 9.13 323 2.63 6.22 3.93 3.10 1.37

User study [TH | 8.18 8.23 8.46 6.72 6.68 523 4.88 2.87 2.61 1.14
AP | 2.84 5.41 6.84 7.33 6.07 473 6.54 8.26 5.87 111

(a) Input image & object (b) GPT-40[52]  (c) GenArt.[80] (d) OmniGen|88] (e) AnyDoor[9] (f) PbE[92] (g) UniCom.[74] (h) Ours

Figure 4: Qualitative comparison with six top performing SOTA methods from Table The prompts
for the above four examples are: “A girl is reading a magic book”, “A woman is holding an ornate
folding fan”, “A woman is opening a gift box”, and “A puppet-style old man is playing a guitar”.

Evaluation Metrics. We use FID [19] to assess the overall quality of the generated images, where a
lower score indicates a better alignment with real images. To evaluate how well a generated image
depicts the specified human-object interaction (i.e., HOI Alignment), we compute the HOI-Score
using a pre-trained HOI detector (e.g., UPT [100])), which measures the accuracy of the interaction in
the generated image. Additionally, we employ the CLIP-Score [18] to evaluate the global semantic
alignment between the generated image and the text prompt. Subsequently, we use the DINO-Score to
assess how well the foreground object appearance is preserved, where a higher score indicates a better
appearance consistency to the input foreground object. Finally, background consistency is evaluated
by computing the Structural Similarity Index (SSIM) [81]] over the area outside the interaction region,
where a higher SSIM(BG) score indicates a better retention of the original background.

Benchmark. We introduce a new benchmark, HOIBench, to evaluate the quality of the human-object
interaction task. We begin by collecting 30 images, each with a human person, from the internet. The
humans in these images cover diverse appearances, including different poses and clothes. Half of
these images feature the upper body, while the other half depict the full body. To ensure a broad range
of interaction types, we adopt the 117 interaction types defined in the HICO-DET [22]]. We prompt
GPT-40 with each type to infer a plausible foreground object (e.g., playing — guitar). A concise
textual description of each object is then used to retrieve a representative image from the internet,
yielding 117 interaction—foreground image pairs. Finally, for each human image, we randomly
sample 20 interaction-object pairs from the generated set, producing a total of 600 human-object
interaction instances (20 interactions x 30 human images) for evaluation.



Table 2: Ablation study on removing one of the key components from our full model (left table) and
adding one of the key components to our base model (right table). £, Ly, £,, and SAAM denote
the pose-guided loss, background consistency loss, multi-view appearance loss, and shape-aware
attention modulation, respectively. Best performances are marked in bold.

L, Ly L. SAAM | FID| CLIPt HOIT DINO?t SSIM(BG)t L, Ly L. SAAM |FID| CLIPT HOItT DINOt SSIM(BG)t
v v v 1424 28.05 34.42 69.32 94.91 2125  26.14 26.76 22.19 34.91

' v ' 1545 2842 54.47 59.72 58.49 ' 1580 2642  47.32 30.21 53.11

v v ' 1331 29.37 67.32 46.12 95.11 ' 1472 2683 30.08 33.54 93.29

v v v 1248  29.10 75.23 66.52 95.28 v 16.02  26.71 31.09 55.81 54.29

v v v v 9.27 30.29 87.39 78.21 96.57 v 16.21 26.51 29.85 42.53 57.32

(a) Input image & object (b) Only (c) W/o (d) W/o (e) W/o (f) W/o SAAM (9) Withall

Figure 5: Visual comparison of the ablation study in Table@

4.1 Comparison with State-of-the-Art Methods

We compare HOComp with 9 SOTA methods: AnyDoor [9]], Paint by Example [92], FreeCom-
pose [11]], FreeCustom [[14], OmniGen [88]], GenArtist [80], PrimeComposer [79], UniCombine
and GPT-4o [52]]. All methods with public training code are retrained or fine-tuned on our dataset.

Quantitative Comparison. Table [I6|compares the performances of our method against the nine
existing methods. The results in the top part of the table show that our method consistently outper-
forms all these baselines across all evaluation metrics. Specifically, it achieves the highest HOI-Score
(87.39), surpassing GPT-40 by 12.17 and OmniGen by 25.06, underscoring its strong ability to
model accurate and coherent human—object interactions. In terms of visual consistency, our method
achieves the lowest FID (9.27) and the highest CLIP-Score (30.29), demonstrating superior realism
and semantic alignment ability. Our DINO-Score (78.21) significantly outperforms AnyDoor by
19.38 and GPT-40 by 13.0, indicating improved foreground appearance consistency. Further, our
model produces the most consistent background details with the highest SSIM(BG) score (96.57),
outperforming AnyDoor by 5.86.

Qualitative Comparison. Fig. [] visually compares the results of our method and those of the
six top-performing methods from Table [T6] Rows 3-4 of Fig. [d|(b) show that although GPT-40 can
synthesize plausible human—object interactions, it fails to maintain foreground appearance consistency.
Meanwhile, its generated backgrounds exhibit substantial variations, as shown in rows 1-3 of Fig. f{b).
Similar to GPT-40, GenArtist and OmniGen also suffer from foreground—background inconsistency.
In addition, methods in Fig. ffe-g) produce suboptimal or implausible hand poses. In contrast,
our method effectively constrains the generated human poses as well as the shapes/textures of the
foreground objects. As a result, the images produced by our method exhibit superior appearance
consistency with harmonious human-object interactions.

User Study. We have also conducted a user study to compare our method with all 9 existing
methods. We recruit a total of 75 student participants for the subjective assessment. Each participant
is presented with 10 sets of cases, where each set contains an input human image, a foreground
object, a text prompt to describe the interaction, and ten randomly shuffled results from HOComp and
the 9 competing methods. Participants rank the images based on three criteria: image quality (IQ),
interaction harmonization (IH), and appearance preservation (AP). We collect ranking scores from all
participants and compute the average ranking for each of the three aspects, as shown in the bottom
part of Table[I6] These results show that our approach ranks first in all three aspects: image quality
(1.37), interaction harmonization (1.14), and appearance preservation (1.11), highlighting it being the
most preferred method by all participants.



4.2 Ablation Study

Component Analysis. We conduct an ablation study on HOComp by systematically removing one
key component from our full model (Table [2| (left)) or by adding one key component to our base
model (Table 2] (right)). Fig.[5] visualizes some results of the ablation study. Based on these results,
we can draw six key conclusions: @ Pose constraint (£,) is essential for ensuring proper human
pose generation during interactions. When removed, the result in Fig. [5(c) exhibits a distorted and
incongruous interaction, leading to the lowest CLIP and HOI scores shown in row 1 of Table [2] (left).
Its absence also lowers the SSIM(BG) score from 96.57 to 94.91, showing a mild but noticeable
loss of background consistency. @ Background consistency loss (Lp) helps prevent unintended
modifications of non-interaction region of the background image. Without it, the person as well as
the background scene may undergo significant changes (Fig.[5[d)), resulting in the worst FID score
shown in row 2 of Table[2] (left). As a result, the SSIM(BG) score plummets to 58.49, the largest
drop among all settings, causing the most severe background degradation. @ Multi-view appearance
loss (L£,) ensures consistency in the texture/appearance of the foreground object in the generated
image. Removing it leads to noticeable color and texture shifts of the object (e.g., the balloons in
Fig. e)) and the lowest DINO score shown in row 3 of Table (left). @ Shape-aware attention
modulation (SAAM) plays a crucial role in preserving object shape consistency. As shown in row
4 of Table [2| (left), removing SAAM leads to inconsistent shape transformations and appearance
variations, with the DINO score dropping significantly from 78.21 to 66.52. @ Finally, by integrating
all key components, our proposed method achieves the best performance, as shown in row 5 of
Table 2] (left). ® Table 2] (right) shows that each component individually enhances a specific aspect
of the model. £, helps improve interaction quality, as reflected in higher HOI and CLIP scores. £y
improves background consistency, evident from the SSIM(BG) score. £, and SAAM help maintain
foreground appearance consistency, leading to improved DINO performances.

5 Conclusion

In this paper, we have presented HOComp, a framework for Inputimage & object Incorrect By Correct By
interaction-aware human-object composition. It leverages MLLM- ()

driven region-based pose guidance (MRPG) for constrained ﬁ
human-object interaction, and detail-consistent appearance preser- % = g b
vation (DCAP) for maintaining appearance consistency. To support !
HOComp training, we have also introduced the Interaction-aware Figure 6: An example failure
Human-Object Composition (IHOC) dataset. Extensive experi- case of HOComp. The red boxes
ments demonstrate that HOComp outperforms existing methods indicate the interaction regions.
in quantitative, qualitative, and subjective evaluations.

HOComp does have limitations. Although MLLM:s correctly identify the interaction region in 91.33%
of the samples in our benchmark, HOIBench, incorrect predictions may still affect the quality of the
generated interactions, as shown in Fig.[6] As a future work, we would like to consider incorporating
human pose priors into predicting the interaction region.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: It is sure we have make it clear in abstract and introduction about contributions.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have included limitations in conclusion section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have disclosed all the information needed to reproduce the main results in
implementation details and appendix.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We have opensourced our github repository will soon release all the codes and
dataset.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We have disclosed all the information in main paper and appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: We do not report error bars due to limited computing resources.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We have offered this information in experiment part.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We have discussed these problems in Section J of Supp.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
Justification: We have discussed these problems in Section J of Supp.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have discussed these problems in Section J of Supp.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We have provided this information on the appendix.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]
Justification: We have discussed these problems in Section J of Supp.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]
Justification: We have discussed these problems in Section J of Supp.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: We used MLLMs to assist in identifying interaction regions and interaction
types, as well as in generating the dataset. The methodology has been described in detail in
the Methods section.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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HOComp: Interaction-Aware Human-Object Composition

Appendix

A Overview

In this appendix, we provide additional implementation details, ablation analyses, and extended
evaluations to further support and expand upon the findings presented in the main paper.

Specifically, we address the following key aspects in our appendix: (1) Presenting detailed statistical
analyses and the construction procedure of our JHOC dataset (Sec. [B); (2) Offering additional
clarifications on our approach, including experimental configurations and supplementary ablation
analyses (Sec. [C} [H); (3) Presenting additional experiments to validate our method, including
further comparisons with state-of-the-art approaches and more results of our method (Sec.[I} K). (4)
Discussing on ethical considerations, data governance procedures, and responsible use safeguards
implemented in the development of our method. (Sec. [[);

B Extended Details on IJHOC dataset

B.1 Dataset Construction

Stage 1: Collecting Composited Images Stage 4: Get Background Images, Unchanged Region Masks and Interaction Regions
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Figure 7: Overview of the construction process of our Interaction-aware Human-Object Composition
(IHOC) dataset. It involves four stages: (1) collecting synthesized and real-world composited images,
(2) obtaining corresponding text prompts, (3) extracting foreground object images, and (4) getting
background human images, unchanged region masks, and interaction regions.

In Sec. 3.4 of the main paper, we briefly discuss our Interaction-aware Human-Object Composition
(IHOC) dataset, which includes six components: (1) background human images (without the object);
(2) foreground object images; (3) composited images with harmonious interactions and consistent
appearances; (4) text prompts describing the interaction type; (5) interaction regions; and (6) un-
changed region masks to indicate unaffected background areas. As shown in Fig.[7} our ITHOC dataset
construction comprises four stages.

Stage 1: Collecting synthesized and real composited images. To ensure data diversity, we adopt
the 117 human-object interaction categories from HICO-DET[22], comprising both real and synthetic
samples. For real images, we manually selected 50 images per category, resulting in a total of 5,850
from HICO-DET, excluding those that (1) contain multiple people, (2) lack clearly visible humans,
or (3) lack clearly visible objects, which impair recognizability. The final set emphasizes diversity in
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object type, scale, and human pose across scenes. For synthetic images, we use GPT-40 to generate
50 text prompts per category and synthesize 5,850 samples using FLUX.1 [dev][3]. These images
complement the real data by introducing broader variations in human appearance, pose, viewpoint,
and visual style (e.g., cartoons, sketches). In total, we collect 11,700 composited images.

Stage 2: Generating text prompts. For real images, we use GPT-4o to generate descriptive prompts.
For synthetic images, we reuse the prompts originally used for generation.

Stage 3: Extracting foreground objects. We segment foreground objects from composited images
using SAM [59]]. To address occlusions caused by human-object interactions, GPT-4o infers and fills
missing regions, producing complete and visually consistent objects.

Stage 4: Getting background images, unchanged region masks, and interaction regions. We
manually annotate inpainting masks and use FLUX.1 FILL [dev] [4] to remove interacting objects
and reconstruct plausible human poses without interactions. The inpainting masks define interaction-
affected regions; their inverse yields the unchanged region masks. Interaction regions are computed
by extracting the minimal bounding box of the interaction area within the unchanged region mask.

B.2 Dataset Statistics

As shown in Fig. [§] our dataset consists of six components: (1) background human images (without
the object); (2) foreground object images; (3) composited images with harmonious interactions and
consistent appearances; (4) unchanged region masks to indicate unaffected background areas; (5)
interaction regions and (6) text prompts describing the interaction type;

r

Composited
Images

Background
Images

Foreground
Images

Unchanged Region Mask
and Interaction Region R n I:\ l H w‘ & I:I

“A woman is “A girl is eating “A man is standing “4A man is “A girl is
holding a bag..” a donut..” with a suitcase..” playing a guitar..”  reading a book..”

Text Prompt
Figure 8: Visualization of our Interaction-aware Human-Object Composition (IHOC) Dataset.

Our dataset consists of 11,700 composited images, with half sourced from real-world data and the
other half generated synthetically. Our dataset comprises a total of 117 types of interaction types and
342 distinct foreground object categories. To highlight the diversity of our dataset, we analyze its
statistical properties across six dimensions, as illustrated in Fig. [Oa—f):

(1) Human Viewpoint: Our dataset includes four distinct human viewpoints, categorized by body
visibility and camera angle: full-body frontal, full-body side, upper-body frontal, and upper-body
side (see Fig.[0[a)). Upper-body frontal is the most common (42.4%), followed by full-body frontal
(27.5%), upper-body side (15.7%), and full-body side (14.5%). This distribution is reasonable, as
frontal views typically support a wider range of interaction types and are more frequently used in
practice.
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Figure 9: Statistical analysis of our Interaction-aware Human-Object Composition (IHOC) dataset
across six dimensions: (a) human viewpoint, (b) human pose, (c¢) interaction body part, (d) foreground
object size, (e) image style, and (f) background scene type. These statistics demonstrate the dataset’s
diversity in visual appearance, interaction types, and contextual complexity.

(2) Human Pose: Our dataset covers five major categories of human pose: standing, sitting, lying,
squatting, and other (e.g., jumping on a skateboard) (see Fig.[9(b)). Standing is the most prevalent
(61.7%), followed by sitting (21.3%), squatting (10.1%), lying (4.3%), and other (2.6%). This
distribution demonstrates that our dataset includes both common and less frequent poses.

(3) Interaction Body Part: We categorize the interactions in our dataset into five body regions based
on which part of the body changes position before and after the interaction: hand/arm, foot/leg, torso,
head/face, and multiple parts (see Fig. Ekc)). Hand/arm interactions are the most dominant (54.3%),
other interactions involve foot/leg (15.0%), multiple parts (12.5%), torso (11.0%), and head/face
(7.2%). This distribution highlights the diversity of interaction types and the involved body regions in
our dataset.

(4) Foreground Object Size: Our dataset includes foreground objects of varying sizes. Based on the
ratio of foreground object area to the entire image area, we classify them into three categories: small

26



(<10%), medium (10-30%), and large (>30%) (see Fig.[9(d)). Medium objects are the most common
(44.3%), followed by small (29.2%) and large (26.5%). This distribution indicates that our dataset
captures a diverse range of object sizes, which is essential for evaluating interaction robustness across
different foreground scales.

(5) Image Style: Our dataset spans five distinct image styles: photo-realistic, cartoon, sketch-like,
artistic, and digital art (see Fig.[9]e)). Photo-realistic images comprise the majority (65.8%), while
the remaining styles each account for 8.5%. This diversity supports our method in handling images
from different visual domains.

(6) Background Scene Type: Our dataset includes images with diverse background scenes, which
we use GPT-4o to judge the complexity of background scene: simple indoor, complex indoor, simple
outdoor, and complex outdoor (see Fig. 0[f)). The distribution is relatively balanced: complex indoor
(29.2%), simple indoor (27.9%), complex outdoor (23.3%), and simple outdoor (19.6%), ensuring
broad coverage across varied scene contexts.

C Generalizability of HOComp.

To address the generalizability concern of our model, we have evaluated HOComp under challenging
and diverse conditions.

We first validated our method’s performance under three extreme or special cases: (1) multi-subject
and multi-person compositions, (2) extremely large interaction regions, and (3) interactions involving
completely occluded target objects.

1. Multi-subject and multi-person compositions:

We have tested HOComp on inputs with multiple persons and objects, focusing on cases where
multiple persons interact with several objects simultaneously. Since HOIBench lacks multi-persons
data, we have constructed a new benchmark with two scenarios: (1) two persons with two objects
and (2) three persons with three objects.

Test Set Construction: We have collected 40 diverse images (20 with two persons, 20 with three
persons) from the internet, and generated 117 interaction—foreground image pairs following the same
procedure of constructing HOIBench described in Sec. ]

For Two persons, two objects: Each person in an image is randomly assigned a unique interac-
tion—object pair, ensuring a wide variety of combinations. For each of the 20 two-person images, we
repeat this assignment process 10 times with different pairs, resulting in 200 two-person, two-object
test cases.

For Three persons, three objects: Similarly, each person is assigned a unique interaction—object pair,
randomly sampled from the 117 pairs described above. This process is repeated for each three-person
image, resulting in 200 three-person, three-object cases.

We have evaluated our model using the new test set of 400 cases (200/scenario) and compared its
performance with the top three methods from the main paper. We compute the HOI-Score and
DINO-Score for each individual person-object interaction pair, and then take the average of all these
scores across all interaction pairs. As shown in the following table, our approach achieves the best
results in both scenarios and on all metrics.

Table 3: Quantitative results of our method on multi-subject and multi-person compositions.

Category Method FID| | CLIP-Scoref | HOI-Scoret | DINO-Scoref | SSIM(BG)T
AnyDoor[9] 22.38 26.86 23.12 55.46 83.19
2 persons & 2 obiects OmniGen.[88] | 15.98 29.03 51.45 38.66 7591
person: Jects GPT-40[52] 11.13 29.18 73.12 63.17 25.50
Ours 10.25 29.87 83.61 73.48 93.25
AnyDoor[9] 24.17 26.03 22.98 52.07 80.11
3 persons & 3 obiects OmniGen.[88] | 18.25 28.14 49.01 35.85 72.14
p ) GPT-40[52] | 13.46 28.85 70.88 55.14 19.80
Ours 10.43 29.76 82.98 73.09 91.52

2. Extremely large interaction regions:
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We have also evaluated HOComp’s performance on cases with exceptionally large interaction regions,
such as those illustrated in Fig.[8](e.g., “a man is playing a guitar,” where the interaction covers over
70% of the image). We have identified 82 images in HOIBench where the interaction region occupies
more than 70% of the total image area, and compared HOComp with previous methods on this subset.
As shown in the following table, HOComp achieves substantially better results than other baselines
across all metrics in large interaction region cases.

Table 4: Quantitative results of our method on extremely large interactions region cases.

Method FID| | CLIP-Scoref | HOI-ScoreT | DINO-Scoret | SSIM(BG)T
AnyDoor[9] 21.80 26.93 22.96 44.62 85.78
OmniGen.[88] | 15.31 29.14 55.41 38.45 72.83
UniCom.[74] 13.55 29.17 54.22 49.37 84.02
GPT-40[52] 10.03 29.12 74.01 63.39 3291
Ours 9.44 30.26 85.11 77.48 95.43

3. Interactions involving completely occluded target objects:

Some actions may cause the interacting object to become entirely occluded in the resulting image,
e.g., food being eaten (fully inside the mouth) or an object blocked by a car. To evaluate the
model’s generalization in such cases, we have curated 50 test instances where the target object is fully
occluded after the interaction. We append “the object is occluded because of the human action” to
the MLLM-generated descriptions, forming a dedicated evaluation subset.

Standard metrics requiring object visibility (e.g., DINO-Score, HOI-Score) are inapplicable here.
Instead, we manually assess the plausibility of the depicted interactions (“Occlusion Accuracy”),
focusing on whether the generated images realistically reflect the intended occlusion. The results in
the table below clearly demonstrate the superiority of our method over existing works.

Table 5: Quantitative results of our method on cases involving completely occluded target objects.

Method FID| | CLIP-Scoret | Occlusion Accuracyt | SSIM(BG)T
AnyDoor[9] 22.95 26.85 0.08 83.52
OmniGen.[88] | 15.83 29.07 0.42 71.89
UniCom.[74] 15.58 29.06 0.28 83.62
GPT-40[52] 10.52 29.31 0.84 25.28
Ours 9.82 29.87 0.86 94.35

Extension to the User Study: To further demonstrate the generalization of our method to diverse
inputs, we have expanded the user study in the main paper from 10 to 50 input cases, covering a
broader range of human poses, viewpoints, and object categories. 45 participants have completed the
evaluation. As shown below, our method consistently outperforms all baselines across all metrics,
indicating strong user preferences for our approach.

Table 6: Extension user study results of our method.
Metrics‘Any.[9; PbE[92] FreeC.[11] FreeCu.[14] Prime.[79] Omni.[88] GenArt.[80] UniC.[74] GPT-40[52] Ours

1QJ 8.28 7.64 9.66 9.16 3.14 2.49 6.03 4.07 3.29 1.24
H] 8.65 8.90 8.35 5.85 6.15 5.01 5.34 291 2.69 1.15
AP | 3.05 5.04 7.20 6.92 6.25 493 6.65 8.05 5.74 117

Our framework can also be adapted to different foundation models. In our original experiments,
we used FLUX.1[dev] as the base DiT model. We additionally evaluated HOComp with FLUX.1
Kontext[dev][2] as the base model. As shown below, HOComp attains superior performance on
FLUX.1 Kontext[dev], further demonstrating the adaptability of our approach across base model
variants.

28



Table 7: Results on different foundation models.

Base DiT Models FID | CLIP-Scoret HOI-Scoret DINO-Scoret SSIM (BG)T
FLUX.1[dev][3] 9.27 30.29 87.39 78.21 96.57
FLUX.1 Kontext[dev][2] 9.19 30.32 89.21 81.13 97.34

D More Discussions on Limitations of OQur Method

Our MRPG module adopts a coarse-to-fine strategy for constraining human-object interactions. At
the coarse level, it leverages MLLMs to automatically identify suitable interaction types/regions
via multi-stage querying. In some rare cases, MLLMs may fail to accurately predict the interaction
regions. We provide a detailed analysis of these failure modes and potential solutions below.

In our HOIBench experiments, MLLMs (e.g., GPT-40) identified reasonable interaction types in
100% of samples. The corresponding interaction region was predicted correctly in 91.33% of cases
(548/600). For the remaining 8.67 % (52/600), two main failure modes are observed:

1. Mismatch Between Interaction Regions and Types (6% of cases): When multiple
plausible interaction types exist, MLLMs may misassign interaction regions. For example, if
the object is sunglasses and the interaction type is “hold”, the model may incorrectly assign
the region around the eyes (i.e., “wear” action). While the generated image depicts a person
wearing sunglasses with harmonious interactions and consistent appearance, the predicted
interaction type is inconsistent.

2. Incorrect Interaction Region Size (2.67 % of cases): In these cases, the predicted interac-
tion region does not fully cover the area, including the object and the human body part, for
modification. As shown in Fig.[6] this can hinder generation of correct interactions.

To address these two issues, we explored the following solutions:

* Additional Input Conditions: To alleviate the mismatching issue, we can further incor-
porate human pose priors (from a pose estimator) as an additional prior to MLLMs. For
GPT-40, the region prediction accuracy increased from 91.33% to 96.5% . This improve-
ment can be attributed to the introduction of explicit keypoint information, which provides
precise localization of body parts such as the face and hands.

* Training with Noisy Data: To mitigate the impact of incorrect interaction region sizes, we
introduce noisy data during training. We first generated 1,000 accurate input data samples.
In accordance with the observed error rate, we then moved the bounding boxes of 700
samples to create mismatches with the interaction types (e.g., moving the bounding box of
a “soccer ball” with a “kick” action to cover the hand, which may correspond to a “hold”
action). Additionally, we reduced the bounding boxes of 300 samples so that they no longer
fully covered the interaction object or the required body movement. We fine-tuned the
previously pretrained HOComp model for 3,000 steps using these noisy samples alongside
the original IHOC dataset. After retraining, we re-evaluated our method using the 52 failure
cases. As shown in the following table, training with noisy data substantially improved the
model’s performance even when MLLMSs mispredicted the interaction region.

Table 8: Results of our method using different training strategies.
Training Strategy FID] CLIP-Scoret HOI-Scoret DINO-Scoret SSIM (BG)t

Without Noisy Data  11.58 29.55 38.62 70.02 62.01
With Noisy Data 10.03 29.82 77.89 74.29 88.93

E Effectiveness of Residual-based Modulation Strategy

As discussed in Sec. 3.3 of the main paper, our shape-aware attention modulation employs a residual-
based strategy to adjust the attention maps. This design is motivated by the concern that directly
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modifying attention maps may degrade the visual quality of the generated images, as suggested by
previous work [31]].

‘We define our modulation as:
Al =A +a- (Mshape : (Amax - A) - (1 - Mshape) : (A - Amin))

where A is the original attention map, Mgpape is the ground-truth shape mask, « is a modulation
strength, A, and A,,;, denote the maximum and minimum attention values per query. The terms
(Amax — A) and (A — Apin) serve as residuals, which helps constrain the modulation within the
original attention range. This ensures that the updated attention map A’ does not deviate excessively,
thereby preserving the pretrained model’s attention distribution. For comparison, we also evaluate a
naive modulation strategy without residual constraints, formulated as:

A=A+a- (Mshape - (1 - Mshape))

We conduct an ablation study on the HOIBench to compare the effectiveness of the residual-based
strategy versus the non-residual version. As shown in Fig.[I0]and Table. [} removing the residual
leads to a notable drop in FID and DINO scores, indicating degraded image quality and reduced
consistency of the generated foreground objects. Other metrics also show minor decreases. Visually,
the generated shapes deviate more from the input guidance, confirming the importance of the residual
design.

Table 9: Ablation study on attention modulation strategies.
Modulation Strategy FID| CLIP1T HOI{T DINO1 SSIM(BG) 1

Non-residual Strategy ~ 10.89 30.07 84.32 69.72 95.58
Residual Strategy 9.27 30.29 87.39 78.21 96.57
(a)Input image & object (b)Residual Strategy (c)Non-residual Strategy

Figure 10: Visual results of ablation study on attention modulation strategies in TableEl

F Effect of Coefficients

We evaluate the impact of four coefficients in the overall training loss and the shape-aware attention
modulation on HOIBench. Specifically, a1, a2, and a3 are the coefficients of the pose-guided loss,
background consistency loss, and multi-view appearance loss, respectively. a denotes the modulation
strength used in the shape-aware attention modulation.

As shown in Table. OlIncreasing o from 1 to 1.5 (Rows 1 vs. 2) improves HOI score (87.39 —
88.01) and CLIP score (30.29 — 30.31), indicating better pose alignment. However, this comes at
the cost of image quality and consistency, with FID increasing (9.27 — 10.65), and both DINO and
SSIM(BG) decreasing (78.21 — 73.32, 96.57 — 94.33). @Raising as from 0.5 to 1.0 (Rows 1 vs. 3)
improves SSIM(BG) (96.57 — 96.92), reflecting better background preservation, but significantly
degrades other metrics including FID, CLIP, HOI, and DINO—suggesting that excessive emphasis on
background stability impairs semantic and visual coherence. ®Increasing 3 from 0.8 to 1.0 (Rows
1 vs. 4) slightly improves DINO (78.21 — 78.58), indicating enhanced shape alignment, but at the
cost of higher FID (12.92) and lower SSIM(BG) (94.88), showing a trade-off between appearance
consistency and image quality. @Finally, increasing modulation strength o from 1.0 to 1.5 (Rows
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1 vs. 5) causes moderate declines in FID (9.27 — 10.87), DINO (78.21 — 77.63), and SSIM(BG)
(96.57 — 95.48), this effect may arise due to the destabilization of the pretrained attention distribution
caused by excessively aggressive attention modulation.

Table 10: Quantitative comparison of different coefficient combinations. «;, a9, and a3 are the
coefficients of the pose-guided loss, background consistency loss, and multi-view appearance loss,
respectively. o denotes the modulation strength used in the shape-aware attention modulation.

Coefficients (a1, a2, vz, @) FID|, CLIPT HOI1 DINO{ SSIM(BG)t

a1=1, ap=0.5, a3=0.8, a=1 9.27 30.29 87.39 78.21 96.57
a1=1.5, as=0.5, 3=0.8, a=1  10.65 30.31 88.01 73.32 94.33
a1=1, ae=1, a3=0.8, a=1 11.29  29.88 82.16 74.10 96.92
a1=1, ap=0.5, az=1, a=1 1292  29.71 85.75 78.58 94.88
a1=1, ap=0.5, 3=0.8, a=1.5 10.87 30.25 86.11 77.63 95.48

G Extended Details on Using MLLMs to Identify Interaction Types and
Regions

In Sec. 3.2 of the main paper, we briefly described the use of MLLMs to infer interaction types and
interaction regions via multi-turn querying. Here, we detail the full process.

Given a background human image I, and a foreground object image I ¢, we iteratively use an MLLM
to extract: (1) a text prompt C' describing the interaction, (2) the object bounding box B,, and (3) the
interaction region on the human B,. The multi-turn procedure proceeds as follows:

1. Interaction Prompt Generation. The MLLM is queried with Iy and I, using the instruction:
“Please analyze and describe a suitable type of interaction between them and generate a simple
prompt for this interaction.” The model outputs a text prompt C' describing the interaction type.

2. Object Box Prediction. Using Iy, I;, and C, we query the MLLM with: “Please describe the
position of the foreground object and give bounding box coordinates so that it aligns with the
specified interaction.” The model returns the object bounding box B,,.

3. Interaction Region Prediction. Given /¢, I;,, C, and B,,, we ask: “Based on the images and
interaction prompt, and assuming the object is at B, identify the regions on the person that would
be affected during the interaction and return their bounding box.” The MLLM then predicts the
interaction region box B,..

H Additional Ablation studies

H.1 Multi-View Generators and View Numbers

We evaluate the impact of the number of views used in the multi-view appearance loss (Fig.
Table. [TT] (left)). Using only a single view leads to noticeable inconsistencies in object appearance.
As the number of views increases, performance improves steadily across all metrics, confirming the
value of richer multi-view supervision.

We further evaluate different multi-view generation methods (Fig.[I2] Table.[IT](right)). Without multi-
view supervision, the model fails to maintain appearance consistency under significant viewpoint
changes. Incorporating multiple generated views into the CLIP loss enhances coherence across
varying poses and backgrounds. Among the methods, Zero123+[55] achieves the best results,
while SV3D|[73]] and ViewDiff [21] also outperform the no multi-view baseline, underscoring the

importance of high-fidelity multi-view supervision.

H.2 LoRA Ranks Table 12: Ablation study on

Table [T2] presents the results of varying the LoRA rank (8, 16, 32, LoRA Ranks

64) across five evaluation metrics. Rank 16 consistently achieves m m; cur; worr pmo; ssmaee

the best overall performance, yielding the lowest FID (9.27) and the 5 o3 2% sn un wn

9.27 30.29 87.39 78.21 96.57
32 9.84 30.24 86.68 717.26 96.15
64 9.33 30.27 85.49 77.12 96.04
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Input image & object 1 View 2 Views 3 Views 4 Views 5 Views 6 Views

Figure 11: Visual results of ablation study on view numbers used in multi-view appearance loss.

Input image & object No Multi-view SV3D [73] ViewDiff [21]] Zero123+ [64]

t.4 2244

Figure 12: Visual results of ablation study on multi-view generators.

highest scores in CLIP (30.29), HOI (87.39), DINO (78.21), and SSIM(BG) (96.57). When the rank
is too low (e.g., 8), the model underperforms across all metrics, indicating insufficient capacity to
model human-object interactions and maintain consistent appearances. However, higher ranks (32,
64) yield marginal or no improvements (e.g., DINO drops to 77.26 and 77.12), suggesting possible
overfitting.

H.3 1ID Encoder Backbone

As discussed in Sec. 3.3 of the main paper, we adopt DINOvV2 as the backbone for extracting object
identity features. Here, we conduct an ablation study comparing different backbones: VAE [51]],
CLIP [62], and DINOv2 [43]]. To ensure a fair evaluation, we additionally report CLIP-I [58]], which
measures the CLIP similarity between the synthesized foreground object and the input foreground
object.

As shown in Table. [[3] DINOvV2 consistently outperforms other ID encoder backbones across all
evaluated metrics. As shown in Fig.[T3] using DINOVv2 as the ID encoder backbone yields the most
consistent foreground object.

Input image & object VAE[32] CLIP[62] DINOV2[33]]

8

Figure 13: Ablation study on different backbones for foreground ID encoders.

H.4 Guidance Scale

To study the impact of the guidance scale on our model, we evaluate performance under six different
inference-time guidance scales: 1, 2, 3, 3.5, 4, and 5.

As shown in Table. [T4] and Fig. [T4] guidance scale

= 3.5 achieves the best overall performance (FID = “Gugancesale FID, CLIPT HOIT DINO| SSIM(BG) T
9.27, CLIP = 30.29, HOI = 87.39, DINO = 78.21, “g&-10 1011 2942 8001  62.33 95.25
—_ 3 1 =20 9.78 29.85 81.56 71.60 95.28
SSIM(BG) = 96..57). C.01.‘respond1ngl}f, the visual §:=3.o ot o o
results at this setting exhibit the most faithful preser-  g=3s 927 3029 8739 7821 96.57
gs=4.0 9.39 30.19 83.91 77.56 95.89

vation of the foreground object’s appearance. In con-

trast, lower guidance scales (gs = 1.0 or 2.0) lead to

diminished semantic alignment, particularly evident Table 14: Performance of our model under dif-
ferent guidance scales during inference. The
model is trained with a guidance scale of 1.

gs=50 9.68 29.76 81.23 76.41 96.18
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Table 11: Ablation on different numbers of views (left) and multi-view generators (right).

# Views FID| CLIPT HOIT DINOT SSIMBG)T  Method | FID| CLIPt HOIt DINOT SSIM(BG)!
I(No multi-view) 11.55  29.52 8132  68.83 95.83

2 1022 2955 8380 6973 05,86 Nomulti-view | 1155 2952 8132  68.83 95.83

3 10.19 2981 8508  70.26 95.87 Zerol23+[55] | 9.27 3029 8739 7821 96.57

4 954 3021 8519 7163 96.03

s 0% 3003 se07 7419 0621 SV3D[73] 9.89  29.85 8498  75.26 96.01

6 927 30.29 87.39 78.21 96.57 ViewDiff[21] 10.20 29.99 86.19 74.63 95.98

Table 13: Ablation study on different ID encoder backbones
Backbone ‘ FID| CLIPtT HOItT DINOtT CLIP-IT SSIM(BG) T

VAE 9.98 29.72 82.73 67.33 78.38 95.98
CLIP 9.55 30.17 85.24 75.72 87.79 96.53
DINOv2 [43] | 9.27 30.29 87.39 78.21 90.25 96.57

in the foreground regions, as reflected by lower DINO
scores. Increasing the scale beyond 3.5 (e.g., gs =4.0
or 5.0) results in subtle declines in both quantitative
scores and foreground object consistency.

Input human and object gs=1.0

Figure 14: Ablation study on different guidance scales (denoted as gs) during inference.

I Comparison with Multi-Modality Models

We compare our method with recent state-of-the-art multi-modality models, including GPT-40[52],
Grok3(86l], and MidJourney V7 [50]. All models receive identical inputs: a foreground object, a
background human image, a designated interaction region, and a corresponding text prompt.

Qualitative results reveal clear limitations in existing models. GPT-40 and MidJourney V7 frequently
fail to generate consistent foreground objects (e.g., Row 2(b), Rows 2-3(d) in Fig. |'1§|) Grok3 and
MidJourney V7 struggle to preserve the background human and scene details (Rows 1-3(c—d)). In
addition, GPT-40 may struggle to accurately model interactions under complex scenarios (see Row

1(b)).

Quantitatively, our method outperforms all baselines across five key metrics. It achieves the lowest
FID (9.27), highest CLIP score (30.29), HOI score (87.39), DINO score (78.21) and SSIM(BG) score
(96.57). This demonstrate that our method delivers more harmonious human-object interactions and
consistent appearances.

J Additional Comparison with Image Composition Methods

In addition to the nine methods compared in the main paper, we conducted further comparisons with
five additional state-of-the-art image composition methods: DreamFuse [26]], InsertAnything [66]],
MimicBrush [8], Bifrost [36] and DreamRelation [63]. For fairness, all methods with publicly
available training code were retrained or fine-tuned on our dataset.

Fig.[T7]shows qualitative comparisons. DreamFuse and InsertAnything generate visually faithful
foreground objects, but often fail to model realistic human-object interactions (see Rows 2—4 in
Fig[T7(b—c)). DreamRelation produces interaction-like gestures, yet struggles to preserve the visual
consistency of the foreground object and background human (Rows 1-4 in Fig[T7(f)). MimicBrush
and Bifrost, on the other hand, produce neither convincing interactions nor accurate object appear-
ances (Fig.[I7(d—e)). In contrast, our method generates diverse and harmonious interactions while
maintaining the consistent appearance of both the foreground and the background.
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Table 15: Qualitative comparison with recent state-of-the-art multi-modality models.

Method FID, CLIPt HOIf DINOt SSIM(BG)t
Grok3 [86]] 1327  29.07 6503 57.02 58.25
GPT-4o [52] 998 2935 7522  65.23 47.22
MidJourney V7 [50] 10.85 29.87 7345  60.18 41.34
Ours 927 3029 8739 78.21 96.57

(a)Input image & object (b)GPT-40[52]

Figure 15: Quantitative comparison with recent state-of-the-art multi-modality models. The prompts
for the above three cases are: "A woman is riding a horse","A girl is holding a stack of books", "A
model is presenting a skincare bottle".

Table. @provides quantitative results. Our method achieves the best FID (9.27), CLIP-Score (30.29),
HOI-Score (87.39), and DINO-Score (78.21), indicating superior image quality, semantic alignment,
interaction quality and appearance consistency. User study results further validate our approach,
ranking it highest in image quality (IQ), interaction harmonization (IH), and appearance preservation
(AP), with all scores significantly outperforming other methods.

K Additional Results of HOComp

Fig. [I7] shows additional qualitative results of our method. Each example includes: (1) Top: the
final composited image, (2) Bottom: the input background human and foreground object. These
results demonstrate that our method produces natural and plausible human-object interactions while
maintaining visual consistency of both the foreground object and the background human.

L Ethical Considerations

Human Subjects and Informed Consent

Our institution currently does not maintain a formal Institutional Review Board (IRB) or equivalent
ethics committee. To ensure compliance with international ethical norms, we conducted an internal
review modeled on IRB standards and assessed the study along four key dimensions: privacy,
informed consent, participant protection, and data security.
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(a)Input image & object  (b)DreamFu.[26] (c)InsertAn.[66] (d)Mimic.[8] (e)Bifrost[36] (f)DreamRe.[63] (2)Ours

Figure 16: Additional qualitative comparisons of our HOComp with 5 SOTA methods. The prompts
for the above four examples are: “A boy is holding a mickey mouse toy”, “A girl is showing a perfume
bottle”, “A woman is lifting a bag”, and “A sitting man is holding a balloon”.

Table 16: Additional quantitative comparison of our method with 5 SOTA methods. The best and
second-best results are highlighted in bold and underline, respectively. Training or tuning-based
methods without released training codes are marked with a f.

Category ‘ Metrics ‘ DreamFuse' [26] InsertAnything’ [66] MimicBrush® Bifrost! [36] DreamRelation Ours
FID | 13.35 10.72 15.88 16.21 15.85 9.27
CLIP-Score 1 29.53 29.76 28.62 28.17 28.55 30.29

Automatic | HOI-Score 1 63.75 58.85 36.04 38.98 52.66 87.39
DINO-Score 1 44.89 64.52 40.67 42.02 37.07 78.21
SSIM(BG) 1 93.23 92.19 84.56 88.11 25.19 96.57
Q1 3.10 2.88 4.80 525 3.85 112

User study | IH | 2.28 243 6.00 5.95 3.27 1.07
AP | 2.89 243 433 4.44 5.90 1.01

The user study was conducted via anonymous online questionnaires, in which participants were asked
only to rank composite images by visual quality and realism. No identifiable or demographic data
were collected. All participants were adult volunteers who provided explicit informed consent before
participation and were compensated with an equivalent of US$8 for approximately 15 minutes of
participation—exceeding the local minimum wage. Participation was voluntary, and participants
could withdraw at any time without penalty. All data were stored on secure, password-protected
institutional servers and will be permanently deleted after completion of the analysis.

Data Licensing and Source Transparency
Our data usage strictly adheres to the licenses and terms of all sources involved:

e The HICO-DET[3] dataset is distributed under the MIT License, permitting unrestricted
research and redistribution use.

* The HOIBench dataset is constructed using images from Internet, whose licenses allow
editing, derivative works, and non-restrictive reuse of images—including those depicting
people—without requiring additional permissions.

We employ these resources solely for academic research. To safeguard privacy, any external user
wishing to access our dataset must sign an agreement restricting use to non-commercial research and
explicitly prohibiting any misuse, defamation, or violation of depicted individuals’ rights. We will
also publish a clear data-use policy to ensure transparency and traceability of all derivative works.
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Privacy Protection and Consent Risks

Because the datasets include human figures, we recognize potential privacy and consent issues,
especially regarding secondary use of images beyond their original intent. To mitigate such risks, we
(1) use all images under licenses that allow derivative use, (2) avoid any manual modification that
changes the identity or context of individuals in an offensive or misleading way, and (3) provide clear
disclaimers in our documentation that prohibit using HOComp for identity-related, defamatory, or
deceptive content.

Misuse Risks and Responsible Deployment

We acknowledge that HOComp, like other generative models, carries potential misuse risks such as
creating deceptive content or inappropriate composites involving real individuals. To address these
risks, we adopt the following safeguards:

* Embedding invisible watermarks or provenance metadata in generated images to support
detection and accountability.

* Releasing the model and code only for academic research under a license that explicitly
prohibits deceptive, defamatory, or privacy-violating applications.

» Implementing content filters to prevent generation of sensitive or harmful scenarios (e.g.,
involving weapons, religion, or politics).

* Including explicit user guidelines and documentation that highlight responsible use
principles and ethical restrictions.

Environmental Considerations

Our method fine-tunes existing pre-trained models rather than training from scratch, substantially
reducing energy consumption and the carbon footprint associated with large-scale model training.
We estimate our total GPU usage to be less than 15% of that required for comparable baseline models
trained from scratch.

Commitment to Responsible AI Research

We are committed to transparency, accountability, and the responsible use of generative technologies.
Our future work will continue to emphasize ethical risk assessment, dataset documentation, and
open research practices consistent with the broader goals of trustworthy and socially beneficial Al
development.
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Figure 17: Additional qualitative results of HOComp. Each example includes: (1) Top: the final
composited image, (2) Bottom: the input background human and foreground object.
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