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ABSTRACT

We present GARLIC, a representation learning approach for Euclidean
approximate nearest neighbor (ANN) search in high dimensions. Existing
partitions tend to rely on isotropic cells, fixed global resolution, or balanced
constraints, which fragment dense regions and merge unrelated points in
sparse ones, thereby increasing the candidate count when probing only a
few cells. Our method instead partitions R into anisotropic Gaussian cells
whose shapes align with local geometry and sizes adapt to data density.
Information-theoretic objectives balance coverage, overlap, and geometric
alignment, while split/clone refinement introduces Gaussians only where
needed. At query time, Mahalanobis distance selects relevant cells and
localized quantization prunes candidates. This yields partitions that reduce
cross-cell neighbor splits and candidate counts under small probe budgets,
while remaining robust even when trained on only a small fraction of the
dataset. Overall, GARLIC introduces a geometry-aware space-partitioning
paradigm that combines information-theoretic objectives with adaptive den-
sity refinement, offering competitive recall—efficiency trade-offs for Euclidean
ANN search.

1 INTRODUCTION

Let X = {z;}7, C R? be a finite point set, ¢ € R? a query, and g : R? x RY — Rq
the Euclidean distance. For an integer k > 1, the exact k-Nearest Neighbor Search (NNS)
problem returns the k closest points Ni(q) C X. Its approximate variant, k-ANN, relaxes
this by requiring Ax(q) € X, [Ax(q)| = k, such that max,ca,(q) de(q,a) < cég(q, x(k)(q)),
for some approximation factor ¢ > 1, where x(;)(¢) denotes the k-th true neighbor of . We
restrict attention to Euclidean spaces of hundreds of dimensions, and to indices defined by
partitions of R? into cells, where a query inspects only a few cells and re-ranks the resulting
candidates. Nearest neighbor search in this setting is a canonical problem of high-dimensional
geometry and algorithms, with consequences across information retrieval, computer vision,
robotics, and data analysis (Lowe} |2004; |Cai et all [2021; |Shakhnarovich et al.| |2008; |Aumiiller
et al., 2020; |Douze et al., [2024]).

ANN algorithms attempt to reduce cost in two independent ways. Sketch-based tech-
niques (Razenshteyn| 2017; Wang et al.| |2014]) attempt to compress every point into a
short-coded representation, a summary, so that approximate distances can be quickly evalu-
ated. Indezr-based methods (Gani et al 2016) pre-partition the space, and examine only a
subset of the point set, at query time. The two approaches are complementary and often
combined in practice. The focus of this work is on indexing methods, and most specifically
space-partitioning in the (Rd, 55) metric space (Aumiiller et al., [2020). The space is divided
into cells B, each storing data points, and a query touches only those stored in the cell that
contains the query point (plus a few neighbors for higher recall).

Space-partition indices are practical and efficient with their small space overhead, each cell
stores a representative, e.g., a centroid, and a list of point IDs, far less than e.g., graph indices
need (Malkov & Yashunin, [2018). Cells can be queried in parallel by different cores, read in
one-shot by GPUs, and fetched as one block (I/0 call) from the disk storage (Johnson et al.|
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2019; Douze et al.| [2024; |Jayaram Subramanya et al., 2019). These strengths hold only when
the cells are well built, whether by fixed, data-independent rules or by partitions learned
from the data. What drives performance is how cells are built. Data-independent (Andoni
& Indyk, 2008; |Andoni et al., 2018) rules fix splits a priori (e.g., random hyperplanes, simple
trees), so they build in O(|X|d) time but ignore the geometry of X, and recall degrades on
clustered or curved regions. Data-dependent schemes (e.g., k-means/IVF families (Jegou
et al., 2010), learned hashing (Wang et al., |2015)) fit cell parameters to X and usually
improve recall per number of candidates visited.

In practice, partitions often tend to be isotropic, for example Voronoi cells around k-means
centroids (Lloyd} 1982 |Arthur & Vassilvitskiil |2007)), and a single global number of cells K
is chosen. These design choices then cause predictable errors on heavy-tailed data (Clauset
et al [2009). Partition resolution, a single global number of cells K applied everywhere,
means dense regions get fragmented into many small (near-spherical) cells, while sparse
regions are covered by a few large ones (Du et al., |1999). Balanced partitions on non-uniform
data create a complementary problem: in dense zones they split true neighbors across cells,
and in sparse zones they pack unrelated points together to meet the size target (Malinen
& Franti, 2014 /Aumtller et al.l 2020). Neighborhoods are approximately Euclidean only
locally; large cells merge unrelated regions, while overly small ones fragment continuous
neighborhoods. To recover locality one must either increase K or probe (touch), many
adjacent cells (Johnson et al., |2019; [Lv et al., 2007), which raises candidate (distance) counts
and hurts low-probe regimes. This leaves a concrete gap: partitions that capture local
geometry and adapt their local resolution (effective cell size / expected cell cardinality) to
density under a principled objective that balances reconstruction fidelity against candidate
count.

Contributions. We propose GARLIC, a geometry-aware space-partition index for Eu-
clidean ANN, optimized under an information-theoretic objective that balances coverage,
overlap, and budget efficiency. Under this objective, GARLIC learns a probabilistic partition
of R? into Gaussian cells whose shape and placement align with local principal directions
and whose sizes adapt to local density, adding capacity only where needed through local
adaptive refinement. The resulting partition reduces cross-cell neighbor splits and candidate
counts under small probe budgets.

« Anisotropic, density-adaptive partition. GARLIC represents R? with Gaussian
cells that follow local geometry and adapt to density, improving within-cell neighbor
cohesion under small candidate budgets. (Section 72.3

o Information-theoretic objective. We balance coverage, overlap, and probe
efficiency via expected Mahalanobis coverage, an assignment-entropy penalty, and
geometric anchoring regularization. (Section [2.2)

o Local adaptive refinement. We add Gaussians only where needed through
split/clone operations triggered by cell size and spill ratio, avoiding a single global
resolution (one K everywhere). (Section

e Budget-centric evaluation and analysis. We report competitive performance
across multiple accuracy and distortion metrics under candidate and distance budgets
on standard Euclidean benchmarks, and provide build/query/space complexity
together with ablations that isolate each component’s contribution (Section

Appendix .

1.1 RELATED WORK

Traditional ANN Families. ANN methods fall into three main families: (i) sketching
and compression, which encode vectors into compact codes for fast distance estimation (e.g.,
product quantization (Jegou et al., [2010), optimized PQ (Ge et al., [2013), iterative quantiza-
tion (Gong et all |2012)); (ii) indez-based methods, which pre-organize the dataset to reduce
the number of points touched at query time (e.g., IVF (Jegou et al.,2010), PCA-trees (Sproull,
1991)), randomized projections and Johnson—Lindenstrauss-based embeddings (Anagnostopou
los et al.| [2018); and (iii) graph-based methods, which traverse neighborhood graphs during
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search (e.g., HNSW (Malkov & Yashunin, 2018]), Disk ANN (Jayaram Subramanya et al.,
2019)). Within indices, our work focuses on the sub-family of space-partition indices, which
balance memory efficiency with parallelizability and provide a probe-based complexity model
compatible with GPU and 10 acceleration.

Data-Independent Partitions. Data-independent indices split space according to fixed
random rules, ignoring the geometry of the dataset. A canonical example is hyperplane
LSH, which assigns points based on the sign of random projections and can be queried
more flexibly via multi-probing (Indyk & Motwanil |1998; |Lv et al.l [2007). These methods
offer theoretical guarantees and fast build times, but their isotropic and geometry-agnostic
partitions lead to poor recall on clustered or manifold-structured data. GARLIC instead
learns anisotropic, density-adaptive cells aligned with the underlying data geometry.

Data-Dependent Partitions. Classical learned indices often rely on isotropic partitions
with a fixed global number of cells. k-Means and its inverted-file variants (IVF) assign points
to centroid Voronoi cells (Lloyd} [1982; [Jegou et al., [2010), while PCA-trees split recursively
along principal components (Sproull, [1991). Scalable extensions include mini-batch k-
means (Sculleyl 2010), BIRCH, which builds a hierarchical clustering tree with compact
representations (Zhang et al., [1996), and BLISS, which incrementally refines partitions for
large datasets (Gupta et al., [2022). These methods are efficient, but their isotropic cells and
global resolution fragment dense regions and mix unrelated points in sparse ones. Neural
LSH takes a different approach by building balanced cuts of the k-NN graph and training a
classifier to extend them to R? (Dong et al., 2020). While this can outperform k-means in
some settings, the emphasis on balance rather than geometry often splits true neighbors in
dense areas and merges unrelated points in sparse areas, raising candidate counts. Gaussian
mixture models (GMMSs) capture local covariance through Mahalanobis metrics and soft
assignments (Dempster et al., [1977; |Banerjee et all 2005). These models demonstrate
the benefits of anisotropy, but they maximize likelihood rather than probe efficiency and
do not refine capacity locally. GARLIC combines the strengths of these directions by
learning anisotropic, density-adaptive partitions with local split/clone refinement under an
information-theoretic probe-budget objective, explicitly tailored to ANN retrieval.

The remainder of this work is organized as follows: Section [2] introduces the GARLIC
framework, including Gaussian parameterization, the information-theoretic optimization
objective, and adaptive refinement strategies. Section [3| presents our experimental evaluation
on standard Euclidean benchmark datasets, a set of crucial ablation studies, and GARLIC’s
limitations. Finally, conclusions are drawn in Section

2 METHOD

GARLIC uses a collection of Gaussians G = {N(u;, 3;)}i, whose means and covariances
adapt to the underlying data distribution, to partition X C R? into cells for ANN. We choose
Gaussians because their mean p and covariance X jointly encode geometry and statistics:
eigenvectors of ¥ capture local principal directions, eigenvalues control anisotropy and
effective dimensionality, and the Mahalanobis distance 63,(x, g;) = (x — ;)T 3; ' (x — ;) =
|L;*(x — p;)||3, is the canonical quadratic form associated with the covariance. Level
sets of dps correspond to x% probability contours, giving a calibrated notion of coverage.
Parameterizing 3 via its Cholesky factor yields closed-form (Section 7 differentiable
gradients while guaranteeing positive definitenes, which makes Gaussians uniquely well-suited
among partitioning primitives for end-to-end optimization, unlike boxes or zonotopes that
lack smooth probabilistic distance functions. Compared to alternatives such as Gaussian log-
likelihood, which adds normalization terms unrelated to retrieval efficiency, or KL divergence,
which compares distributions rather than points, Mahalanobis provides a direct, efficient,
and anisotropy-aware metric for both training and retrieval.

We train the Gaussians with information-theoretic objectives that balance coverage, assign-
ment confidence, and structural consistency (Section , and refine capacity only where
needed via split and clone operations, avoiding uniform or balanced partitions that frag-
ment dense regions or merge sparse ones (Dong et al., 2020; |Gong et al. [2012; |[Arthur &
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Figure 1: Overview of GARLIC. Input vectors are represented by Gaussian cells (means,
covariances) optimized with information-theoretic objectives for coverage, confidence, and
consistency. Cell density is refined adaptively via split/clone operations, and queries use
spherical quantization with Mahalanobis distance for cell selection and retrieval. Blue arrows
indicate transferring information of gradients (back-propagation) or statistics.

[Vassilvitskii, [2006; Kumar et al., 2008} |Abdullah et al., 2014} [Sproull, 1991} [McNames, 2001))
(Section [2.3). At query time, each Gaussian cell is equipped with a local hyper-spherical
quantization index to narrow candidate searches (Section, and Mahalanobis distances are
again used for cell selection and prioritized bin search (Section . This approach enables
GARLIC to adapt to data geometry while maintaining efficient retrieval, as illustrated in
Figure [T}

2.1 GAUSSIAN PARAMETERIZATION

Each Gaussian g; is defined by its mean p; € R% and covariance 3; € R4*¢, parameterized
as X; = LiLZ-T, L; € R%%4 being a lower triangular Cholesky factor of matrix ¥;, ensuring
positive definiteness (a prerequisite for valid Gaussian distributions). The means p; are
initialized using K-Means++ (Arthur & Vassilvitskii, [2007) on a subset of the training set.
Cholesky factors L; are initialized as: L; = log(d¢) - I + €, where I; € R4*? is the identity
matrix, and d¢ is the mean Euclidean distance of each p, to its three nearest neighbors. This
ensures that the initial scale of each Gaussian reflects the local data density. Perturbation
€ € R¥4 is a random lower-triangular matrix with entries €, = 20(r;) — 1 if 7 > k and 0
otherwise, where 7, ~ 4(0,0.01) and o(-) is the sigmoid function. This construction yields
diagonal-dominant L;, stabilizing optimization while allowing anisotropic covariances.

2.2  OPTIMIZATION OBJECTIVE

High-dimensional indexing requires objectives that remain stable under the curse of dimension-
ality and robust to heterogeneous feature distributions. Classical partitioning heuristics (e.g.,
balanced splits, uniform clustering) degrade in such regimes: dense regions are fragmented,
sparse regions are merged, and distance metrics lose discriminative power
(2001); |[Aumiller et al. (2020). To overcome this, we draw inspiration from self-supervised
learning methods such as VICReg Bardes et al.| (2022) and Barlow Twins [Zbontar et al|
, which employ information-theoretic objectives to increase representational capacity
without supervision. Analogously, we introduce objectives that guide Gaussians to (i) cover
the data distribution, (ii) assign points with high confidence, and (iii) remain anchored to
local structure. This replaces heuristic spatial rules with principled, differentiable criteria
suited to high-dimensional retrieval.

More specifically, we introduce a divergence-based objective that acts as a reconstruction loss,
and regularize it to prevent information explosion (i.e., uncontrolled growth and excessive
overlap of Gaussians). The divergence loss Lg;y is defined as:

1 _ *
Law = );{ (;?é% Sn(x,9:) — T) 7 (1)

where dpr(x, g:) = ||L;*(x — p;)||2 denotes the Mahalanobis distance, (-)* = max(0, -) and
7 a standard deviation threshold. It penalizes points that fall outside a Gaussian’s coverage
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radius (0ps(x4,9:) > T), encouraging Gaussians to expand and cover these points, while
points inside (da7(x;, g;) < 7) do not contribute, allowing controlled expansion but preventing
infinite growth.

Still, Gaussians can overlap, leading to redundant information and performance loss. To
surpass this issue, and mitigate fuzzy assignments of points to Gaussians, we introduce a
covariance-based regularization, which encourages each Gaussian to dominate its assigned
points. Specifically, given a point x, we define its coverage set, i.e., the set of Gaussians
that satisfy the coverage radius constraint, as M(x) = {g; € G | dp(xX,9:) < 7}. Then, we
compute the normalized soft-assignment probabilities based on Euclidean distances (dg)
as p;(x) = e“sg(x’“i)/zgjeM(x) e 9Bom)) e Vg € M(x). The covariance 1oss Leoy is
defined as:

1
Loowv =1— N ze; max p;(x) (2)

This loss encourages highly confident (low-entropy) assignments, thereby reducing ambiguity
and stabilizing optimization.

To further prevent excessive expansion of Gaussians
caused by the divergence objective and ensure that
each Gaussian aligns with its assigned points, we

introduce the anchor loss Lapnchor: : ¢ )
L . .
1 ‘- 'l " ....~
Lanenor = 7= > (1l = i3+l Lk T = S5l3) Vol i e
d|g| . . s *e
9:i€G of S
(3) e e,

where f1; and 3; = Cov(z € By,) are the empirical

mean and covariance of points assigned to Gaussian (a) Clone operation. (light red) re-
gi, and « is a hyperparameter balancing position and gion where das(x, g:) < 7; (blue) outer
shape. This loss constrains Gaussians by anchoring shell 7 < du(z,9:) < er; (gray) {z :
them closely to their local data distributions, restrain- 4 (37; gi) 2 et}; (red) mean of the new
ing uncontrolled growth from other loss terms and gaugs?n; (green)dnewtco_varlanc_e miltrix.
maintaining geometric alignment. Finally, our loss (pmp o ) denote increasing data

L density.
function is defined as:

L= /\div ' £div + /\cov : £cov + )\anchor : Eanchorv

where Agiv, Acov and Aanchor are hyperparameters bal-
ancing the importance of each term.

2.3 ADAPTIVE REFINEMENT

Controlling the number of Gaussians during training
is key for adapting to data complexity; allocating
more in dense regions and fewer in simpler ones. We
employ an adaptive refinement strategy that adjusts
the Gaussian set based on local point density. Prior
approaches rely on positional gradients to guide re-
finement (Kerbl et al.,[2023), but these become sparse
and unreliable in high dimensions. In our case, we
also require search efficiency, so we refine Gaussians whose cell cardinality exceeds a threshold:
|Bg| > v - |X|. Splitting is performed by applying clustering (Arthur & Vassilvitskii, 2007)
to produce new means ft;, (4o, while covariances are scaled down as L; = Ly = o - L, with
a <1

(b) Grad flow: Efdi\m ﬁco\m Eanchor

Figure 2: Gaussian refinement and
associated loss gradients.

For cloning, we target Gaussians with a high ratio of outside points to interior ones BZ‘ =
{x € X : dp(x,9;) < 7}. Instead of using all nearest outside points, we focus on a
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boundary region, and select k = p - |B§“t| points, where p € (0,1) is a sampling ratio
and BJ" = {x € X : 7 < dm(x,9:) < er and g; = argming, cg dnr(X,g;)} with e > 1 is
the set of all boundary points. The sampled subset S = {x1,X2,..., X} C B;“t is chosen
randomly without replacement. This sampling approach serves several purposes, reducing
computational cost, as density estimation in high dimensions is expensive, providing statistical
robustness by focusing on representative points and helping to avoid outliers that might
exist in the boundary region as Figure [2| showcases. The candidate Gaussians are picked
with regard to the ratio of boundary to interior points: |BS“![/|B;"| > 3. The center of
the new Gaussian is placed at the point with the highest local density in the boundary
region, such that for a point p in the boundary region, we compute its local density as the
inverse mean Euclidean distance from the 3-NN and select the point with the highest density:
p* = arg maxp p(p). The covariance matrix is then cloned, with Ly, = L. In our method,
splitting is prioritized over cloning: when a Gaussian grows too large, we first partition it to
reduce cell cardinality and maintain search efficiency. Cloning is applied only if splitting
is not triggered, serving to refine coverage near dense boundary regions without inflating
candidate counts unnecessarily.

2.4  QUANTIZATION

After optimizing our Gaussians, we assign points that fall outside the coverage radius to the
nearest Gaussian such that our final cells are: By, = {x € X | 0m(x,9;) < 7}U{x € X |
O (x,9:) > 7 and g; = argming, eq dm (X, g;)}. While Gaussian cells provide an effective
partition of the space, brute-force search within them is still prohibitive in high dimensions.
Standard ANN methods usually quantize globally, ignoring the anisotropy and local geometry
already captured by our Gaussians. We instead introduce a localized quantization scheme:
once points are assigned to cells, each cell is treated in its own coordinate system, where
Euclidean structure is better aligned with the underlying data. Quantizing in this local
basis reduces the number of distance computations per query, while preserving the geometry
captured by Mahalanobis distance.

For each cell By, we apply PCA to reduce dimensionality while preserving the local structure
P, = PCA({x — x4 | x € By},7) where X4 is the mean of points in cell By, r is the
reduced dimensionality (typically » < d, constant in practice), and Py € RI*™ contains
the top-r principal components. This step both lowers computational cost and aligns the
local coordinate system with the main variance directions of the data. FEach point x € B,
is then projected into this subspace x" = P;r(x — Xg4), which embeds the data in R” while
preserving Euclidean structure up to the discarded components. Finally, we convert x" into
hyperspherical coordinates s = cart2sph(x”) = (s1, s2, ..., Sy), where s; denotes the radial
component ||x"||2 and sa, ..., s, are angular coordinates. This reparameterization retains
the Euclidean metric but enables partitioning along radial and angular directions.

The hyperspherical space is partitioned into bins Q, = {B;j | i € {1,. nT} j €
{1,...,n,}"1}, with radial boundaries r; = rmin + (Pmax — Tmin)—, @ = 0 , Ny, and

ny’
angular boundaries 6} = Omin,k + (Gmax,k — emin,k)av j=0,...,nq, k=1,...,7r—1. The
dominant cost of index construction comes from full Mahalanobis-based assignments during
optimization, requiring O(|X| - K - d?) time per iteration, while initialization, refinement,
and PCA quantization add only lower-order terms (see Appendix .

2.5 INFERENCE

Given a query q, we first select the top-kg Gaussians by Mahalanobis score d)s(q, g). For
each selected Gaussian g, we project q to its local PCA space qj = P; (q—Xx,4) and convert to
hyperspherical coordinates s, = CartQSph(q;). We prioritize bins by a query-to-bin distance
computed in the reduced Euclidean space. Each bin B, ; is defined by spherical bounds
r € [ri,mip1] and Oy € [0j, &, 05, 4+1,%) for k=1,...,r —1. We define:

d(qg, Biy) = min

675)”2 st 1 < o1 <rigr, Ok < g1 < 05,11k
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If s, lies inside B j, then d(qg, B, ;) = 0; otherwise we solve the bound-constrained prob-
lem (Byrd et al., 1995) initialized at ¢1 = clip(||agll2, [ri, rit1]) and ¢rr1 = 0.5(0;, k+05,+1.k)-
Bins in Q, are sorted by d(qy, ) ascending and scanned until a bin budget p € (0,1] of bins
per cell is exhausted (typically p = 0.3). Within each visited bin we compute exact Euclidean
distances in the original space between q and all points indexed in that bin, aggregating
candidates across the kg selected Gaussians. The final result is obtained by selecting the
overall nearest neighbors among the accumulated candidates, with the dominant inference
cost coming from distance computations (see Appendix .
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Figure 3: Efficiency and retrieval performance across datasets, measured via Recall@1.
Methods closer to the top-left (\) indicate a better trade-off between accuracy and candidate
count. GARLIC performs especially well in the low-probe regime. Our method is trained in
10% for SIFT-1M unless stated otherwise.

3 EXPERIMENTS

Datasets. We evaluate our method on three benchmark datasets: SIFT1M (Lowe, [2004
(128-dimensional image descriptors with one million points), MNIST (LeCun et al., {1998
and Fashion-MNIST (Xiao et all [2017) (784-dimensional vectors from 28 x 28 grayscale
images) following the standard setup in ANN-Benchmarks (Aumiller et al., 2020). Further
information about the datasets can be found in the Appendix.

Evaluation. We evaluate GARLIC on the approximate nearest neighbor task, reporting
Recall@1 and as function of the number of distance computations while varying the probe
budget. Recall@l measures the accuracy of the very first retrieved neighbor, reflecting
ranking performance, and is strict. In Appendix [A7T] we showcase more related metrics
such as e-Recall, empricial c-approximation factors and mean relative error. We use distance
computations, rather than wall-clock latency (QPS), as the efficiency axis. Distance com-
putations capture the algorithmic effort of a search procedure independently of hardware
and implementation details (different CPUs/GPUs, BLAS kernels, batching, I/0) (Aumiller
let all [2020; [Peng et all, [2023)). This metric directly reflects the goal of space-partitioning
methods, which is to minimize the number of distances required to achieve a target recall.

Baselines and Comparisons. We evaluate GARLIC against representative approximate
nearest neighbor methods such as k-Means++ (Arthur & Vassilvitskiil [2006), BIRCH (Zhang
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Figure 4: (a) Generalization with limited training data. (b) Batch size effect. (c¢) Impact of
initial number of Gaussians. (d) Effect of different initialization strategies. (e) Impact of split
threshold v, with higher values increasing accuracy at the cost of more probes. (f) Effect of
clone threshold e. The blue dashed regards the parameters used in main experiments, and
top-left is better (), while all y-axis report Recall@1 and x-axis candidate counts.

[1996), Gaussian Mixture Models (GMM) (Dempster et al), [1977; Banerjee et all, 2005),
Neural-LSH (N-LSH) (Dong et al., |2020), Hyperplane LSH (HP-LSH) (Indyk & Motwani,
1998), Cross-polytope LSH (CP-LSH) (Andoni et al. [2015)), ITQ (Gong et al [2012), PCA
Tree (Kumar et all 2008} [Abdullah et al., 2014} [Sproull, 1991} [McNames| 2001)), Faiss-IVF
and Faiss-IVFPQFS (Douze et al. [2024). All baselines were run under identical conditions,
using the standardized ANN-Benchmarks datasets and query splits, with hyperparameters
optimized according to their respective publications and usage.

Results and Analysis. We present performance Taple 1: Effect of loss terms and adap-
curves across datasets, reporting Recall@1 as a func-  tjve refinement average Recall@1 /
tion of the number of retrieved candidates. As shown Candidates (x107). Higher is better.
in Figure [3] our method performrs efficiently with re-
spect to other baselines. GARLIC generally achieves
preferable recall-efficiency trade-offs than traditional
space partitioning methods, including inverted-file Loss terms

Configuration Performance 1

indices (Faiss-IVF, IVFPQFS), hashing approaches V[:V/ all P }ggg
(HP-LSH, CP-LSH, Neural-LSH), and tree-based dei e e
div anchor .

methods (PCA-Tree, BIRCH). Figure 3{a) evaluates Lo 978
. . div .

efficiency through Recall@l-per-probe versus build :

time. All GARLIC variants occupy the upper-left ~ Split & Clone

region, indicating favorable trade-offs: lightweight w/ bolt{l iggg
models trained with 1% of the data already surpass z; z{)o;e 545
strong baselines, while larger-capacity variants (e.g., w/o any 163

10% training) further improve recall without exces-
sive cost. In contrast, competing methods cluster in
lower-efficiency or higher-cost regions, reflecting less balanced trade-offs between indexing
overhead and search quality.

Ablation study. We conduct ablation studies to isolate the effect of key design choices and
components. Unless stated otherwise, experiments are on SIFT-1M with a training subset
of 5% of |X|, and Recall@1 is measured against distance computations. We investigate
the robustness and data efficiency of our method through controlled downsampling of the
training set. As shown in Figure our method consistently maintains strong performance
across varying training sizes. Notably, even with only 1% of the training data, our model
outperforms the Faiss-IVF variants of up to 10% training size in terms of Recall@1 versus
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the number of retrieved candidates. This trend remains consistent across higher percentages,
demonstrating that our approach learns a compact yet highly effective representation of the
data distribution. Furthermore, Figure highlights the batch-size effect (here using a
fixed training subset of 100k points instead of 50k), where larger batches yield consistently
better performance. Finally, Figure shows that more initial Gaussians produce better
results at equal iterations, reflecting faster convergence. This happens because adaptive
density control targets spatial placement rather than Gaussian count.

We next evaluate core design hyperparameters. In Figure we investigate initialization
strategies for Gaussian centers, revealing that K-Means initialization consistently outperforms
alternatives. Although farthest point sampling (FPS) achieves comparable recall, it requires
approximately 50% more probes, and catching up to K-Means requires more training time. In
Figure the split threshold ~y, controlling the density condition for Gaussian subdivision,
is examined. The optimal values are v = 0.005 and v = 0.01, though v = 0.005 requires
more time due to more frequent splits. As for the clone threshold e, depicted in Figure
which determines the outer shell for cloning, it remains stable across different values, with
e = 2.2 being preferable in situations requiring high recall.

Table [ analyzes the impact of loss terms, adaptive refinement and covariance configurations.
Split and clone are pivotal for performance, while the covariance term (Lcoy) significantly
boosts retrieval. The anchor term (Lanchor) has minor effect on raw performance but is
essential for making Gaussians geometrically informative. Additional ablations and results
are provided in the Appendix.

Limitations and Future Work. GARLIC employs Mahalanobis distance and Gaussian
primitives, which assume a Euclidean metric and are therefore not directly compatible with
angular similarity. This may be addressed by adopting angular counterparts, such as von
Mises—Fisher distributions, which we leave for future work. The trade-off between recall and
latency can be further enhanced by augmenting the number of Gaussians and organizing
them within tree structures (e.g., KD-tree or Ball-tree over Gaussian means), reducing query
cost. The spatial complexity scales quadratically with dimensionality (O(Kd?)) due to full
anisotropic covariances; this challenge can be mitigated through low-rank approximations
or quantization of Cholesky factors. Finally, while the method shows some sensitivity to
initialization, this is alleviated by the information-theoretic objectives and the progressive
refinement via split and cloning. Beyond these limitations, GARLIC is naturally incremental:
each Gaussian cell maintains sufficient statistics (mean, covariance, cardinality), allowing new
data to be integrated through online updates. Combined with local split/clone refinement,
this enables streaming and online learning scenarios without rebuilding the entire index. We
leave a systematic evaluation of this capability to future work.

4  CONCLUSIONS

We introduced GARLIC, a geometric structure that learns the underlying distribution for
both approximate nearest neighbor search and classification. By combining information-
theoretic objectives with adaptive refinement (split and clone), and representing the space
via anisotropic Gaussians, our method achieves competitive performance in Euclidean
approximate nearest neighbor, particularly in low-probe regimes. Experiments demonstrate
competitive recall-efficiency tradeoffs and robustness under severe data reduction, highlighting
its generalization capabilities.
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Ethics Statement. Our method is evaluated exclusively on publicly available benchmark
datasets. These datasets contain no personally identifiable or sensitive information, and
their licenses are respected. To the best of our knowledge, the proposed method does not
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Reproducibility Statement. We provide detailed descriptions of our initialization, opti-
mization, refinement strategies, and hyperparameters in the main text and Appendix A. All
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datasets are standard and publicly available. We will release the full source code, trained
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future research.

LLM Usage. Large language models (LLMs) were used to assist in editing and rephrasing
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A APPENDIX

This appendix provides additional details and experiments as mentioned in the main paper.
Section provides additional results and ablation studies to the ones presented in Section
of the main paper. Section[A-1.] contains visualization of diagnostics and statistics regarding
our proposed method, to provide a comprehensive understanding of its behavior. Section[AZ2]
contains additional technical details regarding the datasets used and the experimental setup,
as well as the training pipeline. Section [A.3] discusses and provides detailed computational
time and space complexity for the build and query procedures of GARLIC.

A.1 FURTHER RESULTS

We extend the analysis of the experimental section, by further examining the impact of
individual design choices in GARLIC and providing results. Unless noted otherwise, for
each result presented as abblation, we sample a training set of 50.000 (5%) from SIFT-1M
and only change the requested parameters while keeping all others as is, while reporting
recall@1 against distance computations. In each figure, the parameters used in the main
experiments are represented by the method indicated by the blue dashed line, and optimal
outcomes are achieved when positioned on the top left of the figures (). When comparing,
for eadability, we choose to exclude GMM, Neural-LSH, and ITQ for their inconsistent and
unstable performance.
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Figure 5: Additional distortion-aware accuracy results (higher is better). Each curve
reports performance as a function of the candidate budget (x-axis). Panels show e-Recall at
e € {0.01,0.10} and P@10 across SIFT1M, MNIST, and FMNIST. Methods closer to the
top-left ("\\) are more accurate under smaller candidate budgets.

We evaluate retrieval quality using both accuracy- and distortion-based criteria, as shown in
Figures |5 and @ Beyond Recall@1, we report Precision@10 (PQ10), capturing the fraction of
retrieved points among the top-10 that are true neighbors. To assess approximation tightness
for the nearest neighbor, we measure the distance ratio between the returned neighbor and
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the exact nearest neighbor. From this we derive: (i) e-Recall, the fraction of queries where
the retrieved distance is within a factor (1 + ¢) of the ground-truth (with £ € {0.01,0.10});
(ii) the percentiles 795 and r99, which correspond to empirical c-approximation factors at
the 95th and 99th percentiles; and (iii) the mean relative error, REean, Summarizing the
average stretch beyond the true nearest-neighbor distance. These metrics complement recall
by quantifying how close the returned distances are to the exact nearest neighbor, and follow
standard practice in ANN-Benchmarks.
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Figure 6: Approximation tightness summaries (lower is better). We report the 95th and
99th percentiles of the distance ratio (r95, r99) and the mean relative error (REmpean =
E[r — 1]) versus the candidate budget. Methods closer to the bottom-left (/) achieve tighter
approximations with fewer candidates.

Across datasets we observe consistent trends: e-Recall at 1% and 10% rapidly approaches 1.0,
indicating that even under small probe budgets the vast majority of retrieved neighbors lie
within 1%-10% of the true nearest-neighbor distance. The 795 and 799 curves remain close
to 1.0, showing that 95%—99% of queries admit near-exact retrieval, while RFE,ca, stays low
and stable, confirming that average distortion is minimal. Together with high P@10, these
results demonstrate that the learned Gaussian partitions not only achieve strong recall but
also return candidates that are quantitatively close to the exact nearest neighbors, providing
both efficiency and fidelity in the ANN process.

Additional Abblation Studies In Figure the contribution of each loss term to the
optimization process is analyzed. The results indicate that the covariance loss L., produces
the most significant performance improvement, while the anchor loss Lapnchor functions as an
effective regularizer, grounding each Gaussian by aligning it with its corresponding point
distribution. Figure demonstrates the effects of our adaptive refinement operations,
where the split and clone mechanisms improve retrieval performance when used together,
each contributing by providing complementary benefits to the quality of representation.
Figure addresses the parameter 7 within £g;,, demonstrating that 7 = 3 is the optimal
choice, particularly in scenarios involving a limited number of probes. Values surpassing
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those presented in our study (7 > 3) result in less optimal outcomes. For instance, 7 = 4
demonstrates a Recall@1 value of 0.67 when evaluated with 154264 probes.
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Figure 7: Parameter ablations: (a) Impact of different loss term combinations on the
Recall-Probe tradeoff, showing that the full loss (L4, + Leov + Lanchor) provides the best
balance. (b) Effect of split and clone operations, demonstrating that these operations improve
efficiency while maintaining accuracy. (c¢) Impact of ReLU parameter 7 in the divergence
loss. (d) Effect of embedding dimensionality, showing GARLIC’s robustness across different
dimensions. (e) Efficient search via partial cell scanning. The blue dashed method regards
the parameters used in main experiments, and top-left is better ().

Furthermore, Figure demonstrates the impact of our quantization scheme. In particular,
it exhibits strong performance across a broad quantization range (20—100%), with only the
most aggressive setting (10%) leading to degradation. This indicates that our quantization
strategy is robust and well-aligned with our model structure. Finally, Figure examines
dimensionality effects using Fashion-MNIST data resized to various dimensions (to simulate
higher-dimensional embeddings). The results confirm that GARLIC maintains strong
performance across a wide range of dimensionalities.

Covariance structure vs performance.

We conduct a targeted study to assess the Taple 2: Effect of anisotropy on average Re-
impact of different covariance configurations- .5]1@1 / Probe (x10°). Higher is better. As

namely, full (anisotropic), diagonal, and anisotropy decreases, performance degrades
isotropic-affect the performance of GARLIC. {ye to excessive probe usage.

As shown in Table |2} reducing the Gaussian
expressiveness from full to diagonal and then

Confi ti Perfi
to isotropic leads to a notable decline in av- on g.ura on erformance f
erage Recall@1 per probe. While diagonal Covariance structure
and isotropic configurations reduce both the gf“somolplc 1?%8
: ~ iagona .
parameter count and computation per Gaus Tsotropic 0.75

sian to a linear level, O(k - d), they lead to
aggressive pruning and an increased number
of probes to make up for the representational loss. This suggests that space complexity
cannot be drastically reduced without harming retrieval quality because simpler Gaussian
parameterizations result in degraded locality and coverage.
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A.1.1 QUALITATIVE RESULTS

To gain a more comprehensive understanding of the model’s behavior, we present a collection
of diagnostic visualizations applied to the Fashion-MNIST, MNIST, and SIFT datasets.
These plots illustrate structural characteristics, including local coverage, reconstruction
fidelity, density patterns, and curvature statistics of the learned Gaussian components. All
visualizations are conducted on a randomly sampled subset of training points, utilizing the
learned parameters independently of test data supervision.

&}
11

rage us local density (Fashion-MNIST) rage us local density (MNIST) v rage vs local density (SIFT)

‘! - -

Local density © Local density © Local density

Reconstruction error
Reconstruction error

verage count

Mean coverage count

Mean cor

Figure 8: Diagnostic visualizations across Fashion-MNIST (left), MNIST (middle), and SIFT
(right). Top row: minimum Mahalanobis reconstruction error; middle row: average Gaussian
coverage per point; bottom row: relationship between local density and Gaussian coverage.
Bottom row’s colormap depicts frequency-density, in logarithmic scale.

Coverage and reconstruction diagnostics. Figure [§|illustrates three diagnostic views,
each calculated for a different dataset (Fashion-MNIST, MNIST, and SIFT), to evaluate
the accuracy of the Gaussian models in representing the datasets. The top row includes
the reconstruction landscape, which visualizes the minimum Mahalanobis distance from each
point to any Gaussian. For each dataset, we employ PCA to project the points onto a
two-dimensional space and calculate the average reconstruction error of proximate points on
a grid. This heatmap highlights how well the Gaussian shells approximate the distribution
of data throughout the space.

The middle row shows the coverage landscape, which counts how many Gaussians fall within
the Mahalanobis threshold 7 for each data point. Coverage is computed per point, projected
to 2D, and smoothed via k-NN averaging over a grid. This plot reflects the redundancy and
spatial spread of the Gaussian coverage. We observe that areas with low reconstruction error
tend to be have high coverage.

The bottom row depicts the relationship between local density and Gaussian coverage. For
each point, we compute its local density via the inverse mean distance to its 10 nearest
neighbors and correlate this with its coverage count. The resulting 2D histograms reveal
structural patterns where regions of higher density generally exhibit greater coverage while
sparse regions receive fewer assignments. This aligns with our goal of achieving balanced
coverage while maintaining good reconstruction fidelity.

Curvature-based diagnostics. Figure [J] provides four views exploring the relationship
between curvature and structural properties of the Gaussian assignments across datasets, to
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Figure 9: Curvature diagnostics across Fashion-MNIST (left), MNIST (middle), and SIFT
(right). Row 1: standard deviation of local curvature vs radius; Row 2: mean local curvature
vs radius; Row 3: Gaussian coverage vs curvature std; Row 4: Gaussian coverage vs curvature
mean. Coloring accounts for density.

examine wheather the learned model is informative and geometrically consistent with the
data x € X.

The first row shows the standard deviation of local curvature as a function of the average
radius (l3) per Gaussian. For each Gaussian, we collect nearby assigned points (under
Mahalanobis threshold 7), compute their curvature via PCA-based local flatness, and report
the standard deviation. Each bin aggregates Gaussians by radius and variation in curvature,
highlighting the stability of their local geometry, where for each dataset curvatures deviations
tend to be around ~ 0.06.

The second row reports the mean curvature of each Gaussian against its average radius.
This indicates the intrinsic dimensionality and shape complexity of regions assigned to
Gaussians of different spatial extent. In general, we see that mean curvature tends to be
~ 0.5, suggesting a moderate level of local non-linearity, especially for Gaussians with smaller
support. As the radius increases, curvature remains relatively stable, indicating consistent
local geometry across scales.

The third row depicts how Gaussian coverage (number of assigned points) varies with the
curvature standard deviation of the assigned region. We observe that most Gaussians exhibit
low curvature variability (std ~ 0.06), indicating that points within each Gaussian tend to
have similar geometric structure. Moreover, there is no clear correlation between coverage
and curvature std, implying that heavily used Gaussians are not more geometrically diverse
than others. This suggests a form of balanced representation capacity across Gaussians.

The fourth row shows coverage as a function of mean curvature, where Gaussians with
high coverage have curvature patterns similar to those with low coverage.

Figure[I0] demonstrates the capability of GARLIC to capture the intrinsic geometric structure
of high-dimensional data with locally varying dimensionality. The anisotropy histograms
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Figure 10: Spectral diagnostics across datasets (SIFT, MNIST, Fashion-MNIST; columns)
and Gaussian properties (rows). Each subplot shows a different measure: anisotropy, band
energy, diagonality, effective dimension, and explained variance.

(first row) reveal how Gaussians adapt to regions of different local dimensionality, with
Amax/Amin ratios ranging from nearly isotropic to highly stretched configurations across all
datasets. Rather than simply partitioning space uniformly, Gaussians adapt their shapes
to the underlying manifold structure, as confirmed by the diagonality histograms (third
row) and effective dimension measurements (fourth row). This representation allows us to
model stratified data where different intrinsic dimensionalities coexist, allowing the data
to become pancake-like for surface regions, needle-like for curve regions, and ball-like for
volumetric areas. Unlike traditional space partitioning methods, GARLIC models the
underlying data distribution probabilistically, not just approximating distances for retrieval.
The explained variance surfaces (bottom row) show that Gaussians efficiently capture the
relevant dimensions at each location, enabling estimation of true manifold distances rather
than just Euclidean distances to samples. This provides more semantically meaningful results
in regions where the intrinsic dimensionality is lower than the ambient space. This completes
the supplementary material.

A.2 IMPLEMENTATION DETAILS
This subsection summarizes all implementation and training-specific parameters used in

our model, including optimizer schedules, architectural constants, and adaptive procedures
such as splitting, cloning and pruning. These details provide context for reproducibility and
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support the complexity analysis in the main paper. Furthermore, there are dataset specifics,
such as licenses and descriptions.

Table 3: Dataset Information

Dataset Dimension Size Description License
SIFT1M 128 1M Image descriptors CCo

MNIST 784 70K  Handwritten digits CC BY-SA 3.0
Fashion-MNIST 784 70K  Fashion items MIT

Datasets. We evaluate our method on three standard benchmark datasets: (1) SIFT1IM
Lowel (2004)), containing one million 128-dimensional SIFT descriptors that capture scale-
and rotation- invariant local image features; (2) MNIST [LeCun et al| (1998), con-
sisting of 70,000 grayscale handwritten digit images (28x28 pixels) flattened to 784-
dimensional vectors; and (3) Fashion-MNIST Xiao et al.| (2017), a more challenging
variant with the same format but featuring 10 categories of fashion items. For re-
trieval tasks, we used the ANN-Benchmark [Aumiuller et al. (2020) versions of these
datasets (available at http://ann-benchmarks.com/sift-128-euclidean.hdf5, http:
//ann-benchmarks.com/mnist-784-euclidean.hdf5, and http://ann-benchmarks.com/
fashion-mnist-784-euclidean.hdf5) to ensure a standardized comparison with existing
methods.

Experimental setup. Our method was implemented in Python, using optimized libraries
such as PyTorch [Paszke (2019)) and NumPy [Harris et al.| (2020]). The experiments were carried
out on an Intel Core i7-7820X CPU (16 threads), a Quadro RTX 8000 GPU (48 GB VRAM)
and 125 GiB of RAM.

Training configuration. Batch sizes of 50000 are used for SIFT, and 20000 for MNIST
and Fashion-MNIST datasets, with z-score normalization by subtracting the mean and
dividing by the standard deviation. The number of training epochs is 250, with a typical
early stop at 120. Gaussian updates are scheduled with two phases: a warm-up phase lasting
35 epochs and an optimization phase where structural operations like splitting and cloning
are triggered every 35 epochs and pruning every 60.

Learning rate schedule. The learning rates follow a linear warm-up and exponential
decay scheme. Specifically, for the Cholesky parameters, the rates are subjected to a warm-up
phase from 1 x 10~7 to 5 x 10~4, followed by a decay to 9 x 107°. In terms of the means, they
are warmed up from 1 x 1077 to 9 x 1072, and subsequently decay to 3 x 10~3. Notably, the
learning rate associated with the means is maintained at a relatively higher level than that
of the covariances. This approach is designed to promote the adjustment of the Gaussian
centers rather than the expansion of their radii.

Adaptive refinement. Splitting is applied to Gaussians with cardinality exceeding a
fraction of the dataset v = 1 x 1072, using DBSCAN or K-Means, as fallback, with ¢ = 2
clusters. The covariance of each new Gaussian is scaled down by 9 x 10~!. Cloning selects
dense regions just outside the Gaussian boundary, defined by a Mahalanobis shell with inner
threshold 7 and outer threshold (1 + e) - 7, where e = 2.2 controls the shell thickness. From
the set of points referenced in (7, e7], a random selection of 60% is made. Cloning is not
performed on a Gaussian unless its cardinality surpasses a threshold specified by 8 x 10~4|X|.
Gaussians that have degenerated into a single point are eliminated. Pruning is executed at
intervals of every 60 epochs.

Quantization. Local PCA is performed per cell using top-3 eigenvectors. Reduced points
are quantized using a spherical grid with n;agial = 6 and Nanguiar = 4, forming directional
bins per Gaussian.
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Loss. The total loss is a weighted sum of three components: divergence Ay, = 1.0,
covariance Ao, = 1.0, and anchor term Agpchor = 1072, with a weight « = 107! that
balances position and shape. When calculating the L., loss, a numerical epsilon of 1 x 10712
is used to ensure stability.

A.3 COMPLEXITY ANALYSIS

We analyze the computational time and space complexity of our method in three parts:
index construction, query execution, and storage. The analysis is expressed in terms of
standard parameters, including the dataset size | X|, embedding dimension d, the number
of Gaussians K, and the reduced PCA dimension r» < d. Our goal is to ensure that each
component remains scalable with respect to high-dimensional data and large-scale datasets.
We summarize the complexity of each phase below.

Index build complexity. Let I be the number of optimization steps and K’ the initial
number of Gaussians. We denote by S, C', and P the number of splits, clones, and pruned
Gaussians, respectively, and define the final number of Gaussians as K = K' + S+ C — P.
Let |By| be the average cell size, ¢ the number of K-Means clusters used during splitting,
and k' the number of candidate points sampled per cloning operation.

For the initialization, since we use K-Means++ on K’ total cluster centers, we need O(K" -
d - |X]) time. For the optimization part, we need to perform a total number of I iterations
of full Mahalanobis-based point-to-Gaussian assignment, thus a total of O(I - | X| - K - d?)
worst-case time. Separate from the optimization, we analyze the split, clone and prune
operations that are not applied on every iteration of the optimization. (i) The split operation
runs DBSCAN or K-Means (with ¢ clusters), thus for a total of S such operations we would
need O(S - (|By| - d-c+ d?)); (ii) the clone operation locates the subset of points outside
the Gaussian’s boundary (between 7 -0 and (1 +¢€) - 7 - o) for which it identifies new local
modes, thus for a total of C operations, it leads to O(C - (k"* - d + d?)); and (iii) the prune
operation simply removes low-cardinality Gaussians and reassigns the points to the nearest
active Gaussian, which takes O(P - |By| - d) time. For the quantization of each Gaussian,
PCA is performed on all points inside the Gaussian, which projects the data into reduced
local bases. In total, for the quantization we need O(K' - |By| - d? + | X|-d - r) time. From
all the terms described, the optimization term dominates.

Query complexity. Let K be the number of Gaussians, k£ the number selected per query,
d the dimension, r the PCA dimension, b the number of bins per Gaussian, T' the number of
optimization steps to find the shortest distance from the query point to the boundary of
a spherical bin in the reduced PCA space, p the probed bin ratio, and § the average bin
size. For a single query, we first need to measure distances from the set of Gaussians, which
takes O(K - d?). Then, for the k nearest Gaussians we need to locate the subset of data to
be examined. For this, for each of the selected k Gaussians, we need to compute the local
PCA projections (O(k - d - r)), then compute and sort the spherical distances to all b bins
(O(k-b-r-T)), of which only the p fraction is probed. From each, up to 8 candidates are
gathered and re-ranked using Euclidean distance, which needs O(k - p-b- 8- d) time. In
practice, the re-ranking factor dominates the complexity, which is sublinear.

Space complexity. Let K be the number of Gaussians, d the data dimension, and
N = |X| the dataset size. The model stores mean vectors g € R¥*? Cholesky parameters
L € RE*dxd and cells storing point indices, requiring O(N) space. Thus, the total space
complexity is:

O (K- (d*+d)+N)

where K - d? dominates. Still, space complexity can be reduced to O (K - d) by enforcing
diagonal covariance matrices, at the expense of reduced expressiveness in anisotropic regions
of the space.
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