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ABSTRACT

Large language models (LLMs) adapted to specific languages through contin-
ual pretraining or instruction tuning often suffer from catastrophic forgetting,
which can lead to factual inaccuracies. This issue is particularly pronounced in
multilingual settings, where adaptation may override general world knowledge
with language-specific patterns. We propose LoRA-Gated Contrastive Decod-
ing (LGCD), a training-free inference-time decoding framework that improves
factuality in language-adapted LLMs by leveraging knowledge from the origi-
nal pretrained model. LGCD operates by (1) extracting factual representations
from Feed-Forward Network (FFN) layers via LoRA-based decomposition, ap-
proximating pretrained knowledge, (2) dynamically gating decoding based on
token-level confidence, and (3) applying contrastive decoding with Top-K mask-
ing to revise uncertain predictions by referencing the approximated representa-
tion of pretrained knowledge. LGCD requires no additional training or access
to the original pretraining data. Extensive experiments with LGCD on multilin-
gual multiple-choice and long-form QA tasks across nine languages demonstrate
its strong effectiveness in mitigating hallucinations and enhancing factual accu-
racy in language-adapted models. These results further indicate that pretrained
knowledge can be strategically reintroduced during decoding to promote factual
multilingual generation.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities across a wide range of
natural language tasks. A common practice to enhance their performance for specific languages or
domains involves continual pretraining (CPT) or instruction fine-tuning (Gururangan et al., 2020;
Zhang et al., 2024; Huang et al., 2023). While these adaptation techniques often inject new knowl-
edge and improve task-specific abilities in the target language or domain, they frequently suffer from
a critical drawback: catastrophic forgetting (Luo et al., 2023; OLMo et al., 2024; Li & Lee, 2024;
Li et al., 2024; Kalajdzievski, 2024). This phenomenon leads to the degradation of general knowl-
edge acquired during the initial pretraining phase, often resulting in increased factual inaccuracies
or hallucinations (Ji et al., 2023; Luo et al., 2023; Li & Lee, 2024). Empirical studies confirm that
LLMs undergoing CPT or instruction tuning can lose previously learned knowledge, sometimes pri-
oritizing stylistic alignment or fluency in the target language over the factual consistency inherent in
the original model (Luo et al., 2023).

Mitigating catastrophic forgetting during adaptation is challenging. Ideally, one would retrain the
model using a mixture of the original pretraining data and the new adaptation data. However, the
original pretraining datasets for many state-of-the-art LLMs (e.g., LLaMA, Qwen) are generally
undisclosed and inaccessible, though efforts towards fully open models like OLMo exist (OLMo
et al., 2024). Furthermore, retraining from scratch or even extensive CPT demands prohibitive
computational resources and time. Although various techniques aim to reduce forgetting during
the training process (Gu et al., 2024; Huang et al., 2024; He et al., 2024; Wang et al., 2023b; Vo
et al., 2024), they remain limited in preserving general knowledge, especially when adapting to
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new domains or languages. This limitation motivates the exploration of alternative approaches that
can enhance the factuality of adapted LLMs without requiring further training or access to original
pretraining data.

Recent research has highlighted the role of Feed-Forward Network (FFN) layers within the Trans-
former architecture as key-value memories, crucial for storing factual knowledge acquired during
pretraining (Geva et al., 2020; Qiu et al., 2024; Dai et al., 2023). Inspired by this understanding, we
hypothesize that the knowledge implicitly stored within the FFN weights of the original pretrained
model can be explicitly leveraged to support the generation process of an adapted (e.g., continually
pretrained or instruction-tuned) model at inference time, thereby improving its factual accuracy.

In this work, we propose LoRA-Gated Contrastive Decoding (LGCD), a novel training-free de-
coding method designed to enhance the factuality of LLMs, particularly those adapted for specific
languages or domains. LGCD addresses the inherent trade-off between domain-specific fluency and
general factual knowledge by dynamically switching between decoding strategies based on token-
level confidence and applying contrastive decoding when necessary.

The framework of LGCD is characterized by three key components: First, it performs LoRA-based
factual knowledge extraction from FFN layers and obtains a lightweight approximation of the pre-
trained model (PTM), by computing parameter differences between pretrained and adapted models
and decomposing them using Singular Value Decomposition (SVD) to recover factual knowledge in
FFN layers without modifying the language-adapted model (LAM). Second, it employs confidence-
based dynamic gating that measures token-level confidence from the LAM and determines when to
trigger factual knowledge injection, ensuring that domain fluency is preserved when the model is
confident while leveraging pretrained knowledge when uncertainty arises. Third, it implements con-
trastive decoding with Top-K masking, which computes contrastive logits by subtracting the LAM’s
logits from the logits of the approximated PTM (aPTM), and applies this correction only to the
top-K candidates predicted by the LAM. This selective adjustment injects factual knowledge while
minimizing disruption to fluent generation.

We conduct a comprehensive evaluation of LGCD across nine diverse languages, highlighting
its broad applicability in multilingual settings. Our experiments demonstrate LGCD’s effective-
ness across multiple evaluation settings, including multilingual multiple-choice benchmarks such
as Global MMLU (Singh et al., 2024) and multilingual TruthfulQA (Dac Lai et al., 2023) for
domain-specific and general factual knowledge, long-form generation benchmarks such as Multi-
FAct (Shafayat et al., 2024) for factual consistency, and long-form medical QA tasks for precise
knowledge grounding in high-stakes domains.

Our contributions are threefold:

1. We propose LGCD, a novel training-free, decoding-time framework to mitigate hallucina-
tion and enhance factuality in language-adapted LLMs by leveraging knowledge from the
original pretrained model through dynamic model switching and contrastive decoding.

2. We introduce specific techniques within LGCD, including LoRA-based knowledge extrac-
tion from FFN layers, confidence-based dynamic gating for token-level decision making,
and contrastive decoding with Top-K masking.

3. We provide extensive empirical evidence demonstrating LGCD’s effectiveness across mul-
tilingual multiple-choice QA and long-form generation tasks, using nine languages and
twelve models. Our approach consistently outperforms adapted models without requiring
additional training or external resources.

2 RELATED WORK

2.1 HALLUCINATION MITIGATION IN LLM

Addressing hallucinations in LLMs involves various strategies, including improvements in training
data and model architecture, fact-checking mechanisms, and integrating external knowledge sources
like retrieval systems or knowledge graphs (Izacard & Grave, 2020; Wang et al., 2023a). While
effective, the aforementioned external methods often introduce complexity or dependencies. Our
proposed method, LGCD, focuses on an internal, decoding-time approach to mitigate hallucination
without requiring external models or significant architectural changes.
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Query

(ar)  من اكتشف البنسلين؟
Wer hat Penicillin entdeckt? (de)
Who discovered penicillin? (en)
페니실린을 발견한 사람은 누구입니까? (ko)
谁发现了青霉素？ (zh)

LAM

PTM LAM

-

Max probability ≥ Threshold

Max probability < Threshold

Token

-(+
③ Contrastive Decoding with Top-K Masking

Logits of aPTM Logits of LAM

SVD

LoRA matrices

)

① LoRA-based Knowledge Extraction from PTM (Pre-computation, Once)

② Confidence-Based
     Dynamic Gating

Token

(ar) ”ألكسندر فليمنج“
“Alexander Fleming” (de)
"Alexander Fleming” (en)
“알렉산더 플레밍” (ko)
“亚历山大·弗莱明” (zh)

Response

Confidence
threshold

Confidence
threshold Top-K Top-K

Figure 1: Overview of the LGCD framework.

2.2 DECODING STRATEGIES FOR FACTUALITY

Factual consistency in LLM decoding is often improved by tweaking output probabilities. For in-
stance, Contrastive search (Su et al., 2022) combats repetition by picking tokens that are both likely
and semantically distinct from prior context. Similarly, DoLa (Chuang et al., 2024) leverages deeper
layers by contrasting logits across different internal layers of the same model. These methods re-
shape probability distributions based on disagreements or differences within the model or its vari-
ants. Our LGCD takes a different approach. Instead of merely contrasting probabilities, LGCD
explicitly extracts and integrates factual knowledge from FFN layers of the original PTM–a pro-
cess that is performed only once. This knowledge then directly influences the LAM’s logits via a
confidence-gated mechanism, offering a training-free solution to inject specific factual signals and
enhance accuracy in adapted LLMs without further access to the PTM during inference.

2.3 KNOWLEDGE IN FEED-FORWARD NETWORKS

Previous research has shown that FFN layers within transformer models serve as key repositories
for factual and world knowledge, often interpreted as key-value memories (Geva et al., 2020; Qiu
et al., 2024; Dai et al., 2023). This perspective suggests that structured knowledge is encoded within
their weights. Our LGCD leverages this by explicitly recovering factual knowledge from FFN lay-
ers of the original PTM. This is vital because catastrophic forgetting can degrade such knowledge
in LAMs. LGCD achieves this through LoRA-based factual knowledge extraction: it calculates
parameter differences between the PTM and LAM, then uses SVD to pinpoint and recover PTM’s
factual knowledge without altering the LAM. This precisely extracted knowledge is then dynami-
cally injected during decoding, central to LGCD’s factuality enhancement.

3 METHODOLOGY

This section introduces LGCD, a training-free decoding framework that combines the strengths of
LAM and PTM. LGCD addresses the inherent trade-off between domain-specific fluency and gen-
eral factual knowledge by dynamically switching between models based on token-level confidence
and applying contrastive decoding when necessary. Figure 1 illustrates our framework.

The core motivation behind LGCD is grounded in the observation that FFN layers in Transformer
architectures act as key-value neural memories for factual knowledge (Geva et al., 2020; Dai et al.,
2023; Qiu et al., 2024). During CPT or instruction fine-tuning, this knowledge can be degraded due
to catastrophic forgetting. LGCD mitigates this by explicitly recovering factual knowledge from the
pretrained model’s FFN layers and dynamically injecting it during decoding.

The LGCD framework consists of three components: (1) LoRA-based factual knowledge extraction
from FFN layers, (2) confidence-based dynamic gating, and (3) contrastive decoding with Top-K
masking.

3
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3.1 LORA-BASED KNOWLEDGE EXTRACTION FROM FFN LAYERS

To capture factual knowledge preserved in the pretrained model, LGCD performs LoRA extrac-
tion from all FFN layers. Specifically, for each FFN layer ℓ, we compute the parameter difference
between the pretrained model MPTM and the language-adapted model MLAM:

∆Wℓ = W PTM
ℓ −W LAM

ℓ (1)

We then apply SVD:
∆Wℓ = UℓΣℓV

⊤
ℓ (2)

LoRA matrices are constructed by retaining the top-r singular components:

Aℓ = Uℓ[:, : r] ·
√

Σℓ[: r] (3)

Bℓ =
√
Σℓ[: r] · V ⊤

ℓ [: r, :] (4)

The pretrained FFN weight is approximated as:
W aPTM

ℓ = W LAM
ℓ +AℓBℓ (5)

Notably, this process is performed only once in the entire framework and allows LGCD to retrieve
factual knowledge from the PTM without modifying the LAM directly or incurring additional mem-
ory overhead from deploying separate models. It is applied only to the FFN layers, leaving all other
components of the LAM unchanged. To empirically validate this design decision, we compare dif-
ferent layer-wise LoRA approximation strategies in Appendix A.3 and find that targeting only FFN
layers yields the best performance.

3.2 CONFIDENCE-BASED DYNAMIC GATING

At each decoding step t, LGCD first queries the LAM to compute logits lLAM
t . The token-level

confidence is measured as the maximum probability over the vocabulary:

ct = max
(
softmax(lLAM

t )
)

(6)

A fixed confidence threshold τ determines the decision. τ in our setting is determined based on
language-specific data availability, as detailed in Appendix A.8.

• If ct ≥ τ → Decode with LAM.
• If ct < τ → Contrastive decode with the aPTM.

This dynamic gating balances the fluency of the LAM with the factual reliability of the aPTM.

3.3 CONTRASTIVE DECODING WITH TOP-K MASKING AND LAYER-WISE CONTRAST

When contrastive decoding is triggered, LGCD first computes logits of aPTM laPTM
t approximated

with LoRA:
laPTM
t = lLAM

t + LoRA(∆Wℓ,h
LAM
t ) (7)

To prevent contrastive decoding from selecting tokens with low probabilities across both models,
LGCD applies Top-K masking, considering only the K most probable tokens from lLAM

t :

TK = TopK(lLAM
t ,K) (8)

The contrastive logits are computed as:

lcontrast
t [i] =

{
if i ∈ TK : lLAM

t [i] + β ·
(
laPTM
t [i] − α · lLAM

t [i]
)

otherwise: −∞ (9)

where β is a hyperparameter controlling the overall contrastive weighting and α ∈ [0, 1] controls
the degree of down-weighting applied to the LAM logits within the correction term.

This formulation goes beyond standard contrastive decoding by introducing a correction term(
laPTM
t [i] − α · lLAM

t [i]
)

that prioritizes the aPTM’s factual knowledge while gently penalizing po-
tentially overconfident LAM predictions. By tuning α, we modulate the LAM’s influence without
abruptly overriding it. Hyperparameter details are provided in Appendix A.4, and for completeness
we include the full decoding algorithm and pseudocode in Appendix A.2.
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4 EXPERIMENTAL SETUP

We evaluate our model on two task types—multiple-choice QA and long-form generation—across
nine target languages: Chinese (zh), German (de), Portuguese (pt), Arabic (ar), Persian (fa),
Japanese (ja), Korean (ko), Indonesian (id), and Swahili (sw). Unless otherwise noted, all exper-
iments are conducted using 12 models.

4.1 MULTIPLE-CHOICE QA

Global MMLU. To assess multilingual factual understanding, we use Global MMLU (Singh et al.,
2024), a culturally-aware extension of MMLU with 14K curated questions spanning 57 subjects
in 42 languages. We report accuracy per language in zero- and five-shot settings for nine target
langueages.

Multilingual TruthfulQA. We use the MC1 version of TruthfulQA (Dac Lai et al., 2023; Lin et al.,
2021) across 31 languages. The number of questions per language varies, with most languages
containing at least 700 items. We evaluate six models in zero-shot and five-shot settings.

4.2 LONG-FORM GENERATION

Medical QA. For high-stakes generative evaluation, we use multilingual medical QA datasets with
expert-validated answers (Appendix A.5). Evaluation includes:

• LLM-as-a-Judge: GPT-4o performs pairwise comparisons with baselines (Li et al., 2023).
• Human Evaluation: For 12 LAMs, we sample 20 questions each (240 total). Outputs

are translated to English and rated by three experts on fluency, coherence, specificity, and
factuality. Final labels (Win/Tie/Lose) are based on majority vote.

Multi-FAct. We evaluate factuality with Multi-FAct (Shafayat et al., 2024), which uses FActScore
(Min et al., 2023) to decompose generations into atomic facts and verify them against trusted sources
in multilingual settings.

4.3 MODELS & BASELINES

Lang. Model CPT Instr. tuning

zh shenzhi-wang/Llama3-8B-Chinese-Chat ✓ ✓
zh hfl/llama-3-chinese-8b-instruct ✓ ✓
de DiscoResearch/Llama3-DiscoLeo-Instruct-8B-v0.1 ✓ ✓
pt rhaymison/gemma-portuguese-luana-2b ✗ ✓
ar MohamedRashad/Arabic-Orpo-Llama-3-8B-Instruct ✗ ✓
fa PartAI/Dorna-Llama3-8B-Instruct ✗ ✓
ja tokyotech-llm/Llama-3-Swallow-8B-Instruct-v0.1 ✓ ✓
ja elyza/Llama-3-ELYZA-JP-8B ✓ ✓
ko KISTI-KONI/KONI-Llama3-8B-Instruct-20240729 ✓ ✓
ko MLP-KTLim/llama-3-Korean-Bllossom-8B ✓ ✓
id GoToCompany/llama3-8b-cpt-sahabatai-v1-instruct ✓ ✓
sw Jacaranda/UlizaLlama3 ✓ ✓

Table 1: LAMs used in our experiments. “✓” indicates
application of CPT and/or instruction tuning.

Models. We evaluate 12 publicly
available LAMs from Hugging Face,
each specialized for one of the 9
target languages (zh, de, pt, ar, fa,
ja, ko, id, sw). All models are
based on multilingual LLM backbones
(mainly LLaMA-3 variants) and fur-
ther adapted via CPT, instruction tun-
ing, or both. Model selection was
guided by language specificity, pub-
lic availability, and community en-
gagement (e.g., download count, ac-
tive maintenance). Table 1 summa-
rizes model specifications.

Baselines. We compare LGCD against Nucleus Sampling (NS), DoLa (Chuang et al., 2024), TIES
(Yadav et al., 2023), and SLERP (Shoemake, 1985)1. This set covers widely used decoding methods
and model-merging approaches, enabling a comprehensive assessment of LGCD.

5 EXPERIMENTAL RESULTS

We evaluate LGCD on two multilingual multiple-choice QA benchmarks—Global MMLU and Mul-
tilingual TruthfulQA—under zero-shot and five-shot settings. Comparisons include decoding-time
baselines (DoLa), model merging methods (TIES, SLERP), and standard nucleus sampling (NS) for
both pretrained (PTM) and language-adapted models (LAM).

1https://github.com/Digitous/LLM-SLERP-Merge
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0-shot 5-shot

Lang. Model PTM LAM DoLa TIES SLERP LGCD PTM LAM DoLa TIES SLERP LGCD

zh hfl/llama-3-chinese-8b-instruct 0.494 0.466 0.467 0.502 0.494 0.519 0.532 0.515 0.514 0.536 0.532 0.543
zh shenzhi-wang/Llama3-8B-Chinese-Chat 0.494 0.500 0.500 0.498 0.494 0.502 0.532 0.543 0.542 0.538 0.532 0.543
de DiscoResearch/Llama3-DiscoLeo-Instruct-8B-v0.1 0.514 0.486 0.492 0.540 0.514 0.546 0.558 0.548 0.550 0.566 0.584 0.574
pt rhaymison/gemma-portuguese-luana-2b 0.353 0.316 0.278 0.357 0.353 0.357 0.325 0.316 0.298 0.330 0.325 0.324
ar MohamedRashad/Arabic-Orpo-Llama-3-8B-Instruct 0.425 0.430 0.427 0.425 0.441 0.465 0.467 0.471 0.473 0.467 0.483 0.481
fa PartAI/Dorna-Llama3-8B-Instruct 0.424 0.423 0.424 0.423 0.424 0.423 0.465 0.466 0.468 0.466 0.465 0.466
ja tokyotech-llm/Llama-3-Swallow-8B-Instruct-v0.1 0.481 0.478 0.479 0.462 0.456 0.507 0.481 0.527 0.527 0.525 0.481 0.525
ja elyza/Llama-3-ELYZA-JP-8B 0.481 0.473 0.473 0.466 0.456 0.509 0.481 0.503 0.503 0.513 0.481 0.528
ko KISTI-KONI/KONI-Llama3-8B-Instruct-20240729 0.437 0.445 0.459 0.445 0.437 0.490 0.481 0.495 0.495 0.509 0.481 0.511
ko MLP-KTLim/llama-3-Korean-Bllossom-8B 0.437 0.376 0.378 0.435 0.437 0.479 0.481 0.447 0.448 0.485 0.481 0.501
id GoToCompany/llama3-8b-cpt-sahabatai-v1-instruct 0.476 0.530 0.531 0.486 0.476 0.527 0.529 0.576 0.577 0.530 0.568 0.566
sw Jacaranda/UlizaLlama3 0.359 0.362 0.363 0.355 0.359 0.399 0.388 0.367 0.372 0.390 0.432 0.409

Average 0.448 0.441 0.439 0.449 0.445 0.477 0.477 0.481 0.481 0.488 0.487 0.498

Table 2: Evaluation accuracy of 12 models on Global MMLU benchmark under 0-shot and 5-shot
settings using various decoding and merging strategies. PTM refers to the performance of the pre-
trained Model, while LAM denotes the language-adapted model, both evaluated using Nucleus Sam-
pling (NS). DoLa represents the results when applying the DoLa decoding strategy to the LAM.

0-shot 5-shot

Lang. Model PTM LAM DoLa TIES SLERP LGCD PTM LAM DoLa TIES SLERP LGCD

zh hfl/llama-3-chinese-8b-instruct 0.349 0.353 0.312 0.352 0.335 0.352 0.379 0.390 0.392 0.381 0.363 0.471
zh shenzhi-wang/Llama3-8B-Chinese-Chat 0.349 0.363 0.326 0.357 0.363 0.357 0.379 0.391 0.360 0.387 0.400 0.484
de DiscoResearch/Llama3-DiscoLeo-Instruct-8B-v0.1 0.317 0.343 0.320 0.325 0.330 0.382 0.367 0.367 0.354 0.373 0.393 0.391
pt rhaymison/gemma-portuguese-luana-2b 0.272 0.301 0.268 0.283 0.302 0.409 0.319 0.325 0.299 0.322 0.321 0.431
ar MohamedRashad/Arabic-Orpo-Llama-3-8B-Instruct 0.325 0.308 0.331 0.326 0.318 0.400 0.376 0.360 0.323 0.383 0.365 0.426
id GoToCompany/llama3-8b-cpt-sahabatai-v1-instruct 0.329 0.334 0.334 0.341 0.334 0.353 0.378 0.370 0.369 0.373 0.365 0.406

Average 0.323 0.334 0.315 0.331 0.330 0.376 0.366 0.367 0.349 0.370 0.368 0.435

Table 3: Evaluation accuracy of 6 models on multilingual TruthfulQA benchmark under 0-shot and
5-shot settings using different merging and decoding strategies.

5.1 GLOBAL MMLU

Table 2 shows accuracy across 12 LAMs covering 9 languages. LGCD achieves the best average
performance in both zero-shot and five-shot settings, outperforming all decoding and merging base-
lines.

In the zero-shot setting, relative to the LAM, LGCD improves accuracy in 10 of 12 cases. Gains are
largest where the LAM lags the original PTM (Korean: +4.5–10.3 pp; German: +6.0 pp; Japanese:
+2.9–3.6 pp; Portuguese: +4.1 pp), indicating that LGCD effectively recovers knowledge lost during
adaptation.

In contrast, in the five-shot setting, LGCD continues to provide consistent improvements, especially
in high-resource languages such as Chinese and German. This indicates that LGCD not only recov-
ers forgotten knowledge but also scales robustly with richer context, effectively balancing domain
adaptation and pretrained factuality across diverse conditions.

Overall, LGCD consistently improves multilingual QA performance, showing robustness across cul-
turally diverse and knowledge-heavy questions where language adaptation typically disrupts general
knowledge.

5.2 MULTILINGUAL TRUTHFULQA

Results on Multilingual TruthfulQA (Table 3) further validate LGCD’s ability to enhance factuality.
In the zero-shot setting, LGCD achieves the highest average accuracy, outperforming both decoding
and merging baselines across all evaluated languages.

LGCD demonstrates consistent improvements across all tested languages, with particularly notable
gains in Portuguese (+10.8 pp), Arabic (+9.2 pp), and German (+3.9 pp). These improvements hold
in the five-shot setting as well, where LGCD shows even larger gains, reinforcing the method’s
robustness across different prompting regimes.

These results confirm that LGCD effectively resists plausible but incorrect generations, excelling
in settings in TruthfulQA that probe a model’s ability to distinguish truth from commonly held
misconceptions.
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Figure 2: Pairwise comparison results of our model vs. baselines (evaluated by GPT-4o)

5.3 LONG-FORM MEDICAL QA

We further evaluate LGCD in high-stakes, long-form medical question answering tasks across 12
LAMs. Each model is tested in its target language using domain-specific medical QA datasets.
Evaluation is conducted via two complementary methods: (1) GPT-4o as an automatic judge per-
forming pairwise comparisons, and (2) expert human preference evaluations on fluency, coherence,
and factual correctness.

LLM-as-a-Judge Evaluation. Figure 2 shows GPT-4o-based preference comparisons. LGCD
achieves the highest win rates in most languages, outperforming PTM, LAM, and all decoding or
merging baselines. On average, LGCD is preferred over PTM in 63.1% of cases, over LAM in
53.5%, and over DoLa (53.8%) and SLERP (51.9%), while performing competitively with TIES
(65.3%).

0 20 40 60 80 100

PTM
LAM

DoLA
TIES

SLERP

52.0% 28.0% 20.0%
41.7% 27.1% 31.2%
45.8% 16.7% 37.5%

62.5% 16.7% 20.8%
45.8% 16.7% 37.5%

Win Tie Lose

Figure 3: Human preference comparison be-
tween our model and baseline models

Human Preference Evaluation. We further as-
sess LGCD through human preference evaluation.
As shown in Figure 3, LGCD is consistently favored
across baselines, achieving higher win rates than
PTM (52.0%), DoLA (45.8%), and SLERP (45.8%).
These results reinforce LGCD’s ability to generate
fluent and factually grounded answers in complex
medical domains. Despite cross-lingual pooling, the
consistent preference trend across models suggests
that LGCD offers a robust and training-free alter-
native to improve factuality in long-form, domain-
specific generation.

Contrastive Usage Analysis Figure 4 shows the proportion of tokens decoded by the LAM (blue)
and via contrastive decoding (red) as the confidence threshold τ varies. The yellow band indicates
the threshold selected for each model.

In higher-resource languages (e.g., zh, de, pt, ar, fa), models adopt higher thresholds (typically
τ = 0.7–0.8), leading to a sharp increase in contrastive usage. This reflects the stronger performance
of the pretrained model in these languages, allowing LGCD to revise uncertain predictions more
effectively.

In contrast, for lower-resource languages (e.g., ja, ko, id, sw), LAM usage remains high even at
high thresholds. These models tend to produce overconfident outputs, possibly due to limited token
coverage during adaptation. Since the PTM is also less reliable in these settings, LGCD uses lower
thresholds to favor the LAM, which yields better results despite overconfidence.
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Figure 4: Contrastive decoding behavior in LGCD across 12 LAMs. For each model, we plot
the token-level usage ratio of the base LAM (blue) and contrastive candidate (red) as a function of
confidence threshold τ . The yellow vertical line marks the threshold selected for that model. LGCD
dynamically adjusts model usage based on token uncertainty, striking a balance between domain
alignment and factual recall.

Q> 前置胎盤がどのような場合に主に発生するのか教えてください。
     (Please tell me under what circumstances placenta previa primarily occurs.)

LGCD> 前置胎盤は、胎盤が子宮の出口に近い位置に付着してしまう状態を指します。以下のような場合に、前置胎盤が主に発生することが知られています。
(Placenta previa refers to a condition in which the placenta attaches in a position near the opening of the uterus. It is known to occur mainly in cases such as the following.)

1.高齢出産: 35歳以上での出産の場合、前置胎盤の発生リスクが高くなります。
(1. Advanced maternal age: In deliveries at age 35 and older, the risk of placenta previa increases.)

2. 多胎妊娠: 双子や三つ子など、多胎妊娠の場合、前置胎盤の発生リスクが高くなることが知られています。
(2. Multiple gestation: In twin, triplet, or other multiple pregnancies, the risk of placenta previa is known to be higher.)

3. 前回の出産での帝王切開: 前回の出産で帝王切開をしていた場合、前置胎盤が発生するリスクが高くなることが知られています。
(3. Cesarean section in a previous delivery: If a cesarean section was performed in the prior birth, the risk of placenta previa is known to be higher.)

4. 子宮口の狭さ: 子宮口が狭い場合、胎盤が子宮口に近い位置に付着してしまうことがあります。
(4. Narrow uterine opening (cervix): If the cervical opening is narrow, the placenta may attach close to the cervical opening.)

5. 過去の出産での前置胎盤: 前回の出産で前置胎盤であった場合、次の出産でも前置胎盤が発生するリスクが高くなることが知られています。
(5. History of placenta previa in a prior birth: If placenta previa was present in the previous delivery, the risk is known to be higher in the next pregnancy as well.)

以上のような場合に、前置胎盤が主に発生することが知られていますが、前置胎盤はまれな疾患です。出産前や出産中の診察や検査で、医師が胎盤の位置を確認し、前置胎盤が疑われた場合には、帝王切

開などの適切な処置が行われます。
(While placenta previa can occur in situations as above, it is a rare condition. Before delivery or during labor, clinicians confirm placental location through exams and tests; if placenta previa is suspected, appropriate management, such as cesarean delivery, will be 
undertaken.)

Figure 5: Token-level view on a Japanese medical QA example (elyza/Llama-3-ELYZA-JP-8B).
LGCD output in Japanese (top) with English alignment (bottom). Tokens highlighted in green
mark time-steps where LGCD switched on contrastive decoding; their aligned tokens in the transla-
tion are highlighted in yellow . Tokens outlined in red indicate decisive positions that steered the
continuation toward the factual answer.
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Figure 6: Average entity count (left) and
Jaccard similarity (right) between LGCD and
LAM outputs for Chinese, Japanese, and In-
donesian models

To probe where LGCD’s gains come from in long-
form generation, we analyze named-entity behavior
under a general Named Entity Recognition (NER)
schema and compare LGCD to the underlying LAM.
Further details are provided in the Appendix A.7.
Figure 6 summarizes two signals: (i) average num-
ber of entities extracted per output and (ii) Jaccard
overlap between the entity sets from LGCD and the
LAM. Across three representative LAMs (Chinese,
Japanese, Indonesian), LGCD consistently produces
more entities than the LAM while the set overlap
remains low–moderate (≈ 1–16%). This pattern
suggests LGCD is not merely echoing the LAM’s
choices but is adding complementary, likely fac-
tual, mentions that the LAM omits. Linking back to the Contrastive Usage Analysis, these re-
sults explain why factuality can improve even when overall contrastive usage is low—e.g., in
Japanese (elyza/Llama-3-ELYZA-JP-8B) and Indonesian (GoToCompany/llama3-8b-cpt-sahabatai-
v1-instruct).
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Lang. Model LAM LGCD ∆

zh hfl/llama-3-chinese-8b-instruct 0.260 0.246 −0.014
zh shenzhi-wang/Llama3-8B-Chinese-Chat 0.229 0.313 +0.084
de DiscoResearch/Llama3-DiscoLeo-Instruct-8B-v0.1 0.387 0.520 +0.133
pt rhaymison/gemma-portuguese-luana-2b 0.288 0.267 −0.021
ja tokyotech-llm/Llama-3-Swallow-8B-Instruct-v0.1 0.267 0.197 −0.070
ja elyza/Llama-3-ELYZA-JP-8B 0.298 0.302 +0.004
ko KISTI-KONI/KONI-Llama3-8B-Instruct-20240729 0.196 0.218 +0.022
ko MLP-KTLim/llama-3-Korean-Bllossom-8B 0.189 0.196 +0.007
id GoToCompany/llama3-8b-cpt-sahabatai-v1-instruct 0.334 0.547 +0.212

Average 0.272 0.312 +0.040

Table 4: Comparison of Multi-FAct score between LAM and LGCD. Models with a LAM score
below 0.05 were excluded, resulting in 9 evaluated models.

Figure 5 further illustrates that LGCD intervenes only sparsely, yet the activated gates coincide with
tokens that are not only entity mentions but also those carrying decisive factual content. Despite
their small number, these targeted interventions are sufficient to steer the generation toward factual
answers. A direct comparison of LAM and LGCD outputs for the Japanese medical QA example is
provided in the Appendix A.9.

5.4 MULTI-FACT

On the Multi-FAct benchmark, LGCD improves factual consistency in 6 of 9 models, with a +0.04
average gain over LAMs (Table 4). Notable gains in Indonesian, German and Korean confirm
LGCD’s effectiveness in enhancing factuality for long-form generation.

5.5 THROUGHPUT

Decoding Strategy Throughput (Token/s)

Greedy search 19.21
Nucleus sampling 17.47
Contrastive search 11.87

DoLa 16.81
LGCD-0.2 14.37
LGCD-0.4 10.32
LGCD-0.6 10.32
LGCD-0.8 10.22

Table 5: Average decoding throughput for each
strategy. For LGCD-τ , the numeric suffix denotes
the confidence threshold τ used in decoding.

Table 5 presents the decoding speed of dif-
ferent generation strategies measured on
a single A100 GPU. Results are averaged
over responses to 100 questions using the
hfl/llama-3-chinese-8b-instruct
model. Among baselines, greedy search
achieves the highest throughput (19.21 token-
s/sec), followed by nucleus sampling (17.47).
Contrastive Search is slower (11.87) due to
the similarity penalty over top-k candidates,
though it runs in a single forward pass without
reranking. LGCD slows decoding by querying
the aPTM when the LAM lacks confidence. However, the overhead varies with the confidence
threshold τ : lower thresholds (e.g., LGCD-0.2) lead to fewer contrastive decisions and thus higher
throughput (14.37), while higher τ (e.g., LGCD-0.8) leads to more aggressive factual intervention
and slower speed (10.22). Notably, LGCD-0.2 approaches the speed of DoLa (16.81), demonstrat-
ing that factual calibration can be achieved without substantial efficiency loss when appropriately
tuned. This tunability enables LGCD to balance quality and speed for practical deployment.

6 CONCLUSION

We present LGCD, a novel training-free method that enhances the factuality of language-adapted
LLMs by dynamically injecting pretrained knowledge during inference. By extracting factual sig-
nals from FFN layers via LoRA-based decomposition and applying contrastive decoding condi-
tioned on token-level confidence, LGCD effectively mitigates catastrophic forgetting without re-
training or access to pretraining data. Extensive multilingual experiments across multiple-choice
QA and long-form generation tasks demonstrate that LGCD consistently improves factual accuracy
over both decoding and model-merging baselines, offering a practical, scalable solution for factual-
ity preservation in domain-specialized LLMs.
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A APPENDIX

A.1 LLM USAGE DISCLOSURE

We used LLMs in the following limited ways to aid our research process:

• Writing Assistance: ChatGPT-5 was used to polish and refine writing, including grammar
correction, translation for clarity, and LATEX table formatting support. All generated or
suggested content was carefully reviewed and edited by the authors before inclusion.

• Evaluation (LLM-as-Judge): GPT-4o was employed as an automatic evaluator for long-
form medical QA performance, and internally within the Multi-FAct benchmark, following
established “LLM-as-judge” protocols.

• Code Debugging: ChatGPT-5 was used in a supporting role to debug code. The authors
independently verified the correctness of all outputs.

The LLMs did not contribute to research ideation or the design of experiments. All final content and
claims in the paper remain the responsibility of the authors.

A.2 DECODING PROCESS

Algorithm 1 summarizes the complete LGCD procedure. At each timestep t, the framework eval-
uates token-level confidence ct from the LAM. When ct ≥ τ , decoding proceeds with the LAM
alone using Top-K sampling. When ct < τ , indicating potential factual uncertainty, LGCD activates
the contrastive mechanism: (1) computing LoRA-approximated pretrained logits, (2) dynamically
gating based on token-level confidence, and (3) applying contrastive weighting within the Top-K
space. This confidence-driven approach enables LGCD to dynamically balance domain fluency and
factual accuracy without requiring model retraining, making it particularly suitable for scenarios
where language adaptation may compromise general knowledge.

Algorithm 1 LoRA-Gated Contrastive Decoding (LGCD)
Require: Language-Adapted Model MLAM, Approximated Pretrained Model MaPTM (for ∆Wℓ), confidence

threshold τ , Top-K size K, contrastive weighting hyperparameter β
Ensure: Generated output sequence Y

1: Initialize Y = [ ]
2: while Y[t] ̸= <eos>, t = 1, 2, . . . do
3: Compute LAM logits lLAM

t

4: Compute token-level confidence ct:
5: ct = max(softmax(lLAM

t ))
6: if ct ≥ τ then
7: Apply Top-K masking: TK = TopK(lLAM

t ,K)
8: Select next token yt by sampling from the masked lLAM

t

9: else
10: Compute LoRA-approximated pretrained logits:
11: laPTM

t = lLAM
t + LoRA(∆Wℓ,h

LAM
t )

12: Apply Top-K masking: TK = TopK(lLAM
t ,K)

13: Initialize lcontrast
t = [−∞, . . . ,−∞] ∈ Rvocab size

14: for each token i in vocabulary do
15: if i ∈ TK then
16: Compute contrastive logit:
17: lcontrast

t [i] = lLAM
t [i] + β ·

(
laPTM
t [i]

18: −0.1 · lLAM
t [i]

)
19: else
20: lcontrast

t [i] = −∞
21: end if
22: end for
23: Select next token yt by sampling from lcontrast

t

24: end if
25: Append yt to output sequence Y
26: end while
27: return Y

12
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A.3 LORA-BASED PTM APPROXIMATION: FFN VS QV VS ALL-LAYER COMPARISON

LGCD relies on approximating the PTM by applying LoRA-based updates to the LAM, using low-
rank matrices derived from the difference between PTM and LAM parameters. In our primary
design, this approximation targets only the FFN layers, based on prior research showing that FFNs
encode core factual knowledge in LLMs (Geva et al., 2020; Qiu et al., 2024; Dai et al., 2023).

To assess the importance of this design choice, we compare three strategies for selecting which
layers to approximate via LoRA during the offline distillation step:

• QV-only: Apply LoRA decomposition only to the attention projection matrices (Q, V).

• FFN-only: Apply LoRA only to FFN layers (our default).

• All Layers: Apply LoRA to both FFN and attention projection layers.

Table 6 shows the performance of LGCD using each variant on the Global MMLU benchmark under
the zero-shot setting. Results show that FFN-only approximation consistently achieves the best or
comparable performance, while QV-only performs worse on nearly all models. Approximating all
layers introduces marginal gains in a few cases but often results in unstable or degraded performance,
suggesting that unnecessary modification of attention layers may introduce noise. These findings
empirically validate our FFN-only design as both effective and efficient for factuality-oriented ap-
proximation of PTMs.

Lang. Model QV-only FFN-only All Layers

zh hfl/llama-3-chinese-8b-instruct 0.485 0.519 0.520
zh shenzhi-wang/Llama3-8B-Chinese-Chat 0.500 0.502 0.503
de DiscoResearch/Llama3-DiscoLeo-Instruct-8B-v0.1 0.520 0.546 0.544
pt rhaymison/gemma-portuguese-luana-2b 0.330 0.357 0.340
ar MohamedRashad/Arabic-Orpo-Llama-3-8B-Instruct 0.460 0.465 0.460
fa PartAI/Dorna-Llama3-8B-Instruct 0.423 0.423 0.423
ja tokyotech-llm/Llama-3-Swallow-8B-Instruct-v0.1 0.499 0.507 0.503
ja elyza/Llama-3-ELYZA-JP-8B 0.499 0.509 0.509
ko KISTI-KONI/KONI-Llama3-8B-Instruct-20240729 0.484 0.490 0.484
ko MLP-KTLim/llama-3-Korean-Bllossom-8B 0.471 0.479 0.461
id GoToCompany/llama3-8b-cpt-sahabatai-v1-instruct 0.533 0.527 0.528
sw Jacaranda/UlizaLlama3 0.375 0.399 0.395

Average 0.465 0.477 0.472

Table 6: Ablation study on LoRA-based PTM approximation: comparing factual accuracy on Global
MMLU (0-shot) when contrastive decoding uses knowledge reconstructed from different layer sub-
sets.

A.4 CONFIGURATIONS FOR LGCD

LGCD is configured with task-specific decoding strategies to address the differing demands of
multiple-choice QA and long-form QA. While both settings use the same LoRA-based decom-
position applied to all FFN layers with a fixed rank of 32, the confidence threshold and usage of
contrastive decoding vary by task.

For multiple-choice QA, we use a fixed confidence threshold of τ = 0.9 across all languages. This
high threshold leads to frequent activation of contrastive decoding, ensuring that the model does not
rely solely on the LAM but actively considers both the LAM and the PTM when scoring candidate
answers. In this setup, LGCD functions not merely as a fallback for low-confidence predictions,
but as a mechanism to integrate knowledge from both models during answer selection, enhancing
factual reliability without requiring additional training. Decoding uses top-k sampling (k = 100)
with temperature 0.7 and top-p = 0.9, and all contrastive updates are scaled with β = 1.0.

For long-form QA, the decoding configuration remains identical in terms of sampling and con-
trastive scaling, but the confidence threshold τ is language-specific, calibrated according to resource
availability (see Appendix A.8). This allows LGCD to adaptively determine when to apply con-
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trastive decoding based on the reliability of the LAM for each language—more frequently for low-
resource languages and conservatively for high-resource ones.

Component Multiple-Choice QA Long-Form QA

Temperature 0.7 0.7
Top-k 100 100
Top-p 0.9 0.9
Contrastive β 1.0 1.0
Contrastive α 0.1 0.1
LoRA (Rank / Scope) 32 / All FFN layers 32 / All FFN layers
Confidence τ Fixed (0.9) Language-specific
Contrastive Use Joint scoring Factual correction

Table 7: LGCD decoding configurations for multiple-choice vs. long-form QA.

A.5 EVALUATION DATASETS FOR MULTILINGUAL MEDICAL QUESTION ANSWERING

This appendix provides a detailed account of the datasets employed to evaluate the multilingual
medical question answering capabilities of the models discussed in this study. We have curated a
collection of open-ended medical QA datasets across various languages, drawing from both estab-
lished benchmarks and language-specific resources.

Our evaluation utilizes open-ended medical question answering data. For several languages,
the Healthcare QA task from the AIR-Bench 24.05 benchmark (https://github.com/
AIR-Bench/AIR-Bench) serves as the primary data source. This task comprises questions
within the medical domain designed to assess a model’s ability to provide informative responses.
Specifically, the original Healthcare QA data from AIR-Bench was directly used for evaluation in
Arabic and German.

For a broader linguistic evaluation where native high-quality long-form medical QA datasets were
not readily available, we constructed evaluation sets by translating the English version of the Health-
care QA task from AIR-Bench. These translations were systematically performed using Google
Translate. This methodology was applied to generate the evaluation datasets for Persian, Indone-
sian, Japanese, Portuguese, and Swahili. This approach enables a comparative analysis based on a
consistent source structure across these languages, although with potential translation artifacts.

In addition to the AIR-Bench based datasets, we incorporated independent, language-specific medi-
cal QA datasets for Korean and Chinese:

• Korean: We used the ChuGyouk/GenMedGPT-5k-ko dataset (https://
huggingface.co/datasets/ChuGyouk/GenMedGPT-5k-ko) for long-form
medical QA in Korean. This dataset, containing approximately 5,000 question-answer
pairs, is a Korean translation, performed using DeepL, of medical QA data sourced from
https://github.com/Kent0n-Li/ChatDoctor.

• Chinese: For Chinese medical QA, we utilize the cMedQA2 dataset (https://
github.com/zhangsheng93/cMedQA2). This dataset is a dedicated resource for
medical QA in Chinese, comprising a collection of questions and corresponding expert
answers within the medical domain.

A.6 BASELINE CONFIGURATION DETAILS

We compare LGCD against both decoding-based and model-merging baselines. All decoding strate-
gies use the same chat template with max new tokens = 2048.

DECODING-BASED BASELINES

We evaluate five decoding strategies: greedy decoding (GS), contrastive search (CS), nucleus sam-
pling (NS), and DoLa. All hyperparameters follow either the original paper or Hugging Face imple-
mentation standards.
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In particular, DoLa adopts a task-sensitive contrastive scheme: it uses higher transformer layers for
multiple-choice QA and lower layers for long-form generation, following prior findings on factual
calibration via depth selection.

Method Hyperparameters

GS Hugging Face default (greedy decoding)
CS penalty alpha = 0.6, top k = 4
NS do sample = True, temperature = 0.7, top p = 0.9
DoLa do sample = False

dola layers = "high" (Multiple-Choice QA)
dola layers = "low" (Long-Form QA)

Table 8: Decoding hyperparameter settings for baseline methods.

MODEL-MERGING BASELINES

We further compare LGCD with two weight-space integration baselines—SLERP and
TIES—implemented using the mergekit framework. Both methods perform symmetric merg-
ing between the PTM and the LAM with the following common settings:

• Merge ratio: 0.5 (LAM) : 0.5 (PTM)
• Merge range: all transformer layers
• Data type: bfloat16
• Base model: LAM
• Other parameters: mergekit defaults

A.7 NER-BASED FACTUALITY PROBE

NER extraction. We measure entity-level differences between LGCD and the baseline LAM by
applying a general-purpose NER extractor to every generated output. Specifically, we use GPT-4o
as the extractor. The schema is based on coarse-grained categories commonly used in NER (e.g.,
PERSON, ORGANIZATION, LOCATION, DATE, NUMBER), and we extended it with DISEASE to
capture domain-relevant mentions. In total, we use 13 categories. Each entity is returned with its
surface form, category, and character offset.

Comparison metrics. For each output pair, we form entity sets ELGCD and ELAM. We compute
Jaccard similarity |ELGCD∩ELAM|

|ELGCD∪ELAM| . We also track absolute entity counts per output. This setup allows
us to test whether factuality gains from LGCD are reflected in increased coverage or correction of
entity mentions beyond those produced by the base LAM.

A.8 LANGUAGE-SPECIFIC CONFIDENCE THRESHOLDS BASED ON DATA AVAILABILITY

Our decoding framework dynamically balances contributions between a language-adapted model
and a pretrained multilingual backbone based on a token-level confidence threshold. When the
model’s token-level confidence falls below the threshold, we incorporate contrastive logits from the
pretrained model to supplement or correct uncertain predictions.

Given that the quality and extent of training for language-adapted models are often opaque, espe-
cially in multilingual settings, we estimate data availability using the OSCAR 22.01 corpus Caswell
et al. (2021); Abadji et al. (2022); Abadji et al. (2021) as a public proxy for the quantity of avail-
able web-scale text per language. Languages are categorized into three tiers—High, Medium, and
Low—based on word count.

We assign lower thresholds (e.g., 0.1) to low-resource languages such as Korean (ko), Indonesian
(id), and Swahili (sw), allowing the pretrained model’s generalized knowledge to exert greater in-
fluence. Conversely, for high-resource languages like German (de) and Chinese (zh), which have
abundant data, we set a higher threshold (e.g., 0.8), favoring the language-specific model. Medium-
resource languages such as Japanese (ja) and Persian (fa) are assigned intermediate values (e.g.,
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0.4). This approach ensures informed integration of pretrained knowledge proportional to resource
availability.

Category Languages (ISO code) Word Count

High (≥ 2B) German (de) 46.8B
Chinese (zh) 23.1B
Portuguese (pt) 18.4B

Medium (0.5–2B) Persian (fa) 6.4B
Arabic (ar) 6.1B
Japanese (ja) 5.6B

Low (< 0.5B) Korean (ko) 3.9B
Indonesian (id) 2.0B
Swahili (sw) ≈7MB

Table 9: Language data categorization based on the public OSCAR 22.01 corpus.

A.9 DIRECT COMPARISON OF LAM AND LGCD OUTPUTS

LGCD> 前置胎盤は、胎盤が子宮の出口に近い位置に付着してしまう状態を指します。以下のような場合に、前置胎盤が主に発生することが知られています。
(Placenta previa refers to a condition in which the placenta attaches in a position near the opening of the uterus. It is known to occur mainly in cases such as the following.)

1.高齢出産: 35歳以上での出産の場合、前置胎盤の発生リスクが高くなります。
(1. Advanced maternal age: In deliveries at age 35 and older, the risk of placenta previa increases.)

2. 多胎妊娠: 双子や三つ子など、多胎妊娠の場合、前置胎盤の発生リスクが高くなることが知られています。
(2. Multiple gestation: In twin, triplet, or other multiple pregnancies, the risk of placenta previa is known to be higher.)

3. 前回の出産での帝王切開: 前回の出産で帝王切開をしていた場合、前置胎盤が発生するリスクが高くなることが知られています。
(3. Cesarean section in a previous delivery: If a cesarean section was performed in the prior birth, the risk of placenta previa is known to be higher.)

4. 子宮口の狭さ: 子宮口が狭い場合、胎盤が子宮口に近い位置に付着してしまうことがあります。
(4. Narrow uterine opening (cervix): If the cervical opening is narrow, the placenta may attach close to the cervical opening.)

5. 過去の出産での前置胎盤: 前回の出産で前置胎盤であった場合、次の出産でも前置胎盤が発生するリスクが高くなることが知られています。
(5. History of placenta previa in a prior birth: If placenta previa was present in the previous delivery, the risk is known to be higher in the next pregnancy as well.)

以上のような場合に、前置胎盤が主に発生することが知られていますが、前置胎盤はまれな疾患です。出産前や出産中の診察や検査で、医師が胎盤の位置を

確認し、前置胎盤が疑われた場合には、帝王切開などの適切な処置が行われます。
(While placenta previa can occur in situations as above, it is a rare condition. Before delivery or during labor, clinicians confirm placental location through exams and tests; if placenta previa is suspected, 
appropriate management, such as cesarean delivery, will be undertaken.)

Q> 前置胎盤がどのような場合に主に発生するのか教えてください。

     (Please tell me under what circumstances placenta previa primarily occurs.)

LAM> 前置胎盤は、胎盤が子宮口や子宮底に付着するのではなく、子宮壁に付着する状態を指します。主に以下のような場合に発生することがあります。
(Placenta previa refers to a condition where the placenta attaches to the uterine wall instead of the cervix or fundus. It primarily occurs in the following situations)
1.高齢初産婦や高齢再産婦: 35歳以上の妊娠で前置胎盤のリスクが高まります。
(Advanced maternal age in primigravida or multipara: The risk of placenta previa increases in pregnancies at age 35 or older.)
2. 多胎妊娠: 双子や三つ子など多胎妊娠の場合、前置胎盤の発生率が高くなることが知られています。
(Multiple pregnancies: The incidence of placenta previa is known to be higher in multiple pregnancies, such as twins or triplets.)
3. 前回帝王切開: 前回帝王切開の場合、前置胎盤の発生率が高くなることが報告されています。
(Previous cesarean section: A higher incidence of placenta previa has been reported in cases where a previous cesarean section was performed.)
4. 多胎児の大きさの差: 多胎児の大きさに差がある場合、前置胎盤の発生率が高くなることがあります。
(Size disparity among multiple fetuses: The incidence of placenta previa may increase when there is a size difference among multiple fetuses.)
5. 妊娠高血圧症候群: 妊娠高血圧症候群を合併している場合、前置胎盤の発生率が高くなることが知られています。
(Gestational Hypertension: It is known that the incidence of placenta previa increases when gestational hypertension is present.)
6. 子宮筋腫や子宮内膜症: 子宮筋腫や子宮内膜症などの婦人科疾患を合併している場合、前置胎盤の発生率が高くなることがあります。
(6. Uterine Fibroids or Endometriosis: The incidence of placenta previa may increase when gynecological conditions such as uterine fibroids or endometriosis are present.)

Evaluation

Score: 6
1. Strengths
• Provides many risk factors
• Includes complications and diagnostic 

info

2. Weaknesses
• Incorrect definition
• includes questionable risk factors (e.g., 

fetal size difference, preeclampsia)

Score: 8
1. Strengths
• Correct and concise definition
• Covers main risk factors

2. Weaknesses
• Slightly less comprehensive
• Includes one questionable factor 

(“narrow cervix”)

LGCD’s answer is better overall: it provides an accurate 
definition and the most relevant risk factors without major 
errors. LAM’s answer contains useful context but suffers 
from definition errors and questionable associations.

Figure 7: Direct comparison of LAM and LGCD outputs for a Japanese medical QA example
(elyza/Llama-3-ELYZA-JP-8B) with evaluation
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