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ABSTRACT

Large language models (LLMs) adapted to specific languages through contin-
ual pretraining or instruction tuning often suffer from catastrophic forgetting,
which can lead to factual inaccuracies. This issue is particularly pronounced in
multilingual settings, where adaptation may override general world knowledge
with language-specific patterns. We propose LoRA-Gated Contrastive Decod-
ing (LGCD), a training-free inference-time decoding framework that improves
factuality in language-adapted LLMs by leveraging knowledge from the origi-
nal pretrained model. LGCD operates by (1) extracting factual representations
from Feed-Forward Network (FFN) layers via LoRA-based decomposition, ap-
proximating pretrained knowledge, (2) dynamically gating decoding based on
token-level confidence, and (3) applying contrastive decoding with Top-K mask-
ing to revise uncertain predictions by referencing the approximated representa-
tion of pretrained knowledge. LGCD requires no additional training or access
to the original pretraining data. Extensive experiments with LGCD on multilin-
gual multiple-choice and long-form QA tasks across nine languages demonstrate
its strong effectiveness in mitigating hallucinations and enhancing factual accu-
racy in language-adapted models. These results further indicate that pretrained
knowledge can be strategically reintroduced during decoding to promote factual
multilingual generation.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities across a wide range of
natural language tasks. A common practice to enhance their performance for specific languages or
domains involves continual pretraining (CPT) or instruction fine-tuning (Gururangan et al., 2020;
Zhang et al., 2024} Huang et al.| 2023)). While these adaptation techniques often inject new knowl-
edge and improve task-specific abilities in the target language or domain, they frequently suffer from
a critical drawback: catastrophic forgetting (Luo et al.,|2023;|OLMo et al., 2024; |L1 & Lee, [2024;
Li et al.| 2024} [Kalajdzievski, [2024)). This phenomenon leads to the degradation of general knowl-
edge acquired during the initial pretraining phase, often resulting in increased factual inaccuracies
or hallucinations (Ji et al., 2023 |Luo et al.| 2023} |L1 & Leel [2024)). Empirical studies confirm that
LLMs undergoing CPT or instruction tuning can lose previously learned knowledge, sometimes pri-
oritizing stylistic alignment or fluency in the target language over the factual consistency inherent in
the original model (Luo et al., [2023)).

Mitigating catastrophic forgetting during adaptation is challenging. Ideally, one would retrain the
model using a mixture of the original pretraining data and the new adaptation data. However, the
original pretraining datasets for many state-of-the-art LLMs (e.g., LLaMA, Qwen) are generally
undisclosed and inaccessible, though efforts towards fully open models like OLMo exist (OLMo
et al} [2024). Furthermore, retraining from scratch or even extensive CPT demands prohibitive
computational resources and time. Although various techniques aim to reduce forgetting during
the training process (Gu et al., 2024} Huang et al.l |2024; He et al.| [2024; |Wang et al., |2023b; Vo
et al.| [2024), they remain limited in preserving general knowledge, especially when adapting to
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new domains or languages. This limitation motivates the exploration of alternative approaches that
can enhance the factuality of adapted LLMs without requiring further training or access to original
pretraining data.

Recent research has highlighted the role of Feed-Forward Network (FFN) layers within the Trans-
former architecture as key-value memories, crucial for storing factual knowledge acquired during
pretraining (Geva et al.| 20205 |Qiu et al., [2024; Dai et al.|, [2023)). Inspired by this understanding, we
hypothesize that the knowledge implicitly stored within the FFN weights of the original pretrained
model can be explicitly leveraged to support the generation process of an adapted (e.g., continually
pretrained or instruction-tuned) model at inference time, thereby improving its factual accuracy.

In this work, we propose LoRA-Gated Contrastive Decoding (LGCD), a novel training-free de-
coding method designed to enhance the factuality of LLMs, particularly those adapted for specific
languages or domains. LGCD addresses the inherent trade-off between domain-specific fluency and
general factual knowledge by dynamically switching between decoding strategies based on token-
level confidence and applying contrastive decoding when necessary.

The framework of LGCD is characterized by three key components: First, it performs LoRA-based
factual knowledge extraction from FFN layers and obtains a lightweight approximation of the pre-
trained model (PTM), by computing parameter differences between pretrained and adapted models
and decomposing them using Singular Value Decomposition (SVD) to recover factual knowledge in
FFN layers without modifying the language-adapted model (LAM). Second, it employs confidence-
based dynamic gating that measures token-level confidence from the LAM and determines when to
trigger factual knowledge injection, ensuring that domain fluency is preserved when the model is
confident while leveraging pretrained knowledge when uncertainty arises. Third, it implements con-
trastive decoding with Top-K masking, which computes contrastive logits by subtracting the LAM’s
logits from the logits of the approximated PTM (aPTM), and applies this correction only to the
top-K candidates predicted by the LAM. This selective adjustment injects factual knowledge while
minimizing disruption to fluent generation.

We conduct a comprehensive evaluation of LGCD across nine diverse languages, highlighting
its broad applicability in multilingual settings. Our experiments demonstrate LGCD’s effective-
ness across multiple evaluation settings, including multilingual multiple-choice benchmarks such
as Global MMLU (Singh et al.| |2024) and multilingual TruthfulQA (Dac Lai et al., 2023) for
domain-specific and general factual knowledge, long-form generation benchmarks such as Multi-
FAct (Shafayat et al., 2024) for factual consistency, and long-form medical QA tasks for precise
knowledge grounding in high-stakes domains.

Our contributions are threefold:

1. We propose LGCD, a novel training-free, decoding-time framework to mitigate hallucina-
tion and enhance factuality in language-adapted LLMs by leveraging knowledge from the
original pretrained model through dynamic model switching and contrastive decoding.

2. We introduce specific techniques within LGCD, including LoRA-based knowledge extrac-
tion from FFN layers, confidence-based dynamic gating for token-level decision making,
and contrastive decoding with Top-K masking.

3. We provide extensive empirical evidence demonstrating LGCD’s effectiveness across mul-
tilingual multiple-choice QA and long-form generation tasks, using nine languages and
twelve models. Our approach consistently outperforms adapted models without requiring
additional training or external resources.

2 RELATED WORK

2.1 HALLUCINATION MITIGATION IN LLM

Addressing hallucinations in LLMs involves various strategies, including improvements in training
data and model architecture, fact-checking mechanisms, and integrating external knowledge sources
like retrieval systems or knowledge graphs (Izacard & Grave, 2020; Wang et al., 2023a). While
effective, the aforementioned external methods often introduce complexity or dependencies. Our
proposed method, LGCD, focuses on an internal, decoding-time approach to mitigate hallucination
without requiring external models or significant architectural changes.
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Figure 1: Overview of the LGCD framework.

2.2 DECODING STRATEGIES FOR FACTUALITY

Factual consistency in LLM decoding is often improved by tweaking output probabilities. For in-
stance, Contrastive search (Su et al., 2022)) combats repetition by picking tokens that are both likely
and semantically distinct from prior context. Similarly, DoLa (Chuang et al.,[2024) leverages deeper
layers by contrasting logits across different internal layers of the same model. These methods re-
shape probability distributions based on disagreements or differences within the model or its vari-
ants. Our LGCD takes a different approach. Instead of merely contrasting probabilities, LGCD
explicitly extracts and integrates factual knowledge from FFN layers of the original PTM-a pro-
cess that is performed only once. This knowledge then directly influences the LAM’s logits via a
confidence-gated mechanism, offering a training-free solution to inject specific factual signals and
enhance accuracy in adapted LLMs without further access to the PTM during inference.

2.3 KNOWLEDGE IN FEED-FORWARD NETWORKS

Previous research has shown that FFN layers within transformer models serve as key repositories
for factual and world knowledge, often interpreted as key-value memories (Geva et al., [2020; |Qiu
et al.,2024; |Dai et al.| |2023)). This perspective suggests that structured knowledge is encoded within
their weights. Our LGCD leverages this by explicitly recovering factual knowledge from FFN lay-
ers of the original PTM. This is vital because catastrophic forgetting can degrade such knowledge
in LAMs. LGCD achieves this through LoRA-based factual knowledge extraction: it calculates
parameter differences between the PTM and LAM, then uses SVD to pinpoint and recover PTM’s
factual knowledge without altering the LAM. This precisely extracted knowledge is then dynami-
cally injected during decoding, central to LGCD’s factuality enhancement.

3 METHODOLOGY

This section introduces LGCD, a training-free decoding framework that combines the strengths of
LAM and PTM. LGCD addresses the inherent trade-off between domain-specific fluency and gen-
eral factual knowledge by dynamically switching between models based on token-level confidence
and applying contrastive decoding when necessary. Figure[T]illustrates our framework.

The core motivation behind LGCD is grounded in the observation that FEN layers in Transformer
architectures act as key-value neural memories for factual knowledge (Geva et al., [2020; |Dai et al.,
2023 |Q1u et al., 2024). During CPT or instruction fine-tuning, this knowledge can be degraded due
to catastrophic forgetting. LGCD mitigates this by explicitly recovering factual knowledge from the
pretrained model’s FFN layers and dynamically injecting it during decoding.

The LGCD framework consists of three components: (1) LoRA-based factual knowledge extraction
from FEN layers, (2) confidence-based dynamic gating, and (3) contrastive decoding with Top-K
masking.
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3.1 LORA-BASED KNOWLEDGE EXTRACTION FROM FFN LAYERS

To capture factual knowledge preserved in the pretrained model, LGCD performs LoRA extrac-
tion from all FFN layers. Specifically, for each FFN layer ¢, we compute the parameter difference
between the pretrained model Mpry and the language-adapted model My aum:

AW, = WP™ _ pykav (1)
We then apply SVD:
AW, = U2, V," (2)
LoRA matrices are constructed by retaining the top-r singular components:
A =Uyg[sy: 7] -/ Ze[: 7] 3)

By = /Sl Vi [ 7, )

The pretrained FFN weight is approximated as:

WaPTM WLAM 4 AZBE (5)
Notably, this process is performed only once in the entire framework and allows LGCD to retrieve
factual knowledge from the PTM without modifying the LAM directly or incurring additional mem-
ory overhead from deploying separate models. It is applied only to the FFN layers, leaving all other
components of the LAM unchanged. To empirically validate this design decision, we compare dif-
ferent layer-wise LoRA approximation strategies in Appendix and find that targeting only FFN
layers yields the best performance.

3.2 CONFIDENCE-BASED DYNAMIC GATING

At each decoding step ¢, LGCD first queries the LAM to compute logits I-AM. The token-level
confidence is measured as the maximum probability over the vocabulary:

c; = max (softmax(lLAM)) (6)

A fixed confidence threshold 7 determines the decision. 7 in our setting is determined based on
language-specific data availability, as detailed in Appendix[A.§]

e If ¢; > 7 — Decode with LAM.

e If ¢; < 7 — Contrastive decode with the aPTM.

This dynamic gating balances the fluency of the LAM with the factual reliability of the aPTM.

3.3 CONTRASTIVE DECODING WITH TOP-K MASKING AND LAYER-WISE CONTRAST

When contrastive decoding is triggered, LGCD first computes logits of aPTM 13P™ approximated
with LoRA:
LM = 1AM 4 LoRA(AW,, hyAM) (7

To prevent contrastive decoding from selecting tokens with low probabilities across | both models,
LGCD applies Top-K masking, considering only the K most probable tokens from 114

T = TopK(I;*M, K) (8)
The contrastive logits are computed as:

e . JLAM PTM,; LAM[;

lgomrast[i] — {le € TK . 1 [ ] + 6 (lzt1 [7’] — Q- lt [Z]) (9)
otherwise: —o0

where f3 is a hyperparameter controlling the overall contrastive weighting and @ € [0, 1] controls

the degree of down-weighting applied to the LAM logits within the correction term.

This formulation goes beyond standard contrastive decoding by introducing a correction term
(12PTM;] — o - 1EAMi]) that prioritizes the aPTM’s factual knowledge while gently penalizing po-
tentially overconfident LAM predictions. By tuning «, we modulate the LAM’s influence without
abruptly overriding it. Hyperparameter details are provided in Appendix[A.4] and for completeness
we include the full decoding algorithm and pseudocode in Appendix
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4 EXPERIMENTAL SETUP

We evaluate our model on two task types—multiple-choice QA and long-form generation—across
nine target languages: Chinese (zh), German (de), Portuguese (pt), Arabic (ar), Persian (fa),
Japanese (ja), Korean (ko), Indonesian (id), and Swahili (sw). Unless otherwise noted, all exper-
iments are conducted using 12 models.

4.1 MULTIPLE-CHOICE QA

Global MMLU. To assess multilingual factual understanding, we use Global MMLU (Singh et al.
2024), a culturally-aware extension of MMLU with 14K curated questions spanning 57 subjects
in 42 languages. We report accuracy per language in zero- and five-shot settings for nine target
langueages.

Multilingual TruthfulQA. We use the MC1 version of Truthful QA (Dac Lai et al., 2023} |Lin et al.}
2021) across 31 languages. The number of questions per language varies, with most languages
containing at least 700 items. We evaluate six models in zero-shot and five-shot settings.

4.2 LONG-FORM GENERATION

Medical QA. For high-stakes generative evaluation, we use multilingual medical QA datasets with
expert-validated answers (Appendix [A.3). Evaluation includes:

* LLM-as-a-Judge: GPT-40 performs pairwise comparisons with baselines (Li et al.,[2023).

* Human Evaluation: For 12 LAMs, we sample 20 questions each (240 total). Outputs
are translated to English and rated by three experts on fluency, coherence, specificity, and
factuality. Final labels (Win/Tie/Lose) are based on majority vote.

Multi-FAct. We evaluate factuality with Multi-FAct (Shafayat et al.l [2024)), which uses FActScore
(Min et al.| [2023)) to decompose generations into atomic facts and verify them against trusted sources
in multilingual settings.

4.3 MODELS & BASELINES

Mo'(lle[l)sl. L\XT\/I e\galuath:_I 12 . pu%!ldy Lang. Model CPT Instr. tuning
available S Irom Huggin ace
. g gemng ? zh shenzhi-wang/Llama3-8B-Chinese-Chat v v
each specialized for one of the 9 zh hfi/llama-3-chinese-8b-instruct v v
target languages (Zh, de, pt, ar, fa, de DiscoResearch/Llama3-DiscoLeo-Instruct-8B-v0.1 v v
. . pt rhaymison/gemma-portuguese-luana-2b X '
Ja ko, id, SW) All ‘models are ar  MohamedRashad/Arabic-Orpo-Llama-3-8B-Instruct X v
based on multilingual LLM backbones fa PartAl/Dorna-Llama3-8B-Instruct X v
(mainly LLaMA-3 variants) and fur- ja  tokyotech-llm/Llama-3-Swallow-8B-Instruct-v0.1 ~ v* v
th dapted via CPT. instructi t ja elyza/Llama-3-ELYZA-JP-8B v v
ther adapted via » Instruction tun- ko KISTI-KONI/KONI-Llama3-8B-Instruct-20240729 v/ v
ing, or both. Model selection was ko MLP-KTLim/llama-3-Korean-Bllossom-8B v v
uided by language specificit ub- id  GoToCompany/llama3-8b-cpt-sahabatai-v1-instruct v v
g y guag P Y. P SW Jacaranda/Ulizal.lama3 v '

lic availability, and community en-
gagement (e.g., download count, ac-
tive maintenance). Table [T summa-
rizes model specifications.

Table 1: LAMs used in our experiments. “v"” indicates
application of CPT and/or instruction tuning.

Baselines. We compare LGCD against Nucleus Sampling (NS), DoLa (Chuang et al.|[2024), TIES
(Yadav et al.,2023)), and SLERP (Shoemake, 1985ﬂ This set covers widely used decoding methods
and model-merging approaches, enabling a comprehensive assessment of LGCD.

5 EXPERIMENTAL RESULTS

We evaluate LGCD on two multilingual multiple-choice QA benchmarks—Global MMLU and Mul-
tilingual TruthfulQA—under zero-shot and five-shot settings. Comparisons include decoding-time
baselines (DoLa), model merging methods (TIES, SLERP), and standard nucleus sampling (NS) for
both pretrained (PTM) and language-adapted models (LAM).

'"https://github.com/Digitous/LLM-SLERP-Merge
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0-shot | 5-shot

Lang. Model PTM LAM DolLa TIES SLERP LGCD|PTM LAM DoLa TIES SLERP LGCD
zh hfl/llama-3-chinese-8b-instruct 0.494 0466 0467 0.502 0.494 0.519]0.532  0.515 0514 0.536 0.532 0.543
zh shenzhi-wang/Llama3-8B-Chinese-Chat 0494  0.500 0.500 0.498 0.494 0.502|0.532 0543 0.542 0.538 0.532 0.543
de  DiscoResearch/Llama3-DiscoLeo-Instruct-8B-v0.1 ~ 0.514 0486 0.492  0.540 0.514 0.546|0.558  0.548  0.550 0.566 0.584 0.574
pt rhaymison/gemma-portuguese-luana-2b 0353 0316 0278 0.357 0.353 0.357|0.325 0.316  0.298  0.330 0.325 0.324
ar MohamedRashad/Arabic-Orpo-Llama-3-8B-Instruct ~ 0.425  0.430  0.427 0425 0.441 0.465|0.467 0471 0473 0467 0.483 0.481
fa PartAl/Dorna-Llama3-8B-Instruct 0424 0423 0424 0423 0.424 0.423|0.465 0.466 0.468 0.466 0.465 0.466
ja  tokyotech-llm/Llama-3-Swallow-8B-Instruct-v0.1 0481 0478 0479 0.462 0.456 0.507 | 0.481 0.527 0.527 0.525 0.481 0.525
ja elyza/Llama-3-ELYZA-JP-8B 0.481 0473 0473  0.466 0.456 0.509|0.481 0.503 0.503 0.513 0.481 0.528
ko  KISTI-KONI/KONI-Llama3-8B-Instruct-20240729 ~ 0.437  0.445  0.459  0.445 0.437 0.490 | 0.481 0.495 0.495 0.509 0.481 0.511
ko MLP-KTLim/llama-3-Korean-Bllossom-8B 0437 0376 0.378 0435 0.437 0.479|0.481 0447 0448 0485 0.481 0.501
id  GoToCompany/llama3-8b-cpt-sahabatai-v1-instruct ~ 0.476  0.530  0.531  0.486 0.476 0.527/0.529 0.576  0.577 0.530 0.568 0.566
sW Jacaranda/UlizaLlama3 0359 0362 0363 0.355 0.359 0.399|0.388 0.367 0372 0.390 0.432 0.409
Average 0448 0441 0439 0.449 0.445 0.477]0477 0481 0481 0488 0.487 0.498

Table 2: Evaluation accuracy of 12 models on Global MMLU benchmark under 0-shot and 5-shot
settings using various decoding and merging strategies. PTM refers to the performance of the pre-
trained Model, while LAM denotes the language-adapted model, both evaluated using Nucleus Sam-
pling (NS). DoLa represents the results when applying the DoLa decoding strategy to the LAM.

0-shot | 5-shot

Lang. Model PTM LAM DolLa TIES SLERP LGCD ‘ PTM LAM DoLa TIES SLERP LGCD
zh hfl/llama-3-chinese-8b-instruct 0.349 0353 0312 0352 0.335 0.35210.379 0390 0392 0.381 0.363 0.471
zh shenzhi-wang/Llama3-8B-Chinese-Chat 0349 0363 0326 0.357 0.363 0.357(0.379 0391 0.360 0.387 0.400 0.484
de  DiscoResearch/Llama3-DiscoLeo-Instruct-8B-v0.1 ~ 0.317  0.343  0.320 0.325 0.330 0.382|0.367 0367 0354 0.373 0.393 0.391
pt rhaymison/gemma-portuguese-luana-2b 0272 0301 0268 0.283 0.302 0.409|0.319 0.325 0299 0322 0.321 0.431
ar  MohamedRashad/Arabic-Orpo-Llama-3-8B-Instruct ~ 0.325 0308  0.331  0.326 0.318 0.400 | 0.376  0.360  0.323  0.383 0.365 0.426
id  GoToCompany/llama3-8b-cpt-sahabatai-vI-instruct ~ 0.329  0.334 0334 0.341 0.334 0.353|0.378 0.370 0369 0.373 0.365 0.406
Average 0323 0334 0315 0331 0.330 0.3760.366  0.367  0.349 0370 0.368 0.435

Table 3: Evaluation accuracy of 6 models on multilingual TruthfulQA benchmark under O-shot and
5-shot settings using different merging and decoding strategies.

5.1 GLOBAL MMLU

Table 2] shows accuracy across 12 LAMs covering 9 languages. LGCD achieves the best average
performance in both zero-shot and five-shot settings, outperforming all decoding and merging base-
lines.

In the zero-shot setting, relative to the LAM, LGCD improves accuracy in 10 of 12 cases. Gains are
largest where the LAM lags the original PTM (Korean: +4.5-10.3 pp; German: +6.0 pp; Japanese:
+2.9-3.6 pp; Portuguese: +4.1 pp), indicating that LGCD effectively recovers knowledge lost during
adaptation.

In contrast, in the five-shot setting, LGCD continues to provide consistent improvements, especially
in high-resource languages such as Chinese and German. This indicates that LGCD not only recov-
ers forgotten knowledge but also scales robustly with richer context, effectively balancing domain
adaptation and pretrained factuality across diverse conditions.

Overall, LGCD consistently improves multilingual QA performance, showing robustness across cul-
turally diverse and knowledge-heavy questions where language adaptation typically disrupts general
knowledge.

5.2 MULTILINGUAL TRUTHFULQA

Results on Multilingual Truthful QA (Table [3) further validate LGCD’s ability to enhance factuality.
In the zero-shot setting, LGCD achieves the highest average accuracy, outperforming both decoding
and merging baselines across all evaluated languages.

LGCD demonstrates consistent improvements across all tested languages, with particularly notable
gains in Portuguese (+10.8 pp), Arabic (+9.2 pp), and German (+3.9 pp). These improvements hold
in the five-shot setting as well, where LGCD shows even larger gains, reinforcing the method’s
robustness across different prompting regimes.

These results confirm that LGCD effectively resists plausible but incorrect generations, excelling
in settings in Truthful QA that probe a model’s ability to distinguish truth from commonly held
misconceptions.
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Figure 2: Pairwise comparison results of our model vs. baselines (evaluated by GPT-40)

5.3 LONG-FORM MEDICAL QA

We further evaluate LGCD in high-stakes, long-form medical question answering tasks across 12
LAMs. Each model is tested in its target language using domain-specific medical QA datasets.
Evaluation is conducted via two complementary methods: (1) GPT-40 as an automatic judge per-
forming pairwise comparisons, and (2) expert human preference evaluations on fluency, coherence,

and factual correctness.

LLM-as-a-Judge Evaluation. Figure 2| shows GPT-40-based preference comparisons. LGCD
achieves the highest win rates in most languages, outperforming PTM, LAM, and all decoding or
merging baselines. On average, LGCD is preferred over PTM in 63.1% of cases, over LAM in
53.5%, and over DoLa (53.8%) and SLERP (51.9%), while performing competitively with TIES

(65.3%).

Human Preference Evaluation. We further as-
sess LGCD through human preference evaluation.
As shown in Figure[3] LGCD is consistently favored
across baselines, achieving higher win rates than
PTM (52.0%), DoLA (45.8%), and SLERP (45.8%).
These results reinforce LGCD’s ability to generate
fluent and factually grounded answers in complex
medical domains. Despite cross-lingual pooling, the
consistent preference trend across models suggests
that LGCD offers a robust and training-free alter-
native to improve factuality in long-form, domain-
specific generation.

Win Tie WM Lose
PTM - 52.0% 28.0%
LAM 4 41.7% 27.1%
DoLA A 45.8% 16.7%
TIES A 62.5% 16.7%
SLERP A 45.8% 16.7%
0 20 40 60 80 100

Figure 3: Human preference comparison be-
tween our model and baseline models

Contrastive Usage Analysis Figure[d]shows the proportion of tokens decoded by the LAM (blue)
and via contrastive decoding (red) as the confidence threshold 7 varies. The yellow band indicates

the threshold selected for each model.

In higher-resource languages (e.g., zh, de, pt, ar, fa), models adopt higher thresholds (typically
7 = 0.7-0.8), leading to a sharp increase in contrastive usage. This reflects the stronger performance
of the pretrained model in these languages, allowing LGCD to revise uncertain predictions more

effectively.

In contrast, for lower-resource languages (e.g., ja, ko, id, sw), LAM usage remains high even at
high thresholds. These models tend to produce overconfident outputs, possibly due to limited token
coverage during adaptation. Since the PTM is also less reliable in these settings, LGCD uses lower
thresholds to favor the LAM, which yields better results despite overconfidence.
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Figure 4: Contrastive decoding behavior in LGCD across 12 LAMs. For each model, we plot
the token-level usage ratio of the base LAM (blue) and contrastive candidate (red) as a function of
confidence threshold 7. The yellow vertical line marks the threshold selected for that model. LGCD
dynamically adjusts model usage based on token uncertainty, striking a balance between domain
alignment and factual recall.
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Figure 5: Token-level view on a Japanese medical QA example (elyza/Llama-3-ELYZA-JP-8B).
LGCD output in Japanese (top) with English alignment (bottom). Tokens highlighted in green
mark time-steps where LGCD switched on contrastive decoding; their aligned tokens in the transla-
tion are highlighted in yellow . Tokens outlined in red indicate decisive positions that steered the
continuation toward the factual answer.

To probe where LGCD’s gains come from in long- = o s
form generation, we analyze named-entity behavior 1: e ecans sty '

under a general Named Entity Recognition (NER) 3 ns s
schema and compare LGCD to the underlying LAM. 2, 1002
Further details are provided in the Appendix [A77] % g
Figure [6] summarizes two signals: (i) average num- L s0 &
ber of entities extracted per output and (ii) Jaccard 2 = 2
overlap between the entity sets from LGCD and the e T oo

LAM. Across three representative LAMs (Chinese, Models

Japanese, Indonesian), LGCD consistently produces

more entities than the LAM while the set overlap Figure 6:  Average entity count (left) and
remains low—moderate (= 1-16%). This pattern Jaccard similarity (right) between LGCD and
suggests LGCD is not merely echoing the LAM’s LAM outputs for Chinese, Japanese, and In-
choices but is adding complementary, likely fac- donesian models

tual, mentions that the LAM omits. Linking back to the Contrastive Usage Analysis, these re-
sults explain why factuality can improve even when overall contrastive usage is low—e.g., in
Japanese (elyza/Llama-3-ELYZA-JP-8B) and Indonesian (GoToCompany/llama3-8b-cpt-sahabatai-
v1-instruct).
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Lang. Model LAM LGCD A
zh hfl/llama-3-chinese-8b-instruct 0.260 0.246 —0.014
zh shenzhi-wang/Llama3-8B-Chinese-Chat 0.229 0.313  +0.084
de DiscoResearch/Llama3-DiscoLeo-Instruct-8B-v0.1 ~ 0.387 0.520  +0.133
pt rhaymison/gemma-portuguese-luana-2b 0.288 0.267 —0.021
ja tokyotech-llm/Llama-3-Swallow-8B-Instruct-v0.1 0.267 0.197  —0.070
ja elyza/Llama-3-ELYZA-JP-8B 0.298 0.302  +0.004
ko KISTI-KONI/KONI-Llama3-8B-Instruct-20240729  0.196 0.218  +0.022
ko MLP-KTLim/llama-3-Korean-Bllossom-8B 0.189 0.196  +0.007
id GoToCompany/llama3-8b-cpt-sahabatai-v1-instruct ~ 0.334 0.547 +0.212

Average 0.272 0.312  +0.040

Table 4: Comparison of Multi-FAct score between LAM and LGCD. Models with a LAM score
below 0.05 were excluded, resulting in 9 evaluated models.

Figure 5| further illustrates that LGCD intervenes only sparsely, yet the activated gates coincide with
tokens that are not only entity mentions but also those carrying decisive factual content. Despite
their small number, these targeted interventions are sufficient to steer the generation toward factual
answers. A direct comparison of LAM and LGCD outputs for the Japanese medical QA example is
provided in the Appendix [A.9]

5.4 MUuLTI-FACT

On the Multi-FAct benchmark, LGCD improves factual consistency in 6 of 9 models, with a +0.04
average gain over LAMs (Table ). Notable gains in Indonesian, German and Korean confirm
LGCD’s effectiveness in enhancing factuality for long-form generation.

5.5 THROUGHPUT

Table [3] presents the decoding speed of dif-

ferent generation strategies measured on Decoding Strategy Throughput (Token/s)
a single A100 GPU. Results are averaged Greedy search 19.21
. . Nucleus sampling 17.47
over responses to 100 questions using the Contrastive search 1187
hfl/llama-3-chinese-8b-instruct DoLa 16.81
: LGCD-0.2 14.37
mO(.iel. Ampng baselines, greedy search LGOD.0.4 1032
achieves the highest throughput (19.21 token- LGCD-0.6 10.32
s/sec), followed by nucleus sampling (17.47). LGCD-0.8 10.22

Contrastive Search is slower (11.87) due to

the similarity penalty over top-k candidates, Table 5: Average decoding throughput for each
though it runs in a single forward pass without strategy. For LGCD-7, the numeric suffix denotes
reranking. LGCD slows decoding by querying the confidence threshold 7 used in decoding.

the aPTM when the LAM lacks confidence. However, the overhead varies with the confidence
threshold 7: lower thresholds (e.g., LGCD-0.2) lead to fewer contrastive decisions and thus higher
throughput (14.37), while higher 7 (e.g., LGCD-0.8) leads to more aggressive factual intervention
and slower speed (10.22). Notably, LGCD-0.2 approaches the speed of DoLa (16.81), demonstrat-
ing that factual calibration can be achieved without substantial efficiency loss when appropriately
tuned. This tunability enables LGCD to balance quality and speed for practical deployment.

6 CONCLUSION

We present LGCD, a novel training-free method that enhances the factuality of language-adapted
LLMs by dynamically injecting pretrained knowledge during inference. By extracting factual sig-
nals from FFN layers via LoRA-based decomposition and applying contrastive decoding condi-
tioned on token-level confidence, LGCD effectively mitigates catastrophic forgetting without re-
training or access to pretraining data. Extensive multilingual experiments across multiple-choice
QA and long-form generation tasks demonstrate that LGCD consistently improves factual accuracy
over both decoding and model-merging baselines, offering a practical, scalable solution for factual-
ity preservation in domain-specialized LLMs.
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A APPENDIX

A.1 LLM USAGE DISCLOSURE
We used LLMs in the following limited ways to aid our research process:

* Writing Assistance: ChatGPT-5 was used to polish and refine writing, including grammar
correction, translation for clarity, and I£TEX table formatting support. All generated or
suggested content was carefully reviewed and edited by the authors before inclusion.

* Evaluation (LLM-as-Judge): GPT-40 was employed as an automatic evaluator for long-
form medical QA performance, and internally within the Multi-FAct benchmark, following
established “LLM-as-judge” protocols.

* Code Debugging: ChatGPT-5 was used in a supporting role to debug code. The authors
independently verified the correctness of all outputs.

The LLMs did not contribute to research ideation or the design of experiments. All final content and
claims in the paper remain the responsibility of the authors.

A.2 DECODING PROCESS

Algorithm [T| summarizes the complete LGCD procedure. At each timestep ¢, the framework eval-
uates token-level confidence c; from the LAM. When ¢; > 7, decoding proceeds with the LAM
alone using Top-K sampling. When ¢; < 7, indicating potential factual uncertainty, LGCD activates
the contrastive mechanism: (1) computing LoRA-approximated pretrained logits, (2) dynamically
gating based on token-level confidence, and (3) applying contrastive weighting within the Top-K
space. This confidence-driven approach enables LGCD to dynamically balance domain fluency and
factual accuracy without requiring model retraining, making it particularly suitable for scenarios
where language adaptation may compromise general knowledge.

Algorithm 1 LoRA-Gated Contrastive Decoding (LGCD)

Require: Language-Adapted Model Mam, Approximated Pretrained Model Muprm (for AW,), confidence
threshold 7, Top-K size K, contrastive weighting hyperparameter 3

Ensure: Generated output sequence )

1: Initialize Y =[]
2: while Y[t] # <eos>,t=1,2,... do
3:  Compute LAM logits 1:AM
4:  Compute token-level confidence c;:
5 ¢ = max(softmax(154M))
6: if ¢c; > 7 then
7: Apply Top-K masking: Tx = TopK(Ii*™, K)
8: Select next token 7; by sampling from the masked 1M
9: else
10: Compute LoRA-approximated pretrained logits:
11: IPT™ — 1AM 1 1,0RA (AT, hEAM)
12: Apply Top-K masking: Tx = Topk(li*™, K)
13: Initialize 15" = [—o0, ..., —oc] € RYoeb=siz
14: for each token ¢ in vocabulary do
15: if i € Tk then
16: Compute contrastive logit:
17: lct:omrnst[i] — lI{AM[’L] + ﬁ . (lezPTM [2}
18: —0.1 - 17*[i])
19: else
20: 15" 3] = —o0
21: end if
22: end for
23: Select next token g; by sampling from 13°""
24:  endif

25:  Append y; to output sequence Y
26: end while
27: return )
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A.3 LORA-BASED PTM APPROXIMATION: FFN vs QV vs ALL-LAYER COMPARISON

LGCD relies on approximating the PTM by applying LoRA-based updates to the LAM, using low-
rank matrices derived from the difference between PTM and LAM parameters. In our primary
design, this approximation targets only the FFN layers, based on prior research showing that FFNs
encode core factual knowledge in LLMs (Geva et al., 2020; |Q1u et al.| 2024} Dai et al., 2023)).

To assess the importance of this design choice, we compare three strategies for selecting which
layers to approximate via LoORA during the offline distillation step:

* QV-only: Apply LoRA decomposition only to the attention projection matrices (Q, V).
* FFN-only: Apply LoRA only to FFN layers (our default).
» All Layers: Apply LoRA to both FFN and attention projection layers.

Table[6]shows the performance of LGCD using each variant on the Global MMLU benchmark under
the zero-shot setting. Results show that FFN-only approximation consistently achieves the best or
comparable performance, while QV-only performs worse on nearly all models. Approximating all
layers introduces marginal gains in a few cases but often results in unstable or degraded performance,
suggesting that unnecessary modification of attention layers may introduce noise. These findings
empirically validate our FFN-only design as both effective and efficient for factuality-oriented ap-
proximation of PTMs.

Lang. Model QV-only FFN-only All Layers
zh hfl/llama-3-chinese-8b-instruct 0.485 0.519 0.520
zh shenzhi-wang/Llama3-8B-Chinese-Chat 0.500 0.502 0.503
de DiscoResearch/Llama3-DiscoLeo-Instruct-8B-v0.1 0.520 0.546 0.544
pt rhaymison/gemma-portuguese-luana-2b 0.330 0.357 0.340
ar MohamedRashad/Arabic-Orpo-Llama-3-8B-Instruct 0.460 0.465 0.460
fa PartAl/Dorna-Llama3-8B-Instruct 0.423 0.423 0.423
ja tokyotech-llm/Llama-3-Swallow-8B-Instruct-v0.1 0.499 0.507 0.503
ja elyza/Llama-3-ELYZA-JP-8B 0.499 0.509 0.509
ko KISTI-KONI/KONI-Llama3-8B-Instruct-20240729 0.484 0.490 0.484
ko MLP-KTLim/llama-3-Korean-Bllossom-8B 0.471 0.479 0.461
id GoToCompany/llama3-8b-cpt-sahabatai-v1-instruct 0.533 0.527 0.528
SW Jacaranda/Ulizal.lama3 0.375 0.399 0.395
Average 0.465 0.477 0.472

Table 6: Ablation study on LoRA-based PTM approximation: comparing factual accuracy on Global
MMLU (0-shot) when contrastive decoding uses knowledge reconstructed from different layer sub-
sets.

A.4 CONFIGURATIONS FOR LGCD

LGCD is configured with task-specific decoding strategies to address the differing demands of
multiple-choice QA and long-form QA. While both settings use the same LoRA-based decom-
position applied to all FEN layers with a fixed rank of 32, the confidence threshold and usage of
contrastive decoding vary by task.

For multiple-choice QA, we use a fixed confidence threshold of 7 = 0.9 across all languages. This
high threshold leads to frequent activation of contrastive decoding, ensuring that the model does not
rely solely on the LAM but actively considers both the LAM and the PTM when scoring candidate
answers. In this setup, LGCD functions not merely as a fallback for low-confidence predictions,
but as a mechanism to integrate knowledge from both models during answer selection, enhancing
factual reliability without requiring additional training. Decoding uses top-k sampling (k = 100)
with temperature 0.7 and top-p = 0.9, and all contrastive updates are scaled with 5 = 1.0.

For long-form QA, the decoding configuration remains identical in terms of sampling and con-
trastive scaling, but the confidence threshold 7 is language-specific, calibrated according to resource
availability (see Appendix [A.8)). This allows LGCD to adaptively determine when to apply con-
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trastive decoding based on the reliability of the LAM for each language—more frequently for low-
resource languages and conservatively for high-resource ones.

Component Multiple-Choice QA°  Long-Form QA
Temperature 0.7 0.7

Top-k 100 100

Top-p 0.9 0.9
Contrastive 3 1.0 1.0
Contrastive « 0.1 0.1

LoRA (Rank / Scope) 32/ All FFN layers 32 / All FFN layers
Confidence 7 Fixed (0.9) Language-specific
Contrastive Use Joint scoring Factual correction

Table 7: LGCD decoding configurations for multiple-choice vs. long-form QA.

A.5 EVALUATION DATASETS FOR MULTILINGUAL MEDICAL QUESTION ANSWERING

This appendix provides a detailed account of the datasets employed to evaluate the multilingual
medical question answering capabilities of the models discussed in this study. We have curated a
collection of open-ended medical QA datasets across various languages, drawing from both estab-
lished benchmarks and language-specific resources.

Our evaluation utilizes open-ended medical question answering data. For several languages,
the Healthcare QA task from the AIR-Bench 24.05 benchmark (https://github.com/
AIR-Bench/AIR-Bench) serves as the primary data source. This task comprises questions
within the medical domain designed to assess a model’s ability to provide informative responses.
Specifically, the original Healthcare QA data from AIR-Bench was directly used for evaluation in
Arabic and German.

For a broader linguistic evaluation where native high-quality long-form medical QA datasets were
not readily available, we constructed evaluation sets by translating the English version of the Health-
care QA task from AIR-Bench. These translations were systematically performed using Google
Translate. This methodology was applied to generate the evaluation datasets for Persian, Indone-
sian, Japanese, Portuguese, and Swahili. This approach enables a comparative analysis based on a
consistent source structure across these languages, although with potential translation artifacts.

In addition to the AIR-Bench based datasets, we incorporated independent, language-specific medi-
cal QA datasets for Korean and Chinese:

e Korean: We used the ChuGyouk/GenMedGPT-5k-ko dataset (https://
huggingface.co/datasets/ChuGyouk/GenMedGPT-5k-ko) for long-form
medical QA in Korean. This dataset, containing approximately 5,000 question-answer
pairs, is a Korean translation, performed using DeepL, of medical QA data sourced from
https://github.com/KentOn-Li/ChatDoctor.

e Chinese: For Chinese medical QA, we utilize the cMedQA2 dataset (https://
github.com/zhangsheng93/cMedQA2). This dataset is a dedicated resource for
medical QA in Chinese, comprising a collection of questions and corresponding expert
answers within the medical domain.

A.6 BASELINE CONFIGURATION DETAILS

We compare LGCD against both decoding-based and model-merging baselines. All decoding strate-
gies use the same chat template with max_new_tokens = 2048.

DECODING-BASED BASELINES

We evaluate five decoding strategies: greedy decoding (GS), contrastive search (CS), nucleus sam-
pling (NS), and DoLa. All hyperparameters follow either the original paper or Hugging Face imple-
mentation standards.
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In particular, DoLa adopts a task-sensitive contrastive scheme: it uses higher transformer layers for
multiple-choice QA and lower layers for long-form generation, following prior findings on factual
calibration via depth selection.

Method Hyperparameters

GS Hugging Face default (greedy decoding)
CS penalty_alpha = 0.6,top .k = 4
NS do_sample = True, temperature = 0.7,topp = 0.9

DolLa do_sample = False
dola_layers = "high" (Multiple-Choice QA)
dola_layers = "low" (Long-Form QA)

Table 8: Decoding hyperparameter settings for baseline methods.

MODEL-MERGING BASELINES

We further compare LGCD with two weight-space integration baselines—SLERP and
TIES—implemented using the mergekit framework. Both methods perform symmetric merg-
ing between the PTM and the LAM with the following common settings:

* Merge ratio: 0.5 (LAM) : 0.5 (PTM)
* Merge range: all transformer layers
* Data type: bfloatl6

* Base model: LAM

* Other parameters: mergekit defaults

A.7 NER-BASED FACTUALITY PROBE

NER extraction. We measure entity-level differences between LGCD and the baseline LAM by
applying a general-purpose NER extractor to every generated output. Specifically, we use GPT-40
as the extractor. The schema is based on coarse-grained categories commonly used in NER (e.g.,
PERSON, ORGANIZATION, LOCATION, DATE, NUMBER), and we extended it with DISEASE to
capture domain-relevant mentions. In total, we use 13 categories. Each entity is returned with its
surface form, category, and character offset.

Comparison metrics. For each output pair, we form entity sets Fygcp and Epav. We compute

Jaccard similarity % We also track absolute entity counts per output. This setup allows

us to test whether factuality gains from LGCD are reflected in increased coverage or correction of
entity mentions beyond those produced by the base LAM.

A.8 LANGUAGE-SPECIFIC CONFIDENCE THRESHOLDS BASED ON DATA AVAILABILITY

Our decoding framework dynamically balances contributions between a language-adapted model
and a pretrained multilingual backbone based on a token-level confidence threshold. When the
model’s token-level confidence falls below the threshold, we incorporate contrastive logits from the
pretrained model to supplement or correct uncertain predictions.

Given that the quality and extent of training for language-adapted models are often opaque, espe-
cially in multilingual settings, we estimate data availability using the OSCAR 22.01 corpus Caswell
et al.| (2021)); |Abadji et al.| (2022); |Abadji et al.| (2021)) as a public proxy for the quantity of avail-
able web-scale text per language. Languages are categorized into three tiers—High, Medium, and
Low—based on word count.

We assign lower thresholds (e.g., 0.1) to low-resource languages such as Korean (ko), Indonesian
(id), and Swahili (sw), allowing the pretrained model’s generalized knowledge to exert greater in-
fluence. Conversely, for high-resource languages like German (de) and Chinese (zh), which have
abundant data, we set a higher threshold (e.g., 0.8), favoring the language-specific model. Medium-
resource languages such as Japanese (ja) and Persian (fa) are assigned intermediate values (e.g.,
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0.4). This approach ensures informed integration of pretrained knowledge proportional to resource
availability.

Category Languages (ISO code) Word Count

High (> 2B) German (de) 46.8B
Chinese (zh) 23.1B
Portuguese (pt) 18.4B

Medium (0.5-2B)  Persian (fa) 6.4B
Arabic (ar) 6.1B
Japanese (ja) 5.6B

Low (< 0.5B) Korean (ko) 3.9B
Indonesian (id) 2.0B
Swahili (sw) ~7MB

Table 9: Language data categorization based on the public OSCAR 22.01 corpus.

A.9 DIRECT COMPARISON OF LAM AND LGCD OUTPUTS

Q> HBRENEDL S BBACEILRET ZONHATILSL, 9
X Evaluation
(Please tell me under what circumstances placenta previa primarily occurs.)
LAM> [ i le BEAFEOCFERICHET 20TEEL, FEEICHETIREEEL IS, ELUTOLSBBEICREST I LPBY £, Score: 6
1. r—.iﬁ“?}]gﬁn’r’mﬁﬁgﬁm 3EMULOIIRTRIBREO Y R/ 1 BEY £7, 1. Strengths
(Advanced matornal age in primigravida or multipara: The risk of placenta provia increases in prognancios at ago 35 or older.) « Provides many risk factors
2. RN MFP=0F 4 & SRIEROBA, MEREORERHNB A5 EAMONTOET, « Includes complications and diagnostic
(Multiple pregnancies: The incidence of placenta previa is known to be higher in multiple pregnancies, such as twins or triplets.) info
3. fIEHEVIR: sfEFEDHOBE, MERBORERZLSTLD I LARETNTLET,
p previahas )
4. ZRRROKE S DE: yﬁ“Emkg CIS ﬁb‘@éfﬁA\ HBRBORERIBAZZLABY ET, 2. Weaknesses
) * Incorrect definition
5 SERAMNEE BT nia&ﬁmrrﬂméAw U TG B MR Re e S € 5D o L Mu ShTuET, « includes questionable risk factors (.2,
presel ) §
s ?%ﬁn’»ﬁ«ﬂ?%mﬁr ?zmg«a?gm%ra EOMAREEEEH L TLEHA, guﬁ%ﬂgm%izﬂg (HBZEHRBY £, fetal size difference, preeclampsia)
(6. Uterine Fibroids y )
LooD> MMM, BEHTEOUDCHMIRICHEL TLESREEHLET. UTOLSABEKL, BERBAETEESZCEMMORTUET. |[ goorerg
uterus. | he following,)
1 asr;uummgmﬁA BRI DA ) 25 e £ 1. Strengths -
e « Correctand concise definition
z SEHHR: RFPE0F AL, SHHROBE, MERBOREY RS 1J< KBEBTEHMLATLET, * Covers main risk factors
(2. Multple gestation: In twin, triplet,or other multiple pregnancies, the risk of placenta previa s known to be higher.)
3 HEOHETOFEM: HEOHETHENME L TLAIBE, HERBIRET Y R/ ABES T LHFMSATLET, 2. Weaknesses
prior birth, is known to be higher.) « Slightly less comprehensive

@
4. FEOOKE: FEALRVBE, ﬂ“ﬁéﬁ‘%s E! L EVIBICHELTLES CepHBY £F, « Includes one questionable factor

(“narrow cervix”)

@ It
5. 3£ D HET ORI BRE: ﬁﬁ@@&&‘(‘ﬁﬁﬁﬂéﬂ%f‘ﬁ: SfigE, ROUETHNEBRBEINRES PRI/ AB/ALIIEHMONTLET,

[ ol birth: If the risk ) LGCD's answer is better overalL: it provides an accurate

MED &SI, MBRENECRETLZLAMONTWES A, MBRERENGEETY, HENCHERODRPRET, B REBOMEE Gz kL

BEL. HEBEI DAL, SENA S OEDANENTHhE T, arors,LAM s answar contains usefulcontext Eut uffars
i g labor, ted,

h )

Figure 7: Direct comparison of LAM and LGCD outputs for a Japanese medical QA example
(elyza/Llama-3-ELYZA-JP-8B) with evaluation
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