
Connectome-Based Modelling Reveals Orientation
Maps in the Drosophila Optic Lobe

Jia-Nuo Liew1,2,∗, Shenghan Lin3,∗, Bowen Chen2,4,6,7 , Wei Zhang1,2 ,
Xiaowei Zhu4 , Wei Zhang2,4,6,7,†, Xiaolin Hu1,2,8,†

1Department of Computer Science and Technology, BNRist, Tsinghua University, Beijing 100084, China
2IDG/McGovern Institute of Brain Research, Tsinghua University, Beijing 100084, China

3Zhili College, Tsinghua University, Beijing 100084, China
4School of Life Sciences, Tsinghua University, Beijing 100084, China

5Ant Group, China
6State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China
7Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China

8Chinese Institute for Brain Research (CIBR), Beijing 100010, China

{liujn24, linsh24, cbw21, zhangw23}@mails.tsinghua.edu.cn
robert.zxw@antgroup.com

{wei_zhang, xlhu}@mail.tsinghua.edu.cn

Abstract

The ability to extract oriented edges from visual input is a core computation
across animal vision systems. Orientation maps, long associated with the layered
architecture of the mammalian visual cortex, systematically organise neurons by
their preferred edge orientation. Despite lacking cortical structures, the Drosophila
melanogaster brain contains feature-selective neurons and exhibits complex visual
detection capacity, raising the question of whether map-like vision representations
can emerge without cortical infrastructure. We integrate a complete fruit fly
brain connectome with biologically grounded spiking neuron models to simulate
neuroprocessing in the fly visual system. By driving the network with oriented
stimuli and analysing downstream responses, we show that coherent orientation
maps can emerge from purely connectome-constrained dynamics. These results
suggest that species of independent origin could evolve similar visual structures.

1 Introduction

The ability to extract oriented edges from visual input is a core computation across animal vision
systems [23]. Orientation selectivity is canonically attributed to the primary visual cortex (V1), where
neurons respond selectively to specific edge orientations. Hubel and Wiesel [22, 23] first demon-
strated this modular structure in cats. The findings were later substantiated by electrophysiology,
optical imaging, and detailed anatomical mapping [3, 41]. These orientation-selective responses are
embedded within columnar and laminar architecture and are thought to arise from a combination of
spatially organised feedforward inputs and recurrent cortical dynamics [2, 12, 15, 19, 48].

Orientation selectivity has been directly observed in Drosophila melanogaster visual system. In
particular, T4 and T5 neurons - traditionally known for direction selectivity - also exhibit robust
orientation tuning, which sharpens motion detection [16]. These findings provide physiological
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Figure 1: Anatomical organisation and connectivity in the fly visual system. (a) Schematic of
the fly optic lobe showing the layered structure of the medulla, including the distal (Dm), serpentine
(Sm), and proximal (Pm) sublayers. (b) Simplified connectivity diagram highlighting the visual
pathway from photoreceptors (R1-6) through lamina neurons (L1-L3), to the orientation-selective
neurons, to the lobula complex.

evidence that orientation selectivity exists at the neuron level. Building on this, recent studies have
hypothesised that neurons in early visual stages, particularly in the medulla, could support orientation
selectivity, based solely on synaptic connectivity patterns from structural data [45]. Though the
question of whether such orientation selectivity is organised into coherent maps across the visual
system remains unknown. Given the compact, non-layered architecture of the Drosophila brain and
the absence of large-scale recurrent loops seen in vertebrate cortex, it is unclear whether this system
can support the emergence of global tuning structures such as orientation maps [7, 10, 34].

To investigate this, we simulated the visual responses of early-stage neurons (L1-L3) using bar-like
stimuli and propagated their activity through a downstream population in the optic lobe modelled
with leaky integrate-and-fire (LIF) dynamics, constrained by known synaptic connections [13]. We
then analysed the resulting neural population activity, revealing spatially organised orientation tuning
reminiscent of cortical orientation maps. Figure 1a provides an overview of the anatomical structure
of the Drosophila optic lobe, while Figure 1b illustrates the visual connectivity pathway examined in
this study.

To summarise, our main contributions are as follows:

• We computationally demonstrated, for the first time, spatially coherent orientation maps in
the medulla region of an invertebrate visual system.

• We identified topological singularities and inter-layer columnar alignment in orientation
preference within the distal medulla (Dm) and proximal medulla (Pm) regions.

Together, these findings suggest that canonical orientation maps can arise from shared computational
principles across species, even in the absence of cortical lamination.

2 Background and related works

Orientation maps in mammals. Orientation selectivity has been extensively studied in the visual
cortices of many mammals. At the anatomical level, evidence from mammals indicates that orientation
tuning can emerge in neural substrates with vast differences [25, 4, 38]. In rodents, maps often display
salt-and-pepper rather than columnar architecture, as observed in the visual cortex, while the retina
displays a continuous topographic map of orientation tuning [48]. In contrast, cats and wallabies
display a structured pinwheel-like feature that has been documented in the primary visual cortex
[24, 25, 37], despite differences in cortical evolutionary divergence across mammalian species [41].
These findings suggest that orientation maps can arise across diverse mammalian species with varying
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cortical architectures, raising the possibility that such maps are not an exclusive feature of the
neocortex but reflect convergent computational motifs.

Orientation tuning in non-mammals. Studies across non-mammalian species suggest that struc-
tured visual coding arises under minimal anatomical constraints. In pigeons, sharply tuned orientation-
selective neurons emerge through feedforward circuits alone, without a laminated cortex [32]. In
turtles, despite the absence of fine retinotopy, population activity in the dorsal cortex accurately
encodes spatial information [17], indicating that a global analysis of the visual scene can arise from
distributed representations. Similarly, in zebrafish, orientation-selective neurons have been observed
in the optic tectum, and some studies report their laminar segregation and retinotopic organisation
[40, 43]. However, while all three species exhibit orientation-selective neurons, neither has demon-
strated the presence of continuous, spatially organised orientation maps comparable to the ones found
in the mammalian cortex.

Orientation coding in Drosophila. In Drosophila melanogaster, orientation tuning has been
hypothesised based on anatomical structure alone. In particular, Seung [45] predicted that functionally
distinct neuron types such as Dm3 and TmY may exhibit orientation selectivity, proposing that such
responses could arise purely based on wiring alone. To date, the only direct physiological evidence
of orientation selectivity comes from earlier studies on T4 and T5 neurons, which exhibit tuning
to oriented edges in addition to their well-known direction selectivity [16]. Beyond these, no other
neuron types have been experimentally or computationally confirmed to show orientation selectivity.
Moreover, no prior study has computationally demonstrated the emergence of orientation maps in this
non-cortical system. Our work fills in this gap by building on these findings to show that coherent,
spatially organised orientation maps can emerge in such a system, thus suggesting that species of
vastly different evolutionary origin may share common circuit-level principles for encoding visual
features.

3 Methods

LIF model. We implemented a leaky integrate-and-fire (LIF) framework to simulate the spiking
dynamics of neurons in the Drosophila visual system (see Appendix B.1) [46]. Using the full adult
fly brain (FAFB) connectome, we constructed a network in which neurons are labelled and connected
according to their anatomical synapses [8, 13, 20, 50]. The model encompasses the complete adult
Drosophila connectome, including 138,639 neurons and 1,508,983 synapses. The FAFB connectome
provides a complete and cell-resolved reconstruction of the Drosophila brain [50], and has become a
foundational resource for structural annotation [44], functional inference [49, 11], and whole-brain
spiking simulations validated against behaviour [46]. In our model, visual stimuli were simulated
as Poisson spike trains injected into lamina inputs (L1-L3) in the right eye of the Drosophila, and
the resulting activity was propagated through the whole brain connectome using the embedded LIF
framework, allowing us to monitor orientation tuning in downstream visual neurons (Figure 2a).

Stimuli. We focused on the lamina neurons L1-L3, which are visual columnar neurons - retino-
topically organised neurons that are associated with an individual ommatidium in the compound eye,
such that each visual column contains a dedicated copy of the neuron [39]. Unlike other columnar
neurons, L1-L3 receive direct input from photoreceptors R1-R6, which capture brightness change
across the visual field. The ommatidia themselves are arranged in a hexagonal lattice, forming a
precise sampling grid over visual space. For this study, we applied input directly to L1-L3 rather
than R1-R6, as the connectomic dataset provides visual columnar mappings for L1-L3 but not for
photoreceptors [8, 13, 14, 20, 33, 35, 36, 44, 50, 39]. Naively, one can let an L1-L3 neuron receive
a fixed strength of Poisson input regardless of the location of the OFF-bar on the receptive field
(RF) of the corresponding ommatidium. However, this ignored spatial gradients across the RF. To
better reflect spatial structure, the input stimuli were modelled by computing the distance d from each
ommatidium to the bar and making the input strength depend on d based on the calcium imaging
data [29] (Appendix B.2). Figure 2b illustrates how the distance of the OFF-bar modulates input
strength. In the top row, each panel shows a single ommatidium, colour-coded by its corresponding
L1-L3 firing rate as a function of d from the OFF-bar (black line). Firing rates increased as the bar
approached the centre of the ommatidia, peaking when aligned and tapering off with distance. The
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Figure 2: Overview of the simulation framework and analysis methods. (a) Schematic of the
simulation pipeline. Poisson spike trains were used to simulate grating stimuli input to L1-L3 neurons.
Each neuron’s orientation tuning is quantified by its firing rate across stimulus angles. (b) Structured
stimulus input to L1-L3 neurons across different OFF-bar positions (black line). Top: Each panel
shows a hexagon representing an ommatidium. Bottom: 2D heatmap of firing activity across the
simplified hexagonal lattice of ommatidia. Each hexagon represents one ommatidium, colour-coded
by its corresponding L1-L3 firing rate. d represents the distance to the centre of the ommatidia.
Please note that, even when the bar stimulus lies outside the geometric boundary of an ommatidium,
a measurable response is still observed due to the broader receptive field ( 5◦- 8◦) relative to the
ommatidial spacing (4.6◦), resulting in spatial overlap of sensitivity across neighbouring units[5].
(c) Gaussian turning curves of two neurons: the left panel indicates a well-fit neuron (orientation-
selective), and the right panel indicates a neuron classified as not orientation-selective. (d) Structural
prediction of preferred orientation angles based on upstream columnar connectivity. The red dashed
lines indicate the best-fit ellipse drawn through these spatial locations.

bottom row provides a simplified illustration of the 2D activation pattern across the hexagonal lattice
for several OFF-bar positions.

Preferred orientation. To quantify the orientation selectivity of the monitored neurons, we fit a
Gaussian function to their firing responses across different stimulus orientations. Unlike a standard
Gaussian, which assumes a linear domain, our model accounts for the 180◦ periodicity of angle
space by computing the minimal circular distance between the stimulus orientation and the neuron’s
preferred orientation (Figure 2c; see Appendix B.3). A fit was considered "good" if it satisfied
two criteria: a coefficient of determination R2 ≥ 0.7 and a normalised residual sum of squares
RSSnorm ≤ 0.4 – indicating both high explanatory power and low relative error (Figure 2c).
Representative examples of Gaussian fits that are considered good, poor and near threshold are
illustrated in Figure S4a. The distribution of R2 across neurons and the relationship between R2 and
RSSnorm are illustrated in Figure S4b, S4c. Unless otherwise noted, the preferred orientation of a
neuron in this paper refers to its orientation preference as determined by this Gaussian fit.

Structural prediction. In this paper, structured prediction refers to the predicted preferred orienta-
tion angle of a neuron by its direct upstream neurons, similar to the receptive field approach used by
Seung [45]. Specifically, we identify each neuron’s upstream partners that are also columnar neurons
using known synaptic connectivity. We mapped these upstream neurons to their corresponding
columns in the compound eye, and a best-fit ellipse is drawn around their spatial locations (Figure 2d).
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Figure 3: Orientation tuning and structural prediction accuracy. (a) Heatmaps showing the
normalised firing rates of various neurons across different angular orientations. (b) Proportion of
neurons with well-fit orientation tuning across types. Green bars indicate the subset well-fitted by a
circular Gaussian model (see methods). Blue bars indicate the total number of neurons in the right
optic lobe of the respective type. (c) Distribution of absolute differences between each neuron’s
preferred orientations predicted by LIF simulation and by dendritic structure.

The orientation of the ellipse’s major axis, measured relative to the y-axis, is taken as the predicted
angle for the downstream neuron.

4 Results

4.1 Orientation selectivity

We first evaluated whether neurons in the Drosophila optic lobe exhibit robust orientation selectivity.
Using our LIF-based simulation framework, we presented bar-like stimuli across orientations and
recorded their firing rates. We then fitted each neuron’s response profile using a circular Gaussian
model (see Methods). For neurons that were well-fit, we normalised firing rates to their peak
responses and visualised the resulting heatmap of preferred orientations. Neurons were initially
sorted via hierarchical clustering, revealing structured patterns in tuning preferences. Upon observing
a diagonal-like structure - suggestive of a continuous orientation gradient - we further sorted neurons
by the ascending position of their peak response, which highlighted a clearer gradient in orientation
tuning (Figure 3a). Our findings demonstrated that Drosophila neurons exhibit robust orientation
selectivity, with evidence suggesting that orientation maps in this species may exist. The percentage
of well-fit neurons relative to the total neurons in the type for a subset of neurons (Dm3v, Dm3p,
Dm3q, TmY4, TmY9q, TmY9q⊥) aligns well with Seung’s prediction [45], indicating that orientation
selectivity arises directly from the spatial arrangement of dendritic inputs (left two panels of Figure
3a).

Moreover, we found that several other neuron types (e.g., Dm15, Tm33, TmY10) also exhibited
tuning properties (Figure 3a). To quantify this selectivity, we classified a neuron type as orientation
selective if over 40% of its neurons were well fit (Figure 3b; see Methods). These results revealed
that most orientation-selective neurons were located within the medulla layer, highlighting it as a
key site for early orientation processing in the Drosophila visual system. To further investigate the
tuning mechanism and verify our hypothesis that orientation tuning could be directly influenced
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by its dendritic inputs, we quantified the preferred orientation of each neuron by computing the
structural prediction of the neuron (Figure 2a; see Methods). We then compared it to the neuron’s
preferred orientation using absolute difference. Across the population analysed, the mean absolute
difference sits at 13.7◦ (Figure 3c), indicating a robust correspondence between dendritic geometry
and orientation preference. Notably, T4 and T5 neurons, despite being known for their direction and
orientation selectivity, did not meet our selection criteria in this analysis. Our results showed that
most T4 and T5 neurons had firing rates close to zero. A few neurons that had higher firing rates
exhibited orientation selectivity (Figure S5). This was likely due to the stimulus design: the static
input may have been insufficient to strongly activate these neurons.

Intriguingly, while analysing the orientation tuning patterns across neuron populations, we incidentally
observed that photoreceptor R7 and R8, classically known for detecting colours [36], also exhibit
orientation selectivity (Figure 3b). This unexpected finding raises the question of how such tuning
arises in primary sensory neurons. We investigated the connectivity of the neurons and found that
Dm9, R7 and R8 formed a closed recurrent loop that results in R7 and R8 adopting the same
orientation preferences as Dm9 (Figure 1b and right two panels of Figure 3a), which itself receives
input from L3. This closed recurrent loop between Dm9, R7 and R8, leading to synchronised
orientation preferences, could provide new insights into how feedback within small circuits may
amplify or stabilise neural responses. While this was not the primary hypothesis, it raises interesting
questions about the role of recurrent circuits in orientation selectivity. Further exploration of this
feedback mechanism in the future could contribute to our understanding of how local orientation
selectivity is maintained or enhanced within neural networks.

4.2 Orientation maps

To evaluate whether orientation selectivity is spatially organised in the fly visual system, we focused
on the medulla, a key visual processing region that receives direct input from L1-L3 neurons and
contains the highest density of neurons with strong orientation selectivity (Figure 3b). Across the
medulla sublayers - which are anatomically divided into distal (Dm), serpentine (Sm) and proximal
(Pm) layers, shown in Figure 1a, we identified 1710 neurons in the Dm layer, of which 1245 belonged
to the Dm3v, Dm3q and Dm3p subtypes. Additionally, we identified 143 well-fit neurons in the Pm
layer and 63 in the Sm layer, based on the Gaussian tuning criteria (see Methods). It was found that
neurons in all three sublayers exhibited clustered patterns - neurons with similar preferred orientations
tended to cluster together (Figure S6). We then focused on the Dm and Pm layers for detailed spatial
analysis, as these layers contained a sufficient number of neurons spanning the full spatial extent of
the medulla (Figure S6).

We first visualised the spatial organisation of preferred orientation by flattening the 3D morphology of
the neurons in the Dm and Pm layers onto layer-specific 2D coordinate systems. To achieve this, we
computed a best-fit plane through the full set of 3D skeleton coordinates from each layer, providing
a reference frame for spatial alignment and visualisation. This approach preserved the columnar
layout while minimising distortions introduced by the Drosophila’s optic lobe curvature. To enable
cross-layer comparisons, a scaling transformation was applied to normalise for differences in physical
size and curvature between the Dm and Pm regions. This projection preserves relative topographic
relationships while enabling 2D spatial smoothing and angular comparisons. We colour-coded the
neurons into their preferred orientation across Dm and Pm layers using unsmoothed maps to examine
the spatial distribution of preferred orientations (Figure S6). These maps revealed a clear spatial
clustering of similar orientation preferences, in contrast to a salt-and-pepper pattern in the rodent V1
area.

To better visualise the global structure, we applied local spatial smoothing by computing the circular
mean of preferred orientations within a circular neighbourhood of fixed radius r around each neuron.
Specifically, for each neuron in the 2D projected plane, we identified all neurons located within a
disk of radius r ≈ 5 × 103 nm and computed the circular mean of their orientation preferences.
This smoothing preserved mesoscale spatial patterns while reducing local variability. The resulting
heatmap produced orientation maps shown in Figure 4a. These smooth maps reveal pinwheel-like
singularities - points around which orientation preference rotates continuously (the circled points
in Figure 4a) - indicating a degree of spatial coherence previously unreported in invertebrate visual
systems.
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Figure 4: Spatial and orientation map in the optic lobe. (a) The smoothed heatmap of the optic
lobe coloured by its preferred orientations at each layer of the optic lobe. The circles highlight the
observed pinwheel structures. α denotes the position angle where dorsal-ventral represents 0◦ and β
denotes the preferred orientation of the neurons (see Methods). (b) Vector field plots of the preferred
orientation in the Dm (top) and Pm (bottom) layers. Each line represents the preferred orientation of
a neuron, and the background heatmap encodes the absolute angular difference between the neuron’s
α and β. Green regions indicate strong tangential alignment (∆ ≈ 90◦), red regions indicate radial
alignment (∆ ≈ 0◦). (c) Scatter plot (position angle, preferred orientations) pairs are displayed with
coordinate axes shifted for visualisation (y-axis: −90◦ to 270◦, x-axis: 0◦ to 360◦). (d) Relationship
of |α−β| and α. D: dorsal area; V: ventral area. (e) Relationship between |α−β| and radial distance
from the centre.

Initial observations of Figure 4a revealed that both layers exhibited a roughly centrosymmetric
distribution of preferred orientations. To characterise this structure more precisely, we defined a
polar coordinate system for each layer, with the origin set at the centroid of the neuron population,
computed by the mean of the spatial coordinates, and using the V-D (bottom-top) direction as the
axis. This allowed us to compute a spatial position angle α for each neuron and directly compare
it to its preferred orientation β, derived from the smoothed map in Figure 4a. Building on this
smoothed representation, we treated each neuron’s orientation as representative of its surrounding
neighbourhood, based on the same local averaging kernel described earlier. To quantify alignment,
we computed the angular difference ∆ = |α− β| for each neuron and projected it onto a 2D heatmap
(Figure 4b), where ∆ = 90◦ indicates tangential alignment and ∆ = 0◦ indicates radial alignment.
This visualisation revealed a clear trend: neurons in peripheral regions tended to prefer tangential
orientations (β ≈ α + 90◦). These findings suggest that orientation tuning in the medulla is not
randomly distributed, but spatially organised relative to each neuron’s anatomical position.

We then further examined the relationship between α and β for all neurons in Dm and Pm layers.
Here, each neuron’s position angle was computed as the circular mean of the angular positions of all
its voxels in the 2D projection. The resulting scatter plot showed a clear diagonal band, consistent
with a systematic offset where β ≈ α + 90◦, supporting the presence of tangential alignment
(Figure 4c). To quantify this relationship, we computed ∆ and examined how it varied across spatial
dimensions. Across angular bins, the ∆ remains relatively stable with minor regional differences
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Figure 5: Orientation column structure in the optic lobe. (a) Three examples of orientation columns
in the Dm layer, colour-coded by preferred orientation. (b) Three examples of orientation columns in
the Pm layer, colour-coded by preferred orientation. (c) Quantification of tuning consistency within
columns. Top: Dm layer. Bottom: Pm layer. *** indicates significance assessed via Mann-Whitney
U test comparing standard deviations to baseline (p < 10−20).

(Figure 4d). In contrast, alignment improved monotonically with radial distance from the centre
(Figure 4e), indicating stronger alignment at the periphery. Although perfect tangential alignment
would yield ∆ ≈ 90◦, the observed means approaching 90◦ suggest a systematic but approximate
offset. We speculate that radial and tangential recognition neurons organise an overall pattern in the
medulla corresponding to the horizontal direction. This pattern is especially evident in the Dm layer,
suggesting a non-uniform organisation of orientation preferences, which may play a key role in the
previously reported recognition of horizons and horizontal objects by the biological flight control
system [47].

This finding suggests that orientation tuning in Drosophila’s optic lobe is not randomly distributed
but exhibits a structured, position-dependent organisation. To access the contribution of upstream
visual pathways to orientation selectivity, we performed a targeted ablation analysis (Appendix
C). Silencing Mi neurons abolished tuning across both Dm and Pm layers, while silencing Tm
neurons produced selective loss in Pm but minimal effect in Dm, suggesting that Mi neurons provide
essential input for orientation tuning throughout the optic lobe. Consistent with this observation, an
analysis of synaptic connectivity by orientation preference (Appendix D) revealed that excitatory
neurons with similar tuning are more likely to form recurrent connections, supporting topographic
organisation and collinear facilitation as proposed by Seung [45]. In contrast, inhibitory connections
displayed distinct off-diagonal structure, suggesting selective cross-orientation motifs that may
sharpen tuning and maintain balance within the network. Peripheral neurons preferentially align their
orientation selectivity tangentially relative to the centre of the optic lobe, reminiscent of contour-
aligned representations seen in higher animals.

4.3 Orientation columns

We next asked whether such tuning is preserved across the depth of the medulla. We examined the
existence of column structures - clusters of neurons aligned vertically across layers that share similar
orientation preferences. Putative orientation columns were defined by anchoring each analysis region
around a Tm3 neuron, chosen due to their well-defined columnar morphology. For each anchor
neuron, we extracted the surrounding neurons within a cylindrical region of 1.5 × 104 nm radius
for both the Dm and Pm layers according to their skeleton coordinates. Each such grouping was
considered as a single column. A total of 858 columns were extracted, each containing on average
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approximately 158.29 neurons in the Dm layers, of which 124.14 belong to Dm3 and Dm15 neuron
types and 29.7 neurons in the Pm layers.

We visualised the neuron morphology by projecting a rectangular slice passing through the centre
of the cylinder onto a 2D plane. This plane was defined by the two orthogonal axes perpendicular
to the principal axis - the longest direction along which the neuron’s morphology extends - of the
Tm3 skeleton, ensuring that the projection aligned with the local column geometry. Specifically,
neuron positions were transformed into this local coordinate frame by projecting each skeleton
point onto the two orthogonal basis vectors to the Tm3 axis. This allowed us to flatten the 3D
column into a 2D view while preserving vertical alignment across layers. We randomly selected
three distinct columns each from Dm (Figure 5a) and Pm (Figure 5b) for visualisation. The Dm
layer did exhibit orientation column organisations, with vertically clustered neurons sharing similar
orientation preferences. However, Dm3 (Dm3v, Dm3p, Dm3q) and Dm15 neurons seemed to form
a distinct horizontal layer that bisects each column into upper and lower segments, creating a clear
visual stratification within individual columns (Figure 5a). This pattern was observed consistently
across columns, indicating a widespread structural feature in the medulla. Notably, these neuron
types exhibited only a single orientation preference (Dm3v: ≈ 0◦; Dm3p: ≈ 60◦; Dm3q: ≈ 120◦;
Dm15: ≈ 100◦), in contrast to other types that exhibited broader tuning curves or gradual changes
in preferred orientation across space (Figure 2a). On the other hand, the Pm layer also exhibited
orientation column structure (Figure 5b), though there are a few columns that seem less pronounced
in the structure (left two panels of Figure 5b).

To quantify this alignment, we measured the circular standard deviation (see Appendix B.4) of pre-
ferred orientations within each column in the Dm layer. The circular standard deviation was computed
over the preferred orientations of all voxels within the column region, providing a measure of how
tightly aligned the local tuning preferences are. Lower values indicated stronger orientation coherence
within the column. To further ensure that the observed orientation columns were not an artefact of the
simulation framework or analysis pipeline, we generated a null baseline by randomising the preferred
orientations across neurons while preserving their spatial locations and column definitions. The
resulting distribution revealed that most Dm columns, excluding Dm3 and Dm15, exhibited sharp
tuning, with a peak at low deviation values and a minority displaying broader orientation spread (top
panel of Figure 5c). We repeated the same analysis for columns in the Pm layer. In contrast to Dm,
the Pm layer showed weaker columnar correspondence, with a distribution of standard deviations
centred closer to the shuffled baseline (bottom panel of Figure 5c). Compared to the Pm layer, the
Dm layer exhibited a more pronounced separation between the observed and baseline distributions,
indicating stronger tuning coherence.

Together, these results demonstrate that Drosophila’s optic lobe contains not only intra-layer orien-
tation maps, but also orientation columns across different layers of Dm, reminiscent of columnar
architectures in vertebrate visual systems.

5 Conclusion and Discussion

In this study, we investigated the orientation preferences in the Drosophila visual system and explored
the spatial organisation of these preferences, revealing a structured pattern. While these maps are
less discretely defined than in mammals, likely due to the lower neuronal density, the presence of
spatially organised orientation selectivity and columnar structure suggests that Drosophila possesses
a rudimentary form of orientation map. Biologically, the organisation shows a population-level
bias toward tangential tuning, where neurons prefer orientations aligned with the local contour of
the visual field and may reflect an adaptation for encoding object boundaries or motion, enhancing
contrast sensitivity across the curved surface of the compound eye [6].

The results align with studies in other non-mammalian species, such as birds, turtles and zebrafishes,
where sharply tuned orientation-selective neurons are found in non-laminated visual pathways as
mentioned earlier [32, 17, 40, 43]. However, as of now, Drosophila is currently the only invertebrate
where spatially structured orientation preferences, resembling a primitive orientation map, have been
computationally demonstrated. As such, we hypothesise that structured visual maps may reflect
convergent evolution, arising from shared computational demands rather than shared anatomy. The
Drosophila ommatidium → Dm → lobula circuit may serve a functionally analogous role to the
mammalian retina→ LGN→ V1 pathway [1, 19, 27], suggesting that efficient visual processing
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follows common architectural motifs across species. Mechanistically, dendritic integration, closed-
loop motifs, and lateral inhibition likely contribute to orientation tuning in Drosophila, as proposed
in prior works [2, 25, 45]. Consistent with this interpretation, analysis of synaptic connectivity
by orientation preference (Appendix D) revealed that neurons with similar tuning are more likely
to form recurrent connections. The study by Klapoetke et al. [30] reveals functionally clustered
representations of complex visual features in the lobular columnar neurons projecting into the central
brain. In contrast, out work focuses on orientation selectivity in the earlier stages of the optic lobe,
based on connectome-driven circuit structure. Together, these complementary findings highlight how
structured visual maps may extend from early visual encoding to higher-order feature integration
within the Drosophila brain.

The orientation maps at the early stages of visual processing provide critical advantages for efficient
visual detection for the flies. The neurons that selectively respond to similar orientations are spatially
adjacent to each other, enabling them to fire maximally when a line or edge appears at their preferred
orientation, which in mammals is achieved by long-distance connections among columns with
similar orientation preference. The columns are arranged in a primitive pinwheel-like map, enabling
more stable and precise edge perception. This organisation supports higher-level vision by feeding
processed orientation data to the central brain for shape recognition and motion detection. Drosophila
serves as a powerful minimal model for exploring core principles of vision, with potential applications
in bio-inspired machine vision and low-power autonomous systems.

Limitations. This study relies on biologically grounded simulations and lacks in vivo validation,
warranting experimental follow-up to confirm our predictions. Similar to prior work based on anatom-
ical reconstructions [45], our approach emphasised predictive modelling to inform future experiments.
The use of a simplified LIF model omits nonlinear firing dynamics and neurotransmitter effects,
which may affect network behaviour. However, similar simplified models have been effectively used
in large-scale cortical simulations to gain insights into emergent network dynamics [46, 18].
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The paper’s abstract and introduction clearly state that the work tests whether
structured orientation maps can emerge in Drosophila purely from biological connectivity,
and the results fully support this claim through connectome-driven simulations and analysis.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper includes a dedicated "Limitations" section where we clearly ac-
knowledge that our findings are based on simulations without vivo validation, and discuss
the modelling simplifications.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include formal theoretical results, theorems, or proofs;
it is an experimental and simulaiton-driven study grounded in biological data rather than
mathematical derivations.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully discloses the experimental setup, including model parameters,
connectome sources, input stimulus design, simulation details and analysis equations,
providing sufficient information for others to reproduce the main results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The full code for simulation and analysis is appended in the Github link in the
Appendix A, along with sufficient instructions to reproduce the main experimental results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper specifies all necessary experimental details, including the LIF model
parameters, input stimulus construction, simulation setup and neuron types studied.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper reports statistical robustness through visual summaries and null-
model comparisons. Specifically, distributions of orientation tuning sharpness are shown
using histograms, and baseline significance is assessed via shuffled control data. While
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traditional error bars are not uniformly presented, the use of population-wide distribution
and comparison to randomised baselines appropriately conveys statistical reliability for the
claims made.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper specifies the computing resources used by the simulation in Ap-
pendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research fully conforms to the NeurIPS Code of Ethics, focusing on
non-invasive, simulation-based studies using publicly available biological datasets, with no
involvement of human subjects, personal data, or potentially harmful applications.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.

18

https://neurips.cc/public/EthicsGuidelines


• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes] .

Justification: The paper discusses the broader impacts of its findings by suggesting that
understanding minimalistic biological circuits could inspire lightweight, sustainable AI
systems.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release any pretrained models, datasets, or tools that pose
a risk of misuse or dual-use concerns, as it focuses solely on simulated neural network
analyses based on publicly available biological data.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper properly cites the FAFB connectome and other publicly available
Drosophila datasets, referencing the original sources.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce new datasets or models beyond the use of existing
publicly available connectome data and simulated networks.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The study does not involve any crowdsourcing, surveys, or human subject
research, as all experiments were performed using simulated neural models based on
biological datasets.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve human subjects, crowdsourcing, or participant-
based studies, and therefore IRB approvals is not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper’s core research methods do not involve large language models
(LLMs) as an important, original, or non-standard component.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Supplementary Material

A Code and data availability

The full code and data can be found at https://github.com/JNLiew/flylif_orientation_
maps. The model ran on an Intel(R) CPU at 2.90GHz machine using 20 threads in parallel. Each
thread required approximately 72 hours to complete a single round of simulation of different angles
in the range 0◦ - 180◦ with an interval of 0.4◦.

B Experimental and analysis definition

B.1 LIF model design

We implemented a conductance-based leaky integrate-and-fire (LIF) model [9, 21, 26, 28, 31, 46]
and integrated the FAFB dataset into this LIF model to run our simulations [8, 13, 14, 20, 33, 35, 36,
44, 50]. The membrane potential vi of neuron i evolves as:

dvi
dt

=
gi − (vi − Vresting)

Tmbr
, (1)

dgi
dt

= −gi
τ
, (2)

gi ← gi + (wj,i ∗ wsyn) upon spike from neuron j. (3)

A spike is emitted when vi ≥ Vthreshold, after which the membrane potential is reset to Vreset for a
refractory period Trefractory. Synaptic transmission is delayed by a fixed latency Tdly. The model used
the following parameter values obtained from Drosophila modelling or electrophysiology efforts
[9, 26, 28, 42, 46]:

• Vresting = −52 mV: resting potential [28, 46]

• Vreset = −52 mV: reset potential [28, 46]

• Vthreshold = −45 mV: spiking threshold [28, 46]

• Rmbr = 10 kΩ cm2: membrane resistance [28, 46]

• Cmbr = 2 µF cm−2: membrane capacitance [28, 46]

• Tmbr = Rmbr · Cmbr: membrane time constant [46]

• Trefractory = 2.2 ms: refractory period [28, 31, 46]

• τ = 5 ms: synaptic decay time constant [26, 46]

• Tdly = 1.8 ms: synaptic transmission delay [46]

• wsyn = 1.5 mV: synaptic weight; free parameter

• gi: the synaptic conductance resulting from the aggregate firing of neurons presynaptic to
neuron i.

wsyn is a free parameter representing the strength of excitatory and inhibitory postsynaptic potentials.
The value was chosen to ensure sufficient firing activity across the medulla for analysis, given the
low baseline firing rates of visual neurons. The number of synapses of an upstream neuron j on a
downstream neuron i is represented by the connectivity wj,i such that if neuron j fires, the membrane
potential of neuron i changes in proportion to its connectivity wj,i · wsyn.

To assess sensitivity to parameter perturbations, we performed a variation analysis where all parame-
ters (except Vrest and Vthreshold) were randomly perturbed up to a fixed maximum percentage (Figure
S1a). At 10% variation, we observed minimal changes in preferred orientation across neurons (Figure
S1b). At 50% orientation selectivity was noticeably degraded (Figure S1c; however, surprisingly, the
ODEs (Equations 1 and 2) remained stable and did not diverge. This suggests that the system retains
a degree of functional robustness even under large perturbations.
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(a)

(b) (c)

Figure S1: LIF model parameter validation. (a) Shows the difference in neurons’ preferred
orientation angles when stimulus parameters (A1, A2, A3) are increased by 20% respectively. "Vary
20%" indicates simulations where all LIF parameters (except Vrest and Vthreshold) were randomly
perturbed by ±10%. "60% input intense" refers to simulations where all inputs were reduced to 60%.
"Vary 50%" is similar to "Vary 10%" but instead is randomly perturbed by ±50%. (b) Orientation
maps under 10% LIF parameters variation. (c) Orientation maps under 50% LIF parameters variation.

B.2 Stimulus designs and validation

To simulate early visual input, we designed a synthetic stimulus that mimics the spatial layout and
angular sampling properties of Drosophila photoreceptors. This allowed us to approximate the input
that L1-L3 would receive in vivo. Our model design was guided by calcium imaging data reported
in Ketkar et al. [29], which showed that L3 neurons exhibit the strongest response variation across
changes in light intensity, followed by L1, with L2 showing the weakest modulation. These responses
increased nonlinearly with light intensity, starting slowly and then rising more steeply. To capture
this, we defined each neuron’s firing rate as a function of spatial distance from a bar stimulus, which
we refer to as the OFF-bar.

We assumed that spatial distance from the stimulus approximates variations in local light intensity
across the visual field. The firing rate of neuron group L1-L3 was then defined as:

FiringRateLx(d) =

{
Ax ·
√
1− d2 · max(fr)

10 , if |d| < 1,

Bx, otherwise,
(4)

where d denotes the distance from the centre of the ommatidium to the OFF-bar in the visual field,
measured in units where d = 1 corresponds to the distance between the centres of two neighbouring
ommatidia. max(fr) represents the maximum firing rate, set to 200Hz. The parameters Ax and Bx,
layer-specific gain and baseline levels, were estimated by fitting model responses to experimental
data [29]:

• L1: A1 = 7, B1 = 20 Hz
• L2: A2 = 5, B2 = 20 Hz
• L3: A3 = 10, B3 = 20 Hz.
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Figure S2: Activation of neuron types to bar-like stimuli. (a) Modelled input strength profiles for
lamina neurons L1-L3 as a function of distance d from the OFF-bar stimulus. (b) Firing rate traces
of a representative neuron from each of the L1-L3 types against their distance from the OFF-bar.
The red line indicates where the stimulus OFF-bar is located. (c) Orientation maps of where A1
parameters are varied by 10%. (d) Orientation maps of where A2 parameters are varied by 10%. (e)
Orientation maps of where A3 parameters are varied by 10%. (f) Firing responses of a representative
downstream OFF-response neuron from each of the Tm1, Tm2 and Tm4 types against their distance
from the OFF-bar. In both (f) and (g), neurons were randomly sampled to verify that OFF-bar stimuli
reliably activated these neuron types as expected. (g) Firing responses of a representative downstream
ON-response neuron from each of the Mi1, Mi4 and Tm3 types against their distance from the
OFF-bar. OFF-bar stimuli reliably suppress firing rates in these neurons within OFF-bar regions.
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The configuration (A3 > A1 > A2) captured the relative sensitivity of L1-L3, as shown in Figure
S2a. The baseline parameter Bx accounted for residual activity even when the calcium signal is
low or flat, as ∆F/F = 0 does not necessarily imply zero firing due to background fluorescence
and imaging noise. We therefore set Bx = 20Hz to reflect plausible baseline activity. To assess the
robustness of our results to the gain parameters Ax, we conducted a sensitivity analysis by decreasing
each of A1, A2 and A3 by 20%, one at a time. The changes in well-fit downstream neurons’ preferred
orientation (measured by preference angle difference) remained small across all conditions (Figure
S1a), and the qualitative tuning properties were preserved. Similarly, we plotted the orientation maps
of where A1, A2 and A3 parameters were varied. We observed minimal changes to the orientation
selectivity (Figure S2c, S2d, S2e).

To ensure that the simulated stimulus was able to elicit a stimulus-consistent pattern among lamina,
which is convinced to be a direct downstream of the photoreceptors, we examined the spatial and
temporal activation patterns of lamina cells L1-L3 and their downstream neurons. Since our stimuli
(OFF-bars) presented a straight bar pattern, we examined the firing rate of lamina cells when the
OFF-bars were at different distances from them. We investigated the firing rate of lamina cells
in response to the OFF-bars positioned at varying distances from them. Our findings revealed a
clear trend: as the distance between the OFF-bars and the cell increased, the firing rate decreased
correspondingly. Notably, the lamina cells (L1-L3) exhibited a peak firing rate when the OFF-bars
were precisely aligned with the cell’s location (Figure S2b). These results confirmed that artificial
stimulus-driven lamina neuron activity in our digital Drosophila brain was consistent with the L1-L3
response properties known from biological experiments [29].

We then sampled a set of downstream neurons - specifically Tm1, Tm2, Tm4, Mi1, Mi4 and Tm3,
which are known from anatomical studies to be postsynaptic targets of L1-L3 neurons [36]. These
neuron types were not shown in Figure 1b to maintain visual simplicity, but their connectivity is well
established. We randomly selected a single neuron from each of the Tm1, Tm2 and Tm4 subtypes
as they are known OFF-cells [36] and evaluated if they exhibited firing patterns that reassemble the
expected response profile to OFF-bar stimuli - that is, peaking when the bar aligns with their receptive
field and decreasing with distance. As shown in Figure S2f, these OFF-responsive downstream
neurons exhibited patterns as expected. In contrast, we also sampled a single neuron from each
of the Mi1, Mi4 and Tm3 subtypes, known ON-cells [36], and evaluated whether they showed the
opposite trend - stronger inhibition, when the OFF-bar was nearby (Figure S2g). These neurons’
spatial activation pattern mirrors the OFF-bar’s location on the compound eye, consistent with known
visual topology [36].

B.3 Circular Gaussian function

We calculated the preferred orientations of each neuron using a circular Gaussian function defined as:

FiringRaten(θ) = C · exp(−d(θ,A)2

B
) +D, (5)

where:

• FiringRaten(θ): predicted firing rate of neuron n at the orientation θ

• θ: input orientation (in degrees, 0◦ ≤ θ < 180◦)
• A: preferred orientation (in degrees, fit parameters)
• B: width parameters (sharpness of tuning)
• C: amplitude of the tuning curve
• D: baseline firing rate
• d(θ,A) = min(|θ−A|, 180−|θ−A|): smallest circular distance between input orientation

and preferred orientation.

B.4 Circular standard deviation

We quantified the sharpness of orientation tuning within each column using the circular standard
deviation (see Figure 5c) in the scipy Python library, defined as:

s =
√
−2 lnR (6)
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Table S1: Ablation study results.
Z Tm silenced Mi silenced

Dm 90.7% 2.4%
Pm 10.4% 3.9%

where:

• s: circular standard deviation (in radians)
• R: mean resultant length, computed as:

R =
1

n

√√√√(

n∑
i=1

cosαi)2 + (

n∑
i=1

sinαi)2 (7)

• αi: preferred orientation of neuron i (in radians)
• n: number of neurons in the column

This metric captured how tightly clustered the orientations are around the mean. A value of s = 0
indicates perfect alignment, with larger values reflecting broader tuning distributions.

C Targeted ablation analysis

To evaluate the contribution of specific upstream visual pathways to orientation selectivity, we
performed targeted silencing of key input neuron populations. Using the equation: Z% = X/Y ,
where X represents the number of good fits in ablation, Y represents the number of good fits in the
original result, and Z is the percentage of neurons remaining that still exhibit orientation selectivity.
Silencing Tm neurons resulted in an 89.6% reduction in well-fit orientation-selective neurons in the
Pm layer but only a 9.3% reduction in Dm. In contrast, silencing Mi neurons eliminated tuning across
both layers, leaving fewer than 5% of well-fit neurons in either Dm or Pm (Table S1). These findings
suggest that Mi neurons represent essential upstream sources of orientation selectivity throughout the
optic lobe.

D Orientation-based synaptic connectivity structure

To examine whether recurrent connections in the connectome reflect functional similarity, we quan-
tified synaptic connectivity as a function of orientation preference. Each synapse (pi, qi) was
represented as a point (θpi

, θqi), where θ denotes the preferred orientation (in degrees) of the pre-
and postsynaptic neurons, respectively. In the excitatory subnetwork, connections cluster along the
diagonal (θpi

≈ θqi), indicating that neurons with similar orientation preferences are more likely to
be recurrently connected (Figure S3a). This pattern is consistent with topographic organisation and
colinear facilitation as proposed by Seung [45], supporting the notion of like-to-like connectivity in
local circuits. In contrast, inhibitory connections exhibit off-diagonal structure, suggesting cross-
orientation interactions and selective suppression mechanisms (Figure S3b). These results suggest
that recurrent circuits in the Drosophila optic lobe preferentially link neurons with similar selectivity,
providing network-level evidence for structured functional organisation within the connectome.

E Extended figures

Figure S4 shows the Gaussian model fitting used to quantify orientation selectivity. Figure S5 shows
the orientation tuning profile of T4 and T5 subtypes. Figure S6 presents additional visualisation of
orientation maps across different neuron types and layers within the optic lobe.

26



(a) (b)

Figure S3: Orientation-specific synaptic connectivity. (a) Excitatory network showing strong
diagonal structure, indicating neurons with similar orientation preferences preferentially connect.
(b) Inhibitory network showing off-diagonal structure, consistent with cross-orientation suppression
motifs.

(a)

(b) (c)

Figure S4: Model Gaussian fit quality. (a) Representative neurons where their Gaussian fit is
considered good (left), near borderline (middle) and poor (right). (b) Distribution of R2 values, where
the red line indicates the threshold. (c) Distribution of R2 and normalised RSSnorm of all neurons
in the right optic lobe, including neurons in Figure S4a.
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(a) (b)

Figure S5: Orientation tuning profiles of some T4 and T5 neurons. (a) Heatmap showing the
orientation tuning responses of T4 neurons that are well-fitted. (b) Heatmap showing the orientation
tuning responses of T5 that are well-fitted.

Figure S6: Orientation preference structure across different neuron types. Preferred orientation
maps across optic lobe layers before smoothing, colour-coded by angle.
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