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Abstract

Machine unlearning (MU) aims to efficiently remove sensitive or harmful memory
from a pre-trained model. The key challenge is to balance the potential tradeoff
between unlearning efficacy and utility preservation, which involves forgetting
undesirable information as defined while maintaining the model’s original perfor-
mance. One potential way to tackle this problem is to use multi-objective opti-
mization to jointly optimize both the unlearning and utility preservation objectives.
However, existing multi-objective methods only guarantee finding a Pareto-optimal
solution without fine-grained control, which causes under-optimization of the un-
learning objective. To this end, we first model MU as a constrained optimization
problem, that is, optimizing the unlearning objective under the constraint of a
bounded increase for utility loss. We then show that solving this optimization
problem is equivalent to unilateral gradient surgery on the unlearning objective.
To resolve the additional computational cost brought by gradient surgery, we pro-
pose an implicit gradient surgery method, which approximates the solution to the
aforementioned constrained optimization problem via only one backpropagation,
thereby achieving efficient utility-preserving MU. Theoretically, we provide a
tight convergence analysis of the algorithm. Empirically, our extensive exper-
iments show that the proposed algorithm achieves better tradeoff results than
existing baselines. Codes are available at https://github.com/anseryuer/
EUPMU-Efficient-Utility-Preserving-Machine-Unlearning,

1 Introduction

The growing capacity of large generative models [39] 15, [74] has inevitably led to increasing concerns
about their potential security risks. In particular, massive pre-training data from large models may
contain privacy, copyright, and illegal information about individual users, which can be inadvertently
memorized through model parameters through training, posing a risk of content leakage under model
inversion attacks 21 [71]]. Moreover, the high training costs of large models make addressing these
issues in pre-trained models particularly challenging [52]], since naive retraining is computationally
infeasible. Consequently, both industry and academia are actively seeking efficient methods to enable
the erasing of sensitive information at a small cost.

Machine unlearning (MU) [4], which aims to enable models to efficiently remove memory of
sensitive data, is a potential approach to meet the above goals. The current landscape of MU
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Figure 1: A showcase where both linear scalarization and MGDA fail to find a good tradeoff solution
that balance the utility and unlearning objectives: (a) Linearization often leads to extreme solutions
with deterioration on one objective; (b) The pre-trained model fully optimizes the utility objective,
leaving little room to improve unlearning objective for MGDA algorithm that fairly optimizes all
objectives; (c) Our EUPMU algorithm provides a tolerance for small degradation for utility objective,
and returns a better tradeoff solution.

research encompasses a range of generative models, such as large language models (LLM)[68]],
image synthesis models [50], and multi-modal generative frameworks [59]. These investigations
have showcased the capacity of MU to eliminate specific data, including copyrighted patterns [22],
fake personas [[17], and confidential information [60]. However, the utility-unlearning tradeoff is
a key issue in MU [47], where there is a fundamental tradeoff between enhancing the unlearning
effect and maintaining the model’s original performance. This often leads to a degradation of the
model’s performance when unlearning sensitive information. Current solutions involve incorporating
a retaining loss, calculated from the retained portion of the training data, into the unlearning training
process, which can alleviate some of the issues with utility degradation [1, [18]. However, simply
combining unlearning and retaining objectives that have inherent conflict fails to find a balanced
solution, as it has been proved in multitask learning literature [34]], as demonstrated in Figure|I(a)

A potential way to mitigate the conflicts between the two targets is to employ a multi-objective
optimization (MOO) [77]. However, existing MOO methods cannot control the converged solutions
in a fine-grained way. Specifically, pre-trained models have already been thoroughly optimized
for utility, hence it is already or near to a Pareto optimal solution on the Pareto front between
unlearning and utility. Since there is little room for further optimization of the utility objectives,
directly applying MOO methods that often fairly optimize all objectives to the unlearning problem
may result in insufficient optimization of the unlearning objectives, as demonstrated in Figure|l1(b)
Moreover, most existing MOO methods require derivatives for each objective, doubling the number of
backpropagation iterations compared to linear weighting methods, thereby doubling the computational
cost. This contradicts the high efficiency and low-cost demand of unlearning.

To tackle the challenges, this paper makes the following principal contributions:

1) To better address the utility-unlearning tradeoff, we first formulate the Utility-Preserving Unlearn-
ing Problem (UPUP), where the preservation of utility is formulated as a constraint on the increase in
retaining loss at each step, with the goal of maximizing the decrease in unlearning loss under this
constraint, thereby optimizing the unlearning objective while preserving utility. Solving UPUP leads
to a gradient method equivalent to Unilateral Gradient Surgery, which subtracts the components of
the unlearning gradient that conflict with the retaining gradient. This ensures that utility degradation
is within a controllable range while maxing the erasing of target information.

2) Explicit gradient surgery inevitably doubles the gradient computation. This paper first presents an
Efficient Utility-Preserving Machine Unlearning (EUPMU) method with Efficient Implicit Gradient
Surgery, utilizing the essence of gradient surgery being equivalent to dynamic linear weighting. Solv-
ing the weights through a first-order approximation, requires only one pass of gradient computation,
thus saving up to 50% of the main computational costs. Furthermore, we provide a multi-objective
convergence analysis for the proposed algorithm, proving that the algorithm can efficiently converge
to a Pareto optimal (or stationary) solution, demonstrating that the algorithm can achieve sufficient
unlearning while preserving utility.

3) We conducted comprehensive experiments on tasks including image classification and image
generation. Both numerical and visual results demonstrated significant improvements, effectively



proving that our method can fully optimize the unlearning objective while maintaining utility to the
greatest extent. This further validates the design and theoretical outcomes of our approach.

2 Background

We begin by introducing the basic concepts of machine unlearning, elucidating the utility-unlearning
challenge encountered by existing methods. We then present the concept of Multi-Objective Optimiza-
tion (MOO) as a potential solution to this problem and discuss why MOO cannot be directly applied
to address the challenges in MU. We defer detailed comparison with related works in Appendix [A]

2.1 Machine Unlearning

Given the training dataset D = {z; = (z;,v:)}Y;, the original/pre-trained model with parameters
6, is encapsulated by the following optimization:

0y = arg moin E.pl(z;0).

MU focuses on eliminating the influence of a specific data subset Dy C D, which is the forget-
ting dataset that may include harmful or sensitive information. The goal is to efficiently derive
an unlearned model 6, by finetuning the original parameters 6, while maintaining the model’s
performance on the retaining dataset D, = D \ Dy.

To counteract the impact of the forgetting dataset Dy, MU algorithms often establish objectives that
aim to reverse the effects of the initial traininﬁ These include objectives such as inverse loss [61]
and random labeling [24]. We denote this corrective objective as the unlearning objective ¢,,(0).
Furthermore, to maintain performance on the remaining data, most MU methods incorporate an
objective that mimics retraining on samples from the retaining dataset D,.. This is known as the
retaining objective £,.(0). Typically, these objectives are linearly combined into one objective [18]:

ROESYAC)
where ) is a hyperparameter balancing the two parts.

Utility-Unlearning Challenge. While linearization is straightforward to implement, it may lead
to performance deterioration or insufficient unlearning, due to the inherent conflict between the
unlearning and retaining objectives [[72 [75]]. The underlying theoretical reason may be that fixed
linear weights fails to find a solution that balances the two objectives [34]], as shown in Figurem (a).

2.2 Multi-Objective Optimization

Multiple-objective optimization (MOOQ) aims to optimize multiple objectives simultaneously [77]:

min L(6) = (01(0),....0m(0)7, 1)

where m > 2 denotes the number of objectives, and ¢' : R™ — R is the i-th loss function. Denote A,,,
to be the (m — 1)-dimensional probability simplex. The concept of Pareto optimality/stationary [12]
is introduced to determine whether a solution to MOO is optimal/critical.

Definition 2.1. Pareto Optimality: For any two solutions 8, o', we say that @ dominates @', denoted
as @ < @ or @' =~ 0,if /(@) < ((@’) for all i, and there exists one 7 such that //(8) < (*(6'). A
solution 8 € is called Pareto optimal if it is not dominated by any other solution. Pareto Stationary:
A solution @ is called Pareto stationary if there exists A € A,,, such that Z:’;l AiVgl;(8) = 0.

Typical MOO methods like MGDA [14], PCGrad [[69] and other variants [46| [76, |45, 28] aim to
search for a direction d that is not conflicting with each gradient, i.e., V£*(8) "d > 0,i € [m]. Using
such a non-conflicting direction dj, as the update direction is shown to get better tradeoff performance.

Can MOO Solve Utility-Unlearning Tradeoff? MOO addresses conflicts among objectives during
the optimization process and may offer a solution to the utility-unlearning challenge in MU. However,

3We here consider approximate unlearning, since exact unlearning often needs to retrain the model, which is
impractical for large models due to the high retraining cost.



the optimization goals of MOO and MU are not aligned, making existing MOO methods inadequate
for unlearning in pre-trained models. Specifically, pre-trained models have been thoroughly optimized
for the utility objective, while the unlearning objective has not been optimized. Therefore, the goal
of unlearning is to fully optimize the unlearning objective while maintaining utility to the greatest
extent possible, albeit with some minor degradation if necessary, like the solution in Figure[T} (c).
However, the primary goal of typical MOO methods is to identify an optimization path that benefits all
objectives simultaneously. Given that there is little room for further improvement in utility objectives,
directly applying MOO methods to optimize utility and unlearning objectives fairly could lead to
inadequate optimization of the unlearning objective, as shown in Figure[T] (b). In addition, MOO
often requires gradient computation for each objective, which doubles the computational cost of
linearization, which only needs to compute the gradient of the linearized loss.

3 Efficient Utility-Preserving Machine Unlearning

This section first presents the formulation of the Utility-Preserving Unlearning Problem (UPUP).
Then, we introduce a gradient method for solving UPUP, which is equivalent to explicit unilateral
gradient surgery. To address the additional computational cost brought by gradient surgery, we
propose a method of implicit efficient gradient surgery, an efficient approximation for solving UPUP
(Algorithm [I). Finally, we provide a theoretical analysis of the Pareto optimality/stationary.

3.1 Utility-Preserving Unlearning Problem

At iteration ¢, we perform the update 0,1 = 6, — o, d; where d; is the update direction, and define
the improvement of the retaining and unlearning objectives as follows

Tr(at, dt) = gr(et) - gr(9t+1)a T”u(Oén dt) = éu(et) - éu(0t+1)-

To achieve utility-preserving unlearning, we aim to seek a direction d; to control the degradation
of the local retaining target r, during the constrained optimization process while maximizing the
optimization of the unlearning objective. Mathematically, this can be expressed as:

1 1 2
- d,) — = |d
mex atru(au t) 2“ ll

@

1
S.t. 7T7-(Oét,dt) > —E&t,
Qi

where o is the stepsize, and ||d; ||” is the regularization to avoid unbounded solutions. Here, &, > 0
is the tolerance of the degradation for the retaining target that we aim to preserve, and the constraint
a% -r-(ay, dy) > —e; ensures that the utility performance drop is controllable.

3.2 Explicit Unilateral Gradient Surgery

Since stepsize o is usually small, by the first-order Taylor approximation, we know that
rr(a, di) = aVE(0) - diy ru(ar, di) = i VEL(0y) - dy.
Problem 2] can be approximated by
1 2
0,(0:)-di — - ||d
max  V0u(6¢)  di — 5 [l

€)
S.t. Vé,(@t) . dt > —&t.

Problem [3|aims to control the dot product of d; and V/,. to be greater than —&;, thereby ensuring
that the degradation of ¢, is less than €,, while simultaneously maximizing the dot product of d; and
V/,, to achieve more effective unlearning.

Proposition 3.1. The dual objective of Problem|3|is

. 1
§\III>% Lt()\t) = § HVEM(Bt) + )\tVET(Ht)HQ + )\tgt- (4)

Problem has a closed form solution, and the desired direction d; can be solved as
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Figure 2: Illustration of Unilateral Gradient Surgery. The computation of the update direction is
divided into two scenarios: (a) If the gradient of the unlearning objective conflicts with the gradient of
the retaining objective, that is, the angle between them is greater than 90 degrees, the desired direction
is obtained by removing the projection (to the retaining gradient) component from the unlearning
gradient; (b) If the gradient of the unlearning objective does not conflict with the gradient of the
retaining objective, then the unlearning gradient itself is the desired direction.

d=0 d+0
Vi, Vi, i, Vi,
e=0 e+0
(a) (b)

Figure 3: Illustration of the role of ;. (a) When ¢; = 0, if the retaining gradient and the unlearning
gradient are opposite in direction, the update direction d = 0, at which point optimization halts and
no further progress can be made in optimizing the unlearning objective. (b) When &; # 0, the update
direction d # 0, and optimization of the unlearning objective proceeds under the condition that it
does not unduly affect the retaining objective.

Proposition 3.2. The closed form solution of Problem

g — V0, (0;) + NiVE(0,), if Af >0 5)
Pl VEL(6y), ifAE<0
where
—V0,.(0,) -V,(0,) —¢
A= (6:) (6¢) t ©)

IV£,(60,)]

Due to space limit, we defer the derivation details to the Appendix [C.2] & [C.3] It is worth noting
that when e; = 0, the direction of d} is equivalent to performing unilateral gradient surgery on the
gradient of the unlearning objective, V¢, (6;). As illustrated in Figure[2] when V¢,,(6,) is in conflict
with the gradient of the retaining objective, V£,.(0;), the direction d} is obtained by eliminating the
conflicting component of V£,,(0;) along V/¢,.(6;). When V£, (0;) and V£,.(6;) are not in conflict,
then d; = V/,(6;), and directly optimizing the unlearning objective will not have a negative impact
on the retaining objective.

When €; # 0, an error tolerance is introduced, gradient surgery is only performed when the conflict
between the unlearning and the retaining gradients is sufficiently large, that is, when V/,.(6;) -
V¢,(0;) < —e;. This threshold controls the priority during the optimization process for the
unlearning objective. Specifically, when the angle between the retaining gradient and the unlearning
gradient is 180 degrees as illustrated in Figure[3] if ¢, = 0, the optimization process stops and the
unlearning objective can not be further optimized. In contrast, when ¢; # 0, a certain degree of
optimization for the unlearning objective is still guaranteed.

Remark 3.3. We can demonstrate that by imposing local constraints on the retaining objective at each
training step, the decline in utility throughout the entire optimization process can be controlled by

0.(0:) — £,(60) S O (Z Etat) : (7

i=1

Proof details are deferred to the Appendix [C.4] This illustrates that the increase in the retaining objec-

tive is controlled by 25:1 era. This indicates that we can achieve the goal of utility-preservation by
adjusting the hyperparameters.



3.3 Implicit Efficient Gradient Surgery

Although unilateral gradient surgery can ensure that the optimization results meet the expected
utility-preserving criteria, the computational cost in the optimization process is double that of the
linear weighting method due to the need to calculate gradients for both the unlearning and retaining
objectives separately. This can lead to inefficiency in optimization, which contradicts the high-
efficiency and low-cost goals that unlearning aims to achieve. To tackle this challenge, we propose an
efficient approximate solution to Problem 3]in the following section, which requires only a single step
of backpropagation, making the computational cost equivalent to that of the linear weighting method.

Since the solution to Problem [ requires knowledge of the gradients for both the unlearning and
retaining objectives, we consider using a gradient descent approximation to solve for A;:

)\t+1 = )\t - ﬁtv/\tLt()\t)-

However, the gradient of L;(\;) still necessitates information about the gradients of the unlearning
and retaining objectives. Therefore, we consider approximating the gradient V,L:()\:) using
first-order Taylor’s approximation:

v)\tLt(At) = Vﬁr(et) . (Vﬁu(et) + )\tv&(et)) + &t
= Vﬁr(et) . dt =+ Et

1
~ —(Cr(0r) = £:(0141)) + &1
Qi

Consequently, we have an approximate method for solving \; without backpropagation:
Aep1 = A = Bidy,

} 1 ¥
where 6, = ;(&-(@) —£(0¢41)) + &
t

We provide the complete Efficient Utility-Preserving Machine Unlearning (EUPMU) algorithm
(Algorithm|I)) in Appendix [B] The algorithm first computes the approximated weight A, by Eq[8 with
no backpropagation of the loss function, and then uses A\; to compute the update direction dj, by one
backpropagation of the composite loss £,,(6;) + A¢£,.(6;). Finally, the model parameter is updated by
one gradient step with dj. This process does not require to compute V/,,(6;) and V¢,.(6;) separately
like traditional multi-objective method, and hence save half of the computational cost.

A faster version of EUPMU. We propose EUPMU-fast as a lightweight variant of EUPMU that
removes the second retain-loss recomputation on the same batch. Concretely, whereas EUPMU

estimates the retain-loss change at step t as Ag.t) =L, (04; Bf't)) — £ (O 1; BT(.t)), which requires an
extra forward pass at 6,11 on B,(f), EUPMU-fast uses a stochastic proxy based on consecutive retain
batches: N

AP m £ (0p1; BITY) = 4.0 B0),
so it incurs no additional forward pass. This reduces wall-clock per step (see RTE) but can be less

stable due to between-batch variation; in our runs, it sometimes underperforms EUPMU, though it
remains competitive while being slightly faster.

3.4 Theoretical Analysis

Our primary concern is whether \; in Algorithm [I| can approximate the property of the optimal
solution A\, which determines whether efficient gradient surgery can achieve the goal of utility-
preservation. Therefore, we present the following theorem to elucidate this result.

Theorem 3.4 (Approximate A\*). Suppose retaining objective and unlearning objective are both (i)
G-Smooth; (ii) L-Lipschitz. At training step t, setting ZE:O a; < O(1), Bifa; = O(1/tY/3) and
S e < O(1), we have

(Li(x) = La(A))) < O(1/t1?) ©
1

S

t

3



Table 1: Performance of class-wise forgetting on Imagenette using SD. The best performance is
highlighted in bold.

Foreet.Class SalUn ESD FMN EUPMU
get- UA FID | UA FID | UA FID | UA FID
Tench 0.00 094 ] 0.00 1.18 | 5620 0.86 | 0.00 0.93

EnglishSpringer | 0.00 0.79 | 0.00 098 | 71.40 1.24 | 0.00 1.52
CassettePlayer | 0.20 1.59 | 340 1.75 | 11.20 1.02 | 0.00 0.97

ChainSaw 0.00 1.07 | 0.00 1.55 | 50.80 0.88 | 0.00 0.99
Church 040 099 | 260 1.88 | 75.60 1.66 | 0.00 0.87
FrenchHorn 0.00 1.44 | 040 1.15 | 54.40 1.88 | 0.00 0.83
GarbageTruck 0.00 1.63 | 020 2.38 | 58.00 1.10 | 0.00 1.06
GasPump 0.00 0.81 | 1.00 2.03 | 23.60 136 | 0.00 1.04
GolfBall 1.20 1.89 | 320 0.85 | 8380 1.12 | 0.00 1.28
Parachute 0.00 1.06 | 0.00 1.54 | 64.80 2.22 | 0.00 0.79
Average 0.18 122 | 1.09 146 | 59.76 127 | 0.00 1.03

Theorem [3.4] demonstrates that as the training step increases, L;(\;) gradually converges to L;(\}),
indicating that when ¢ is sufficiently large, \; can approximate the condition for utility-preservation.

We next focus on whether Algorithm [I] can converge to a Pareto optimal solution, which would
indicate whether the algorithm can fully optimize the unlearning objective under utility-preservation.

Theorem 3.5 (Pareto Optimality). Suppose retaining objective and unlearning objective are both
(i) convex with parameter 0; (ii) bounded by B; (iii) L-Lipschitz; (iv) ||0¢|| is bounded by B
fort = 1,...,T. At training step t, setting o; = o < O(1/G), Zfzo(i +1)8; < 0(1), and

ZE:O g; < O(1), there exist composite loss C(0) = 11,0y, (0) + 11l (0), (tho, ) € Ag such that
C(0:) — meinC(B) < O(1/t). (10)

Theorem [3.5] establishes the convergence in the convex case, confirming that Algorithm [T|converges
to a Pareto optimal solution, and the convergence order matches that of the current state-of-the-art
first-order MOO algorithms.

Remark 3.6. More specifically, combining Equation [7]and Theorem [3.5] we can bound the optimality
of the unlearning objective by £,(0) — £,,(0%) < O(1/t), where 8° = maxg £,,(0), s.t. £,.(0) —

0.(00) SO (Zﬁzl atozt) . It shows that EUPMU converges to the solution with optimal unlearning

objective under the constraint of a slight deterioration for retaining objective. This demonstrates that
the unlearning objective is sufficiently optimized.

Theorem 3.7 (Pareto Stationary). Suppose retaining objective and unlearning objective are both
(i) G-Smooth; (ii) bounded by B; (iii) L-Lipschitz. At training step t, setting o; = o < O(1/QG),
Si_o(i+1)B: <O(1), and Yi_, &; < O(1), we have

“min min  ||p, V2, (0;) + 1. VE.(0,)] < O(l/tl/Z) (11)
=1, 5t (g, ) EA

Theorem [3.7]elucidates the convergence in the non-convex scenario, demonstrating that Algorithm [I]
is capable of converging to a Pareto stationary point, with a convergence order that remains on par
with the current best first-order multi-objective optimization algorithms. This indicates that the
algorithm theoretically ensures sufficient and efficient optimization even in non-convex situations.

We defer all the proof details to the Appendix [C.5][C.6] [C3

4 Experiments

In this section, we present empirical assessments of our proposed approach through experiments
on image generation tasks, and benchmark its performance against a number of contemporary MU
baselines. We leave detailed setups and results as well as additional experiments in Appendix [D]



Table 2: Quantitative results of instance unlearning and artist style unlearning. The best-performing
results are highlighted in bold, and the second-best results are underlined.

Model Snoopy Mickey Spongebob Van Gogh Picasso Rembrandt
CS CA FID|CS CA FID|CS CA FID | CS CA FID|CS CA FID | CS CA FID
SDv1.4|7448 99.38 - 7243 9762 - [73.06 9850 - [73.20 9475 - [69.01 90.74 - |71.65 9573 -
Erasing Snoopy Erasing Van Gogh

CS] CA] FIDT[CST CAT FID][CST CAtT FID||CS] CA] FIDT[CST CAT FID][CST CAT FID|
ESD [49.27 35.38 139.47|58.48 65.00 112.96|62.06 82.25 103.04|51.85 39.25 179.17]63.79 76.60 79.61 |65.49 78.94 91.83

ConAbl |57.32 80.88 139.31/69.43 94.38 56.22 |70.60 97.00 61.56 |57.40 34.00 167.07|65.65 80.83 57.85 |68.66 91.95 78.38
SPM |54.82 75.38 111.42|71.89 97.5 30.16 [72.79 98.12 42.1 | 51.7 32.25 198.43|68.47 89.58 23.64 |70.83 94.22 41.51

EUPMU | 44.9 25.62 167.66|72.74 97.5 29.2 |72.52 98.88 40.2 |45.01 33.0 228.75|68.69 89.59 22.96 |71.01 9597 39.98
Erasing Snoopy and Mickey Erasing Picasso

CS|] CA|]l FID1|CS| CA| FIDT|CStT CAt FID||CStT CAT FID|/|CS| CA| FIDT|CSt CAtT FID|
ESD [48.99 34.88 143.29(47.79 23.75 167.05|58.03 68.88 123.11[70.43 86.25 104.56[60.60 51.72 180.50|70.61 93.13 91.70

ConAbl |60.85 94.50 119.62|63.46 87.12 105.99|70.06 97.38 66.82 |68.05 83.75 106.20|58.92 51.21 145.65|70.76 94.88 69.09
SPM |54.18 73.00 113.74|53.58 64.38 132.08|72.37 97.88 45.44 |73.27 94.75 24.45 |48.89 51.24 25891| 71.5 96.88 25.12

EUPMU |46.85 43.25 161.11|44.55 21.0 196.59| 71.3 98.63 44.84 |73.24 94.75 23.41 |45.42 40.49 273.38|71.54 96.37 26.98
Erasing Snoopy, Mickey and Spongebob Erasing Rembrandt

CS| CA] FIDT|CS|] CA|] FIDT|CS|] CA| FIDT|[CSt CAT FID]|CStT CAT FID]|[CS| CA] FID?1
ESD | 48.6 34.88 147.39|46.91 20.12 173.96(45.22 11.38 192.87]66.68 73.00 87.30 [68.97 88.18 79.11 [41.31 5.97 206.59

ConAbl |60.48 95.62 125.54|61.30 80.75 112.43|60.36 89.38 125.04|67.73 78.25 84.77 |67.83 85.20 46.52 |55.82 39.46 130.92
SPM |54.17 74.25 114.69|53.76 64.25 131.28|52.15 63.88 154.65|72.81 93.75 30.06 |68.83 88.73 17.8 |32.23 0.22 269.27

EUPMU |47.01 43.5 155.63|44.24 18.75 200.24 |42.01 5.37 213.23|73.01 94.5 26.12 |69.12 90.49 14.99 |27.59 048 274.82
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Figure 4: Visualization of instance & style unlearning. Concepts that have been unlearned are
indicated in red.

4.1 Experiment Setups

Implementation Details. We focus on DDPM and SD [53] models to prevent the generation
of specific object classes, and the experiments are conducted on CIFAR-10 and Imagenette [33]],
respectively. We also consider concept-wise forgetting in SD to erase instance & style concepts and
NSFW (not safe for work) content. All numerical results are the mean value over 5 independent trials.
All experiments are carried out on two A100 GPUs.

Baselines. Our experiments encompas baselines, including saliency unlearning (SalUn) [18]], erased
stable diffusion (ESD) [22]], forget-me-not (FMN) [[70] and concept ablation (ConAbl) [41].

Evaluation Metrics. Unlearning Accuracy (UA), CLIP Score (CS) [29], CLIP Accuracy [41] (CA),
FID [30] and Runtime Efficiency (RTE) are utilized to measure the unlearning performance in
concept-wise forgetting tasks. UA employs an external classifier, which is finetuned to classify the
Cifar-10 dataset, to confirm the absence of the forgetting concept in generated images. The CLIP
Score calculates the similarity between the image and the prompt. CLIP Accuracy is determined by
performing a binary classification to distinguish between the target and the anchor concepts. RTE is
the relative estimated computation time of applying an MU method.



Table 3: NSFW Content Removal Statistics. We follow the i2p prompts [56] set that contains 4709
samples, and present the number of NSFW contents generated by models before and after unlearning.
The unlearning methods include ESD, FMN, SalUn and ours. The best performance is highlighted in
bold.

Category SD FMN ESD SalUn | Ours
Male genitalia 54 11 17 3 0
Male breast 244 51 39 4 1
Female genitalia | 28 10 10 2 0
Female breast 225 43 30 4 3
Buttocks 57 14 12 0 2
Total 608 129 108 13 6

Methods

SD

ESD

FMN

SalUn

Ours

Figure 5: Examples of generated images using SDs w/ and w/o MU. Each column represents
generated images with the same prompt (denoted by F;) and seed.

4.2 Experiment Results

Class-wise Forgetting in Image Generation. Table 5: Performance of class-
wise forgetting on CIFAR-10

Table |5|presents the numerical results for the unlearning of the cat- . . .
Blp 8 with classifier-free guidance

egory ‘Airplane’ in DDPM. In the numerical results, our approach
sl%ovgls a sirgniﬁcantly better FID score compared to ESD ang%alUn, DDPM The best performance
while the UA score is consistent with other methods, demonstrat- is in bold.

ing the utility preservation efficacy of EUPMU, which achieves a Method TUA FID RTE
superior tradeoff in this task. Table [I]also displays numerical out- Retrain 180 2050 -
comes for SD unleamu}g across dlffergnt categories, where EUPMU ESD 10.00 4757 1.6
demonstrates nptable improvements in both UA and FID metrics, SalUn 1074 24.53 6.05
furthe'r 'conﬁrmmg' the capablll'ty of the proposed method to address  EOGPMU 078 22.57 1.38
the utility-unlearning tradeoff issue.

Instance & Style Forgetting in Image Generation. We selected several representative concepts to
verify the performance of unlearning instances and styles, as detailed in Table[2] In both instance
and style forgetting tasks, our approach nearly outperforms other baselines in all metrics of CS, CA
and FID, demonstrating that it successfully unlearns specific instances and styles while excelling in
preserving non-target concepts. Visualization is shown in Figure ] we observe that EUPMU can
precisely erase target concepts without negative impact on model capability. See Appx. Figure[6] for
a 3D Pareto analysis over {CS-Forget, CA-Forget, FID-Retain}, where integrating EUPMU into both
ConAbl and SPM significantly improve the Pareto front to all baselines.

NSFW Forgetting in Image Generation. Table [3and Figure [5] demonstrate the effect of using
Machine Unlearning (MU) to forget the illicit concept of nudity. From Table 3] we observe that our
method generates the least number of NSFW images, proving that EUPMU more effectively erases
NSFW content than other baselines. From Figure[5] we find that the quality of the generated images



Table 4: Ablation of MOO Methods applied to Random Labeling for Class-wise Data Forgetting(10%)
of unlearning Resnet 18 for Cifar 10 classification. The best performance is highlighted in bold. We
define the average score (Avg.score) to be (UA+RA+TA+MIA)/4.

Methods Description UA RA TA MIA  Avg.score RTE
Retrain Full Retraining 100.00  100.00 94.68 100.00 98.67 -

Linearization Pure Linearization 98.44  96.88 90.97 100.00 96.57 15.7
FAMO Efficient MGDA 98.68 9844 9256 100.00 97.48 18.7
PCGrad Confined Gradient Surgery 98.71  98.64 92.65 100.00 97.50 27.7
UNGrad Unilateral Gradient Surgery 99.53  99.25 93.70 100.00 98.12 27.7
EUPMU Efficient Unilateral Gradient Surgery | 99.64  99.69 94.29 100.00 98.40 184
EUPMU-fast Fast EUPMU variant 98.18  99.83 94.36 100.00 98.09 17.9

is significantly superior to other methods. This indicates that our approach can effectively achieve
concept unlearning without compromising the model’s generative capabilities.

4.3 Ablation Study

Table [ presents the results of our ablation study. We use Unlearning Accuracy (UA) and Membership
Inference Attack (MIA) for unlearning efficacy, Remaining Accuracy (RA) and Testing Accuracy
(TA) for classifier fidelity. We compared representative MOO methods, FAMO [45]] and PCGrad [69].
FAMO is an efficient approximation of the MGDA algorithm, while PCGrad represents the gradient
surgery approach. This comparison aims to demonstrate that pure MOO algorithms cannot resolve
the utility-unlearning challenge mentioned in the background. Additionally, we contrasted our results
with UNGrad, the explicit unilateral gradient surgery method introduced in previous section, to assess
whether the implicit efficient gradient surgery in EUPMU can achieve the effectiveness of the exact
method and enhance algorithmic efficiency.

MOQO can not solve utility-unlearning tradeoff. Comparing RL. with RL+FAMO and RL+PCGrad,
we observe a consistent improvement across all metrics after employing MOO methods. However,
the optimization for UA is not as pronounced. This is attributed to the MOO methods’ insufficient
optimization of the unlearning goal. Comparing RL+UNGrad with RL+EUPMU, we find that
compared to MOO methods, there is sufficient optimization in MIA, indicating that the UPUP
modeling approach is better suited for unlearning problems.

Implicit gradient surgery is efficient. Comparing RL+EUPMU with RL+UNGrad and RL+PCGrad,
we find a significant reduction in Runtime Efficiency (RTE) of EUPMU, demontrating the efficiency.
At the same time, since it only requires one backward pass, RTE is essentially consistent with the
linear weighting method. EUPMU-fast further decreases RTE with removing the extra retain loss
forward pass and uses next batch retain loss to measure change of retain loss. However the result
might be not as good as EUPMU’s result, due to the randomness and difference between batches.

Implicit gradient surgery may be more effective than explicit gradient surgery. Comparing
RL+EUPMU with RL+UNGrad, we observe a significant improvement in every metric. This is
attributed to the fact that under the stochastic gradient training in deep learning, the method of
approximating solutions for composite weights A is more stable than the precise solution, thereby
achieving better results [[76].

5 Conclusion

This paper investigates the core issue of the utility-unlearning tradeoff in machine unlearning,
highlighting that existing multi-objective methods cannot be directly applied to unlearning scenarios
due to inconsistencies in modeling with unlearning goals and issues with algorithmic efficiency.
Therefore, this paper first establishes the utility-preserving unlearning problem and proposes a
gradient-based optimization algorithm to solve it, proving its equivalence to unilateral gradient
surgery. Subsequently, an efficient implicit gradient surgery method is introduced to accelerate the
efficiency of gradient surgery and avoid introducing additional computational costs. Theoretically,
we analyze that the algorithm can converge to Pareto optimal/stationary while maintaining utility,
indicating that the algorithm can achieve an optimal tradeoff. Empirically, experimental results
validate that the algorithm can fulfill the purpose of utility preservation while sufficiently optimizing
the unlearning effect, further corroborating the theoretical findings.
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A Related Work

Our primary focus is on addressing pivotal issue within MU - unlearning-retaining tradeoff. We
will first compare our approach with existing MU methods, elucidating why current techniques fall
short in resolving the targeted issues. Subsequently, we introduce the multi-objective optimization
approach, which may offer solutions to the tradeoff problem. We will discuss the reasons why these
methods cannot be directly applied to MU and propose our novel strategies to effectively tackle these
complex problems.

Machine Unlearning (MU) aims to refine machine learning models by eradicating the impact of
certain data points or classes, primarily to avert potential privacy violations post-training [23} 51 162,
57]. The ideal of complete unlearning, akin to retraining from scratch, is computationally prohibitive
despite its theoretical merits. To mitigate this, research has ventured into probabilistic techniques
such as Differential Privacy (DP) [23| 26l 511162} 57]. Yet, these techniques encounter limitations
that impede their efficacy, notably in thwarting membership inference attacks [16}25]. Consequently,
there is a pivot towards crafting more potent and economical MU strategies [24} 13,161,138 |6} 64]. The
reach of MU has extended into federated learning [63} 148l 165]] and graph neural networks [[7, (L1} [10],
amplifying its utility in diverse data ecosystems. Nonetheless, current methodologies grapple with
balancing unlearning effectiveness and model utility, alongside the adaptability of MU methods
across varied scenarios. A pertinent work, SalUn [[18]], harnesses gradient information for parameter
selection. However, most of current methods neglect the critical role of dispersing selected parameters
across the network for thorough unlearning and fails to tackle the gradient conflict issue, a pivotal
aspect of optimizing unlearning processes. It is noteworthy that some works [32} 35/ 166] also adopt
the technique of explicit unilateral gradient surgery. However, they are based on heuristic methods,
while our paper provides the original optimization framework and theoretical support, which is quite
different in terms of the principle origin. Also, the computational cost of explicit unilateral gradient
surgery is almost double than EUPMU.

Concept erasure in diffusion models. Beyond discriminative MU, text-to-image diffusion erasure
has emerged as a parallel line tackling the removal of artists/styles/instances. SPM introduces a
one-dimensional, plug-and-play adapter with latent anchoring and input-dependent permeability for
non-invasive multi-concept erasure [49]. ConAbl (Concept Ablation) matches the target distribution
to an anchor concept to prevent generation of a specific style/instance while preserving related
concepts [41]. ESD (Erasing Concepts from Diffusion Models) fine-tunes diffusion weights with
negative guidance as teacher to permanently remove a concept [22]]. Notably, SPM and ConAbl
both optimize a forget loss and an optional retain loss via linear weighting. Our EUPMU view
suggests recasting such objectives under an explicit utility-loss constraint (retain budget) while
optimizing the unlearning objective—i.e., a constrained alternative to linear scalarization—which can
be implemented by our implicit unilateral surgery in a single backprop and could directly boost this
family of methods.

Other gradient-operation MU. Methods like GDR-GMA (using direction-rectified, magnitude-
adjusted gradients) [43]] and Learn to Unlearn [53]] (manipulate gradients through projecting gradients
away from a pre-computed Core Gradient Space (CGS) to mitigate conflicts) both use gradient
related operations in MU. These are largely heuristic gradient corrections or projections, whereas our
approach derives the exact surgery from an optimization principle (the Utility-Preserving Unlearning
Problem) and exposes a user-specified utility budget for proactive, interpretable control. Our methods
also could avoid extra calculation coming from gradient operation through efficient implicit gradient
operation.

Multi-Objective Optimization (MOO) have been developed to address the concurrent learning
of multiple tasks through gradient modulation. A common approach in these methods involves
dynamically re-weighting objectives based on uncertainty metrics [40], gradient magnitudes [8]], and
the complexity of training tasks [27]. The structured design and stable training of Multi-Objective
Optimization (MOO) strategies have attracted significant interest. For example, [58]] framed Multi-
Task Learning (MTL) within an MOO context, proposing an adaptation of the Multiple Gradient
Descent Algorithm (MGDA) for the task. Several techniques have been introduced to resolve gradient
conflicts. Notably, [69] developed PCGrad, which aligns each task’s gradient within the norm
plane of the others. GradDrop reduces conflict by stochastically dropping conflicting gradients [9]],
RotoGrad resolves conflicts through gradient rotation [37], and [46] introduced CAGrad, which

16



Algorithm 1 Efficient Utility-Preserving Machine Unlearning (EUPMU)
Input: Initial model parameter 8y = 6, to be a pre-trained model, initial retaining parameter A\g = 0,
learning rate {ay, 8;}1_;, error tolerance {&;}7_,, unlearning loss £, (+), maximum value D for ),
and retaining loss £,.(+)
1: fort=1,...,T do
2:  Update retaining parameter A; by Eq.[3|as
0r—1= o (6r(01-1) = £r(61)) + €11
)\t = min {D7 max {07 )\t,1 - ﬁt,15t71 }}
3:  Update direction d; = Vg, (£,,(0:) + A\l (0))
4:  Perform gradient step 0,11 = 6; — o d;
5: end for

constrains gradients within a localized region around the average gradient direction. These strategies
primarily target deterministic scenarios. [19]] advanced MoCo as a probabilistic counterpart to MGDA,
providing a comprehensive convergence and complexity analysis. [44] is the efficient method for
MGDA, which address the additional computation cost brought by MOO. However, as discussed in
the main text, all the MOO methods fail to be directly applied to MU.

B Algorithmic Details

Note that the clipping operator of step 2 in Algorithm|[I]is due to the fact that \; > 0 and the practical
need for fear of parameter explosion.

C Missing Proofs
In this section, we present the proof details.

C.1 Description for Assumption

In this paper, we have the following assumptions.

Assumption C.1 (L-Lipschitz). For the objective function f, there exists a constant L > 0 such that

for all ¢,y € R,
1f(x) = f(y)ll < Lllx—yl.

Assumption C.2 (G-smoothness). The objective function f is differentiable and its gradient V f is
G-Lipschitz continuous, i.e., there exists a constant G > 0 such that for all x,y € R4,

IVf(z) = Vi)l < Glle -yl

Assumption C.3 (Function is bounded by B). The objective function f is bounded by B, i.e., there
exists a constant B > 0 such that for all z € R<,

[f(z)] < B.
C.2 Proof of Proposition 3.1]

Proof. To derive the dual objective of Problem 3] we start by constructing the Lagrangian function
associated with the primal problem. The Lagrangian can be written as:

1
£(diAr) = VE,(07) - di = 5 el + A (20 + V£,(0:) - ).

where A\; > 0 is the Lagrange multiplier corresponding to the constraint in the primal problem.

To find the dual objective, we first need to minimize the Lagrangian with respect to d;. Taking the
gradient of £ with respect to d; and setting it to zero, we have:

Va, L(ds, ) = VE,(0,) + A VE(0,) — dy = 0.
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Solving for d;, we obtain:
dt = Vﬁu(et) + )\tVET(Ht)

Substituting this back into the Lagrangian, we get the dual function:

Lt()\t) = K(dh >‘t)
= Vlu(0;) - (V0u.(0:) + AV (0y))

1
— 5 IVeu(8) + ANV (0|7 + e

Expanding and simplifying, the dual objective becomes:
1
Li(\) = 5 [VEu(61) + MV (0|7 + M,

which is the dual objective stated in Proposition 3.1} O

C.3 Proof of Proposition3.2]

Proof. To find the closed-form solution for the optimal direction d;, we first minimize the dual
objective L;(\;) with respect to \;. Taking the derivative of L,(\;) with respect to \; and setting it
to zero, we get:
0Ly ()
O\

= Vgr(et) . (Vgu(et) + )\tVET(Bt)) +é&r = 0.

Solving for \;, we obtain:
% —VET(Bt) . Vfu(et) — &t
Al = 5 .
[VE-(0,)]

Substituting A back into the expression for d;, we find the optimal update direction d; as:

g = { VEu(0) + X VE(8y), i A; >0,
T\ VEL(6y), if \¥ <0.

C.4 Demonstration of Remark 3.3

Proof. By the G-smoothness, we have

2
((0:00) — £:(0) < ~ud V1(0,) + 20

a?G
)

< aye; (if a is sufficient small).

< ayg; +

The last inequality is because if «; is sufficient small, the the second term is much smaller than the
first term, and hence can be ignored in the approximation. By summing up the above from 0 to ¢ — 1,
we can get

éT(Ot) - Zr(ao) 5 @) (i EtOét> .

i=1

We hence proof the Theorem. O

Remark. If we set 2221 ey < g, then the total loss ascent is bounded by ¢, and hence the
performance drop can be controlled.
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C.5 Proof of Theorem

Our proof adopts the following approach. The process of solving for A is equivalent to a gradient
update with a dynamic function, and the essence of the theorem is to bound the dynamic regret.
Therefore, we intend to draw on results from online gradient descent (OGD) for dynamic regret
to prove the theorem, where the crucial requirement of using OGD property is whether the total
functional variation is controllable. Hence, we initially present a lemma to demonstrate this.

Lemma C.4. Under the same assumption as Theorem[3.4] we have the bound for the total functional
variation for dual function

t
> sup|Liza(A) = Li()]
i=0 A

t t
< (D -+ 1)3GL2 Z a; +D Z ‘5i+1 — 5i|
i=0 i=0
Proof. By the definition of L;(\), we have
|Lit1(A) = Li(A)]

1
= 15 [IVEu(0i41) + AVL(O051)|” + Aeia
1
— (5 I7£u(8:) + AVE (8] + Aey)]

1
+ )\‘61‘4_1 — 6¢|
< Oéz()\ + 1)30L2 + >\|5i+1 - 61",

where the last inequality is from the assumption of L-Lipschitz and G-smoothness, we know that

VEu(0is1) — VEu(6:) + AVE(0i41) — AVL(6))]]

< | VEu(0it1) = VEu(6:)[| + [[AVE(0i41) — AV (6:)]]
< G|0it1 — ;]| + A\G|0;4+1 — ;|| (G-smooth)

= (A + 1Gllaid;||

— A+ DG Vlu(Bir1) + AV (0:11))
<a;i(A+1)G(1+ AL (L-Lipschitz)

= Oéi()\ + 1)2GL

Hence, we can get
t
Z sup [Li1(A) — Li(A)]
i=0 A
t
< Zsup(ai(/\ +1)2GL* + Meiy1 — i)
i=0
t
< (D + 1)3GL2 + Z D|€i+1 — €i|
i=0
t t
= (D + 1)3GL2 Zai + DZ |5i+1 — €i|.
i=0 i=0
We now finish the proof. O

We now present the previous results of OGD, which can be later used for the final proof.
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Lemma C.5 (Theorem 3 [36]). Denote the total funtional variation
t—1
th = ZSUP | fir1(z) = fi(z)]-
i=1 “

1/3
Online Gradient Descent algorithms with stepsize o = O(th / t=1/ 3) running with f enjoy the
following bound

S (i) — filat)) < oV ),

i=1

With the above results, we now can proof the theorem
Proof. By setting ZE:O a; < O(1) and Z:zo g; < O(1), we know that
t
ZSI;P [Liv1(A) = Li(N)] < O(1).
i=0

From the algorithm[I] we know that the update of \ is the process of online gradient descent [67]
with stepsize 8;/c;; = O(1/t'/3). Using the result of Lemrna we can get that

Z (Li(\) = Li(A)))

i=1
I A)[)1/342/3
Zsup\ ir1(A) = Li(A)])77t77)
S O(t2/3)
Dividing both side by ¢, we finally have
1<
2D (L Li(A)) < O(1/£1/3).
i=1
We hence end the proof. O

Remark. It should be noted that the presented results pertain to the use of the true gradient of
L, whereas an approximation of the true gradient is employed for the update of A. However, this
approximation is a two-point estimate of the true gradient, and prior research [73] has demonstrated
that the dynamic regret associated with such an approximation is equivalent to that of OGD when
using the true gradient. Therefore, for the sake of clarity and to avoid redundancy, we have omitted
this detail in the presentation.

C.6 Proof of Theorem

This convergence proof parallels the approach to obtaining a dynamic regret bound. We adhere to
the foundational concept from [76]], initially establishing a bound for the static regret, followed by
bounding the discrepancy between the static and dynamic regrets. The synthesis of these bounds
culminates in the final theorem. Hence, we first present the following Lemma.

Lemma C.6. Under the same assumption as Theorem denote Cy,(0) = £,(0) + X\il,.(0),
algorithm[l|enjoys the following bound

t t
> (i) - meinzcxiw )
=1 =1

t—1

2B
<BY Bi(— — e+ —||00 —0*||> + DB.
=0
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Proof. By the G-smoothness, we have

a?G 2
Cx,(0i41) < Cx,(0;) — id; - VCy,(0;) + 5 (||
a%G
=Cx,(0:) — ai|di||* + T||di||2
Qg
<0 (0) - S d).

The last inequality is due to the fact that ;G < 1. By the convexity of both function, we can know
that

Cr, (0:) < Cx,(0%) + d; - (8, — 67).
Plug into the first inequality, we obtain

Cx,(Bi41) < Cx, (07) +d; - (6, = 07) — T |di

* 1 * *
=Cni(07) + 5 —(/16: — 0 12— 16; — 6" — cvudi|?)
&%)
* 1 * *
=C\(07) + 2%(”91‘ —0"|* — [|0:41 — 67|%).

For any 60, we have
C/\'i+1(0) —Cx,(0) = (Nit1 — i) (0)
< BiB|d;].
We then can get
Crisa(Big1) —Cx,(67)
=Cx11(0i+1) = Cx;(0is1) +Cx,(0i1) — Cy,(67)

N 1 * *
= BiBloi + 5 -(116: — 6 12 = 11i1 — 67]%).

Leta; = «a,7=1,...,t to be constant, and we have

i=1 i=1

= (Cra(Bi11) — Ca,(8) + Cy(67) — Cr, (67)
1=0

t—1
N 1 * *
< ZﬁiB|5i| + %(H@o - 07> — (|6 — 67%)
i=0
+ (Ao = A)r(67)
t—1 1
< . Bloi| + — (|00 — 0> — ||6; — 67||*) + DB
< X BIa + 5 (180 = 671~ 10— ") +
t—1 1
<B (GL + ¢;) + —1|00 — 0*||*> + DB.
< ;B(G +ei) + 51160 — 07" +
The second inequality is by the assumption that A is bounded by D and functions are bounded by B,
and the last inequality is by fact that

il = 12 (6 (0:) — £:(00:1)) +

1

< |a(fr(9i) —£p(0i41))| + i
1

< —=G0; — 011 + ¢
[0

1
—Gal||d;|| + &
a
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The second inequality is by the G-smoothness, and the last inequality is by L-Lipschitz assumption.
We thus end the proof. O

With the bounded static regret, we also need to introduce the following lemma to bound the gap
between static and dynamic regrets.

Lemma C.7. Under the same assumption as Theorem[3.5] algorithm[l|enjoys the following bound
: 2B
i [(07) )< B i (—
%£n21CA1( Zmln(})\ 226 +5t)
Proof. Denote A = L 3°0_ \;. By the optimality of @*, we can know that

i=1 1=1

= t(£,(07) + N0:(07)) — > Cx, (6))

Cx(67) ~ > (67)

-

s
Il
-
«
Il
-

M=~

-
Il

I/\
&MWH

A=Al

i=1

The first inequality is by the fact that £,,(0") 4+ X(,.(68") < Cx(8;) from the optimality of 8", and the

last one is from the bounded function assumption. We next try to upper bound 22:1 A — A, and
have

D=2 Y0 SRS D) DIV

i=1 j—l

HMH
—_
H»\H

tzz| YRR D3 VY

ll]Z

t t J
2.2 2 =l
j=t l=1

i=1

<

w\l\.’)

t
% Zt—l+1|/\z >\l+1|<222\)\l Ayl

=1 i=1 l=1

Mﬂ

7

Il
T =

23 1N = Aaa] < 221545 | < Zzﬂl (GL +¢7).

=1 = =1

We thus end the proof by

t

t t
D0 (07) =) Cr(07) < B iBi(GL +¢).
i=1 i=1

i=1
O

We observe that the gap between static and dynamic regrets is controlled by the stability of A, which

is the advantage of the approximate algorithm compared with the explicit gradient surgery. We are
now ready to present the final proof.
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Proof. Combining the results from Lemma|[C.6|and Lemma|[C.7] we can obtain

=1

t
1
<BY (i+1)8i(GL+e)+ 51160 - 0*|* + DB.
i=0
Setting o; = a < O(1/G), !, (i +1)8; < O(1),and Yi_, &; < O(1), we get

S0 (0~ 320 (6)) < O(1).

Therefore, we finally have

000 - Yoo 0) < 001/),

This averaging convergence scheme for can be transformed to the traditional one in Theorem 3.5]by
output the average solution from 6;,7 = 1,...7T [13L/42,[15]). This paper leaves out the transforming
details. O

C.7 Demonstration of Remark 3.6

In the Theorem we have demonstrated that EUPMU can converge to the Pareto optimal solution,
that is,

C(0,) — meinC(G) < O(1/t).
Then we can get
1(81) — pudu(8°) + o (82) — el (67) < O(L/1).
By the fact that [.(6;) > 1,.(0™), we have
fulu(8:) — palu(07) < O(1/1).

Combining with the results of the theorem in Remark[3.3] we can know that the converged solution
satisfies the condition that the decrease of the retaining loss is controlled by

0,(0;) — £.(80) SO (that)

By the fact that [,,(8;) > [,,0™), we finally get
0,.(0%) —1,(0 (’)<Z€tozt).

C.8 Proof of Theorem

To prove the Theorem, we follow a similar procedure to that of multi-objective proofs [20], first
establishing a local recursive inequality, and then bounding the sum of these inequalities.

Lemma C.8. Assume that L, is G-smooth. Let o; < 1/G. We have
2
ldi]|* < o (Cu(0:) = Lu(Bir1)) + 2Nici.

?
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Proof. By the G-smoothness, we have
alG 9
u(0i+1) = Lu(8i) < —aid; - VL,(8:) + —— | di]

= ol + S~ a6 (6) - d
< ——||d I — a;\iVEL(6;) - d;.
The equation is by the fact that d; = V£,(0;) + \;V£,.(0;). The last inequality is by the parameter
setting that o; < 1/G. Hence, dividing both side by «; /2, we have
I < 2 (04(60) ~ €u(8112)) ~ 20:91,(61) -
< O%_wu(oi) C0u(0i41) + 2.
’I;Ihe last inequality is from the closed from solution of A;, which lead to the fact that when A; # 0,
then

= V,(6:) - di = =VL,.(0;) - (VEu(0:) + \iVE(8:))
Vér( ) (Ot) +€t

= —V0,(0;) - (VEu(6;) — V,.(8;
(6:) - (VEu(0;) v, (Gt)H (6:))
_ N N ACHEREACH }

= —V0(8;) - (VL (6;) SO V0 (0)) + &

= &,

where last equation is because the dot product of V/,.(6;) and the projected gradient V¢, (0;) —

%Vﬂ (0,) is zero. We hence prove the Lemma. O
Lemma C.9. Denote that d = 7-d,

t
Dollar? < (=
i=1

Proof. From Lemma|[C.§] we know that

2
ldil* < = (0u(8:) = u(Bi11)) + 2ies,

7

and hence
1d7||* < ;(2@( ;) — Lu(0i11)) + 2Xi;)
(}\ +1) “MuYi i+1 1<)
By the fact that A\; > 0, we then get
2 1
dMI?P < = (0,(0;) — £,(0; 22— Mg
Id; | _ai( (0:;) = Lu(0i11)) + n 12 e
2
< ;(éu(el) — fu(elq_l)) + 2¢;.

Rearranging the above inequality, we can further obtain

2 2
ld||” < af/u(&) - ?ﬂgu(ei-‘rl)
2 2
= —)lu(6; 2e;
- D e
2 2
< 2 N _ )
= algu(gz) Qi1 gu(ez—ﬁ—l)
2 2
Qiy1 oy
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By summing up the above, we have
t

Zud"nz 23 £(60) = ——0,(6:11)

(673 Q41

t 9 9 t

Q1

i=1 i=1
2 2
= —Ay(01) — —1£,(0
@ u( 1) Q1 v ( t+1)
PB2 )y
-z £
(672N ] (631 =1
< )B +2 €-
(011 Oét+1 Z
We thus end the proof. O

Proof. By setting o;,7 = 1,...,T to be constant such that a;; < 1/G, and Zle g; < O(1), we can
get from LemmalC.9]that

t
>l < o).
i=1

Dividing both side by ¢, we obtain

t
1 n
2>l < 01).
i=1
Finally, we end the proof by

min min WV (0) + 1, VE,.(0;
i=1,..., t(Mu»H,n)eAzHM (0:) + p (0:)|l

< /. min [|df'[]> <
i=1,...t

1 t
2D _lldt|2 <o/,

=1

D Additional Experimental Details and Results

We provide the experimental details and additional results in this section.
Average Gap (Avg.gap). Unless otherwise stated, all classification tables report the gap to retrain in
the parentheses after each metric and Avg.gap in the last column defined as

Avg.gap = i(‘UA - UAretrain| + ‘RA - RAretrain| + |TA - TAretrain‘ + |MIA - MIAretrain|)a

computed on the same test split as the retrained reference. Lower is better.

Common protocols and configs. To avoid redundancy across 20+ runs, we follow the default
hyperparameter templates from prior work and release the configuration files/command in our code
repository. For classification, the MIA setup, train/val/test splits, and metric computation follow
SalUn. For concept selection in style/instance experiments, the anchor concept protocol matches
SPM. We include the search ranges in Appx. D.1 for reproducibility.
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D.1 Additional training and unlearning settings

MU for image classification For image classification, we use Unlearning Accuracy (UA) and
Membership Inference Attack (MIA) for unlearning efficacy, Remaining Accuracy (RA) and Testing
Accuracy (TA) for classifier fidelity, and Runtime Efficiency (RTE) for computational efficiency in
MU. The RTE is measured by relative overall runtime through the whole unlearning. To report overall
performance succinctly, we use the average gap (Avg.gap), defined as the mean absolute difference
from a fully retrained model across {UA, RA, TA, MIA}, so lower is better. Our experiments
encompass unlearning baselines, including FT [64], RL [24], GA [24]], IU [61]], ¢;-sparse [38]],
boundary unlearning BS/BE [6], SalUn [18], and gradient-operation unlearning GDR-GMA [43]].
GDR-GMA uses direction-rectified and magnitude-adjusted gradients to update the retain and
unlearning loss.

Training for both FT and RL methods occurs over 10 epochs to search for optimal learning rate within
[le-4, 1e-2]. Both GA and GDR-GMA use a 5-epoch learning rate search within [1e-6, 1e-3]. For
IU, the parameter « related to the woodfisher Hessian Inverse approximation is explored between
[1, 20]. ¢1-sparse involves a learning rate search for v within [1e-6, 1e-4], while keeping a constant
rate of 0.1. In the BS method, the FGSM step size is set to 0.1. Both BS and BE methods include a
10-epoch learning rate search within [1e-6, le-4]. SalUn and SalUn-soft are trained for 10 epochs
with a fixed saliency map ratio of 0.5 and searched for the optimal learning rate with in [0.1, le-4].
Both EUPMU and EUPMU-fast using both unlearning and retain tasks for the optimization target, 3
within [0.01, 1] and then searched for € within [1e-3, Se-1].

For the ablation experiment, RL and EUPMU remain the same settings. FAMO is searched with
weight learning rate from le-4 to 3e-2. PCGrad is searched learning rate within [le-4, le-2].
Unilateral Gradient Surgery, also using log loss as the optimization target for both unlearning and
retain tasks, under fixed learning rate 6e-5, is searched for ¢ within [le-3, Se-1]. Here the RTE is
measured by one single epoch runtime under different MOO methods.

MU for image generation For DDPM, the forgetting settings are as follows: The batch size is set
to 128. For EUPMU, it is trained for 1,000 iterations with a learning rate of le-4, an « value of le-3,
and a batch size of 128. The sampling settings include 1,000 timesteps and a conditional scaling of
2.0. (3 is searched within [1e-4, 1e-2] and ¢ is searched within [le+1, 5e+3]

For SD, the forgetting settings are as follows: For EUPMU, it is trained with the Adam optimizer for
5 epochs at a learning rate of le-5. The « value is set to 0.01, and the batch size is 8. The S is set
to le-4 and ¢ is set to 1e+3 The sampling settings use DDIM with 100 timesteps and a conditional
scaling of 7.5.

MU for Instance removing We employ ChatGPT to create 200 prompts {c} containing the anchor
concept, such as "Dog". Following a similar process to the style pipeline, we generate 1000 images
using the pre-trained diffusion model and obtain the target text prompts {c*} by substituting the word
"Dog" with "Snoopy".

MU for Style removing To remove style concept, we employ generic painting styles as an anchor
concept in the process of style removal. Firstly, clip-retrieval [2] is used to obtain a set of text prompts
{c} that are close to the term "painting" in the CLIP latent space. Then, 1000 images are generated
from the original model with 200 prompts. The target prompts {c*} are derived by appending the
suffix "in the style of {target style}" to {c}.

MU for NSFW removing To remove NSFW content, we started by generating 800 images as d
using SD V1.4 with the prompt "a photo of a nude person," and another 800 images as d,. with the
prompt "a photo of a person wearing clothes." In the forgetting process, we treated "a photo of a nude
person” as the concept to be forgotten and "a photo of a person wearing clothes" as the corrective
remain concept. The settings for EUPMU remains identical to SD

D.2 More Details of Metrics

To assess the model’s ability to unlearn the target concept and retain the generation capability,
we utilize three key metrics: CLIP Score (CS), CLIP Accuracy (CA) [29] and Fréchet inception
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Table 6: Results of class-wise forgetting for various methods of unlearning Resnet 18 for Cifar 10
classification. The result in the table is the mean value over 10 independent trials. The best unlearning

performance for each forgetting class is highlighted in bold.

Methods UA RA TA MIA Avg. Gap Runtime
Retrain 100 100 94.68 100 0 -
FT 98.49 (1.51) 97.09(291) 91.43(3.25) 100.00 (0.00) 1.92 2.28
RL 98.44 (1.56) 96.88(3.12)  90.97 (3.71)  100.00 (0.00) 2.10 2.45
GA 08.18 (1.82) 81.47 (18.53) 76.99(17.69) 97.89 (2.11) 10.04 0.13
U 98.33 (1.67) 95.00(5.00)  89.19 (5.49)  99.42 (0.58) 3.19 3.25
BE 93.80(6.20) 98.28(1.72)  92.38 (2.30)  99.58 (0.42) 2.66 0.25
BS 9224 (7.76) 96.75(3.25)  91.03 (3.65)  98.82(1.18) 3.96 0.41
{-sparse 96.47 (3.53) 98.18(1.82)  92.56 (2.12)  100.00 (0.00) 1.87 2.29
SalUn 98.00 (2.00)  99.91 (0.09)  94.90 (0.22)  100.00 (0.00) 0.58 2.46
SalUn-soft 98.96 (1.04) 99.75(0.25)  94.41(0.27)  100.00 (0.00) 0.39 2.50
GDRGMA 95.30 (4.70)  100.00 (0.00) 88.70 (5.98)  100.00 (0.00) 2.67 3.47
EUPMU 99.64 (0.36) 99.69 (0.31)  94.29 (0.39)  100.00 (0.00) 0.27 2.82
EUPMU-fast 98.18 (1.82) 99.83 (0.17)  94.36 (0.32)  100.00 (0.00) 0.58 2.52

Table 7: Results of Random Data Forgetting(10%) for various methods of unlearning Resnet 18
for Cifar 10 classification. The results are the mean value over 10 independent trials. The best
performance is highlighted in bold.

Methods UA RA TA MIA Avg. Gap
Retrain 5.24 100.00 94.26 12.88 0.00
FT 276 (2.48) 98.51(1.49) 9228 (1.98)  7.13(5.75) 2.92
RL 3.27(1.97) 99.89 (0.11) 94.10 (0.16) 23.73 (10.85) 3.27
GA 2.29(2.95) 98.67(1.33) 92.34(1.92) 3.78(9.10) 3.83
IU 0.56 (4.68) 99.51(0.49) 94.58(0.32) 1.02(11.86) 4.34
BE 2.80(2.44) 97.28 (2.72) 90.96 (3.30)  19.96 (7.08) 3.88
BS 0.71 (4.53) 99.24(0.76) 93.64 (0.62) 13.64 (0.76) 1.67
{1 -sparse 3.55(1.69) 99.17 (0.83) 91.36(2.90)  9.09 (3.79) 2.30
SalUn 5.02(0.22) 99.83(0.17) 93.58(0.68) 27.38 (14.50) 3.89
SalUn-soft 5.36 (0.12) 99.71 (0.29) 93.29(0.97) 24.53(11.65) 3.26
GDRGMA 542 (0.18) 99.53(0.47) 92.21(2.05) 34.61(21.73) 6.11
EUPMU 371 (1.53) 99.25(0.75) 93.09 (1.17)  12.89 (0.01) 0.86
EUPMU-fast 3.64 (1.60) 99.54 (0.46) 93.17 (1.09) 13.29(0.41) 0.89

distance (FID) [30]]. After generating images with the big artists prompts from ESD [22] for art style
unlearning and templates prompt proposed by CLIP [54], calculates the cosine similarity between the
generated image and the target concept text embedding(e.g., "A quiet moment in Rembrandt’s interior
scene" or "Snoopy"). Likewise, CLIP Accuracy evaluates performance on a binary classification
task distinguishing between the unlearning and retain concepts for each generated image, based on
comparison of Clip Score. In both cases, lower metric values signify more effective concept ablation,
while higher metrics indicate better retain of concept. Fréchet inception distance (FID) is a metric
used to evaluate the quality and diversity of image generation. We use it to measure the similarity
between the images by original Stable Diffusion model and our models’ generated data distributions
by comparing the mean and covariance of features extracted from a pretrained Inception-v3 model. A
low FID indicates a similar distribution of two groups of image and better generation quality, while
high FID refers to better unlearning result.

D.3 Additional Results and Demonstrations

Random Data Forgetting in Image Classification. Tables 7] [8] [0] [T0] [T T} [T2} [T3] [T4] and [I5]report
random-data forgetting results. Numbers in parentheses are the absolute gap to the retrain model

for that metric. Across CIFAR-10, CIFAR-100, and Tiny-ImageNet-200, the “Avg.gap” column
quantifies the mean distance between each method and an ideal retrain; smaller is better. Our method
yields consistently lower Avg.gap across forgetting ratios, indicating a favorable trade-off between
forgetting efficacy and utility retention, in line with our algorithmic design and theory.
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Figure 6: Illustration of Pareto Front Analysis. We conducted comparative analyses by integrating
EUPMU with SPM and ConAbl forgetting paradigms: (a) We compare EUPMU+SPM with pure
SPM; (b) We compare EUPMU+ConAbl with pure ConAbl.

Table 8: Results of Random Data Forgetting(30%) for various methods of unlearning Resnet 18
for Cifar 10 classification. The results are the mean value over 10 independent trials. The best
performance is highlighted in bold.

Methods UA RA TA MIA Avg. Gap
Retrain 6.50 99.99 92.68 14.44 0.00
FT 493 (1.57) 96.89 (3.10) 90.75(1.93) 11.10(3.34) 248
RL 5.20(1.30) 99.68 (0.31) 92.11 (0.57) 33.35(18.91) 5.27
GA 0.50 (6.00) 99.48 (0.51) 94.64(1.96) 1.07 (13.37) 5.46
U 499 (1.51) 94.97(5.02) 88.74(3.94) 7.64 (6.80) 4.32
BE 0.59(591) 98.82(1.17) 93.89(1.21) 8.19(6.25) 3.63
BS 0.63(5.87) 99.46(0.53) 94.15(1.47)  7.26 (7.18) 3.76
{1-sparse 476 (1.74) 97.30(2.69) 91.26 (1.42) 10.36 (4.08) 248
SalUn 479 (1.71)  99.53(0.46) 91.89 (0.79) 28.08 (13.64) 4.15
SalUn-soft 443(2.07) 99.62(037) 92.42(0.26) 25.38 (10.94) 341
GDRGMA 6.57 (0.07) 99.53(0.46) 91.79(0.89) 38.41 (23.97) 6.35
EUPMU 3.53(297) 9834 (1.65) 91.80(0.88) 16.50 (2.06) 1.89
EUPMU-fast 5.01 (1.49) 98.04 (1.95) 91.47(1.21) 16.19 (1.75) 1.60

Class-wise Forgetting in Image Classification As shown in Table[f] cross all 10 categories’ class-
wise unlearning, our experiments consistently yielded results that align with the findings reported in
the paper. Table[6|further details the performance for class-wise forgetting, where the metrics and the
absolute gap are shown and the "Avg. Gap" column represents the average performance difference
across unlearned (UA, RA, TA, MIA) and retrained models.

Visualization of Class-wise Forgetting in Image Classification Figure[/|demonstrates the Vi-
sualization of Class-wise Forgetting in Image Classification. Our analysis reveals that compared
with baseline methods, EUPMU effectively enhances the erasure performance for target classes
while preserving the capability to generate other classes. This observation is corroborated by the
quantitative results presented in Table [5]
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Table 9: Results of Random Data Forgetting(50%) for various methods of unlearning Resnet 18
for Cifar 10 classification. The results are the mean value over 10 independent trials. The best
performance is highlighted in bold.

Methods UA RA TA MIA Avg. Gap
Retrain 8.11 100.00 91.24 19.72 0.00
FT 2.84(5.27)  98.75(1.25) 91.87(0.63)  7.35(12.37) 4.88
RL 5.84(227)  99.39(0.61)  90.69 (0.55) 43.32 (23.60) 6.76
GA 0.62 (7.49)  99.40(0.60)  94.49 (3.25) 1.23(18.49) 7.46
U 7.57(0.54) 92.12(7.88)  86.15(5.09)  12.36 (7.36) 5.22
BE 10.69 (2.58) 89.72(10.28) 82.88 (8.36)  22.72(3.00) 6.05
BS 10.63 (2.52) 87.43(12.57) 80.59 (10.65) 22.61 (2.89) 7.16
{;-sparse 1.27(6.84)  93.39(6.61) 98.69 (7.45)  9.49(10.23) 7.78
SalUn 524 (2.87)  99.15(0.85)  90.94 (0.30) 36.76 (17.04) 5.26
SalUn-soft 5.67(2.44) 9891 (1.09) 90.85(0.39) 38.30 (18.58) 5.62
GDRGMA 446 (3.65)  99.60 (0.40) 91.68(0.44) 36.51(16.79) 5.32
EUPMU 4.71(3.40) 96.96 (3.04)  90.35(0.89) 19.55 (0.17) 1.88
EUPMU-fast 4.08 (4.03) 98.02(1.98) 91.11(0.13)  19.84 (0.12) 1.56

Table 10: Results of Random Data Forgetting(10%) for various methods of unlearning Resnet 18
for Cifar 100 classification. The results are the mean value over 10 independent trials. The best
performance is highlighted in bold.

Methods UA RA TA MIA Avg. Gap
Retrain 23.07 99.97 74.43 49.29 0.00
FT 6.07 (17.00)  98.45(1.52) 71.44(2.99) 17.56 (31.73) 13.31
RL 24.82 (1.75) 9892 (1.05) 69.50(4.93) 71.60 (22.31) 7.51
GA 4.16 (18.91) 96.90 (3.07) 74.37 (0.06) 8.62 (40.67) 15.68
U 10.58 (12.49) 90.32 (9.65) 65.92 (8.51) 17.36(31.93) 15.64
BE 3.40(19.67) 96.72(3.25) 71.58 (2.85) 13.58 (35.71) 15.37
BS 3.23(19.84) 96.41 (3.56) 72.11(2.32) 12.61 (36.68) 15.60
{1-sparse 2.40(20.67) 98.14 (1.83) 75.85(1.42) 7.31(41.98) 16.48
SalUn 24.84 (1.77)  99.27 (0.70)  69.57 (4.86) 77.96 (28.67) 9.00
SalUn-soft 24.73 (1.66) 98.73 (1.24) 69.39 (5.04) 70.76 (21.47) 7.35
GDRGMA 56.67 (33.60) 99.63 (0.34) 68.74 (5.69) 93.71 (44.42) 21.01
EUPMU 9.67 (13.40) 99.60 (0.37) 72.03 (2.40) 51.76 (2.47) 4.66
EUPMU-fast  28.36 (5.29) 98.82 (1.15) 69.50 (4.93) 70.36 (21.07) 8.11

E Pareto Front Analysis

To quantitatively demonstrate EUPMU’s enhanced trade-off balancing capability, we conducted
comparative analyses by integrating EUPMU with SPM and ConAbl forgetting paradigms, followed
by Pareto superiority evaluations against baseline methods. Specifically, following the experimental
configuration for Style Unlearning as described in the main text, we performed style erasure on Van
Gogh’s artistic style while quantifying three performance metrics: (1 & 2) CS-forget and CA-Forget:
CS and CA scores for Van Gogh style erasure efficacy, and (3) FID-Retain: FID score for Picasso
style preservation. This tripartite evaluation framework provides analytical support for EUPMU’s
superior trade-off performance through comparative analysis of these interrelated metrics.

Figure [6] presents comprehensive experimental validation, demonstrating that integration with
EUPMU enables SPM and ConAbl to achieve consistent improvements across all evaluated metrics,
thereby yielding superior trade-off optimization outcomes. This empirical evidence indicates that
EUPMU’s optimization mechanism can effectively identify Pareto-optimal solutions through its
enhanced search capabilities, aligning with the theoretical conclusions discussed in the main text.
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Table 11: Results of Random Data Forgetting(30%) for various methods of unlearning Resnet 18
for Cifar 100 classification. The results are the mean value over 10 independent trials. The best
performance is highlighted in bold.

Methods UA RA TA MIA Avg. Gap
Retrain 29.00 99.97 71.47 52.22 0.00
FT 30.27 (1.27)  82.62(17.35) 61.14(10.33) 31.93 (20.29) 12.31
RL 26.14 (2.86)  98.12(1.85)  63.46 (8.01) 66.68 (14.46) 6.79
GA 3.07(25.93) 97.45(2.52) 7524 3.77)  6.90(45.32) 19.39
U 10.82 (18.18)  90.43 (9.54)  65.30(6.17) 17.50 (34.72) 17.15
BE 3.00 (26.00)  97.24(2.73)  73.68 (2.21)  9.64 (42.58) 18.38
BS 2.95(26.05) 97.32(2.65) 73.81(2.34)  8.84(43.38) 18.61
{1-sparse 2.57(26.43)  97.96 (2.01) 7596 (4.49) 6.17 (46.05) 19.75
SalUn 24.08 (4.92) 98.19(1.78)  61.74(9.73)  65.16 (12.94) 7.34
SalUn-soft 25.39 (3.61)  97.59(2.38)  62.12(9.35) 62.49(10.27) 6.40
GDRGMA 27.04 (1.96)  98.37(1.60) 60.90 (10.57) 70.29 (18.07) 8.05
EUPMU 17.68 (11.32)  98.96 (1.01)  68.46 (3.01)  50.93 (1.29) 4.16
EUPMU-fast 19.64 (9.36) 97.81 (2.16)  62.53(8.94)  56.06 (3.84) 6.08

Table 12: Results of Random Data Forgetting(50%) for various methods of unlearning Resnet 18
for Cifar 100 classification. The results are the mean value over 10 independent trials. The best
performance is highlighted in bold.

Methods UA RA TA MIA Avg. Gap
Retrain 3328 99.08 67.75 6121 0.00
FT 20.84 (12.44) 91.03(8.95) 64.04 (3.71) 3020 (31.01) _ 14.03
RL 2248 (10.80) 95.51 (4.47) 54.52(13.23) 53.41(7.80) 9.07
GA 2.59(30.69) 97.53 (2.45) 7538 (7.63)  6.07(55.14)  23.98
U 6.76 (26.52)  93.58 (6.40)  67.80 (0.05) 13.06 (48.15)  20.28
BE 592(27.36) 94.28(5.70) 67.00(0.75) 17.13 (44.08)  19.47
BS 6.22 (27.06) 94.54(5.44) 66.62(1.13) 1657 (44.64)  19.57
{,-sparse 2.48(30.80) 98.76(1.22) 75.94(8.19) 659 (54.62)  23.71
SalUn 28.56 (4.72)  96.31 (3.67) 52.88 (14.87) 62.88 (1.67) 6.23
SalUn-soft  24.84 (8.44)  95.44 (4.54) 54.32(13.43) 55.50 (5.71) 8.03
GDRGMA  22.66 (10.62) 95.48 (4.50) 53.34 (14.41) 53.33(7.88) 9.35
EUPMU 2157 (11.71) 9897 (1.01) 64.13 (3.62)  58.43 (2.79) 478
EUPMU-fast 18.68 (14.60) 94.20 (5.78) 54.29 (13.46) 40.91 (20.30)  13.54

F Limitations

While the proposed method demonstrates significant improvements over existing unlearning ap-
proaches, two inherent constraints persist: 1) Theoretically, we aim to achieve Pareto-optimal
solutions that balance unlearning and utility objectives through error tolerance (¢;) calibration. How-
ever, the absence of explicit patterns in these dual objectives prevents the formal derivation of their
interrelationship within theoretical frameworks. Rigorous mathematical formulation would require
introducing domain-specific assumptions about objective correlations, which inherently narrows
the theoretical applicability. After careful consideration, we maintain the original formulation to
preserve methodological generality; 2) Practically, the non-zero error tolerance wvarepsilon; # 0
directly governs the trade-off between utility preservation and unlearning completeness. As shown
in our ablation studies (Figure[6), this hyperparameter critically determines empirical performance.
Nevertheless, lacking theoretical guidance for optimal &;, practical implementation relies on empirical
tuning through grid search or Bayesian optimization. This dual constraint—theoretical indeterminacy
and empirical dependency—defines the current practical boundary of our framework.

G Broader Impacts

This paper addresses the core unlearning-utility tradeoff in machine unlearning, aiming to enhance its
practical deployability while effectively mitigating challenges posed by generative models producing
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Table 13: Results of Random Data Forgetting(10%) for various methods of unlearning Resnet 18 for
Tiny-Imagenet classification. The results are the mean value over 10 independent trials. The best
performance is highlighted in bold.

Methods UA RA TA MIA Avg. Gap
Retrain 36.54 99.98 63.71 64.57 0.00
FT 6.89 (29.65)  98.80 (1.18) 65.05(1.34) 16.11 (48.46) 20.16
RL 28.40 (8.14)  98.35(1.63) 61.17(2.54) 57.80(6.77) 4.77
GA 542 (31.12)  95.10(4.88) 6591 (2.20) 14.46 (50.11) 22.08
U 11.79 (24.75)  89.83 (10.15) 61.37 (2.34) 14.98 (49.59) 21.71
BE 6.32 (30.22)  93.92(6.06) 63.99 (0.28) 15.33 (49.24) 21.45
BS 6.28 (30.26)  93.96 (6.02) 64.15(0.44) 15.50 (49.07) 21.45
{;-sparse 591 (30.63) 95.10(4.88) 66.15(2.44) 13.96 (50.61) 22.14
SalUn 3343 (3.11)  97.61(2.37) 61.21 (2.50) 56.27 (8.30) 4.07
SalUn-soft 32.25(4.29)  91.01(8.97) 58.65(5.06) 33.60(30.97) 12.32
GDRGMA 19.59 (16.95) 97.91(2.07) 6191 (1.80) 45.10(19.47) 10.07
EUPMU 3518 (1.36) 97.62(2.36) 60.51(3.20)  56.10 (8.47) 3.85
EUPMU-fast  30.18 (6.36)  97.12 (2.86) 60.81 (2.90) 49.37 (15.20) 6.83

Table 14: Results of Random Data Forgetting(30%) for various methods of unlearning Resnet 18 for
Tiny-Imagenet classification. The results are the mean value over 10 independent trials. The best
performance is highlighted in bold.

Methods UA RA TA MIA Avg. Gap
Retrain 39.00 99.98 60.81 67.30 0.00
FT 9.75(29.25)  99.05(0.93) 64.41 (3.60)  25.65 (41.65) 18.86
RL 13.11 (25.89) 90.32(9.66)  56.63 (4.18)  33.33(33.97) 18.43
GA 5.14 (33.86)  95.08 (4.90) 66.01(5.20) 14.38 (52.92) 24.22
U 6.96 (32.04) 93.27(6.71)  63.75(2.94) 13.90 (53.40) 23.77
BE 10.84 (28.16) 89.12(10.86) 59.79 (1.02)  18.82 (48.48) 22.13
BS 8.85(30.15) 91.06(8.92)  62.84 (2.03) 17.74 (49.56) 22.66
¢1-sparse 5.15(33.85) 97.31(2.67) 6591 (5.10) 13.61(53.69) 23.83
SalUn 33.60 (5.40)  96.05(3.93) 54.57(6.24) 46.77 (20.53) 9.03
SalUn-soft 33.99(5.01) 87.75(12.23) 52.77(8.04) 37.13(30.17) 13.86
GDRGMA 22.52(16.48) 96.00 (3.98)  55.27(5.54) 38.96 (28.34) 13.59
EUPMU 40.50 (1.50)  94.05(5.93) 50.71 (10.10)  50.61 (16.69) 8.55
EUPMU-fast  33.92 (5.08) 89.48 (10.50) 53.21 (7.60) 46.23 (21.07) 11.06

infringing or non-compliant content. By optimizing the balance between knowledge retention
and targeted erasure, our methodology directly tackles the dual imperatives of model governance
and regulatory compliance. The technical focus on improving governance capabilities inherently
minimizes adverse societal impacts, as the proposed approach does not introduce systemic biases
or operational disruptions. This dual focus not only broadens the practical applicability of machine
unlearning across industries but also establishes a framework for ethically constrained Al development,
aligning with regulatory demands for content accountability without compromising model utility.
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Table 15: Results of Random Data Forgetting(50%) for various methods of unlearning Resnet 18 for
Tiny-Imagenet classification. The results are the mean value over 10 independent trials. The best
performance is highlighted in bold.

Methods UA RA TA MIA Avg. Gap
Retrain 43.15 99.99 56.29 71.15 0.00
FT 7.13(36.02)  99.32(0.67)  65.27(8.98) 18.09 (53.06) 24.68
RL 2430 (18.85) 85.00 (14.99) 48.47(7.82) 25.75(45.40)  21.77
GA 4.63 (38.52) 9535(4.64) 66.29 (10.00) 12.96 (58.19) 27.84
U 18.00 (25.15) 83.21(16.78)  56.41 (0.12)  20.57 (50.58)  23.16
BE 7.56 (35.59) 9247 (7.52) 62.777(6.48) 16.62(54.53) 26.03
BS 8.87(34.28)  90.68 (9.31)  59.03(2.74) 20.21(50.94) 2432
(1-sparse 4.44 (38.71) 9576 (4.23)  66.39 (10.10) 12.76 (58.39)  27.86
SalUn 44.84 (1.69) 94.29 (5.70) 45.83 (10.46) 54.73 (16.42) 8.57
SalUn-soft 33.56 (9.59) 88.25(11.74) 48.15(8.14) 39.76 (31.39)  15.21
GDRGMA 28.73 (14.42) 91.16(8.83)  47.73 (8.56) 36.28 (34.87) 16.67
EUPMU 31.97 (11.18) 98.50 (1.49)  52.71(3.58) 53.18 (17.97) 8.55
EUPMU-fast  33.60 (9.55) 88.59 (11.40) 49.71(6.58) 39.86 (31.29) 14.71
Methods |  Forgettingclass:‘Airplane’ C8 C9

Random
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Figure 7: Image generations of unlearning for DDPM on CIFAR-10. The forgetting class is given by
‘airplane’, and ‘C’ refers to the non-forgetting class name, e.g., ‘car’ (C1).
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction in this paper accurately reflect the paper’s
contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide the limitation discussion in Appendix
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

33



Justification: We provide the full set of assumptions and a complete (and correct) proof in
Appendix [C]
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We provide the experimental information in Section
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necesssary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We provide our code in the supplementary material.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide the experimental details in Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Our experiments are averaged from multiple experiments, and the std is very
small, so there is no need to report the error bar.

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We note that all experiments are carried out on two A100 GPUs in Section .1]
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: This paper focuses on theoretical results and does not involve ethical issues.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss both potential positive societal impacts and negative societal
impacts in Appendix

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: This paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

37


paperswithcode.com/datasets

13.

14.

15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This research does not involve LLMs as any important, original, or non-
standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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