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ABSTRACT

Controlling the behaviors of large language models (LLM) is fundamental to their
safety alignment and reliable deployment. However, existing steering methods are
primarily driven by empirical insights and lack theoretical performance guarantees.
In this work, we develop a control-theoretic foundation for activation steering
by showing that popular steering methods correspond to the proportional (P)
controllers, with the steering vector serving as the feedback signal. Building on this
finding, we propose Proportional-Integral-Derivative (PID) Steering, a principled
framework that leverages the full PID controller for activation steering in LLMs. The
proportional (P) term aligns activations with target semantic directions, the integral
(I) term accumulates errors to enforce persistent corrections across layers, and the
derivative (D) term mitigates overshoot by counteracting rapid activation changes.
This closed-loop design yields interpretable error dynamics and connects activation
steering to classical stability guarantees in control theory. Moreover, PID Steering
is lightweight, modular, and readily integrates with state-of-the-art steering methods.
Extensive experiments across multiple LLM families and benchmarks demonstrate
that PID Steering consistently outperforms existing approaches, achieving more
robust and reliable behavioral control.

1 INTRODUCTION

Figure 1: Our paper connects LLM Behavior Con-
trol, Feature Attribution for LLM and Control Theory.
Specifically, we apply a PID-Controller to compute the
steering vector for activation steering.

Figure 2: PID Steering: To compute the steering vec-
tor u(k): a PID controller is applied at every layer
f (k)(·), using the diff-in-means between 2 contrastive
data xsp(k) and x(k) as the error signal e(k).

Large language models (LLMs) have demonstrated remarkable capabilities across diverse domains, yet
ensuring that their outputs align with desired behaviors remains a central challenge (Dang et al., 2025;
Sclar et al., 2023; Kotha et al., 2023; Luo et al., 2025; Houlsby et al., 2019). Common post-training
approaches (Wei et al., 2021; Ouyang et al., 2022) have proven effective for improving alignment.
However, these techniques demand substantial computational resources (Houlsby et al., 2019)
and require weight updates with new training data, which can unintentionally degrade fluency or
performance on unrelated tasks (Templeton et al., 2024; Kotha et al., 2023; Luo et al., 2025).

An increasingly popular alternative is activation steering, which modifies a model’s internal activations
directly at inference time, avoiding costly retraining (Vu & Nguyen, 2025; Li et al., 2024; Turner
et al., 2023; 2024; Lee et al., 2024; Rimsky et al., 2024; Rodriguez et al., 2025). This approach has
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been employed both to probe internal representations (Geiger et al., 2024; von Rütte et al., 2024;
Vu & Nguyen, 2025) and to enable fine-grained behavioral control (Vu & Nguyen, 2025; Rodriguez
et al., 2025; Turner et al., 2024; Zou et al., 2023a; Rimsky et al., 2024; Li et al., 2024). Recent work
demonstrates that steering along carefully chosen low-dimensional directions can effectively alter
model behavior (Turner et al., 2024; Rimsky et al., 2024; Arditi et al., 2024; Zou et al., 2023a; Vu
& Nguyen, 2025), highlighting its potential as a lightweight yet powerful alignment strategy.

Steering through the Lens of Dynamical Systems. Recent methods leverage the geometric
structure of the activation space (Marks & Tegmark, 2024; Park et al., 2024) using linear algebraic
techniques (Turner et al., 2024; Zou et al., 2023a; Rimsky et al., 2024; Arditi et al., 2024; Vu & Nguyen,
2025) to compute the steering vectors. While effective, these works oversimplify the complex, dynamic
behavior arising from the auto-regressive nature of LLMs. When viewed through this dynamical lens,
activation steering can be interpreted as guiding the model’s trajectory through activation space, from
a region encoding one concept to another, analogous to steering a dynamical system from one state
to a desired target state.

Contribution. Building on the aforementioned dynamical system insight, our work departs from the
prevailing algebraic framing and instead adopts a control-theoretic perspective on activation steering.
Although recent studies (Soatto et al., 2023; Kong et al., 2024; Luo et al., 2023) have begun exploring this
direction, their focus has primarily remained at the level of the token-level generation proceses, treating
high-level behaviors as control signals. In contrast, we take into account the internal mechanisms of
LLMs by modeling the layer-wise construction of feature directions (Bricken et al., 2023; Park et al.,
2024) as a dynamical system. These feature directions are then used as steering vectors (Turner et al.,
2024; Zou et al., 2023a; Rimsky et al., 2024; Arditi et al., 2024; Vu & Nguyen, 2025). Specifically,
we show that existing steering methods relying on difference-of-means feature directions (Rimsky
et al., 2024), including Activation Addition (ActAdd) (Turner et al., 2024), Directional Ablation (Arditi
et al., 2024), and Mean Activation Transport (Mean-AcT) (Rodriguez et al., 2025), can be interpreted
as instances of a proportional (P) controller, thus suffering from the steady-state error due to the
disturbance to the state of the system (Åström & Hägglund, 1995b). This new perspective enables
the application of principled control-theoretic strategies for extracting effective feature directions
and computing steering vectors, thereby offering stronger robustness and performance guarantees for
activation steering methods. An overview of our approach is shown in Fig. 1 and 2. In this paper, we use
the terms feature direction and steering vector interchangeably, noting that steering vectors represent a
practical application of feature directions in activation steering. Our contribution is three-fold:

1. Control-Theoretic Formulation for Feature Direction: We develop a new control-theoretic
framework for constructing feature directions/steering vectors along the layers of an LLM.

2. PID-Based Steering: We propose the novel Proportional-Integral-Derivative (PID) Steering,
a control-theoretic framework for computing feature directions using a PID controller to reduce
the steady-state error inherent in existing activation steering methods (see Fig. 2).

3. Unified Theoretical Framework: We demonstrate that common activation steering methods
correspond to proportional (P) controllers. This connection enables a theoretical analysis that
highlights PID Steering’s advantages in reducing steady-state error and oscillations

We comprehensively validate our PID Steering across diverse modalities (text and image), downstream
applications (toxicity mitigation, jailbreaking attack, and image style control), steering paradigms
(ActAdd, Mean-AcT, and Angular Steering (Vu & Nguyen, 2025)), model families (Qwen2.5 (Yang
et al., 2024), Gemma2 (Gemma Team et al., 2024), Llama3 (Llama Team, 2024), SDXL-Lightning (Lin
et al., 2024), and Flux (Labs, 2024)), and model scales (3B-14B for language models and 3.5B-12B
for diffusion models).

Organization. We organize the paper as follows: Section 2 reviews background; Section 3 links
activation steering to P control and introduces PID Steering; Section 4 presents its theoretical analysis;
Section 5 provides empirical validation; Appendix A discusses related work; and Section 6 concludes.
Proofs, derivations, and additional experiments are in the Appendix.

2 BACKGROUND

2.1 TRANSFORMERS

Decoder-only transformers take an input token sequence q=[q1,...,qn] and map it to initial embeddings
x(1)=[x1(1),...,xn(1)]

⊤=Embed(q). The embeddings are then propagated through K layers. At
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each layer k, the residual activation xi(k) for token pi is updated by self-attention and an MLP block,
with normalization applied before (and sometimes after) these modules:

xi,post-attn(k)=xi(k)+SelfAttn(k)(Norm(xi(k)))

xi(k+1)=xi,post-attn(k)+MLP(k)(Norm(xi,post-attn(k))).

In this paper, for notational brevity, we summarize the layered processing above as xi(k + 1) =

f
(k)
i (x(k)), i=1,...,n, where f (k)

i encapsulates both the Self-Attention mechanism and Multi-Layer
Perceptron at layer k. Finally, the output activations from the last layer, xi(L+1), are decoded over
the model’s vocabulary to get the next token yi=Decode(xi(L+1)) for subsequent generation.

2.2 ACTIVATION STEERING

Features such as behaviors or concepts are hypothesized to align with (approximately) orthogonal
directions in activation space (Park et al., 2024; Bereska & Gavves, 2024; Elhage et al., 2022).
Activation steering leverages this by modifying hidden states at inference to amplify or suppress
specific features (Bayat et al., 2025; Konen et al., 2024; Li et al., 2024; Marks et al., 2025; Templeton
et al., 2024). Recent approaches operationalize this idea by constructing feature directions, which
act as steering vectors r for adjusting hidden states. These steering vectors are computed as layerwise
differences in mean activations between datasets with contrasting concepts (e.g., harmful vs. harmless),
a difference-in-means approach (Rimsky et al., 2024), shown to effectively isolate salient feature
directions (Turner et al., 2023; 2024; Arditi et al., 2024).

2.2.1 APPLYING THE STEERING VECTORS

Two popular activation steering approaches that use steering vectors are: Activation Addition (Turner
et al., 2024), and Directional Ablation (Arditi et al., 2024). Both methods modify the token activation
x(k) using the steering vector r(k) at layer k such that the activation expresses the target concept
or behavior. By setting x(1,q)=Embed(q) and r(1)=0, these methods apply the steering vectors
r(k) to the activation x(k), k=[K], at each layer via a steering function ρsteer as follows:

x(k−1,q)=ρsteer(x(k−1,q),r(k−1)),for q∈Dsource (1)

x(k,q)=f (k)(x(k−1,q)),for q∈Dsource∪Dtarget. (2)

We discuss here the details on how to design the steering function ρsteer for each method.

Activation Addition (ActAdd). ActAdd and sets ρsteer(x(k),r(k)) = x(k) + αr(k), where the
coefficient α controls the strength of the effect.

Directional Ablation (DirAblate). DirAblate removes the feature by projecting the token activation
onto the orthogonal complement, ρsteer(x(k),r(k))=x(k)−r(k)r(k)⊤x(k).

2.2.2 COMPUTING THE STEERING VECTORS

Non-sequential Mapping. Let us use the jailbreaking task as an example. In this task, we apply
activation steering to force the LLM to respond to harmful prompts (Vu & Nguyen, 2025; Arditi et al.,
2024). In order to compute the steering vectors, i.e., refusal direction, for each layer k ∈ [K] and
post-instruction token position i∈I , we calculate the mean activation µi,target(k) for harmless prompts
from D(train)

target and µi,source(k) for harmful prompts from D(train)
source:

µi,target(k)=
1

|D(train)
target |

∑
q∈D(train)

target

xi(k,q), µi,source(k)=
1

|D(train)
source|

∑
q∈D(train)

source

xi(k,q). (3)

We then compute the difference-in-means vectors, ri(k)=µi,target(k)−µi,source(k), and use them as
steering vectors. Optionally, among the difference-in-means vector ri(k) for each post-instruction
token position i∈I at layer k, we can select the single most effective vector r(k)=Select({ri(k)}i∈I)

from this set by evaluating each candidate vector over validation sets D(val)
source and D(val)

target.

Sequential Mapping. A non-sequential mapping neglects the causal dependency across activations,
where outputs from one layer are passed to the next, i.e., xi(k+1)=f

(k)
i (x(k)). Consequently, any

intervention applied at one layer must be accounted for before introducing an intervention at the subse-
quent layer. To capture this causal structure, Mean Activation Transport (Mean-AcT) in (Rodriguez
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et al., 2025) estimates the steering vectors incrementally at each layer as follows:

xi(k−1,q)=ρsteer(xi(k−1,q),r(k−1)),for q∈Dsource (4)

xi(k,q)=f
(k)
i (x(k−1,q)),for q∈Dsource∪Dtarget (5)

µtarget(k)=
1

|D(train)
target |

∑
i∈I,q∈D(train)

target

xi(k,q), µsource(k)=
1

|D(train)
source|

∑
i∈I,q∈D(train)

source

xi(k,q)

r(k)=µtarget(k)−µsource(k). (6)

Like ActAdd, Mean-AcT sets ρsteer(x(k),r(k))=x(k)+αr(k).

2.3 PROPORTIONAL–INTEGRAL–DERIVATIVE CONTROLLER

Proportional-Integral-Derivative (PID) control is a feedback mechanism extensively used in control
systems (Minorsky, 1922). It is valued for its simplicity, robustness, and effectiveness in a broad
range of applications, from industrial automation to robotics and aerospace systems (Visioli, 2006;
Borase et al., 2021). The core idea behind PID control is to compute a control signal based on the
error between a target reference signal and the actual output of a system. Specifically, consider a
continuous-time dynamical system governed by a state space model

ẋ(t)=g(x(t),u(t),t),y(t)=h(x(t),u(t),t), (7)

where x(t) ∈ Rd denotes the state variable, u(t) ∈ Rm is the control variable, and y(t) ∈ Rd′

represents the measured output signal. Here, g : Rd ×Rm → Rd specifies the system dynamics,
and h :Rd×Rm →Rd′

is an output mapping. A PID controller applies the control variable u(t) to
minimize the discrepancy between a target reference, or also known as the setpoint in the literature
of PID control, ysp(t) and the actual output y(t). This discrepancy, called control error, is defined as

e(t)=ysp(t)−y(t). (8)

In a PID controller, the control variable u(t) is composed of the proportional (P), integral (I), and
derivative (D) terms and given by:

u(t)=Kpe(t)+Ki

∫ t

0

e(τ)dτ+Kd
de(t)

dt
, (9)

where Kp,Ki,Kd≥0 are the proportional, integral, and derivation gains, respectively. In PID control
design, the P, I, and D play different roles: Proportional term (P) outputs a correction proportional to the
current erroret, but alone leaves a steady-state offset; Integral term (I) accumulates past errors to remove
residual bias, ensuring offsets are corrected even as proportional effects fade; and Derivative term (D)
responds to the error’s rate of change, damping rapid growth to improve stability and reduce overshoot.

State-Feedback PID Controller. A special case of the PID controller is obtained by choosing the
measured output y(t) to be the state variable x(t) in Eqn. 7, yielding the following state-space model

ẋ(t)=g(x(t),u(t),t),y(t)=x(t). (10)

The control error then becomes the state tracking error, e(t) = xsp(t)− x(t), and the system is
controlled through feedback of the state (Åström & Murray, 2021).

3 STEERING WITH A FEEDBACK CONTROLLER

In this section, we will formulate popular activation steering methods, such as ActAdd, DirAblate,
and Mean-AcT, as a state-feedback P controller. Based on this new interpretation, we propose PID
Steering, a novel steering method that uses a PID controller.

3.1 ACTIVATION STEERING AS A P CONTROLLER

We consider the state-feedback PID controller given in Eqn. 10 and the continuous steering vector
r(t) in which we replace the layer index k by the time index t. Substituting the state tracking error e(t)
by the difference-in-means vector r(t) and using the P controller whose system dynamics is governed
by g(x(t),u(t),t)=f(ρsteer(x(t),u(t)),t)−x(t), we obtain

ẋ(t)=f(ρsteer(x(t),Kpr(t)),t)−x(t). (11)

We discretize Eqn. 11 using Euler method (Euler, 1768; Hairer et al., 1993) to obtain

x(k)−x(k−1)=f (k)(ρsteer(x(k−1),Kpr(k−1)))−x(k−1),

4
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(b) Pretrained Qwen2.5-3B-Instruct
Figure 3: Scalar errors across time step of randomly initialized model after applying P, PI, and PID controller.

or equivalently,

x(k)=f (k)(ρsteer(x(k−1),Kpr(k−1))), (12)

where f (k)(·)=f(·,k), a function depending on index k.

Comparing Eqn. 12 with Eqn. 1 and 2 shows that applying the steering vectors as in Section 2.2.1
is equivalent to implementing the P controller, where f (k) is the k-th layer in an LLM, u(t)=Kpr(t)
is the new steering vector. Thus, activation steering computes the expected state tracking error.

r(t)= ē(t)=Eqsp∈D(train)
target

[xsp(t,qsp)]−Eq∈D(train)
source

[x(t,q)]. (13)

This expected state tracking error, i.e., the difference-in-means vector r(t), can be computed non-
sequentially or sequentially, as explained in Section 2.2.2. When r(t) is computed non-sequentially
and ρsteer(x(k),u(k))=x(k)+αu(k) or x(k)−u(k)u(k)⊤x(k), we obtain ActAdd or DirAblate,
respectively. When r(t) is computed sequentially and ρsteer(x(k),u(k))=x(k)+αu(k), we attain
Mean-AcT.

Limitations of P Controller. There is always a steady state error in P control. The error decreases
with increasing gain, but the tendency towards oscillation also increases. Since activation steering
methods, i.e., ActAdd, DirAblate, and Mean-Act, are P controllers, they share the same limitations. We
informally state our theoretical guarantees that P-control activation steering methods cannot alleviate
the steady state error in Proposition 1 below and provide detailed proofs in Appendix B.4.

Proposition 1 (Steady-state error of P-control activation steering) P-control activation steering
ensures input-to-state stability (ISS) for an appropriate range of Kp. However, there still exists a
steady-state error due to the disturbance w(k) to the state of the system. In the best case, when w(k)
converges to w, under a mild condition, the expected error, i.e., the difference-in-means, r(k)= ē(k)
eventually converges to a steady state ēss∝w. Therefore, ēss ̸=0 if w ̸=0.

We further provide empirical evidence to validate Proposition 1 and to illustrate the effect of adding
integral and derivative terms (discussed in more detail in Section 4.2) in Fig. 3. To achieve this, we
apply Sequential P-control activation steering (P Steering) on a randomly initialized model with
150 layers deep, and pretrained Qwen2.5-3B-Instruct. We plot the scalar signal ⟨ē(0),ē(k)⟩ which
measures how much of the mean error at layer k remains aligned with the initial mean error (see
Appendix B.6 for further explanation). A nonzero plateau of this quantity indicates a persistent
component of the initial error (i.e., a steady-state error), whereas convergence to values near zero
means that this component has been eliminated.

In this light, the behaviour in Figure 3 matches the theoretical discussion: the P curve (blue) decays
but clearly settles on a nonzero plateau, confirming that P-control is ISS but admits a steady-state
error. The PI curve (red) crosses zero and, after the trasient, remains close to it, meaning that the
integral action eliminates the steady-state offsets in < e(0),e(k) >; the large negative dip before
convergence is the classical overshoot of PI control, which we discuss in the “Limitations of PI control”
in Section 4.2.1 of our main text and analysis in Appendix B.6. The PID curve (green) also settles near
zero but with substantially reduced overshoot, showing that derivative action damps the PI transient
while preserving its steady-state advantage. We analyze the overshoot reduction of PID control in
Theorem 2 in Section 4.2.2 of our main text and in Appendix B.7.2.

3.2 PROPORTIONAL–INTEGRAL–DERIVATIVE (PID) STEERING

3.2.1 OVERVIEW

To overcome the steady-state error inherent in P-control activation steering, we extend the method
by adding integral (I) and derivative (D) terms to the steering vectors. PID Steering thus (i) reacts

5
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immediately to errors via the P term for greater responsiveness, (ii) removes steady-state offsets with the
I term, ensuring convergence to the desired set point, and (iii) anticipates error trends through the D term,
improving stability and reducing overshoot. Together, these properties yield the following advantages:

• Generalization. PID Steering extends P-control methods like ActAdd, DirAblate, and
Mean-AcT by adding integral and derivative components.

• Methodological Agnosticism. Our PID framework can be applied across different activation
steering techniques, including ActAdd, DirAblate, and Mean-AcT.

• Stability. We theoretical prove and empirical demonstrate that PID Steering reduces steady-state
error and overshoot in P-controllers, improving existing steering methods.

• Interpretability. Derived from classical feedback control (Minorsky, 1922), the framework
inherits the simplicity and interpretability that underpin the wide use of PID controllers.

3.2.2 COMPUTING THE STEERING DIRECTION USING A PID FEEDBACK CONTROLLER

Following Section 3.1, we consider the state-feedback PID controller in Eqn. 10, replacing the state
tracking error e(t) with the difference-in-means vector r(t). With the PID controller governed by
the system dynamics g(x(t),u(t),t)=f(ρsteer(x(t),u(t)),t)−x(t), we obtain

ẋ(t)=f(ρsteer(x(t),Kpr(t)+Ki

∫ t

0

r(τ)dτ+Kd
dr(t)

dt
),t)−x(t). (14)

Eqn. 14 defines the continuous-time model of PID Steering, whose steering vector is given by:

u(t)=Kpr(t)+Ki

∫ t

0

r(τ)dτ+Kd
dr(t)

dt
. (15)

In order to obtain the discrete-time formulation of PID Steering, we first discretize the sytem dynamics
ẋ(t) = f(ρsteer(x(t),u(t)),t)−x(t) using Euler method (Euler, 1768; Hairer et al., 1993), same as
in Section 3.1, and attain

x(k)=f (k)(ρsteer(x(k−1),u(k−1))), (16)

Next, we discretize u(t) given in Eqn. 15 to obtain u(k) using Lemma 1 below.

Lemma 1 (Discretizing PID steering vector) Consider the continuous PID steering vector defined
in Eqn. 15. The discrete-time PID steering vector is given by:

u(k)=Kpr(k)+Ki

k−1∑
j=0

r(j)+Kd(r(k)−r(k−1)). (17)

Proof of Lemma 1 is in Appendix B.1. With Eqn. 16 and Lemma 1, we now define PID Steering.

Definition 1 (PID Steering) Given a large language model whose layers are
{
f (k)

}K

k=1
and a

steering function ρsteer, PID Steering constructs the steering vectors as follows:

u(k)=Kpr(k)+Ki

k−1∑
j=0

r(j)+Kd(r(k)−r(k−1)), (18)

where for non-sequential mapping,

r(k)=Eqsp∈D(train)
target

[xsp(k,qsp)]−Eq∈D(train)
source

[x(k,q)],

and for sequential mapping,

x̃(k)=f (k)
(
ρsteer

(
x(k−1),u(k−1)

))
, r(k)=Eqsp∈D(train)

target
[xsp(k,qsp)]−Eq∈D(train)

source
[x̃(k,q)].

4 THEORETICAL ANALYSIS OF PID STEERING

This section provides theoretical evidence for our claims: (i) adding integral action (PI) reduces
steady-state error that remains under pure P-control (Proposition 3); and (ii) adding a derivative term
(PID) preserves bias removal while mitigating oscillations/overshoot (Theorem 1 and 2). We denote
Kp :=KpI , Ki :=KiI , and Kd :=KdI . Detailed proofs are provided in Appendix B.
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4.1 DYNAMICS OF THE AVERAGE ERROR ACROSS LAYERS

To formalize the problem, we consider N pairs of prompts/input tokens from two contrastive datasets,
e.g. harmful and harmless, {(q+

i ,q
−
i )}Ni=1 with corresponding activations x±

i (k)∈Rd at layer k. A
steering input u(k) perturbs the undesired branch:

x−
i (k+1) = f

(k)
i

(
x−
i (k)+u(k)

)
. (19)

Let ē(k) := 1
N

∑N
i=1(x

+
i (k)−x−

i (k)), the error dynamics of activation steering is then given by
Proposition 2 below.

Proposition 2 (Error dynamics of activation steering) The error dynamics ē(k) in activation
steering is of the form:

ē(k+1)=Ā(k)ē(k)−Ā(k)u(k)+w(k), (20)
where Ā(k) is the mean local Jacobian of f (k)

i at x+
i (k) and the disturbance term w(k) collects

heterogeneity. See Appendix B.3 for detailed proof and explanations of the terms.

Our control objective is to drive ē(k) to zero with input-to-state stability (ISS) for disturbed discrete
system Eqn. 20 (Jiang et al., 1999).

4.2 STABILITY OF THE ERROR DYNAMICS: ROLES AND CAVEATS OF PI AND PID CONTROL

In the following stability analysis, we consider the orthogonal decomposition for the disturbance
w(k)=w∥(k)+w⊥(k), where w∥(k)∈ ImĀ(k) and w⊥(k)∈(ImĀ(k))⊥.

4.2.1 PI CONTROL

The following proposition provides a theoretical guarantee of PI Steering’s steady-state error reduction.

Proposition 3 (Stabilizing the PI loop reduces steady-state error) Let Mp(k) = Ā(k)(I −Kp),
and denote ∥Ki∥=:h. Assume supk∥Ā(k)∥≤M <∞ and supk∥Mp(k)∥≤ q < 1. If q+Mh< 1,
then the PI closed-loop control is ISS. Furthermore, the integral part exactly cancels the matched
disturbance component w∥. The remaining error is due only to the unmatched component w⊥, which
cannot be compensated. Full proof and term explanations provided in Appendix B.5

Limitations of PI control. Overshoot is common under PI: the closed loop oscillates about the setpoint
before settling (Åström & Hägglund, 1995a, Ch. 3, §3.3, pp. 68-69), and large overshoot can arise with
a high integral gain Ki. In our steering setting, we explain this by scalarizing the dynamics along a
reference direction . The scalarized integral state accumulates past error, pushing the trajectory beyond
the setpoint; when the scalarized error changes sign, the integral discharges and the error subsequently
approaches zero. See Fig. 7 for an illustration and Appendix B.6 for the formal derivation.

4.2.2 PID CONTROL

The derivative action counteracts PI-induced oscillations near the setpoint by responding to decreases
in the scalarized error, while preserving the integral term’s bias-removal role, as shown in Theorems 1
and 2. For detailed proofs and explanations, see Appendix B.7.

Theorem 1 (Stabilizing the PID loop preserves bias removal) Let Mp(k) = Ā(k)(I −Kp), and
denote ∥Ki∥ =: h, ∥Kd∥ =: ℓ. Assume supk ∥Ā(k)∥ ≤ M < ∞ and supk ∥Mp(k)∥ ≤ q < 1. If
q+Mh < 1 (stable PI loop), then there exists ℓ > 0 such that the PID closed-loop control is ISS.
Therefore, the integral part in PID design still cancels the matched disturbance component w∥.

Theorem 2 (PID reduces the first-overshoot amplitude) Let the first overshoot occur at index k0
with amplitude A0 (definition in Eqn. 54). Then, the first-overshoot amplitude under PID Steering,
APID

0 , satisfies APID
0 ≤API

0 , where API
0 denotes the corresponding amplitude under PI Steering.

To support the theory, we present empirical evidence in Fig. 3. PI and PID controllers clearly improve
over P-only control: PI removes steady-state error but causes large overshoot, while adding the
derivative term mitigates overshoot and enables faster, cleaner convergence to zero.

5 CONTROLLING THE STEERING EFFECT

In this section, we demonstrate the applicability and effectiveness of PID-Steering by using it as a
drop-in replacement for the steering vector computation step across multiple steering frameworks.
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Table 1: Toxicity mitigation results for Gemma-2B and Llama-8B, averaged over 10 runs. Lower is better for
toxicity and perplexity; higher is better for MMLU. Bold = best, underline = second-best within each model.1

Seq. CLS Tox. (%) ↓ 0-shot Tox. (%) ↓ QVQ (%) ↓ PPL Wikipedia ↓ PPL Mistral-7B ↓ MMLU ↑

Original – 4.17±0.32 13.42±1.08 14.17±0.08 13.98 6.68 53.1

ActADD 3.96±0.24 13.43±1.42 14.17±0.08 14.69±0.22 6.67±0.15 53.00±0.51

CAA 1.20±0.25 5.35±0.50 5.88±0.36 14.60±0.20 6.85±0.22 51.70±0.48

AURA 2.12±0.27 9.04±0.66 9.72±0.27 14.18±0.14 7.04±0.34 53.00±0.30

ITI-C 0.74±0.18 5.36±0.91 6.10±0.13 14.90±0.29 7.44±0.19 52.6±0.55

Mean-AcT 1.12±0.23 5.20±0.42 5.80±0.15 14.53±0.21 6.81±0.19 51.74±0.55

Linear-AcT 0.95±0.36 5.37±0.80 5.92±0.11 14.75±0.22 7.24±0.24 51.63±0.50

Mean-AcT ✓ 0.68±0.21 3.23±0.44 3.70±0.14 14.92±0.25 6.97±0.74 51.80±0.55

Linear-AcT ✓ 1.00±0.27 4.13±0.89 4.64±0.04 14.98±0.22 7.13±0.70 51.47±0.50

PID-AcT (Ours) ✓ 0.51±0.21 2.90±0.55 3.40±0.04 15.22±0.24 7.02±0.65 51.30±0.52

Original – 5.80 15.00 15.81±0.09 9.06 5.68 65.30

ActADD 5.57±0.45 15.73±0.21 16.48±0.19 9.71±0.46 5.85±0.26 65.50±0.34

CAA 1.82±0.36 6.70±0.58 7.40±0.06 9.40±0.25 5.50±0.30 64.30±0.37

AURA 1.90±0.61 8.12±0.85 8.80±0.17 9.52±0.32 6.05±0.30 65.50±0.33

ITI-C 1.60±0.22 6.53±0.66 7.19±0.06 9.48±0.24 6.17±0.14 64.70±0.44

Mean-AcT 1.78±0.33 6.56±0.54 7.30±0.25 9.36±0.28 5.45±0.34 64.35±0.39

Linear-AcT 1.87±0.39 6.55±0.21 7.30±0.15 9.35±0.17 5.56±0.33 64.55±0.33

Mean-AcT ✓ 1.21±0.41 5.09±0.64 5.73±0.05 9.83±0.21 5.71±0.33 64.22±0.40

Linear-AcT ✓ 1.68±0.48 6.47±0.38 7.12±0.26 9.48±0.19 5.46±0.44 64.49±0.38

PID-AcT (Ours) ✓ 0.72±0.49 4.36±0.81 4.90±0.14 9.56±0.20 6.08±0.37 64.50±0.36
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5.1 TOXICITY MITIGATION

We evaluate the effectiveness of PID Steering for toxic language mitigation in comparison to sequential
steering methods, specifically Linear-AcT and Mean-AcT (Rodriguez et al., 2025), by closely
following their experimental setup. We apply PID-Steering into Mean-AcT and call it PID-AcT.
Results from other baselines, namely ActADD (Turner et al., 2023), CAA (Rimsky et al., 2024),
AURA (Suau et al., 2024), ITI-C (Li et al., 2024), are also reported.

Experimental Setup. Our evaluation is conducted on Gemma2-2B (Gemma Team et al., 2024)
and Llama3-8B (Llama Team, 2024), using 1,000 randomly sampled prompts from the Real-
ToxicityPrompts dataset (Gehman et al., 2020). Toxicity is quantified with a ROBERTA-based
classifier (Logacheva et al., 2022), following the methodology of Suau et al. (2024). We also assess
toxicity in a zero-shot setting by employing Llama3-8B-Instruct as an LLM-as-a-judge (Zheng
et al., 2023). Additionaly, in Tab. 1, we report QVQ (%) metric measured by QVQ-72B-Preview
(Qwen Team, 2024) as LLM-as-a-judge’s.

To measure general utility of the intervened models, we report: (i) perplexity (PPL) on a fixed set of
20k Wikipedia sentences, (ii) PPL of model-generated outputs evaluated with Mistral-7B (Jiang et al.,
2023), and (iii) 5-shot MMLU (Hendrycks et al., 2021) accuracy.

Results. PID-AcT achieves the strongest toxicity reduction with minimal utility loss across both
models. As shown in Tab. 1, it lowers toxicity by up to 8.2× on Gemma2-2B and 8.1× on Llama3-8B
under both classifier and LLM-judge evaluations. PID-AcT outperforms Mean-AcT and Linear-AcT
within the sequential family (Seq., ✓) and surpasses strong activation-editing baselines (ActADD,
AURA, ITI-C, CAA). Utility remains stable: perplexity is comparable to other baselines; MMLU
accuracy aligns with AcT-based methods and slightly lower than non-AcT approaches, likely reflecting
properties of the AcT framework rather than our method. Overall, AcT-style methods yield stronger
toxicity mitigation, with PID-AcT consistently ranking highest.

5.2 JAILBREAKING LARGE LANGUAGE MODELS

We evaluate our method on ActAdd within the Angular Steering framework (Vu & Nguyen, 2025)
on the jailbreaking task, which seeks to override a model’s refusal behavior and elicit harmful outputs.

Experimental Setup. Following (Vu & Nguyen, 2025), we replace DIM with our method and
baselines RePE (Zou et al., 2023a) and ITI (Li et al., 2024). Refusal directions are built from 80%
of ADVBENCH (Zou et al., 2023b) and 512 harmless ALPACA (Taori et al., 2023) samples, with the
remaining 20% for evaluation. General LM ability is tested on TINYBENCHMARKS (Maia Polo et al.,
2024). We evaluate across Gemma2, LLaMA3, and Qwen2.5 models (3B–14B).
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Table 2: Comparison of Original, DIM, ITI, RePE, and PID across models on ASR and general benchmarks. Bold
= best, underline = second-best within each model (ASR column). Refer to Tab. 3 for results on all tested models.

Method ASR↑ tinyArc↑ tinyGSM8k strict↑ tinyMMLU↑ tinyTruthQA↑ tinyHellaSwag↑ tinyWinoGrande↑

Original – 62.29 17.64 68.03 56.43 73.18 70.65

DIM 74.03 61.95 14.80 66.11 54.95 72.40 69.85

ITI 70.19 61.28 15.57 66.62 54.75 72.71 70.12

RePE 68.44 61.05 14.60 65.70 54.30 72.03 69.40

PID (ours) 76.07 61.20 16.01 67.29 54.10 72.59 69.72

Original – 73.96 90.12 74.60 64.50 82.70 73.77

DIM 90.38 72.74 87.01 74.30 63.01 81.94 72.93

ITI 33.65 73.15 89.27 74.55 64.03 82.24 73.31

RePE 25.42 72.40 86.20 73.90 63.20 81.52 72.60

PID (ours) 92.65 72.13 88.96 74.52 63.60 82.60 73.04

Original – 65.33 63.21 62.02 54.39 82.51 65.56

DIM 93.26 62.01 60.57 60.96 54.17 81.73 64.81

ITI 79.80 64.26 61.85 61.37 54.33 82.01 65.21

RePE 70.42 61.40 60.00 60.20 53.70 81.35 64.45

PID (ours) 94.85 62.30 61.99 61.54 54.24 81.87 64.93

Original – 69.31 83.19 76.60 55.07 82.31 72.34

DIM 77.88 68.21 80.14 72.29 51.86 81.45 71.51

ITI 35.57 68.32 81.47 75.33 53.13 81.70 71.82

RePE 28.64 67.50 79.20 71.10 51.10 81.20 71.15

PID (ours) 79.50 67.91 79.24 74.89 52.49 81.59 71.42

Original – 73.45 86.91 76.11 61.36 83.24 75.47

DIM 74.03 72.13 84.70 74.59 59.49 81.79 74.21

ITI 37.36 72.84 86.38 75.51 60.85 82.83 75.11

RePE 24.19 71.03 84.00 73.90 58.79 80.82 73.44

PID 79.80 72.93 86.60 75.67 60.74 82.95 75.06
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(a) Cyberpunk concept.
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(b) Steampunk concept.
Figure 4: Qualitative results of activation steering in FLUX-Schnell across two style concepts with the prompt

”Lady bent over with red polka dot umbrella inside a brick building.”

Results. PID Steering consistently outperforms DIM and scales robustly across models and
metrics (see Tab. 2). On Qwen2.5-14B and LLaMA3.1-8B, PID achieves the largest ASR reductions
of 92.7% and 94.9%, exceeding DIM by 1.5-2 points, while maintaining almost the same performance,
with marginal cost, on TinyBenchmarks. Smaller models also see consistent gains: +2.0 ASR on
Qwen2.5-3B and +1.3 on LLaMA3.2-3B. In contrast, ITI and RePE fail to scale, collapsing on larger
models with ASR values of 33.7 and 25.4, respectively, on Qwen2.5-14B. A full version of Tab. 2
which also studies Qwen2.5-7B and Llama3.2-3B is provided in Appendix C.2.

5.3 IMAGE GENERATION STYLES CONTROL

We study activation steering in diffusion models using FLUX.1.Schnell’s denoising transformer (Labs,
2024), built on T5-XXL encoders (Raffel et al., 2020) and requiring just 4 diffusion steps.

Experimental Setup. Following (Rodriguez et al., 2025), we intervene on all normalization layers
after most residual blocks in FLUX. Style/concept expression is measured by a CLIP zero-shot
classifier with two labels (A picture of a {style/concept}’’ vs. A picture of
something’’), and content preservation by CLIPScore (Hessel et al., 2021). Training uses 2,048
COCO Captions (Chen et al., 2015) prompts augmented with cyberpunk/steampunk modifiers from
LLaMA-8B-Instruct (source = unmodified p, target = modified q). Evaluation samples 512 validation
prompts to generate images across intervention strengths.

Results. In Fig. 4, increasing the intervention strength from 0 to 1 produces a smooth and coherent
shift in style—e.g., neon tones for cyberpunk, metallic textures for steampunk—while preserving
core content. Moderate strengths yield strong yet faithful stylization, and even at high strengths,
semantic alignment remains largely intact. Quantitatively (Figs. 5), style intensity rises monotonically,
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Figure 5: 0-shot and CLIPScore results for ‘cyberpunk‘ and ‘steampunk‘ concept.

(a) Gemma-2-9b-it on Jailbreaking task. (b) Gemma-2-2B on Toxicity mitigation task.
Figure 6: Ablation Study on (Kp,Ki,Kd) parameters. We sweep through different values ofKp,Ki,Kd and report
(a) Llamaguard3 (ASR in Tab. 2) and Llmjudge (evaluated using QVQ-72B-Preview) metrics for Gemma-2-9b-it,
and (b) CLS Tox. and 0-shot Tox. metrics for Gemma2-2B.

with PID-AcT outperforming Mean-AcT at mid strengths (0.4–0.8). CLIPScore shows the expected
trade-off: both methods decline steadily, with PID-AcT only slightly lower and by a small margin.

5.4 ABLATION STUDY: CONTROLLER GENERALIZATION ACROSS ARCHITECTURES

Figs. 6a and 6b show that the detailed response surfaces of PID gains exhibit highly consistent structure
across two very different LLMs and tasks. In the Gemma-2-9B-IT jailbreak setting (Fig. 6a), increasing
Ki sharply reduces harmfulness under both LLaMAguard3 and LLM-Judge, with the strongest gains
concentrated in the band Ki ∈ [0.05,0.10]. However, large Ki introduces instability when Kp is
small, visible as the pockets of degraded scores at high integral gain; adding a small derivative
term Kd∈ [0.01,0.05] reliably suppresses these oscillatory regions and produces smooth, monotone
improvements across the grid. A nearly identical pattern appears in the Gemma-2-2B toxicity setting
(Fig. 6b), despite the different objective and different model scale. The classifier-based toxicity drops
most steeply as Ki increases from 0 to 0.05, after which the gains saturate; derivative action again
suppresses the large overshoot visible at high Ki when Kd=0, especially for Kp=0. The zero-shot
toxicity metric exhibits the same geometry: Ki consistently drives improvement, while Kd stabilizes
the contours and prevents degradation at high integral strength. The overall layout, monotonic gains
along Ki, stabilization along Kd, and mild scaling with Kp, remains aligned with Fig. 6a. Overall,
these two figures demonstrate that the stabilization property of PID repeats across architectures, model
sizes, and tasks: Ki improves bias removal, Kd damps instability, and Kp adjusts amplitude without
altering the underlying structure. This consistency supports our claim that PID behavior arises from
architecture-agnostic error dynamics and therefore generalizes without retraining.

6 CONCLUDING REMARKS

We introduced PID Steering, a control-theoretic approach to activation steering that models layer-wise
representations as a dynamical system. This framework unifies prior methods, offers robustness
guarantees, and leverages PID dynamics for computing steering vectors. Across language and diffusion
models, PID Steering achieves stronger and more stable performance than existing approaches in
toxicity mitigation, jailbreak prevention, and style control, while preserving model utility. Our results
highlight control theory as a principled foundation for developing reliable and generalizable steering
methods. A limitation of our work is the use of “stability-first, one-gain-at-a-time” analytical strategy
to find controller gains: it clarifies the role of each component but may miss optimal choices and
can overlook broader feasible regions. To address this, numerical methods, for example, LMI-based
computations, can be employed. We leave these for future work.
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Ethics Statement. Given the nature of the work, we do not foresee any negative societal and ethical
impacts of our work. However, risks remain: by tightening activation-level control, PID Steering
may inadvertently ease the generation of nuanced harmful content (e.g., persuasive misinformation
or biased narratives). Although it does not expand the baseline risk profile of LLMs, robust safeguards,
transparency, accountability, and ongoing ethical review are required for responsible use.

Reproducibility Statement. Source codes for our experiments are provided in the supplementary
materials of the paper. The details of our experimental settings and computational infrastructure are
given in Section 5 and the Appendix. All datasets that we used in the paper are published, and they
are easy to access in the Internet.

LLM Usage Declaration. We use large language models (LLMs) for grammar checking and correction.
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Karl Johan Åström and Richard Murray. Feedback systems: an introduction for scientists and
engineers. Princeton university press, 2021.

Reza Bayat, Ali Rahimi-Kalahroudi, Mohammad Pezeshki, Sarath Chandar, and Pascal Vincent.
Steering Large Language Model Activations in Sparse Spaces, February 2025.

Leonard Bereska and Efstratios Gavves. Mechanistic Interpretability for AI Safety – A Review, April
2024.

Rakesh P Borase, DK Maghade, SY Sondkar, and SN Pawar. A review of pid control, tuning methods
and applications. International Journal of Dynamics and Control, 9(2):818–827, 2021.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly,
Nick Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu,
Shauna Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds,
Alex Tamkin, Karina Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan
Carter, Tom Henighan, and Christopher Olah. Towards monosemanticity: Decomposing
language models with dictionary learning. Transformer Circuits Thread, 2023. URL
https://transformer-circuits.pub/2023/monosemantic-features/index.html.

Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Piotr Dollar, and
C. Lawrence Zitnick. Microsoft coco captions: Data collection and evaluation server, 2015. URL
https://arxiv.org/abs/1504.00325.

Emily Cheng and Carmen Amo Alonso. Linearly controlled language generation with performative
guarantees. arXiv preprint arXiv:2405.15454, 2024. URL https://arxiv.org/abs/2405.15454.

Huu-Tien Dang, Tin Pham, Hoang Thanh-Tung, and Naoya Inoue. On effects of steering latent
representation for large language model unlearning. In Proceedings of the AAAI Conference on
Artificial Intelligence, pp. 23733–23742, 2025.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan,
Shauna Kravec, Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger
Grosse, Sam McCandlish, Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christo-
pher Olah. Toy models of superposition. Transformer Circuits Thread, 2022. URL
”https://transformer-circuits.pub/2022/toy model/index.html”.

L. Euler. Institutionum calculi integralis. Number v. 1 in Institutionum calculi integralis. imp. Acad.
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A RELATED WORKS

Recent works increasingly frame large language models (LLMs) as dynamical systems, where gen-
eration is a trajectory in latent space. This view shifts activation steering from heuristic nudging to
principled control: rather than biasing outputs without guarantees, controllers enforce constraints on tra-
jectories with formal assurances (Cheng & Amo Alonso, 2024). In our PID-steering framework, this dis-
tinction is key: we treat the model as a plant with hidden states evolving under controlled interventions.

Controllability of LLMs. Soatto et al. (2023) model decoder-only LLMs as discrete-time stochastic
systems and prove that, under idealized assumptions (Euclidean embeddings, well-trained semantics),
they are controllable in the space of meanings. This establishes that any semantic state is theoretically
reachable, but probabilities may be negligible in practice, and emergent behaviors like chain-of-thought
are not captured. Their results highlight both opportunities and risks: controllability opens adversarial
attack surfaces but also suggests defensive controllers.

Prompting as open-loop control. Luo et al. (2023) recast multi-round prompt engineering as an
optimal control problem, where each prompt is a control input maximizing task reward. This provides
a unifying formalism for prompt strategies, akin to open-loop control. Yet, the framework remains
conceptual: metrics in discrete language space are poorly defined, and no guarantees of stability or
convergence are provided.

Closed-loop activation control. Cheng & Amo Alonso (2024) propose Linear Semantic Control
(LiSeCo), which projects activations into safe subspaces at each decoding step via a closed-form
controller. This yields lightweight, guaranteed control of simple attributes (e.g., toxicity, sentiment).
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However, the linearity assumption only approximates LLM embeddings, guarantees are local rather
than global, and long-horizon stability remains unaddressed.

Dynamic representation editing. Kong et al. (2024) introduce RE-CONTROL, which learns a value
function on hidden states and applies gradient-based interventions at test time. This dynamic approach
generalizes steering into a Bellman-optimal control problem, balancing alignment with fluency. Still,
accuracy of the learned value function is critical, test-time optimization adds overhead, and local
interventions may not guarantee global alignment.

Together, these works move activation steering from heuristics to control theory. Soatto et al. (2023)
prove fundamental controllability (but under strong assumptions), Luo et al. unify prompt strategies
as open-loop control (without guarantees), Cheng & Amo Alonso (2024) derive closed-form activation
control (limited to linear approximations), and Kong et al. (2024) extend to dynamic optimal control
(with overhead and approximation risks).

B THEORETICAL PROOFS

B.1 DISCRETIZED PID CONTROLLER

Implementing a continuous-time controller on digital hardware, such as PID, requires discretizing
its derivative and integral terms (Åström & Hägglund, 1995a, p.95)

Lemma 1 (Discretizing PID steering vector) Consider the continuous PID steering vector defined
in Eqn. 15. The discrete-time PID steering vector is given by:

u(k)=Kpr(k)+Ki

k−1∑
j=0

r(j)+Kd(r(k)−r(k−1)). (17)

Proof. We follow the discretization procedure for PID controllers in (Åström & Hägglund, 1995a,
Sec. 3.6, Ch. 3). For simplicity, the sampling period is normalized to h=1.

Proportional term in Eqn. 15.
P (t)=Kpr(t).

The discrete-time form is obtained by substituting sampled variables for their continuous counterparts:
P (k)=Kpr(k). (21)

Integral term in Eqn. 15.

I(t)=Ki

∫ t

0

r(τ)dτ ⇒ dI

dt
=Kir(t).

Using forward Euler with h=1,
I(k+1)−I(k)=Kir(k).

Hence
I(k+1)=I(k)+Kir(k),

which is equivalent to

I(k)=I(0)+Ki

k−1∑
j=0

r(j)=Ki

k−1∑
j=0

r(j), (22)

since I(0)=0.

Derivative term in Eqn. 15.

D(t)=Kd
dr(t)

dt
.

Approximating the derivative by the backward Euler difference with h=1 gives
D(k)=Kd

(
r(k)−r(k−1)

)
. (23)

Combining equation 21, equation 22, and equation 23 yields

u(k)=Kpr(k)+Ki

k−1∑
j=0

r(j)+Kd

(
r(k)−r(k−1)

)
.

□
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B.2 BACKGROUND ON INPUT-TO-STATE STABILITY & NOTATIONS

Background on Input-to-state Stability (ISS) In our proofs, the input-to-state stability (ISS) of a
system can be established either through the definition of an ISS system in (Jiang et al., 1999, Def. 2.1)
or via the use of an ISS-Lyapunov function as in (Jiang et al., 1999, Def. 2.2, Prop. 2.3). We also rely
on the definition of a Lyapunov function and the difference Lyapunov equation for linear discrete-time
homogeneous dynamical systems in (Gajic & Qureshi, 2008, Ch. 1, p. 8). The existence of a solution
to the Lyapunov equation, together with its bound, is stated in (Gajic & Qureshi, 2008, Ch. 4, p. 110).

For reference, we briefly note that input-to-state stability (ISS) extends the classical notion of Lyapunov
by explicitly accounting for external inputs: the state remains bounded and eventually converges
whenever the input is bounded. A Lyapunov function provides an energy-like certificate for stability,
while the associated Lyapunov equation offers a constructive method for obtaining such functions in
linear settings. These notions are central for analyzing stability and will be used throughout our proofs.

Conventions and assumptions (used throughout). Let ∥·∥ denote the Euclidean norm on Rd; for
a matrix M ∈ Rd×d we also write ∥M∥ for the operator norm induced by the Euclidean norm, i.e.
∥M∥ := sup∥x∥=1∥Mx∥ (the spectral norm) (Horn & Johnson, 2012, pp. 343–346). We assume
(i) supk∥Ā(k)∥<∞; (ii) w(k) is bounded (for a signal w we set ∥w∥∞ := supk∥w(k)∥) ; (iii) the
controller gains are static and time-invariant scalar multiples of the identity, i.e., Kp :=KpI , Ki :=
KiI , and Kd :=KdI . We use the standard meaning of the classes K and KL as in (Jiang et al., 1999).

B.3 DYNAMICS OF THE AVERAGE ERROR ACROSS LAYERS

To formalize the problem setup, we considerN pairs of contrastive prompt/input tokens {(q+
i ,q

−
i )}Ni=1,

where q+
i carries the desired property and q−

i represents the opposite. For discrete time (layer) k, let
x±
i (k)∈Rd denote the corresponding activation vectors. The layer-to-layer evolution is

xi(k+1) = f
(k)
i

(
x(k)

)
,i=1,...,N, (24)

with f
(k)
i :Rd→Rd differentiable on the operating region. A steering input u(k) is applied on the

undesired branch:
x−
i (k+1) = f

(k)
i

(
x−
i (k)+u(k)

)
. (25)

Defining x̄±(k) := 1
N

∑N
i=1x

±
i (k), we track the per-pair and average errors as

ei(k) :=x+
i (k)−x−

i (k), ē(k) := x̄+(k)−x̄−(k), ẽi(k)=ei(k)−ē(k). (26)

Furthermore, we define Ai(k) as the Jacobian of f (k)
i at x+

i (k):

Ai(k) :=J
f
(k)
i

(
x+
i (k)

)
, Ā(t) :=

1

N

N∑
i=1

Ai(k), Ãi(k)=Ai(k)−Ā(k). (27)

The dynamic of the average error ē(k) is then given by Proposition 2.

Proposition 2 (Error dynamics of activation steering) The error dynamics ē(k) in activation
steering is of the form:

ē(k+1)=Ā(k)ē(k)−Ā(k)u(k)+w(k), (20)

where Ā(k) is the mean local Jacobian of f (k)
i at x+

i (k) and the disturbance term w(k) collects
heterogeneity. See Appendix B.3 for detailed proof and explanations of the terms.

Proof. The evolution of the average error ē(k) through layers can be described as follows:

ē(k+1)= x̄+(k+1)−x̄−(k+1)=
1

N

N∑
i=1

[
f
(k)
i

(
x+
i (k)

)
−f

(k)
i

(
x−
i (k)+u(k)

)]
. (28)

Linearizing f
(k)
i around x+

i (k), we obtain

f
(k)
i

(
x+
i (k)+δi(k)

)
≈f

(k)
i

(
x+
i (k)

)
+J

f
(k)
i

(
x+
i (k)

)
·δi(k), (29)

where J
f
(k)
i

denotes the Jacobian of f (k)
i .
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Setting δi(k)=−ei(k)+u(k) yields

f
(k)
i

(
x+
i (k)+δi(k)

)
≈f

(k)
i

(
x+
i (k)

)
+Ai(k)

(
−ei(k)+u(k)

)
,

Insert this into Eqn.28 we obtain

ē(k+1)=
1

N

N∑
i=1

Ai(k)ei(k)−Ā(k)u(k). (30)

Recall that

ei(k)= ē(k)+ẽ(i)(k), then
1

N

N∑
i=1

ẽ(i)(k)=0,

and

A(i)(t)=Ā(k)+Ã(i)(k), then
1

N

N∑
i=1

Ã(i)(k)=0.

Therefore,

ē(k+1)=
1

N

N∑
i=1

Ai(k)ei(k)−Ā(k)u(k)

=
1

N

N∑
i=1

Ā(k)ēi(k)−Ā(k)u(k)+
1

N

N∑
i=1

ẽ(i)(k)Ã(i)(k)

+Ā(k)
1

N

N∑
i=1

ẽ(i)(k)+ē(k)
1

N

N∑
i=1

Ã(i)(k)︸ ︷︷ ︸
=0

(31)

We then obtain the final state-space model for the dynamics of ē(t) as

ē(k+1)=Ā(k)ē(k)−Ā(k)u(k)+w(k), (32)

where

w(k)=
1

N

N∑
i=1

Ãi(k)ẽi(k),

which acts as a time-dependent exogenous disturbance to the model □

B.4 PROPORTIONAL (P) CONTROL

Consider proportional control with

u(k)=Kpē(k), (Ki=Kd=0). (33)

The dynamics Eqn. 20 then become

ē(k)=Mp(k)ē(k)+w(k), (34)

where Mp(k)=Ā(k)(I−Kp).

With a suitable choice of Kp, the system can be made input-to-state stable (ISS); that is, there exist
a KL-function β and a K-function γ such that, for all disturbance w with bounded sup norm and all
initial states ē(0),

∥ē(k)∥ ≤ β(∥ē(0)∥,k) + γ(∥w∥∞), k∈Z≥0, (35)
see (Jiang et al., 1999, Def. 2.1).

In particular, the error decays from the initial condition and remains bounded under bounded
disturbances.

Proposition 1 (Steady-state error of P-control activation steering) P-control activation steering
ensures input-to-state stability (ISS) for an appropriate range of Kp. However, there still exists a
steady-state error due to the disturbance w(k) to the state of the system. In the best case, when w(k)
converges to w, under a mild condition, the expected error, i.e., the difference-in-means, r(k)= ē(k)
eventually converges to a steady state ēss∝w. Therefore, ēss ̸=0 if w ̸=0.
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Proof. Assume supk ∥Ā(k)∥ ≤ M < ∞, Kp = KpI = pI with p > 0. Since
Mp(k)=Ā(k)(I−Kp)=Ā(k)(1−p)I , by sub-multiplicative property of matrix norm we have

∥Mp(t)∥≤∥Ā(t)∥∥(1−p)I∥≤M |1−p|=:q. (36)

For p∈
(
1− 1

M ,1+ 1
M

)
, we have q<1.

Expanding recursively,

ē(k)=Mp(k−1)···Mp(0)ē(0)+

k−1∑
j=0

Mp(k−1)···Mp(j+1)w(j).

Hence,

∥ē(k)∥≤qk∥ē(0)∥+
k−1∑
j=0

qk−1−j∥w(j)∥≤qk∥ē(0)∥+1−qk

1−q
∥w∥∞≤qk∥ē(0)∥+ 1

1−q
∥w∥∞.

(37)

Since q < 1, we can set β(s,k) = qks, which is a KL-function (decaying to zero as k →∞), and
γ(s)= 1

1−q s, which is a K-function, satisfying Eqn. 35. Therefore, the system is ISS.

However, there exists a steady-state error due to the disturbance w(k). In the best case, when Ā(k)
converges to Ā andw(k) converges tow, the error ē(k) eventually converges to a steady state given by

ēss=(I−Ā(1−pI))−1w.

Therefore, ēss ̸=0 if w ̸=0. □

Remark 1 (Convergence rate versus Kp.) From Ineq. 37, smaller q yields faster convergence.
Because

q(p)=M |1−p|=

{
M(1−p), p∈

(
1− 1

M ,1
)
,

M(p−1), p∈
[
1,1+ 1

M

)
,

we have d
dpq(p)=−M<0 for p<1 and d

dpq(p)=M>0 for p>1. Therefore the contraction factor
q(p) is minimized at

p⋆=1 =⇒ q⋆=0,

and increases as p moves away from 1 within the admissible interval.

B.5 PROPORTIONAL-INTEGRAL (PI) CONTROL

To reduce the steady-state error, the proportional controller is extended with an integral action, resulting
in a proportional-integral (PI) control law:

u(k)=Kpē(k)+Kis(k), s(k+1)=s(k)+ē(k), (Kd=0). (38)

The dynamics Eqn. 20 then become

ē(k+1)=Ā(k)(I−Kp)ē(k)−Ā(k)Kis(k)+w(k). (39)

We use the following orthogonal decomposition for w(k):

w(k)=w∥(k)+w⊥(k),

where w∥(k)∈ ImĀ(k) and w⊥(k)∈(ImĀ(k))⊥.

The impact of w∥(k) on the error can be eliminated by PI control, as discussed below. On the other
hand, P-only control is not able to do so, because keeping ē(k) = 0 requires u(k) = 0, leaving no
component in u(k) that can compensate for w∥(k).

Since w∥(k)∈ ImĀ(k), it can be expressed as

w∥(k)=Ā(k)Kis
∗(k). ⇐⇒ s∗(k)=K−1

i Ā(k)†w∥(k)

Let s̃(k)=s(k)−s∗(k) and d(k)=s∗(k+1)−s∗(k). Therefore,

s̃(k+1)= s̃(k)+ē(k)−d(k) (40)
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Insert s(k)=s∗(k)+s̃(k) and w(k)=w∥(k)+w⊥(k)=Ā(k)Kis
∗(k)+w⊥(k) into Eqn. 39,

ē(k+1)=Ā(k)(I−Kp)ē(k)−Ā(k)Kis
∗(k)−Ā(k)Kis̃(k)+Ā(k)Kis

∗(k)+w⊥(k)

=Ā(k)(I−Kp)ē(k)−Ā(k)Kis̃(k)+w⊥(k)
(41)

We introduce the lifted state ζ̃PI(k)=

[
ē(k)

s̃(k)

]
with its dynamic derived from Eqn. 40-41 as follow

ζ̃PI(k+1) =Mi(t)ζ̃PI(k)+ w̃PI(k), (42)
where

Mi(k)=

[
Mp(k) −G(k)

I I

]
,

with Mp(k)=Ā(p)(I−Kp), G(k)=Ā(k)Ki and

w̃PI(k)=

[
w⊥(k)

−d(k)

]
,

Proposition 3 (Stabilizing the PI loop reduces steady-state error) Let Mp(k) = Ā(k)(I −Kp),
and denote ∥Ki∥=:h. Assume supk∥Ā(k)∥≤M <∞ and supk∥Mp(k)∥≤ q < 1. If q+Mh< 1,
then the PI closed-loop control is ISS. Furthermore, the integral part exactly cancels the matched
disturbance component w∥. The remaining error is due only to the unmatched component w⊥, which
cannot be compensated. Full proof and term explanations provided in Appendix B.5

Proof. Using the sub-multiplicativity of the induced matrix norm and the triangle inequality, and
noting that ∥Mp(k)∥≤q, ∥G(k)∥=∥Ā(k)Ki∥≤∥Ā(k)∥∥Ki∥≤Mh, we obtain

∥ē(k+1)∥≤∥Mp(k)∥∥ē(k)∥+∥G(k)∥∥s̃(k)∥+∥w⊥(k)∥
≤q∥ē(k)∥+Mh∥s̃(k)∥+∥w⊥(k)∥, (43)

∥s̃(k+1)∥≤∥ē(k)∥+∥s̃(k)∥+∥d(k)∥. (44)
Introduce

z(k) :=

[
∥ē(k)∥
∥s̃(k)∥

]
, H :=

[
q Mh

1 1

]
, v(k) :=

[
∥w⊥(k)∥
∥d(k)∥

]
.

Then Eqn. 43- 44 give the comparison system
z(k+1) ≤ Hz(k)+v(k). (45)

Expanding Eqn. 45 recursively yields

z(k) ≤ Hkz(0)+

k−1∑
i=0

Hk−1−iv(i). (46)

Consider the characteristic equation of H:
(λ−q)(λ−1)−Mh=0 ⇐⇒ λ2−(q+1)λ+(q+Mh)=0.

Since q+Mh<1, the maximal root λ⋆ satisfies λ⋆<1, hence the spectral radius ρ(H)<1.

Let r :=ρ(H)<1 be the spectral radius of H . By the Gelfand formula for induced (operator) norms,

lim
k→∞

∥Hk∥1/k = r (Horn & Johnson, 2012, p. 349).

Fix any ρ∈(r,1). Then, by the definition of the limit, there exists N ∈N such that

∥Hk∥1/k ≤ ρ for all k≥N =⇒ ∥Hk∥ ≤ ρk ∀k≥N.

Define the constant
C := max

{
1, max

0≤k≤N
∥Hk∥ρ−k

}
.

Then:
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• If k≥N , we have ∥Hk∥ρ−k≤1≤C, hence ∥Hk∥≤Cρk.
• If 0≤k≤N , we have ∥Hk∥ρ−k≤max0≤k≤N∥Hk∥ρ−k≤C, hence ∥Hk∥≤Cρk.

Therefore,
∥Hk∥ ≤ Cρk for all k≥0. (47)

Applying Eqn. 47 to Eqn. 46 gives

∥z(k)∥≤∥Hk∥∥z(0)∥+
k−1∑
i=0

∥Hk−1−i∥∥v(i)∥

≤Cρk∥z(0)∥+C

k−1∑
i=0

ρk−1−i∥v(i)∥

≤Cρk∥z(0)∥+ C

1−ρ
∥v∥∞, (48)

where ∥v∥∞ :=supi≥0∥v(i)∥.

By construction,

∥ζ̃PI(k)∥=
∥∥∥[ē(k)s̃(k)

]∥∥∥=(
∥ē(k)∥2+∥s̃(k)∥2

)1/2
=∥z(k)∥.

Combining this identity with Eqn. 48, the ISS estimate follows with

β(s,k) :=Cρks ∈ KL, γ(s) :=
C

1−ρ
s ∈ K,

which proves that the PI closed loop Eqn. 42 is ISS. □

The integral part exactly cancels the matched disturbance component w∥. The remaining error is due
only to the unmatched component w⊥, which cannot be compensated, and to the variation rate d(k)
when Ā(k) and w(k) change over time. In the best scenario, if a steady state exists, i.e., Ā(k)→Ā
and w(k)→w with w∈ ImĀ, then w⊥≡0, d≡0, and thus ē(k)→0.

Remark 2 (Convergence rate versus Ki) From proposition 3, the convergence rate of ζ̃PI(t)
depends on ρ: the smaller ρ, the faster the convergence. We also adopt the convention (as in the proof)
that ρ∈(r,1). Equivalently, we examined r(h)=ρ(H) and proved that with h= (1−q)2

4M this quantity
is minimized.

Proof Consider the characteristic polynomial of H:
λ2−(q+1)λ+(q+Mh)=0.

Its discriminant is
∆(h)=(q+1)2−4(q+Mh)=(q−1)2−4Mh.

If ∆(h)≥0 (i.e., 0≤h≤ (1−q)2

4M ), then

r(h)=
q+1+

√
∆(h)

2
,

and r(h) decreases as h increases.

If ∆(h)<0 (i.e., (1−q)2

4M <h< 1−q
M ), then

r(h)=
√

q+Mh,

and r(h) decreases as h decreases.

Hence r(h) can achieve its best (smallest) value at

h=
(1−q)2

4M
, (49)

for which the error converges to zero the fastest. □

Nevertheless, as we discuss in the next section, in some situations such a large value of h may become
a practical obstacle for PI control.
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B.6 OVESHOOT MECHANISM

Phenomenon. A common issue in standard PI settings is overshooting: the closed loop oscillates
around the setpoint before settling (see Åström & Hägglund (1995a, Ch. 3, §3.3)). In our terms, the
integral part accumulates past error and can push the output beyond the setpoint; subsequent sign
changes of the error gradually “discharge” the integral, producing a decaying oscillation. The big
overshoot is undesirable when we prefer a more stable response near zero. Below we analyze the same
mechanism for our PI steering setting.

Citing an observation from Vu & Nguyen (2025): in the absence of steering, the cosine similarity
between error vectors at different layers is consistently positive, i.e.,

cos∠
(
ē(i),ē(j)

)
>0 for all layers i,j,

so the layerwise errors share (approximately) the same direction. Consequently, with {x̄+(k)}
serving as the trajectory setpoints and {x̄−(k)} the system output, an overshoot event occurs when
the instantaneous error reverses its initial orientation, namely when

⟨ē(k),ē(0)⟩<0.

We now introduce the definitions used below.

Scalarization along a direction. Let

v :=
ē(0)

∥ē(0)∥
and project onto v: ev(k) :=v⊤ē(k), sv(k) :=v⊤s̃(k).

From the PI loop dynamics Eqn. 42 we obtain the scalar PI pair

ev(k+1)=a(k)ev(k) − b(k)sv(k) + w⊥
v (k), (50)

sv(k+1)=sv(k) + ev(k) − dv(k), (51)

with a(k) = v⊤Ā(k)(I −Kp)v = v⊤Mp(k)v, b(k) = v⊤Ā(k)Kiv = v⊤G(k)v, and projected
disturbances w⊥

v (k) := v⊤w⊥(k), dv(k) := v⊤d(k). Empirically (and consistently with the
angular-steering observation in our setup), we have v⊤Ā(k)v ≥ 0 for all k; together with the gain
Ki=hI with h≥0, this implies b(k)≥0.

Also, the assumption q :=supk∥Mp(k)∥ and M :=supk∥Ā(k)∥ yeilds

a(k)≤q<1, 0≤b(k)≤Mh, (52)

Since the system Eqn. 42 is ISS, so is the system Eqn. 50-Eqn. 51. In other words, both ev(k) and
sv(k) decay. Recall that

sv(k)=

k−1∑
i=0

ev(i).

Hence, sv(k) can only decrease when ev(k) < 0, which is precisely the moment when overshoot
occurs. These overshooting and decaying phenomena are observed in empirical simulation, see Fig. 7.
Below, we define the overshoot in our setting.

Definition 2 (Overshoot and its amplitude) We say an overshoot occurs from time ka to ka+m if
ev(k)<0∀k=ka,ka+1,...,ka+m−1 andev(k)≥0 fork=ka−1,ka+m. Its amplitude is defined as

Aa := max
kta≤i≤ka+m−1

|ev(i)| . (53)

In standard PID settings illustrated in Åström & Hägglund (1995a, Ch. 3, §3.3)), it is observed that the
overshoot amplitude decays over time. This decay is also consistent with the ISS property of the closed
loop: as both ev(t) and sv(t) are driven down, subsequent oscillations tend to diminish in magnitude.
In our simulation (see Fig. 7), the first overshoot appear to be representative. Hence, while we are not
yet able to provide a formal proof, the empirical evidence and ISS intuition justify the first overshoot
which is typically the dominant one and serves as a representative indicator of oscillatory behavior.

This assumption is for Proposition 4. Suppose that a(t)≥ 0; equivalently, p∈ (1− 1
M ,1], which is

the result of proposition 1. This assumption is expected to entail no loss of generality relative to the
|a(t)|≤q<1 assumption.
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(b) PID
Figure 7: Scalar errors across time step of randomly initialized model after applying PI and PID controller. Colors
from blue to red denote the time (layer) dimension.

Proposition 4 (Agressive PI gain leads to a large first overshoot) Let k0 be the first sign-change
time, i.e.,

ev(j)≥0 ∀j=0,1,...,k0−1, ev(k0)<0,

and let k1 be the first time the trajectory returns to the nonnegative side,

ev(k1)≥0, ev(i)<0 ∀i=k0,k0+1,...,k1−1.

As in Eqn.53, the first overshoot amplitude is

A0 = max
k0≤i≤k1−1

|ev(i)| = |ev(imax)|. (54)

Assume supk∥Ā(k)∥≤M<∞ and supk∥Mp(k)∥≤q<1. Denote ∥Ki∥=:h. and given q+Mh<1.
Therefore,

A0 ≤ Mh
( 1

1−q
+

1

(1−q)2

)
ev(0) +

(Mh

1−q
(k0−1)+

Mh

1−q

)
∥d∥∞+

Mh(k0−1)+1

1−q
∥w∥∞;

(55)

Proof. Before the first crossing (j≤k0−1) we have sv(j)≥0, hence from Eqn. 50

ev(j+1)=a(j)ev(j)−b(j)sv(j)+w⊥
v (j) ≤ a(j)ev(j)+w⊥

v (j) ≤ qev(j)+∥w∥∞,

so by induction ev(j)≤qjev(0)+
1

1−q∥w∥∞. Summing Eqn. 51,

sv(k0−1) =

k0−2∑
i=0

ev(i) −
k0−2∑
i=0

dv(i) ≤
ev(0)

1−q
+ (k0−1)∥d∥∞+

k0−1

1−q
∥w∥∞. (56)

Since a(k)≥0 and ev(k0−1)≥0, at the crossing step,

|ev(k0)| = −ev(k0) ≤ b(k0−1)sv(k0−1) + ∥w∥∞

≤ Mh

(
ev(0)

1−q
+(k0−1)∥d∥∞+

k0−1

1−q
W∞

)
+∥w∥∞.

=
Mh

1−q
ev(0)+Mh(k0−1)∥d∥∞+(Mh

k0−1

1−q
+1)∥w∥∞

(57)

Assume that dv(k) is small enough s.t during the overshoot time, sv is nonincreasing (since ev < 0
a.e. on [k0,k1−1]), so sv(i)≤ sv(k0−1) for i∈ [k0,k1−1]. Using Eqn. 50 again and unrolling m
steps from k0,

|ev(k0+m)| ≤ qm|ev(k0)| +
m−1∑
k=0

qk
(
Mhsv(k0−1)+∥w∥∞

)
≤ |ev(k0)| +

Mhsv(k0−1)+∥w∥∞
1−q

.

(58)
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Taking the maximum over m∈{0,1,...,k1−k0} and substituting Ineq. 56 and Ineq. 57 into Ineq. 58
yields

A0 ≤ Mh
( 1

1−q
+

1

(1−q)2

)
ev(0) +

(Mh

1−q
(k0−1)+

Mh

1−q

)
∥d∥∞ +

Mh(k0−1)+1

1−q
∥w∥∞

(59)
□

Consequently, the right-hand side of Ineq.59 is monotone increasing in h (via the factor Mh) and
increases as q decreases (through the factors 1

1−q ). In particular, more aggressive PI leads to a larger
first-overshoot amplitude.

Remark 3 (”Fast-PI” specialization.) With the tuning used in our analysis in remark 2, h= (1−q)2

4M

(the value that minimizes the comparison-system rate), so Mh= (1−q)2

4 . Plugging into equation 59
gives

A0 ≤
(1−q

4
+
1

4

)
ev(0) +

(1−q

4
(k0−1)+

1

4

)
∥d∥∞ +

k0
1−q

∥w∥∞.

In particular, in the disturbance-free case (∥w∥∞=∥d∥∞=0) we obtain

A0 ≤
(1−q

4
+
1

4

)
ev(0),

so stronger proportional action (smaller q) comes with a larger first-overshoot envelope, even though
the closed-loop settles faster.

B.7 PID CONTROL

B.7.1 STABILITY OF PID CLOSED LOOP

We consider the PID update

u(k) =Kpē(k)+Kis(k)+Kd

(
ē(k)−ē(k−1)

)
,

and define the auxiliary matrices

Mp(k) :=Ā(k)
(
I−Kp

)
, G(k) :=Ā(k)Ki, H(k) :=Ā(k)Kd,

together with the error increment

∆ē(k) := ē(k)−ē(k−1), ∆ē(−1)=0

Using the plant relation, we obtain

∆ē(k+1) =
(
Mp(k)−I

)
ē(k)−G(k)s̃(k)−H(k)∆ē(k)+w⊥(k), (60)

Introduce the lifted state from the auxiliary PI state in Eqn. 42

ζ̃PID(k) :=

 ē(k)

s̃(k)

∆ē(k)

,
Then the closed-loop evolution reads

ζ̃PID(k+1) =Md(k)ζ̃PID(k)+ w̃PID(k), (61)

where

Md(k) :=

[
Mp(k) −G(k) −H(k)

I I 0
Mp(k)−I −G(k) −H(k)

]
, w̃PID(k) :=

w⊥(k)
−d(k)
w⊥(k)

.
Theorem 1 (Stabilizing the PID loop preserves bias removal) Let Mp(k) = Ā(k)(I −Kp), and
denote ∥Ki∥ =: h, ∥Kd∥ =: ℓ. Assume supk ∥Ā(k)∥ ≤ M < ∞ and supk ∥Mp(k)∥ ≤ q < 1. If
q+Mh < 1 (stable PI loop), then there exists ℓ > 0 such that the PID closed-loop control is ISS.
Therefore, the integral part in PID design still cancels the matched disturbance component w∥.
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Proof. We establish the ISS for system 61 using the method of ISS-Lyapunov function, see (Jiang et al.,
1999, Def. 2.2, Prop. 2.3). It then suffices to construct a candidate ISS-Lyapunov function VPID(k)
satisfying that there exist class K∞ functions α1,α2,α3 and a class K function σ such that

α1(∥ζ̃PID(k)∥)≤ VPID(ζ̃PID(k))≤ α2(∥ζ̃PID(k)∥), (62)

and
V (ζ̃PID(k+1))−V (ζ̃PID(k))≤−α3(∥ζ̃PID(k)∥)+σ(∥w∥). (63)

Step 1: Candidtate VPID(k) and PI-closed loop baseline

Define
VPID(k) := VPI

(
ζ̃PI(k),k

)
+ r∥∆ē(k)∥2, r>0, (64)

where VPI(ζ̃PI,k)= ζ̃⊤PIP (k)ζ̃PI with P (k)=P (k)⊤≻0 and there exists some µPI>0 such that

Mi(k)
⊤P (k)Mi(k)−P (k)≤−µPII, ∀k, (65)

Regarding the existence of such VPI, recall the homogeneous PI-loop ζ̃PI(k+1) = Mi(k)ζ̃PI(k)

with Mi(k)=

[
Mp(k) −G(k)

I I

]
, being asymptotically stable. Suppose there is Q(k)=Q(k)⊤⪰0

bounded so that the pair (Mi(k),
√
Q(k)) is observable for all k, hence the difference Lyapunov

equation
M⊤

i (k)P (k+1)Mi(k)−P (k)=−Q(k)
admits a unique positive definite solution P (k) = P⊤(k) ≻ 0 for all k, and a uniform bound
∥P ∥∞ :=supk∥P (k)∥<∞ (see (Gajic & Qureshi, 2008, Ch. 4, p. 110))

Step 2: Condition (i) as in Eqn. 62

We write VPID as a quadratic form

VPID(k) = ζ̃PID(k)
⊤P∗(k)ζ̃PID(k), P∗(k) :=

[
P (k) 0

0 rI

]
. (66)

Clearly P∗(k) =P∗(k)
⊤ and P∗(k)≻ 0 because P (k)≻ 0 and rI ≻ 0; hence P∗(k) is symmetric

positive definite for all k.

By the spectral theorem, there exists an orthogonal matrix U∗(k) and a diagonal
Λ∗(k) = diag(λ1(k), ... , λn∗(k)) with positive entries such that P∗(k) = U∗(k)Λ∗(k)U∗(k)

⊤.
Moreover, because P∗(k) is block diagonal, its eigenvalues are precisely the union of the eigenvalues
of P (k) and the repeated eigenvalue r. Using the uniform bounds already established for P (k) (there
exists λ> 0 with λmin(P (k))≥ λ and λmax(P (k))≤∥P ∥∞ := supk∥P (k)∥<∞), we obtain the
k-independent bounds

λmin

(
P∗(k)

)
≥ λ∗ :=min{λ,r}> 0, λmax

(
P∗(k)

)
≤ λ∗ :=max{|P ∥∞,r}<∞.

For every vector z and every symmetric positive definiteM , λmin(M)∥z∥2≤z⊤Mz≤λmax(M)∥z∥2.
Applying this to M=P∗(k) and z= ζ̃PID(k) in Eqn. 66 yields

λ∗
∥∥ζ̃PID(k)

∥∥2 ≤ VPID(k)≤ λ∗
∥∥ζ̃PID(k)

∥∥2.
Therefore, choosing the class-K∞ functions

α1(s) :=λ∗s
2, α2(s) :=λ∗s

2,

we obtain the desired bound

α1

(∥∥ζ̃PID(k)
∥∥)≤ VPID(k)≤ α2

(∥∥ζ̃PID(k)
∥∥), (67)

which establishes condition (i) in 62.

Step 3: Condition (ii) as in Eqn. 63.

From Eqn. 64,

∆VPID(k) = ∆VPI

(
ζ̃PI(k)

)∣∣∣
PID︸ ︷︷ ︸

PI part under PID update

+r
(
∥∆ē(k+1)∥2−∥∆ē(k)∥2

)
. (68)
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Bounding the PI part under the PID update.

Under PI rule (Kd=0),

ζ̃PI(k+1)
∣∣
PI

=Mi(k)ζ̃PI(k)+w̃PI(k), Mi(k) :=

[
Mp(k) −G(k)

I I

]
then

∆VPI

(
ζ̃PI(k)

)∣∣∣
PI
= ζ̃PI(k)

⊤(Mi(k)
⊤P (k+1)Mi(k)−P (k)

)
ζ̃PI(k)

+2ζ̃PI(k)
⊤Mi(k)

⊤P (k+1)w̃PI(k)+w̃PI(k)
⊤P (k+1)w̃PI(k)

By Eqn. 65, Cauchy-Schwarz inequality and Young’s inequality,

∆VPI

(
ζ̃PI(k)

)∣∣∣
PI
≤−µPI∥ζ̃PI(k)∥2+2∥Mi∥∞∥P ∥∞∥ζ̃PI(k)∥∥w̃PI(k)∥+∥P ∥∞∥w̃PI(k)∥2

≤−(µPI−ε1)∥ζ̃PI(k)∥2+
(∥Mi∥2∞∥P ∥2∞

ε1
+∥P ∥∞

)
∥w̃PI(k)∥2

=−µ∗
PI∥ζ̃PI(k)∥2+C1∥w̃PI(k)∥2,

for any ε1>0.

Under PID rule (Kd ̸=0),
ζ̃PI(k+1)

∣∣
PID

=Mi(k)ζ̃PI(k)− δ(k)+wPI(k),

with the “perturbation”

δ(k) :=

[
H(k)∆ē(k)

0

]
Hence,

∆VPI

(
ζ̃PI(k)

)∣∣∣
PID

=VPI

(
ζ̃PI(k+1)

∣∣
PI

)
−VPI

(
ζ̃PI(k)

)
=VPI

(
ζ̃PI(k+1)

∣∣
PI

)
−VPI

(
ζ̃PI(k)

)
+2

(
ζ̃PI(k+1)

∣∣
PI

)⊤
P δ(k)+δ(k)⊤P δ(k)

(69)

Bounding each term in Eqn. 69

• VPI

(
ζ̃PI(k+1)

∣∣
PI

)
−VPI

(
ζ̃PI(k)

)
≤−µ∗

PI∥ζ̃PI(k)∥2+C1∥w̃PI(k)∥
• Applying Young’s inequality for inner product, there exists ε>0 s.t

2
(
ζ̃PI(k+1)

∣∣
PI

)⊤
P δ(k)≤ε

∥∥ζ̃PI(k+1)
∣∣
PI

∥∥2+ 1
εδ(k)

⊤P δ(k) (70)

≤ε∥P ∥
∥∥ζ̃PI(k+1)

∣∣
PI

∥∥2+ ∥P ∥
ε M2ℓ2∥∆ē(k)∥2 (71)

Since
∥∥ζ̃PI(k+1)

∣∣
PI

∥∥2≤2∥Mi∥2∞∥ζ̃PI(k)∥2+2∥w̃PI(k)∥2

⇒2
(
ζ̃PI(k+1)

∣∣
PI

)⊤
P δ(k)≤2ε∥P ∥∥Mi∥2∞∥ζ̃PI(k)∥2+2ε∥P ∥∥w̃PI(k)∥2

+ ∥P ∥
ε M2ℓ2∥∆ē(k)∥2

=2ε∥P ∥∥Mi∥2∞∥ζ̃PI(k)∥2+ ∥P ∥
ε M2ℓ2∥∆ē(k)∥2

+C2∥w̃PI(k)∥2,
where C2=2ε∥P ∥

• δ(k)⊤P δ(k)≤∥P ∥∥δ(k)∥2≤∥P ∥M2ℓ2∥∆ē(k)∥2

Therefore,

∆VPI

(
ζ̃PI(k)

)∣∣∣
PID

≤−µ∗
PI∥ζ̃PI(k)∥2+C1∥w̃PI(k)∥2

+2ε∥P ∥∥Mi∥2∞∥ζ̃PI(k)∥2+ ∥P ∥
ε M2ℓ2∥∆ē(k)∥2+C2∥w̃PI(k)∥2

+∥P ∥M2ℓ2∥∆ē(k)∥2

=−(µ∗
PI−2ε∥P ∥∥Mi∥2∞)∥ζ̃PI(k)∥2+∥P ∥M2ℓ2

(
1
ε+1

)
∥∆ē(k)∥2

+C3∥w̃PI(k)∥2,

(72)
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where C3=C1+C2.

Bounding the increment term.

From Eqn. 60 and applying the inequality (x+y+z)2≤3(x2+y2+z2),

∥∆ē(k+1)∥2 ≤ 3
(
∥Mp(k)−I∥2∞+Mh

)
∥ζ̃PI(k)∥2 +3M2ℓ2∥∆ē(k)∥2 +3∥w̃PID(k)∥2,

and so
r
(
∥∆ē(k+1)∥2−∥∆ē(k)∥2

)
≤ 3r

(
∥Mp(k)−I∥2∞+Mh

)
∥ζ̃PI(k)∥2

− r
(
1−3M2ℓ2

)
∥∆ē(k)∥2 +3r∥w̃PID(k)∥2.

(73)

Combination

Combining Eqn. 68, Ineq. 72, and Ineq. 73,

∆VPID(k)≤−
(
µ∗
PI−2ε∥P ∥∞∥Mi∥2∞−3r

(
∥Mp(k)−I∥2∞+Mh

))
∥ζ̃PI(k)∥2

−
(
r(1−3M2ℓ2)−∥P ∥∞M2ℓ2

(
1
ε+1

))
∥∆ē(k)∥2 +C∥w̃PI(k)∥2,

where C=C3+r. Define

S(r,ε) :=µ∗
PI−2ε∥P ∥∞∥Mi∥2∞−3r

(
∥Mp(k)−I∥2∞+Mh

)
, (74)

T (r,ε,ℓ) :=r(1−3M2ℓ2)−∥P ∥∞M2ℓ2
(

1
ε+1

)
. (75)

ISS of the PID loop follows if S(r,ε)>0 and T (r,ε,ℓ)>0.

Feasible choices.

We are free to choose any ε>0 and r>0 such that S(r,ε)>0. One convenient selection is

ε=
µ∗
PI

8∥P ∥∞∥Mi∥2∞
, r=

µ∗
PI

8
(
∥Mp(k)−I∥2∞+Mh

) ⇒ S(r,ε)= 3
8µ

∗
PI>0.

With ε,r fixed as above, pick ℓ>0 small enough to satisfy T (r,ε,ℓ)>0, namely

ℓ2 <
r(

∥P ∥∞
(
1
ε+1

)
+3r

)
M2

,

Under these choices, ∆VPID(k)≤−α3∥ζPI(k)∥2−α4∥∆ē(k)∥2+β∥wPI(k)∥2 for some α3,α4,β>
0, which satisfies condition (ii) as in Eqn. 63 and proves ISS of the PID closed loop. □

B.7.2 OVERSHOOTING UNDER PID LAW OF CONTROL

Developing from Sec. B.6, we introduce scalar PID recursion along v:

ev(k+1)=a(k)ev(k)−b(k)sv(k)−c(k)∆ev(k)+w⊥
v (k), sv(k+1)=sv(k)+ev(k)−dv(k),

(76)
where

a(k) :=v⊤Mp(k)v, b(k) :=v⊤G(k)v, c(k) :=v⊤H(k)v,
∆ev(k)=v⊤∆ē(k), w⊥

v (k)=v⊤w⊥(k).

By construction a(k) ≤ q < 1, b(k) ≤ Mh, c(k) ≤ Mℓ with M := supk ∥Ā(k)∥, h := ∥Ki∥ and
ℓ :=∥Kd∥.

We now impose an additional requirement on the derivative gain Kd so that, without the effect of noise,
the PID update secures the monotonic decrease of ev(k) before the first negative peak of scalar error
ev(k).

Remark 4 (Pre-overshoot monotonic decrease of scalar errors) Assume the setting of Proposi-
tion 4 and further suppose the scalar error trajectory before the first largest overshoot under PID
law is smooth in the sense that there exists R≥1 such that

ev(k−1)

ev(k)
≤R for all k=1,2,...,imax−1, (77)
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where A0 := maxk0≤i≤k1
|ev(i)| = |ev(imax)| from Eqn.54.

Assume that w⊥
v ≡0 and dv≡0.

If, in addition, the derivative gain satisfies

l=∥Kd∥ ≤ 1−q

(R−1)M
, (78)

then under PID law
ev(k+1) ≤ ev(k) for all k=0,1,...,imax−1.

Proof. Before k0, we have ev(k)> 0, so sv(k)≥ 0 (since sv accumulates ev and sv(0) = 0). For
k0≤k≤ imax−1, sv(k)≥0 proved in remark 5

Hence
ev(k+1)=a(k)ev(k)−b(k)sv(k)−c(k)

(
ev(k)−ev(k−1)

)
≤a(k)ev(k)+c(k)

(
ev(k−1)−ev(k)

)
≤
[
a(k)+c(k)(R−1)

]
ev(k) ≤

[
q+(R−1)Mℓ

]
ev(k) ≤ ev(k),

where the last inequality is exactly Eqn. 78. □

Note for R: In practice, one may estimate a conservative R from PI-law traces and use a small safety
factor

Adding Disturbance: With bounded disturbances, the scalar update reads

ev(k+1) ≤
[
q+(R−1)cmax

]
ev(k) + |w⊥

v (k)| ,
so the same one-step monotonicity conclusion holds whenever

|w⊥
v (k)|≤

(
1−

[
q+(R−1)cmax

])
ev(k) for all pre-first-largest-overshooting steps.

If this smallness condition on disturbances fails at some step, one-step monotonicity may be lost, but
the ISS bounds proved earlier still guarantee geometric decay up to a disturbance-dependent radius.

Remark 5 (before the first negative peak, the integral state is positive) Assume the setting of
Remark. 4. Hence,

sv(k)> 0 for all k=k0,...,imax−1.

Proof. We argue by contradiction. Suppose there exists the first τ ∈ [k0,imax−1] such that sv(τ)≤0.
Then sv(τ −1)> 0, and since we are on the first negative lobe, ev(τ)< 0. Compute the one-step
change of ev:

ev(τ+1)−ev(τ)=(a(τ)−1)ev(τ)−b(τ)sv(τ)

=(1−a(τ))|ev(τ)|+ b(τ)(−sv(τ)) > 0,

because a(τ)≤q<1, ev(τ)<0 and sv(τ)≤0. Hence ev(τ+1)>ev(τ). By the same reasoning, as
long as both ev(k)<0 and sv(k)≤0 hold, we have

ev(k+1)−ev(k)≥(1−q)|ev(k)|+bmin(−sv(k))>0,

where bmin := infk b(k) > 0. Meanwhile sv(k+1) = sv(k) + ev(k) ≤ sv(k) on that interval, so
sv(k) is non-increasing; equivalenty −sv(k) is non-decreasing. If ev stayed negative forever, then∑N

k=0ev(τ+k)→−∞, so −sv(k) would grow without bound and the increments ev(k+1)−ev(k)
would eventually be arbitrarily large, forcing ev to cross 0 in finite time. This contradicts the choice of
imax as the first negative peak. Therefore such τ cannot exist and sv(k)>0 for all k=k0,...,imax−1. □

Theorem 2 (PID reduces the first-overshoot amplitude) Let the first overshoot occur at index k0
with amplitude A0 (definition in Eqn. 54). Then, the first-overshoot amplitude under PID Steering,
APID

0 , satisfies APID
0 ≤API

0 , where API
0 denotes the corresponding amplitude under PI Steering.

Proof. Under the PI law we have

API
0 =−a(imax−1)ev(imax−1)+b(imax−1)sv(imax−1)−w⊥

v (imax−1),
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while under the PID law

APID
0 =−a(imax−1)ev(imax−1)+b(imax−1)sv(imax−1)+c(imax−1)∆ev(imax−1) (79)

−w⊥
v (imax−1), (80)

Due to the monotone decrease before this first largest overshooting condition stated in the previous
part and the fact that c(k)>0, we have c(k0−1)∆ev(k0−1)<0. Therefore,

APID
0 ≤ b(imax−1)sv(imax−1)− a(imax−1)ev(imax−1)−w⊥

v (imax−1) =API
0 . (81)

□

Remark 4 is neccessary because monotonic decrease of ev(t) before the first peak is both a key
technical property for proving Theorem 2 and a desirable feature of PID control itself. Indeed, as noted
by Åström & Hägglund (1995a, p.70), poorly tuned derivative gains may produce non-monotonicity,
in which case reducing only the first overshoot does not translate into improved overall behavior.

B.8 BEYOND LOCALLY LINEARIZED ACTIVATION DYNAMICS

In the main text, we analysed the averaged error dynamics under P/PI/PID steering by applying a
first-order Taylor expansion of the activation map around the desired “plus” trajectory x+

i (k), leading
to a linear time-varying (LTV) model with an additive disturbance term. In this appendix, we make
explicit how the higher-order nonlinear terms enter the dynamics and discuss their impact on the
closed-loop behaviour. We also justify why the perturbations

δi(k)=−ei(k)+u(k)

remain controlled in norm under the proposed controllers, even under strong steering.

B.8.1 NONLINEAR REMAINDER IN THE AVERAGED ERROR DYNAMICS

Recall that the minus activations after steering are given by

x−
i (k)+u(k)=x+

i (k)+δi(k), δi(k)=−ei(k)+u(k),

where ei(k)=x+
i (k)−x−

i (k) denotes the layer-wise error for pair i, and u(k) is the steering control
shared across pairs. We consider the exact Taylor expansion of the activation map f

(k)
i around the

desired activation x+
i (k):

f
(k)
i

(
x+
i (k)+δi(k)

)
=f

(k)
i

(
x+
i (k)

)
+J

f
(k)
i

(
x+
i (k)

)
δi(k)+O

(
∥δi(k)∥2

)
, (82)

where J
f
(k)
i

(x) denotes the Jacobian of f (k)
i at x and the O(·) term collects the higher-order Taylor

remainder.

Averaging over i and expressing everything in terms of the error variables leads to the following
averaged error dynamics:

ē(k+1)=Ā(k)ē(k)−Ā(k)u(k)+w(k), (83)

where

ē(k)=
1

N

N∑
i=1

ei(k), ẽi(k)=ei(k)−ē(k), (84)

Ā(k)=
1

N

N∑
i=1

Ai(k)=
1

N

N∑
i=1

J
f
(k)
i

(
x+
i (k)

)
, (85)

Ãi(k)=Ai(k)−Ā(k). (86)

The disturbance term w(k) now has two contributions:

w(k)=
1

N

N∑
i=1

Ãi(k)ẽi(k)+
1

N

N∑
i=1

O
(
∥−ei(k)+u(k)∥2

)
. (87)

The first part is the “heterogeneity” term that already appears in the linearized analysis (capturing
pair-to-pair variation in Jacobians and errors), while the second part arises purely from the higher-order
Taylor remainder in Eqn. 82.
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In other words, when we do not truncate the Taylor series after the linear term, the closed-loop
dynamics still take the form

ē(k+1)=Ā(k)ē(k)−Ā(k)u(k)+w(k),

but w(k) is augmented by the additional nonlinear contribution 1
N

∑
iO(∥−ei(k)+u(k)∥2).

From the perspective of input-to-state stability, this is a benign modification: all ISS results in the
main text only require that the disturbance w(k) is uniformly bounded. The higher-order terms in
Eqn. 87 simply enter w(k), and as long as ∥−ei(k)+u(k)∥ remains bounded and the activation maps
f
(k)
i have bounded higher derivatives along the trajectories of interest, these terms are also uniformly

bounded across layers. In that case, all ISS statements and Lyapunov-based bounds derived in the
main text continue to hold; the only effect is that the (conservative) upper bound on ∥ē(k)∥ scales
with the enlarged disturbance norm ∥w∥∞.

B.8.2 MAGNITUDE OF δi(k) UNDER P/PI/PID STEERING

A natural concern is whether ∥δi(k)∥= ∥−ei(k)+u(k)∥ may become large under strong steering,
potentially making the higher-order terms in Eqn. 87 significant. We show here that, under our gain
conditions, δi(k) primarily measures a residual mismatch that remains controlled in norm.

By definition,
δi(k)=−ei(k)+u(k)=−

(
x+
i (k)−x−

i (k)
)
+u(k), (88)

so that
x−
i (k)+u(k)=x+

i (k)+δi(k). (89)
Thus, δi(k) measures the residual mismatch between the desired activation x+

i (k) and the steered
activation x−

i (k)+u(k) at the same layer. When the controller functions as intended, the steered
trajectory x−

i (k)+u(k) stays close to x+
i (k), and hence ∥δi(k)∥ remains small in norm. We make

this more precise by examining δi(k) for the three controller classes.

Recall that we decompose the per-pair error into its mean and heterogeneous components,

ei(k)= ē(k)+ẽi(k), ē(k)=
1

N

N∑
i=1

ei(k), ẽi(k)=ei(k)−ē(k).

(i) P control. For P control we have
u(k)=Kpē(k),

and therefore
δi(k)=−ei(k)+u(k)=−ē(k)−ẽi(k)+Kpē(k) (90)

=(Kp−1)ē(k)−ẽi(k). (91)
Our P-gain stability condition requires

1− 1

M
<Kp<1+

1

M
,

so Kp−1 is necessarily small in norm. This cancels most of the contribution of ē(k) in δi(k): in
particular, the component of δi(k) along ē(k) is scaled by (Kp−1), not by Kp. As a result, ∥δi(k)∥
is dominated by the heterogeneity term ∥ẽi(k)∥ rather than by the overall steering magnitude ∥ē(k)∥.

(ii) PI control. For PI control the steering law is

u(k)=Kpē(k)+Kis(k), s(k)=

k−1∑
j=0

ē(j),

so
δi(k)=−ei(k)+u(k) (92)

=−ē(k)−ẽi(k)+Kpē(k)+Kis(k) (93)
=(Kp−1)ē(k)+Kis(k)−ẽi(k). (94)

All contributions to δi(k) remain linear in ē(·) and its history through s(k). The gain conditions
derived in the main text ensure closed-loop stability and imply that

ē(k), s(k)

remain uniformly bounded. Consequently, ∥u(k)∥ remains in a comparable bounded range, and so
does ∥δi(k)∥; the PI controller does not cause δi(k) to blow up, even under strong steering.
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(iii) PID control. For PID control we add a derivative-like term,
u(k)=Kpē(k)+Kis(k)+Kd∆ē(k), ∆ē(k)= ē(k)−ē(k−1),

which yields
δi(k)=−ei(k)+u(k) (95)

=−ē(k)−ẽi(k)+Kpē(k)+Kis(k)+Kd∆ē(k) (96)
=(Kp−1)ē(k)+Kis(k)+Kd∆ē(k)−ẽi(k). (97)

Again, all terms are linear in ē(·), s(·), and ∆ē(·). Under the PID gain conditions, the closed-loop
system is stable and the signals

ē(k), s(k), ∆ē(k)
remain bounded in norm, implying bounded ∥u(k)∥ and consequently bounded ∥δi(k)∥.

In summary, even when the raw error ∥ei(k)∥ may become large under strong steering, the controller
is designed to cancel the dominant component of ē(k) in u(k) and to keep the integral and derivative
terms bounded. The residual mismatch δi(k) is primarily governed by heterogeneity and bounded
controller memory, rather than by the overall steering magnitude. As long as ∥δi(k)∥ stays bounded, the
higher-order nonlinear contributions in Eqn. 87 remain bounded as well, so the ISS guarantees derived
from the locally linearized model continue to apply, with the disturbance norm ∥w∥∞ capturing both
heterogeneity and curvature effects.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 QUALITATIVE EXAMPLES OF CONCEPT STEERING

Fig. 8 and 9 show that varying the intervention strength α∈ [0,1] produces a smooth and controllable
progression of stylistic traits in the generated images. At low strengths (α≈0.2), subtle cues emerge,
such as faint neon accents for the cyberpunk style or mild metallic shading for steampunk, while the
overall image remains close to the original prompt. At moderate strengths (α≈0.5), stylistic features
become more salient: cyberpunk generations exhibit vivid neon lighting and futuristic cityscapes,
whereas steampunk outputs show prominent brass textures, gears, and industrial motifs. Importantly, in
this regime, the central semantic content of the prompt (i.e., objects, entities, and spatial composition)
is preserved with high fidelity. At high intervention strengths (α≥0.8), stylistic traits dominate the
visual appearance, often saturating the scene with strong color palettes or dense textures, yet semantic
alignment to the original prompt remains largely intact, indicating that the steering primarily affects
style without eroding core content.

C.2 JAILBREAKING LARGE LANGUAGE MODELS

Tab. 3 reports a comprehensive comparison of attack success rate (ASR) and general benchmark
performance across multiple instruction-tuned models under different defense methods. Overall, PID
consistently achieves the highest ASR among defenses, while maintaining comparable performance
on downstream benchmarks.

We further compare our PID steering with recent steering-vector generation methods on a better safety-
aligned variant of Gemma-9B-IT, namely Gemma2-9B-Instruct-With-Deeper-Safety-Alignment (Qi
et al., 2025). Deeper safety alignment here trains the model to sustain refusal behavior beyond the
first few tokens: instead of only shaping the opener, it conditions on partially harmful or misleading
prefixes and optimizes the model to ”recover” back to safe behavior later in the sequence. Practically,
this extends safety pressure across positions so refusals remain stable under mild coercion, prefilling,
or decoding variance, while seeking to preserve general-task utility. Under this strong safety-aligned
regime, PID-based steering still achieves a non-trivial attack success rate and outperforms other
state-of-the-art activation steering methods considered in our study.

C.3 EMPIRICAL EVIDENCE FOR THE STABILITY INTERVAL

Proposition 4 and Remark 3 (Appendix B.6) show that the PI gains that maximise the asymptotic conver-
gence rate of the linearised error dynamics (the “fastest convergence” choice ofKp andKi) also induce
a large overshoot in the correlation trajectory ⟨ē(0),ē(k)⟩. Empirically, this manifests as poorer steering
performance: aggressive integral action speeds up convergence but increases oscillation and overshoot,
which is consistent with classical PI tuning principles (see, e.g., (Åström & Hägglund, 1995a)).

Theorem 2 further shows that the derivative term Kd provides damping: for fixed Kp and Ki,
increasing Kd reduces the overshoot of the error trajectory. Although we do not establish a formal
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Figure 8: concept cyberpunk.

optimality theorem, it is natural to expect that the theoretically fastest PI gains, when combined with
a suitably chosen derivative term, can outperform more conservative Ki values that lie strictly inside
the stability interval (under the same Kp=1). Intuitively, because transformer depth is finite and we do
not know at which layer the error will effectively settle, it is desirable to drive the error down quickly
while preventing excessive overshoot, with Kd acting as the compensating damping term.
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Figure 9: Concept steampunk

Our empirical results corroborate this interpretation. The stability intervals for Ki at Kp = 1 are
(−0.23,0.23) for Gemma-2-9B-it and (−0.1355,0.1355) for Gemma-2-2B. In Figs. 6a and 6b, we
sweep across multiple Ki values in these ranges. For Gemma-2-9B-it, the Ki that yields the fastest
theoretical convergence rate is 0.056. When Kd increases from 0.0 to 0.01, the Llamaguard3 score
rises from 76.61 to 78.53. This pattern suggests that withKd=0, the aggressive integral term produces
noticeable overshoot that harms performance, whereas adding a small derivative term introduces
sufficient damping to recover, and in some cases improve, steering performance.
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Table 3: Full comparison of Original, DIM, ITI, RePE, and PID across models on ASR and general benchmarks on
all tested models. Bold = best, underline = second-best within each model (ASR column).

Method ASR↑ tinyArc↑ tinyGSM8k strict↑ tinyMMLU↑ tinyTruthQA↑ tinyHellaSwag↑ tinyWinoGrande↑

Original – 62.29 17.64 68.03 56.43 73.18 70.65

DIM 74.03 61.95 14.80 66.11 54.95 72.40 69.85

ITI 70.19 61.28 15.57 66.62 54.75 72.71 70.12

RePE 68.44 61.05 14.60 65.70 54.30 72.03 69.40

PID 76.07 61.20 16.01 67.29 54.10 72.59 69.72

Original – 68.36 81.68 72.57 56.41 78.87 75.19

DIM 96.15 65.15 80.81 71.19 55.22 78.14 74.42

ITI 84.61 65.76 79.48 71.23 55.63 78.36 74.75

RePE 80.32 65.00 78.90 70.60 55.00 77.73 74.15

PID 96.46 66.61 80.78 71.22 55.52 78.28 74.58

Original – 73.96 90.12 74.60 64.50 82.70 73.77

DIM 90.38 72.74 87.01 74.30 63.01 81.94 72.93

ITI 33.65 73.15 89.27 74.55 64.03 82.240 73.31

RePE 25.42 72.40 86.20 73.90 63.20 81.52 72.60

PID 92.65 72.13 88.96 74.52 63.60 82.60 73.04

Original – 55.86 59.40 63.48 50.19 75.91 58.63

DIM 88.46 54.24 58.63 61.68 49.78 75.10 57.94

ITI 76.92 53.67 57.77 61.85 49.95 75.22 58.16

RePE 70.15 53.40 57.00 61.10 49.50 74.75 57.53

PID 89.76 53.93 57.26 62.01 50.19 75.07 57.83

Original – 65.33 63.21 62.02 54.39 82.51 65.56

DIM 93.26 62.01 60.57 60.96 54.17 81.73 64.81

ITI 79.80 64.26 61.85 61.37 54.33 82.01 65.21

RePE 70.42 61.40 60.00 60.20 53.70 81.35 64.45

PID 94.85 62.30 61.99 61.54 54.24 81.87 64.93

Original – 69.31 83.19 76.60 55.07 82.31 72.34

DIM 77.88 68.21 80.14 72.29 51.86 81.45 71.51

ITI 35.57 68.32 81.47 75.33 53.13 81.70 71.82

RePE 28.64 67.50 79.20 71.10 51.10 81.20 71.15

PID 79.50 67.91 79.24 74.89 52.49 81.59 71.42

Original – 73.45 86.91 76.11 61.36 83.24 75.47

DIM 74.03 72.13 84.70 74.59 59.49 81.79 74.21

ITI 37.36 72.84 86.38 75.51 60.85 82.83 75.11

RePE 24.19 71.03 84.00 73.90 58.79 80.82 73.44

PID 79.80 72.93 86.60 75.67 60.74 82.95 75.06

Original – 69.07 82.93 76.18 54.82 82.27 72.11

DIM 11.91 67.88 79.76 72.12 51.83 81.33 71.47

ITI 23.12 68.19 81.41 75.22 53.05 81.58 71.79

RePE 11.23 67.37 78.96 70.92 51.06 81.08 71.09

PID 34.75 67.83 79.11 74.77 52.44 81.46 71.33
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