

000 GARLIC: GAUSSIAN REPRESENTATION LEARNING 001 FOR SPACE PARTITIONING 002 003 004

005 **Anonymous authors**
006 **Paper under double-blind review**
007
008
009

010 ABSTRACT 011

012 We present **GARLIC**, a representation learning approach for Euclidean
013 approximate nearest neighbor (ANN) search in high dimensions. Existing
014 partitions tend to rely on isotropic cells, fixed global resolution, or balanced
015 constraints, which fragment dense regions and merge unrelated points in
016 sparse ones, thereby increasing the candidate count when probing only a
017 few cells. Our method instead partitions \mathbb{R}^d into anisotropic Gaussian cells
018 whose shapes align with local geometry and sizes adapt to data density.
019 Information-theoretic objectives balance coverage, overlap, and geometric
020 alignment, while split/clone refinement introduces Gaussians only where
021 needed. At query time, Mahalanobis distance selects relevant cells and
022 localized quantization prunes candidates. This yields partitions that reduce
023 cross-cell neighbor splits and candidate counts under small probe budgets,
024 while remaining robust even when trained on only a small fraction of the
025 dataset. Overall, GARLIC introduces a geometry-aware space-partitioning
026 paradigm that combines information-theoretic objectives with adaptive den-
027 sity refinement, offering competitive recall–efficiency trade-offs for Euclidean
028 ANN search.

029 1 INTRODUCTION 030

031 Let $X = \{x_i\}_{i=1}^n \subset \mathbb{R}^d$ be a finite point set, $q \in \mathbb{R}^d$ a query, and $\delta_{\mathcal{E}} : \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}_{\geq 0}$
032 the Euclidean distance. For an integer $k \geq 1$, the exact k -Nearest Neighbor Search (NNS)
033 problem returns the k closest points $N_k(q) \subseteq X$. Its approximate variant, k -ANN, relaxes
034 this by requiring $A_k(q) \subseteq X$, $|A_k(q)| = k$, such that $\max_{a \in A_k(q)} \delta_{\mathcal{E}}(q, a) \leq c \delta_{\mathcal{E}}(q, x_{(k)}(q))$,
035 for some approximation factor $c \geq 1$, where $x_{(k)}(q)$ denotes the k -th true neighbor of q . We
036 restrict attention to Euclidean spaces of hundreds of dimensions, and to indices defined by
037 partitions of \mathbb{R}^d into cells, where a query inspects only a few cells and re-ranks the resulting
038 candidates. Nearest neighbor search in this setting is a canonical problem of high-dimensional
039 geometry and algorithms, with consequences across information retrieval, computer vision,
040 robotics, and data analysis (Lowe, 2004; Cai et al., 2021; Shakhnarovich et al., 2008; Aumüller
041 et al., 2020; Douze et al., 2024).

042 ANN algorithms attempt to reduce cost in two independent ways. *Sketch*-based tech-
043 niques (Razenshteyn, 2017; Wang et al., 2014) attempt to compress every point into a
044 short-coded representation, a summary, so that approximate distances can be quickly eval-
045 uated. *Index*-based methods (Gani et al., 2016) pre-partition the space, and examine only a
046 subset of the point set, at query time. The two approaches are complementary and often
047 combined in practice. The focus of this work is on indexing methods, and most specifically
048 *space-partitioning* in the $(\mathbb{R}^d, \delta_{\mathcal{E}})$ metric space (Aumüller et al., 2020). The space is divided
049 into cells \mathcal{B}_g , each storing data points, and a query touches only those stored in the cell that
050 contains the query point (plus a few neighbors for higher recall).

051 Space-partition indices are practical and efficient with their small space overhead, each cell
052 stores a representative, e.g., a centroid, and a list of point IDs, far less than e.g., graph indices
053 need (Malkov & Yashunin, 2018). Cells can be queried in parallel by different cores, read in
one-shot by GPUs, and fetched as one block (I/O call) from the disk storage (Johnson et al.,

054 2019; Douze et al., 2024; Jayaram Subramanya et al., 2019). These strengths hold only when
 055 the cells are well built, whether by fixed, *data-independent* rules or by partitions *learned*
 056 from the data. What drives performance is how cells are built. Data-independent (Andoni
 057 & Indyk, 2008; Andoni et al., 2018) rules fix splits a priori (e.g., random hyperplanes, simple
 058 trees), so they build in $\mathcal{O}(|X|d)$ time but ignore the geometry of X , and recall degrades on
 059 clustered or curved regions. *Data-dependent* schemes (e.g., k-means/IVF families (Jegou
 060 et al., 2010), learned hashing (Wang et al., 2015)) fit cell parameters to X and usually
 061 improve recall per number of candidates visited.

062 In practice, partitions often tend to be isotropic, for example Voronoi cells around k -means
 063 centroids (Lloyd, 1982; Arthur & Vassilvitskii, 2007), and a single global number of cells K
 064 is chosen. These design choices then cause predictable errors on heavy-tailed data (Clauset
 065 et al., 2009). *Partition resolution*, a single global number of cells K applied everywhere,
 066 means dense regions get fragmented into many small (near-spherical) cells, while sparse
 067 regions are covered by a few large ones (Du et al., 1999). *Balanced partitions* on non-uniform
 068 data create a complementary problem: in dense zones they split true neighbors across cells,
 069 and in sparse zones they pack unrelated points together to meet the size target (Malinen
 070 & Fränti, 2014; Aumüller et al., 2020). Neighborhoods are approximately Euclidean only
 071 locally; large cells merge unrelated regions, while overly small ones fragment continuous
 072 neighborhoods. To recover locality one must either increase K or probe (touch), many
 073 adjacent cells (Johnson et al., 2019; Lv et al., 2007), which raises candidate (distance) counts
 074 and hurts low-probe regimes. This leaves a concrete gap: partitions that capture local
 075 geometry and adapt their local resolution (effective cell size / expected cell cardinality) to
 076 density under a principled objective that balances reconstruction fidelity against candidate
 077 count.

078 **Contributions.** We propose **GARLIC**, a geometry-aware space-partition index for Eu-
 079 clidean ANN, optimized under an information-theoretic objective that balances coverage,
 080 overlap, and budget efficiency. Under this objective, GARLIC learns a probabilistic partition
 081 of \mathbb{R}^d into Gaussian cells whose shape and placement align with local principal directions
 082 and whose sizes adapt to local density, adding capacity only where needed through local
 083 adaptive refinement. The resulting partition reduces cross-cell neighbor splits and candidate
 084 counts under small probe budgets.

- 085 • **Anisotropic, density-adaptive partition.** GARLIC represents \mathbb{R}^d with Gaussian
 086 cells that follow local geometry and adapt to density, improving within-cell neighbor
 087 cohesion under small candidate budgets. (Section 2.1 – 2.3)
- 088 • **Information-theoretic objective.** We balance coverage, overlap, and probe
 089 efficiency via expected Mahalanobis coverage, an assignment-entropy penalty, and
 090 geometric anchoring regularization. (Section 2.2)
- 091 • **Local adaptive refinement.** We add Gaussians only where needed through
 092 split/clone operations triggered by cell size and spill ratio, avoiding a single global
 093 resolution (one K everywhere). (Section 2.3)
- 094 • **Budget-centric evaluation and analysis.** We report competitive performance
 095 across multiple accuracy and distortion metrics under candidate and distance budgets
 096 on standard Euclidean benchmarks, and provide build/query/space complexity
 097 together with ablations that isolate each component’s contribution (Section 3,
 098 Appendix A.1).

100 1.1 RELATED WORK

101 **Traditional ANN Families.** ANN methods fall into three main families: (i) *sketching*
 102 and *compression*, which encode vectors into compact codes for fast distance estimation (e.g.,
 103 product quantization (Jegou et al., 2010), optimized PQ (Ge et al., 2013), iterative quantiza-
 104 tion (Gong et al., 2012)); (ii) *index-based methods*, which pre-organize the dataset to reduce
 105 the number of points touched at query time (e.g., IVF (Jegou et al., 2010), PCA-trees (Sproull,
 106 1991), randomized projections and Johnson–Lindenstrauss-based embeddings (Anagnostopou-
 107 los et al., 2018); and (iii) *graph-based methods*, which traverse neighborhood graphs during

108 search (e.g., HNSW (Malkov & Yashunin, 2018), DiskANN (Jayaram Subramanya et al.,
 109 2019)). Within indices, our work focuses on the sub-family of *space-partition indices*, which
 110 balance memory efficiency with parallelizability and provide a probe-based complexity model
 111 compatible with GPU and IO acceleration.
 112

113 **Data-Independent Partitions.** Data-independent indices split space according to fixed
 114 random rules, ignoring the geometry of the dataset. A canonical example is hyperplane
 115 LSH, which assigns points based on the sign of random projections and can be queried
 116 more flexibly via multi-probing (Indyk & Motwani, 1998; Lv et al., 2007). These methods
 117 offer theoretical guarantees and fast build times, but their isotropic and geometry-agnostic
 118 partitions lead to poor recall on clustered or manifold-structured data. GARLIC instead
 119 learns anisotropic, density-adaptive cells aligned with the underlying data geometry.
 120

121 **Data-Dependent Partitions.** Classical learned indices often rely on isotropic partitions
 122 with a fixed global number of cells. k -Means and its inverted-file variants (IVF) assign points
 123 to centroid Voronoi cells (Lloyd, 1982; Jegou et al., 2010), while PCA-trees split recursively
 124 along principal components (Sproull, 1991). Scalable extensions include mini-batch k -
 125 means (Sculley, 2010), BIRCH, which builds a hierarchical clustering tree with compact
 126 representations (Zhang et al., 1996), and BLISS, which incrementally refines partitions for
 127 large datasets (Gupta et al., 2022). These methods are efficient, but their isotropic cells and
 128 global resolution fragment dense regions and mix unrelated points in sparse ones. Neural
 129 LSH takes a different approach by building balanced cuts of the k -NN graph and training a
 130 classifier to extend them to \mathbb{R}^d (Dong et al., 2020). While this can outperform k -means in
 131 some settings, the emphasis on balance rather than geometry often splits true neighbors in
 132 dense areas and merges unrelated points in sparse areas, raising candidate counts. Gaussian
 133 mixture models (GMMs) capture local covariance through Mahalanobis metrics and soft
 134 assignments (Dempster et al., 1977; Banerjee et al., 2005). These models demonstrate
 135 the benefits of anisotropy, but they maximize likelihood rather than probe efficiency and
 136 do not refine capacity locally. GARLIC combines the strengths of these directions by
 137 learning anisotropic, density-adaptive partitions with local split/clone refinement under an
 138 information-theoretic probe-budget objective, explicitly tailored to ANN retrieval.
 139

140 The remainder of this work is organized as follows: Section 2 introduces the GARLIC
 141 framework, including Gaussian parameterization, the information-theoretic optimization
 142 objective, and adaptive refinement strategies. Section 3 presents our experimental evaluation
 143 on standard Euclidean benchmark datasets, a set of crucial ablation studies, and GARLIC’s
 144 limitations. Finally, conclusions are drawn in Section 4.
 145

2 METHOD

146 GARLIC uses a collection of Gaussians $\mathcal{G} = \{\mathcal{N}(\mu_i, \Sigma_i)\}_i$, whose means and covariances
 147 adapt to the underlying data distribution, to partition $X \subset \mathbb{R}^d$ into cells for ANN. We choose
 148 Gaussians because their mean μ and covariance Σ jointly encode geometry and statistics:
 149 eigenvectors of Σ capture local principal directions, eigenvalues control anisotropy and
 150 effective dimensionality, and the Mahalanobis distance $\delta_M^2(\mathbf{x}, g_i) = (\mathbf{x} - \mu_i)^\top \Sigma_i^{-1}(\mathbf{x} - \mu_i) =$
 151 $\|\mathbf{L}_i^{-1}(\mathbf{x} - \mu_i)\|_2^2$, is the canonical quadratic form associated with the covariance. Level
 152 sets of δ_M correspond to χ_d^2 probability contours, giving a calibrated notion of coverage.
 153 Parameterizing Σ via its Cholesky factor yields closed-form (Section 2.1), differentiable
 154 gradients while guaranteeing positive definiteness, which makes Gaussians uniquely well-suited
 155 among partitioning primitives for end-to-end optimization, unlike boxes or zonotopes that
 156 lack smooth probabilistic distance functions. Compared to alternatives such as Gaussian log-
 157 likelihood, which adds normalization terms unrelated to retrieval efficiency, or KL divergence,
 158 which compares distributions rather than points, Mahalanobis provides a direct, efficient,
 159 and anisotropy-aware metric for both training and retrieval.
 160

161 We train the Gaussians with information-theoretic objectives that balance coverage, assignment
 162 confidence, and structural consistency (Section 2.2), and refine capacity only where
 163 needed via split and clone operations, avoiding uniform or balanced partitions that frag-
 164 ment dense regions or merge sparse ones (Dong et al., 2020; Gong et al., 2012; Arthur &
 165

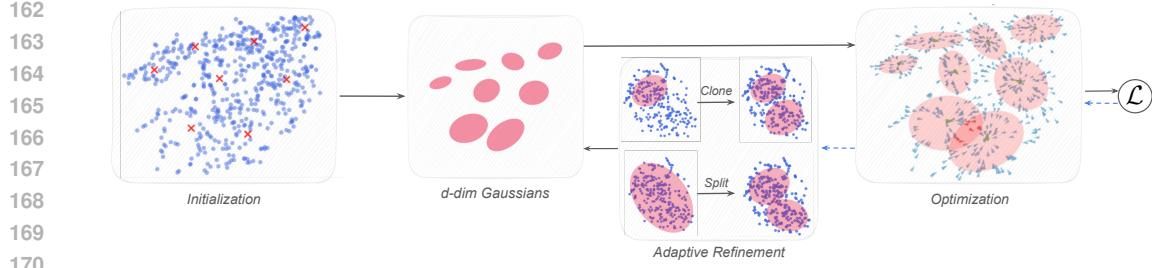


Figure 1: Overview of GARLIC. Input vectors are represented by Gaussian cells (means, covariances) optimized with information-theoretic objectives for coverage, confidence, and consistency. Cell density is refined adaptively via split/clone operations, and queries use spherical quantization with Mahalanobis distance for cell selection and retrieval. Blue arrows indicate transferring information of gradients (back-propagation) or statistics.

Vassilvitskii, 2006; Kumar et al., 2008; Abdullah et al., 2014; Sproull, 1991; McNames, 2001 (Section 2.3). At query time, each Gaussian cell is equipped with a local hyper-spherical quantization index to narrow candidate searches (Section 2.4), and Mahalanobis distances are again used for cell selection and prioritized bin search (Section 2.5). This approach enables GARLIC to adapt to data geometry while maintaining efficient retrieval, as illustrated in Figure 1.

2.1 GAUSSIAN PARAMETERIZATION

Each Gaussian g_i is defined by its mean $\mu_i \in \mathbb{R}^d$ and covariance $\Sigma_i \in \mathbb{R}^{d \times d}$, parameterized as $\Sigma_i = \mathbf{L}_i \mathbf{L}_i^\top$, $\mathbf{L}_i \in \mathbb{R}^{d \times d}$ being a lower triangular Cholesky factor of matrix Σ_i , ensuring positive definiteness (a prerequisite for valid Gaussian distributions). The means μ_i are initialized using K-Means++ (Arthur & Vassilvitskii, 2007) on a subset of the training set. Cholesky factors \mathbf{L}_i are initialized as: $\mathbf{L}_i = \log(\delta_{\mathcal{E}}) \cdot \mathbf{I}_d + \epsilon$, where $\mathbf{I}_d \in \mathbb{R}^{d \times d}$ is the identity matrix, and $\delta_{\mathcal{E}}$ is the mean Euclidean distance of each μ_i to its three nearest neighbors. This ensures that the initial scale of each Gaussian reflects the local data density. Perturbation $\epsilon \in \mathbb{R}^{d \times d}$ is a random lower-triangular matrix with entries $\epsilon_{jk} = 2\sigma(r_{jk}) - 1$ if $j > k$ and 0 otherwise, where $r_{jk} \sim \mathcal{U}(0, 0.01)$ and $\sigma(\cdot)$ is the sigmoid function. This construction yields diagonal-dominant \mathbf{L}_i , stabilizing optimization while allowing anisotropic covariances.

2.2 OPTIMIZATION OBJECTIVE

High-dimensional indexing requires objectives that remain stable under the curse of dimensionality and robust to heterogeneous feature distributions. Classical partitioning heuristics (e.g., balanced splits, uniform clustering) degrade in such regimes: dense regions are fragmented, sparse regions are merged, and distance metrics lose discriminative power Aggarwal et al. (2001); Aumüller et al. (2020). To overcome this, we draw inspiration from self-supervised learning methods such as VICReg Bardes et al. (2022) and Barlow Twins Zbontar et al. (2021), which employ information-theoretic objectives to increase representational capacity without supervision. Analogously, we introduce objectives that guide Gaussians to (i) cover the data distribution, (ii) assign points with high confidence, and (iii) remain anchored to local structure. This replaces heuristic spatial rules with principled, differentiable criteria suited to high-dimensional retrieval.

More specifically, we introduce a divergence-based objective that acts as a reconstruction loss, and regularize it to prevent information explosion (i.e., uncontrolled growth and excessive overlap of Gaussians). The divergence loss \mathcal{L}_{div} is defined as:

$$\mathcal{L}_{\text{div}} = \frac{1}{N} \sum_{\mathbf{x} \in X} \left(\min_{g_i \in \mathcal{G}} \delta_M(\mathbf{x}, g_i) - \tau \right)^+, \quad (1)$$

where $\delta_M(\mathbf{x}, g_i) = \|\mathbf{L}_i^{-1}(\mathbf{x} - \mu_i)\|_2$ denotes the Mahalanobis distance, $(\cdot)^+ = \max(0, \cdot)$ and τ a standard deviation threshold. It penalizes points that fall outside a Gaussian's coverage

radius ($\delta_M(\mathbf{x}_i, g_i) > \tau$), encouraging Gaussians to expand and cover these points, while points inside ($\delta_M(\mathbf{x}_i, g_i) \leq \tau$) do not contribute, allowing controlled expansion but preventing infinite growth.

Still, Gaussians can overlap, leading to redundant information and performance loss. To surpass this issue, and mitigate fuzzy assignments of points to Gaussians, we introduce a covariance-based regularization, which encourages each Gaussian to dominate its assigned points. Specifically, given a point \mathbf{x} , we define its coverage set, i.e., the set of Gaussians that satisfy the coverage radius constraint, as $\mathcal{M}(\mathbf{x}) = \{g_i \in \mathcal{G} \mid \delta_M(\mathbf{x}, g_i) \leq \tau\}$. Then, we compute the normalized soft-assignment probabilities based on Euclidean distances (δ_E) as $p_i(\mathbf{x}) = e^{-\delta_E(\mathbf{x}, \mu_i)} / \sum_{g_j \in \mathcal{M}(\mathbf{x})} e^{-\delta_E(\mathbf{x}, \mu_j)} + \epsilon$, $\forall g_i \in \mathcal{M}(\mathbf{x})$. The covariance loss \mathcal{L}_{cov} is defined as:

$$\mathcal{L}_{\text{cov}} = 1 - \frac{1}{N} \sum_{\mathbf{x} \in X} \max_{g_i \in \mathcal{M}(\mathbf{x})} p_i(\mathbf{x}) \quad (2)$$

This loss encourages highly confident (low-entropy) assignments, thereby reducing ambiguity and stabilizing optimization.

To further prevent excessive expansion of Gaussians caused by the divergence objective and ensure that each Gaussian aligns with its assigned points, we introduce the anchor loss $\mathcal{L}_{\text{anchor}}$:

$$\mathcal{L}_{\text{anchor}} = \frac{1}{d|\mathcal{G}|} \sum_{g_i \in \mathcal{G}} \left(\|\mu_i - \hat{\mu}_i\|_2^2 + \alpha \|\mathbf{L}_i \mathbf{L}_i^\top - \hat{\Sigma}_i\|_F^2 \right), \quad (3)$$

where $\hat{\mu}_i$ and $\hat{\Sigma}_i = \text{Cov}(x \in \mathcal{B}_{g_i})$ are the empirical mean and covariance of points assigned to Gaussian g_i , and α is a hyperparameter balancing position and shape. This loss constrains Gaussians by anchoring them closely to their local data distributions, restraining uncontrolled growth from other loss terms and maintaining geometric alignment. Finally, our loss function is defined as:

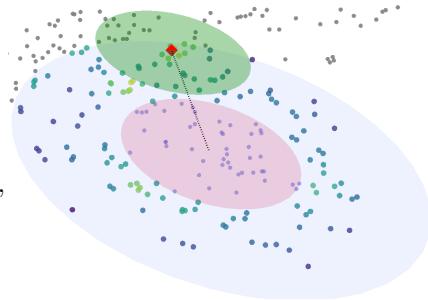
$$\mathcal{L} = \lambda_{\text{div}} \cdot \mathcal{L}_{\text{div}} + \lambda_{\text{cov}} \cdot \mathcal{L}_{\text{cov}} + \lambda_{\text{anchor}} \cdot \mathcal{L}_{\text{anchor}},$$

where λ_{div} , λ_{cov} and λ_{anchor} are hyperparameters balancing the importance of each term.

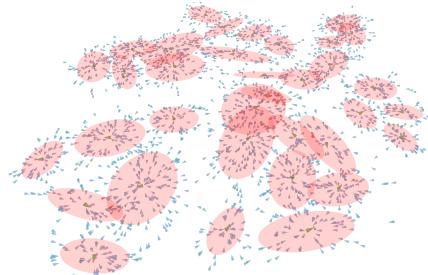
2.3 ADAPTIVE REFINEMENT

Controlling the number of Gaussians during training is key for adapting to data complexity; allocating more in dense regions and fewer in simpler ones. We employ an adaptive refinement strategy that adjusts the Gaussian set based on local point density. Prior approaches rely on positional gradients to guide refinement (Kerbl et al., 2023), but these become sparse and unreliable in high dimensions. In our case, we also require search efficiency, so we refine Gaussians whose cell cardinality exceeds a threshold: $|\mathcal{B}_g| > \gamma \cdot |X|$. *Splitting* is performed by applying clustering (Arthur & Vassilvitskii, 2007) to produce new means μ_1, μ_2 , while covariances are scaled down as $\mathbf{L}_1 = \mathbf{L}_2 = \alpha \cdot \mathbf{L}$, with $\alpha < 1$.

For *cloning*, we target Gaussians with a high ratio of outside points to interior ones $\mathcal{B}_{g_i}^{in} = \{\mathbf{x} \in X : \delta_M(\mathbf{x}, g_i) \leq \tau\}$. Instead of using all nearest outside points, we focus on a



(a) Clone operation. (light red) region where $d_M(x, g_i) \leq \tau$; (blue) outer shell $\tau \leq d_M(x, g_i) \leq e\tau$; (gray) $\{x : d_M(x, g_i) \geq e\tau\}$; (red) mean of the new gaussian; (green) new covariance matrix. (purple - lime) denote increasing data density.



(b) Grad flow: \mathcal{L}_{div} , \mathcal{L}_{cov} , $\mathcal{L}_{\text{anchor}}$

Figure 2: Gaussian refinement and associated loss gradients.

270 boundary region, and select $k = \rho \cdot |\mathcal{B}_g^{out}|$ points, where $\rho \in (0, 1)$ is a sampling ratio
 271 and $\mathcal{B}_{g_i}^{out} = \{\mathbf{x} \in X : \tau < \delta_M(\mathbf{x}, g_i) < e\tau \text{ and } g_i = \arg \min_{g_j \in \mathcal{G}} \delta_M(\mathbf{x}, g_j)\}$ with $e > 1$ is
 272 the set of all boundary points. The sampled subset $S = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\} \subset \mathcal{B}_g^{out}$ is chosen
 273 randomly without replacement. This sampling approach serves several purposes, reducing
 274 computational cost, as density estimation in high dimensions is expensive, providing statistical
 275 robustness by focusing on representative points and helping to avoid outliers that might
 276 exist in the boundary region as Figure 2 showcases. The candidate Gaussians are picked
 277 with regard to the ratio of boundary to interior points: $|\mathcal{B}_g^{out}|/|\mathcal{B}_g^{in}| > \beta$. The center of
 278 the new Gaussian is placed at the point with the highest local density in the boundary
 279 region, such that for a point \mathbf{p} in the boundary region, we compute its local density as the
 280 inverse mean Euclidean distance from the 3-NN and select the point with the highest density:
 281 $\mathbf{p}^* = \arg \max_{\mathbf{p}} \rho(\mathbf{p})$. The covariance matrix is then cloned, with $\mathbf{L}_{new} = \mathbf{L}$. In our method,
 282 splitting is prioritized over cloning: when a Gaussian grows too large, we first partition it to
 283 reduce cell cardinality and maintain search efficiency. Cloning is applied only if splitting
 284 is not triggered, serving to refine coverage near dense boundary regions without inflating
 285 candidate counts unnecessarily.

286 2.4 QUANTIZATION

287 After optimizing our Gaussians, we assign points that fall outside the coverage radius to the
 288 nearest Gaussian such that our final cells are: $\mathcal{B}_{g_i} = \{\mathbf{x} \in X \mid \delta_M(\mathbf{x}, g_i) \leq \tau\} \cup \{\mathbf{x} \in X \mid$
 $\delta_M(\mathbf{x}, g_i) > \tau \text{ and } g_i = \arg \min_{g_j \in \mathcal{G}} \delta_M(\mathbf{x}, g_j)\}$. While Gaussian cells provide an effective
 289 partition of the space, brute-force search within them is still prohibitive in high dimensions.
 290 Standard ANN methods usually quantize globally, ignoring the anisotropy and local geometry
 291 already captured by our Gaussians. We instead introduce a localized quantization scheme:
 292 once points are assigned to cells, each cell is treated in its own coordinate system, where
 293 Euclidean structure is better aligned with the underlying data. Quantizing in this local
 294 basis reduces the number of distance computations per query, while preserving the geometry
 295 captured by Mahalanobis distance.

296 For each cell \mathcal{B}_g , we apply PCA to reduce dimensionality while preserving the local structure
 297 $\mathbf{P}_g = \text{PCA}(\{\mathbf{x} - \bar{\mathbf{x}}_g \mid \mathbf{x} \in \mathcal{B}_g\}, r)$ where $\bar{\mathbf{x}}_g$ is the mean of points in cell \mathcal{B}_g , r is the
 298 reduced dimensionality (typically $r \ll d$, constant in practice), and $\mathbf{P}_g \in \mathbb{R}^{d \times r}$ contains
 299 the top- r principal components. This step both lowers computational cost and aligns the
 300 local coordinate system with the main variance directions of the data. Each point $\mathbf{x} \in \mathcal{B}_g$
 301 is then projected into this subspace $\mathbf{x}^r = \mathbf{P}_g^\top(\mathbf{x} - \bar{\mathbf{x}}_g)$, which embeds the data in \mathbb{R}^r while
 302 preserving Euclidean structure up to the discarded components. Finally, we convert \mathbf{x}^r into
 303 hyperspherical coordinates $\mathbf{s} = \text{cart2sph}(\mathbf{x}^r) = (s_1, s_2, \dots, s_r)$, where s_1 denotes the radial
 304 component $\|\mathbf{x}^r\|_2$ and s_2, \dots, s_r are angular coordinates. This reparameterization retains
 305 the Euclidean metric but enables partitioning along radial and angular directions.

306 The hyperspherical space is partitioned into bins $\mathcal{Q}_g = \{B_{i,j} \mid i \in \{1, \dots, n_r\}, \mathbf{j} \in$
 $\{1, \dots, n_a\}^{r-1}\}$, with radial boundaries $r_i = r_{\min} + (r_{\max} - r_{\min}) \frac{i}{n_r}$, $i = 0, \dots, n_r$, and
 307 angular boundaries $\theta_{j,k} = \theta_{\min,k} + (\theta_{\max,k} - \theta_{\min,k}) \frac{j}{n_a}$, $j = 0, \dots, n_a$, $k = 1, \dots, r-1$. The
 308 dominant cost of index construction comes from full Mahalanobis-based assignments during
 309 optimization, requiring $\mathcal{O}(|X| \cdot K \cdot d^2)$ time per iteration, while initialization, refinement,
 310 and PCA quantization add only lower-order terms (see Appendix A.3).

311 2.5 INFERENCE

312 Given a query \mathbf{q} , we first select the top- k_G Gaussians by Mahalanobis score $\delta_M(\mathbf{q}, g)$. For
 313 each selected Gaussian g , we project \mathbf{q} to its local PCA space $\mathbf{q}_g^r = \mathbf{P}_g^\top(\mathbf{q} - \bar{\mathbf{x}}_g)$ and convert to
 314 hyperspherical coordinates $\mathbf{s}_g = \text{cart2sph}(\mathbf{q}_g^r)$. We prioritize bins by a query-to-bin distance
 315 computed in the reduced Euclidean space. Each bin $B_{i,j}$ is defined by spherical bounds
 316 $r \in [r_i, r_{i+1}]$ and $\theta_k \in [\theta_{j_k,k}, \theta_{j_{k+1},k}]$ for $k = 1, \dots, r-1$. We define:

$$317 d(\mathbf{q}_g^r, B_{i,j}) = \min_{\phi \in \mathbb{R}^r} \|\mathbf{q}_g^r - \text{sph2cart}(\phi)\|_2 \text{ s.t. } r_i \leq \phi_1 \leq r_{i+1}, \theta_{j_k,k} \leq \phi_{k+1} \leq \theta_{j_{k+1},k}.$$

If \mathbf{s}_g lies inside $B_{i,j}$, then $d(\mathbf{q}_g^r, B_{i,j}) = 0$; otherwise we solve the bound-constrained problem (Byrd et al., 1995) initialized at $\phi_1 = \text{clip}(\|\mathbf{q}_g^r\|_2, [r_i, r_{i+1}])$ and $\phi_{k+1} = 0.5(\theta_{j_k,k} + \theta_{j_{k+1},k})$. Bins in \mathcal{Q}_g are sorted by $d(\mathbf{q}_g^r, \cdot)$ ascending and scanned until a bin budget $\rho \in (0, 1]$ of bins per cell is exhausted (typically $\rho = 0.3$). Within each visited bin we compute exact Euclidean distances in the original space between \mathbf{q} and all points indexed in that bin, aggregating candidates across the k_G selected Gaussians. The final result is obtained by selecting the overall nearest neighbors among the accumulated candidates, with the dominant inference cost coming from distance computations (see Appendix A.3).

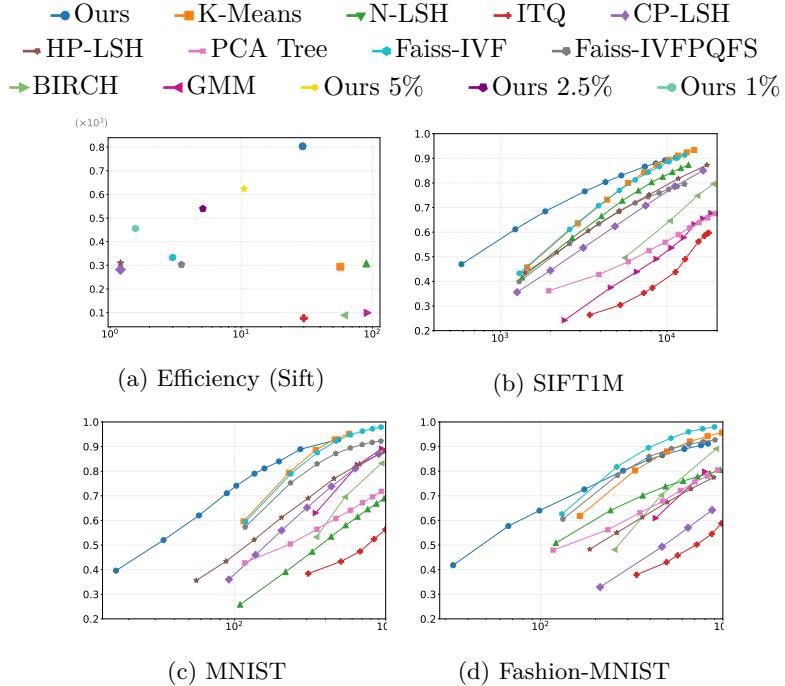


Figure 3: Efficiency and retrieval performance across datasets, measured via Recall@1. Methods closer to the top-left (\nwarrow) indicate a better trade-off between accuracy and candidate count. GARLIC performs especially well in the low-probe regime. Our method is trained in 10% for SIFT-1M unless stated otherwise.

3 EXPERIMENTS

Datasets. We evaluate our method on three benchmark datasets: SIFT1M (Lowe, 2004) (128-dimensional image descriptors with one million points), MNIST (LeCun et al., 1998) and Fashion-MNIST (Xiao et al., 2017) (784-dimensional vectors from 28×28 grayscale images) following the standard setup in ANN-Benchmarks (Aumüller et al., 2020). Further information about the datasets can be found in the Appendix.

Evaluation. We evaluate GARLIC on the approximate nearest neighbor task, reporting Recall@1 and as function of the number of distance computations while varying the probe budget. Recall@1 measures the accuracy of the very first retrieved neighbor, reflecting ranking performance, and is strict. In Appendix A.1, we showcase more related metrics such as ϵ -Recall, empirical c -approximation factors and mean relative error. We use distance computations, rather than wall-clock latency (QPS), as the efficiency axis. Distance computations capture the algorithmic effort of a search procedure independently of hardware and implementation details (different CPUs/GPUs, BLAS kernels, batching, I/O) (Aumüller et al., 2020; Peng et al., 2023). This metric directly reflects the goal of space-partitioning methods, which is to minimize the number of distances required to achieve a target recall.

Baselines and Comparisons. We evaluate GARLIC against representative approximate nearest neighbor methods such as k -Means++ (Arthur & Vassilvitskii, 2006), BIRCH (Zhang

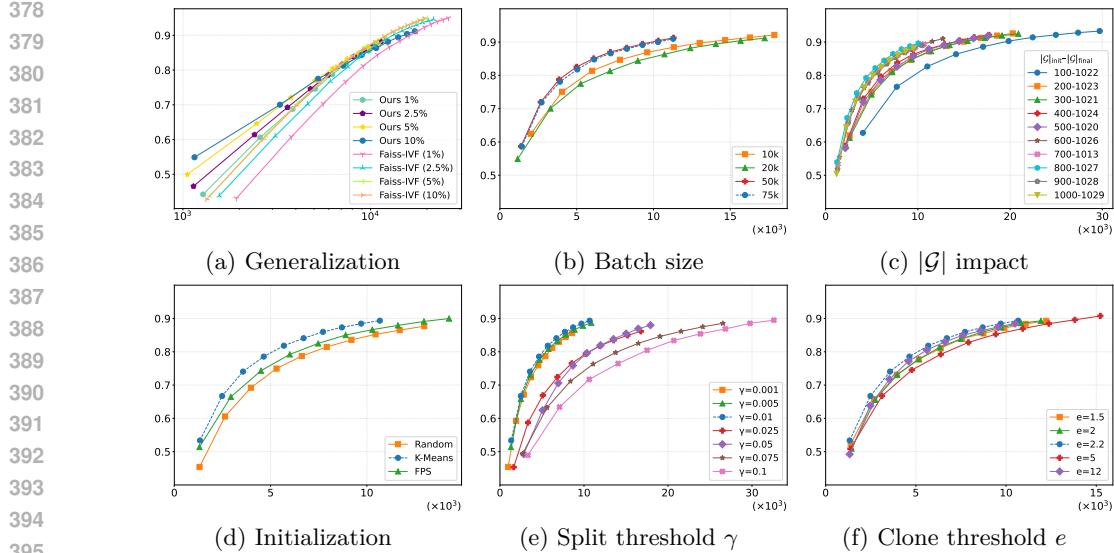


Figure 4: (a) Generalization with limited training data. (b) Batch size effect. (c) Impact of initial number of Gaussians. (d) Effect of different initialization strategies. (e) Impact of split threshold γ , with higher values increasing accuracy at the cost of more probes. (f) Effect of clone threshold e . The blue dashed regards the parameters used in main experiments, and top-left is better (\nwarrow), while all y-axis report Recall@1 and x-axis candidate counts.

et al., 1996), Gaussian Mixture Models (GMM) (Dempster et al., 1977; Banerjee et al., 2005), Neural-LSH (N-LSH) (Dong et al., 2020), Hyperplane LSH (HP-LSH) (Indyk & Motwani, 1998), Cross-polytope LSH (CP-LSH) (Andoni et al., 2015), ITQ (Gong et al., 2012), PCA Tree (Kumar et al., 2008; Abdullah et al., 2014; Sproull, 1991; McNames, 2001), Faiss-IVF and Faiss-IVFPQFS (Douze et al., 2024). All baselines were run under identical conditions, using the standardized ANN-Benchmarks datasets and query splits, with hyperparameters optimized according to their respective publications and usage.

Results and Analysis. We present performance curves across datasets, reporting Recall@1 as a function of the number of retrieved candidates. As shown in Figure 3, our method performs efficiently with respect to other baselines. GARLIC generally achieves preferable recall-efficiency trade-offs than traditional space partitioning methods, including inverted-file indices (Faiss-IVF, IVFPQFS), hashing approaches (HP-LSH, CP-LSH, Neural-LSH), and tree-based methods (PCA-Tree, BIRCH). Figure 3(a) evaluates efficiency through Recall@1-per-probe versus build time. All GARLIC variants occupy the upper-left region, indicating favorable trade-offs: lightweight models trained with 1% of the data already surpass strong baselines, while larger-capacity variants (e.g., 10% training) further improve recall without excessive cost. In contrast, competing methods cluster in lower-efficiency or higher-cost regions, reflecting less balanced trade-offs between indexing overhead and search quality.

Ablation study. We conduct ablation studies to isolate the effect of key design choices and components. Unless stated otherwise, experiments are on SIFT-1M with a training subset of 5% of $|X|$, and Recall@1 is measured against distance computations. We investigate the robustness and data efficiency of our method through controlled downsampling of the training set. As shown in Figure 4(a), our method consistently maintains strong performance across varying training sizes. Notably, even with only 1% of the training data, our model outperforms the Faiss-IVF variants of up to 10% training size in terms of Recall@1 versus

Table 1: Effect of loss terms and adaptive refinement average Recall@1 / Candidates ($\times 10^5$). Higher is better.

Configuration	Performance \uparrow
Loss terms	
w/ all	16.20
$\mathcal{L}_{div} + \mathcal{L}_{cov}$	15.38
$\mathcal{L}_{div} + \mathcal{L}_{anchor}$	10.64
\mathcal{L}_{div}	9.78
Split & Clone	
w/ both	16.20
w/ split	14.22
w/ clone	5.45
w/o any	4.63

432 the number of retrieved candidates. This trend remains consistent across higher percentages,
 433 demonstrating that our approach learns a compact yet highly effective representation of the
 434 data distribution. Furthermore, Figure 4(b) highlights the batch-size effect (here using a
 435 fixed training subset of 100k points instead of 50k), where larger batches yield consistently
 436 better performance. Finally, Figure 4(c) shows that more initial Gaussians produce better
 437 results at equal iterations, reflecting faster convergence. This happens because adaptive
 438 density control targets spatial placement rather than Gaussian count.

439 We next evaluate core design hyperparameters. In Figure 4(d), we investigate initialization
 440 strategies for Gaussian centers, revealing that K-Means initialization consistently outperforms
 441 alternatives. Although farthest point sampling (FPS) achieves comparable recall, it requires
 442 approximately 50% more probes, and catching up to K-Means requires more training time. In
 443 Figure 4(e), the split threshold γ , controlling the density condition for Gaussian subdivision,
 444 is examined. The optimal values are $\gamma = 0.005$ and $\gamma = 0.01$, though $\gamma = 0.005$ requires
 445 more time due to more frequent splits. As for the clone threshold e , depicted in Figure 4(f),
 446 which determines the outer shell for cloning, it remains stable across different values, with
 447 $e = 2.2$ being preferable in situations requiring high recall.

448 Table 1 analyzes the impact of loss terms, adaptive refinement and covariance configurations.
 449 Split and clone are pivotal for performance, while the covariance term (\mathcal{L}_{cov}) significantly
 450 boosts retrieval. The anchor term ($\mathcal{L}_{\text{anchor}}$) has minor effect on raw performance but is
 451 essential for making Gaussians geometrically informative. Additional ablations and results
 452 are provided in the Appendix.

453 **Limitations and Future Work.** GARLIC employs Mahalanobis distance and Gaussian
 454 primitives, which assume a Euclidean metric and are therefore not directly compatible with
 455 angular similarity. This may be addressed by adopting angular counterparts, such as von
 456 Mises–Fisher distributions, which we leave for future work. The trade-off between recall and
 457 latency can be further enhanced by augmenting the number of Gaussians and organizing
 458 them within tree structures (e.g., KD-tree or Ball-tree over Gaussian means), reducing query
 459 cost. The spatial complexity scales quadratically with dimensionality ($\mathcal{O}(Kd^2)$) due to full
 460 anisotropic covariances; this challenge can be mitigated through low-rank approximations
 461 or quantization of Cholesky factors. Finally, while the method shows some sensitivity to
 462 initialization, this is alleviated by the information-theoretic objectives and the progressive
 463 refinement via split and cloning. Beyond these limitations, GARLIC is naturally incremental:
 464 each Gaussian cell maintains sufficient statistics (mean, covariance, cardinality), allowing new
 465 data to be integrated through online updates. Combined with local split/clone refinement,
 466 this enables streaming and online learning scenarios without rebuilding the entire index. We
 467 leave a systematic evaluation of this capability to future work.

4 CONCLUSIONS

470 We introduced GARLIC, a geometric structure that learns the underlying distribution for
 471 both approximate nearest neighbor search and classification. By combining information-
 472 theoretic objectives with adaptive refinement (split and clone), and representing the space
 473 via anisotropic Gaussians, our method achieves competitive performance in Euclidean
 474 approximate nearest neighbor, particularly in low-probe regimes. Experiments demonstrate
 475 competitive recall-efficiency tradeoffs and robustness under severe data reduction, highlighting
 476 its generalization capabilities.

478 STATEMENTS

479 **Ethics Statement.** Our method is evaluated exclusively on publicly available benchmark
 480 datasets. These datasets contain no personally identifiable or sensitive information, and
 481 their licenses are respected. To the best of our knowledge, the proposed method does not
 482 raise ethical concerns. We adhere to the ICLR Code of Ethics and Code of Conduct.

484 **Reproducibility Statement.** We provide detailed descriptions of our initialization, optimi-
 485 zation, refinement strategies, and hyperparameters in the main text and Appendix A. All

486 datasets are standard and publicly available. We will release the full source code, trained
 487 models, and experiment scripts upon publication to facilitate reproducibility and support
 488 future research.
 489

490 **LLM Usage.** Large language models (LLMs) were used to assist in editing and rephrasing
 491 parts of the manuscript for clarity, and to accelerate the creation of visualizations (e.g.,
 492 diagnostic figures). All technical contributions, algorithms, and experiments were designed,
 493 implemented, and validated by the authors.
 494

495 REFERENCES

497 Amirali Abdullah, Alexandr Andoni, Ravindran Kannan, and Robert Krauthgamer. Spectral
 498 approaches to nearest neighbor search. In *2014 IEEE 55th Annual Symposium on
 499 Foundations of Computer Science*, pp. 581–590. IEEE, 2014.

500 Charu C Aggarwal, Alexander Hinneburg, and Daniel A Keim. On the surprising behavior
 501 of distance metrics in high dimensional space. In *International conference on database
 502 theory*, pp. 420–434. Springer, 2001.

503 Evangelos Anagnostopoulos, Ioannis Z Emiris, and Ioannis Psarros. Randomized embeddings
 504 with slack and high-dimensional approximate nearest neighbor. *ACM Transactions on
 505 Algorithms (TALG)*, 14(2):1–21, 2018.

506 Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest
 507 neighbor in high dimensions. *Communications of the ACM*, 51(1):117–122, 2008.

508 Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and Ludwig Schmidt.
 509 Practical and optimal lsh for angular distance. In C. Cortes, N. Lawrence, D. Lee,
 510 M. Sugiyama, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*,
 511 volume 28. Curran Associates, Inc., 2015. URL https://proceedings.neurips.cc/paper_files/paper/2015/file/2823f4797102ce1a1aec05359cc16dd9-Paper.pdf.

512 Alexandr Andoni, Piotr Indyk, and Ilya Razenshteyn. Approximate nearest neighbor search
 513 in high dimensions. In *Proceedings of the International Congress of Mathematicians: Rio
 514 de Janeiro 2018*, pp. 3287–3318. World Scientific, 2018.

515 David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding.
 516 Technical report, Stanford, 2006.

517 David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful seeding. In
 518 *Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
 519 SODA '07*, pp. 1027–1035, USA, 2007. Society for Industrial and Applied Mathematics.
 520 ISBN 9780898716245.

521 Martin Aumüller, Erik Bernhardsson, and Alexander Faithfull. Ann-benchmarks: A bench-
 522 marking tool for approximate nearest neighbor algorithms. *Information Systems*, 87:
 523 101374, 2020.

524 Arindam Banerjee, Srujana Merugu, Inderjit S Dhillon, and Joydeep Ghosh. Clustering with
 525 bregman divergences. *Journal of machine learning research*, 6(Oct):1705–1749, 2005.

526 Adrien Bardes, Jean Ponce, and Yann LeCun. VICReg: Variance-invariance-covariance
 527 regularization for self-supervised learning. In *International Conference on Learning
 528 Representations*, 2022. URL <https://openreview.net/forum?id=xm6YD62D1Ub>.

529 Richard H Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A limited memory algorithm for
 530 bound constrained optimization. *SIAM Journal on scientific computing*, 16(5):1190–1208,
 531 1995.

532 Yixi Cai, Wei Xu, and Fu Zhang. ikd-tree: An incremental kd tree for robotic applications.
 533 *arXiv preprint arXiv:2102.10808*, 2021.

540 Aaron Clauset, Cosma Rohilla Shalizi, and Mark EJ Newman. Power-law distributions in
 541 empirical data. *SIAM review*, 51(4):661–703, 2009.

542

543 Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from
 544 incomplete data via the em algorithm. *Journal of the royal statistical society: series B*
 545 (methodological), 39(1):1–22, 1977.

546

547 Yihe Dong, Piotr Indyk, Ilya Razenshteyn, and Tal Wagner. Learning space partitions for
 548 nearest neighbor search. In *International Conference on Learning Representations*, 2020.
 549 URL <https://openreview.net/forum?id=rkenmREFDr>.

550

551 Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvassy, Pierre-
 552 Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library.
 553 *arXiv preprint arXiv:2401.08281*, 2024.

554

555 Qiang Du, Vance Faber, and Max Gunzburger. Centroidal voronoi tessellations: Applications
 556 and algorithms. *SIAM review*, 41(4):637–676, 1999.

557

558 Abdullah Gani, Aisha Siddiqa, Shahaboddin Shamshirband, and Fariza Hanum. A survey
 559 on indexing techniques for big data: taxonomy and performance evaluation. *Knowledge*
 560 and information systems, 46(2):241–284, 2016.

561

562 Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. Optimized product quantization for
 563 approximate nearest neighbor search. In *Proceedings of the IEEE conference on computer*
 564 *vision and pattern recognition*, pp. 2946–2953, 2013.

565

566 Yunchao Gong, Svetlana Lazebnik, Albert Gordo, and Florent Perronnin. Iterative quanti-
 567 zation: A procrustean approach to learning binary codes for large-scale image retrieval.
 568 *IEEE transactions on pattern analysis and machine intelligence*, 35(12):2916–2929, 2012.

569

570 Gaurav Gupta, Tharun Medini, Anshumali Shrivastava, and Alexander J. Smola. Bliss:
 571 A billion scale index using iterative re-partitioning. In *Proceedings of the 28th ACM*
 572 *SIGKDD Conference on Knowledge Discovery and Data Mining*, KDD ’22, pp. 486–495,
 573 New York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450393850.
 574 doi: 10.1145/3534678.3539414. URL <https://doi.org/10.1145/3534678.3539414>.

575

576 Charles R Harris, K Jarrod Millman, Stéfan J Van Der Walt, Ralf Gommers, Pauli Virtanen,
 577 David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J Smith, et al.
 578 Array programming with numpy. *Nature*, 585(7825):357–362, 2020.

579

580 Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the
 581 curse of dimensionality. In *Proceedings of the Thirtieth Annual ACM Symposium on*
 582 *Theory of Computing*, STOC ’98, pp. 604–613, New York, NY, USA, 1998. Association
 583 for Computing Machinery. ISBN 0897919629. doi: 10.1145/276698.276876. URL <https://doi.org/10.1145/276698.276876>.

584

585 Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri, Ravishankar Krish-
 586 nawamy, and Rohan Kadekodi. Diskann: Fast accurate billion-point nearest neighbor
 587 search on a single node. *Advances in neural information processing Systems*, 32, 2019.

588

589 Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest
 590 neighbor search. *IEEE transactions on pattern analysis and machine intelligence*, 33(1):
 117–128, 2010.

591

592 Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus.
 593 *IEEE Transactions on Big Data*, 7(3):535–547, 2019.

594

595 Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian
 596 splatting for real-time radiance field rendering. *ACM Trans. Graph.*, 42(4):139–1, 2023.

597

598 Neeraj Kumar, Li Zhang, and Shree Nayar. What is a good nearest neighbors algorithm
 599 for finding similar patches in images? In *Computer Vision–ECCV 2008: 10th European*
 600 *Conference on Computer Vision, Marseille, France, October 12–18, 2008, Proceedings,*
 601 *Part II* 10, pp. 364–378. Springer, 2008.

594 Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
 595 applied to document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.
 596

597 Stuart Lloyd. Least squares quantization in pcm. *IEEE transactions on information theory*,
 598 28(2):129–137, 1982.

599 David G Lowe. Distinctive image features from scale-invariant keypoints. *International
 600 journal of computer vision*, 60:91–110, 2004.
 601

602 Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. Multi-probe lsh: efficient
 603 indexing for high-dimensional similarity search. In *Proceedings of the 33rd international
 604 conference on Very large data bases*, pp. 950–961, 2007.

605 Mikko I Malinen and Pasi Fränti. Balanced k-means for clustering. In *Joint IAPR
 606 international workshops on statistical techniques in pattern recognition (SPR) and
 607 structural and syntactic pattern recognition (SSPR)*, pp. 32–41. Springer, 2014.
 608

609 Yu A Malkov and Dmitry A Yashunin. Efficient and robust approximate nearest neighbor
 610 search using hierarchical navigable small world graphs. *IEEE transactions on pattern
 611 analysis and machine intelligence*, 42(4):824–836, 2018.

612 James McNames. A fast nearest-neighbor algorithm based on a principal axis search tree.
 613 *IEEE Transactions on pattern analysis and machine intelligence*, 23(9):964–976, 2001.
 614

615 A Paszke. Pytorch: An imperative style, high-performance deep learning library. *arXiv
 616 preprint arXiv:1912.01703*, 2019.

617 Yun Peng, Byron Choi, Tszi Nam Chan, Jianye Yang, and Jianliang Xu. Efficient approximate
 618 nearest neighbor search in multi-dimensional databases. *Proceedings of the ACM on
 619 Management of Data*, 1(1):1–27, 2023.

620 Ilya Razenshteyn. *High-dimensional similarity search and sketching: algorithms and
 621 hardness*. PhD thesis, Massachusetts Institute of Technology, 2017.
 622

623 David Sculley. Web-scale k-means clustering. In *Proceedings of the 19th international
 624 conference on World wide web*, pp. 1177–1178, 2010.

625 Gregory Shakhnarovich, Trevor Darrell, and Piotr Indyk. Nearest-neighbor methods in
 626 learning and vision. *IEEE Trans. Neural Networks*, 19(2):377, 2008.
 627

628 Robert F Sproull. Refinements to nearest-neighbor searching in k-dimensional trees.
 629 *Algorithmica*, 6:579–589, 1991.
 630

631 Jingdong Wang, Heng Tao Shen, Jingkuan Song, and Jianqiu Ji. Hashing for similarity
 632 search: A survey. *arXiv preprint arXiv:1408.2927*, 2014.

633 Jun Wang, Wei Liu, Sanjiv Kumar, and Shih-Fu Chang. Learning to hash for indexing big
 634 data—a survey. *Proceedings of the IEEE*, 104(1):34–57, 2015.

635 Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
 636 benchmarking machine learning algorithms. *arXiv preprint arXiv:1708.07747*, 2017.
 637

638 Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-
 639 supervised learning via redundancy reduction. In *International conference on machine
 640 learning*, pp. 12310–12320. PMLR, 2021.

641 Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: an efficient data clustering
 642 method for very large databases. *ACM sigmod record*, 25(2):103–114, 1996.
 643

644

645

646

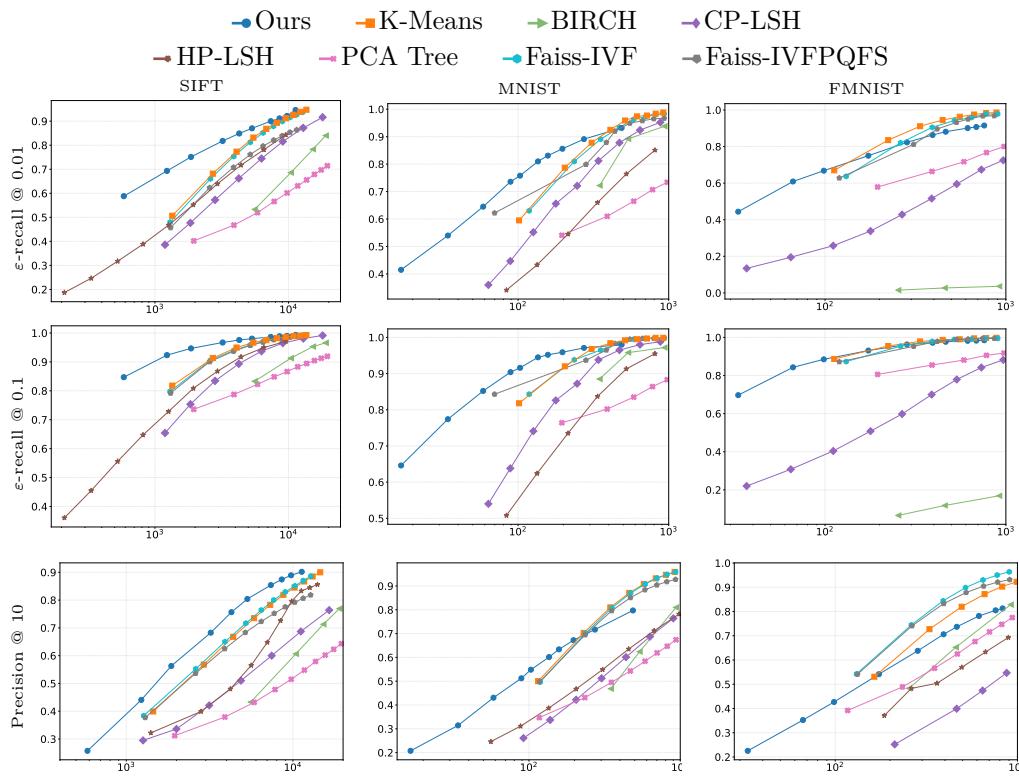
647

648 **A APPENDIX**
649

650 This appendix provides additional details and experiments as mentioned in the main paper.
 651 Section A.1 provides additional results and ablation studies to the ones presented in Section 3
 652 of the main paper. Section A.1.1 contains visualization of diagnostics and statistics regarding
 653 our proposed method, to provide a comprehensive understanding of its behavior. Section A.2
 654 contains additional technical details regarding the datasets used and the experimental setup,
 655 as well as the training pipeline. Section A.3 discusses and provides detailed computational
 656 time and space complexity for the build and query procedures of GARLIC.

657 **A.1 FURTHER RESULTS**
658

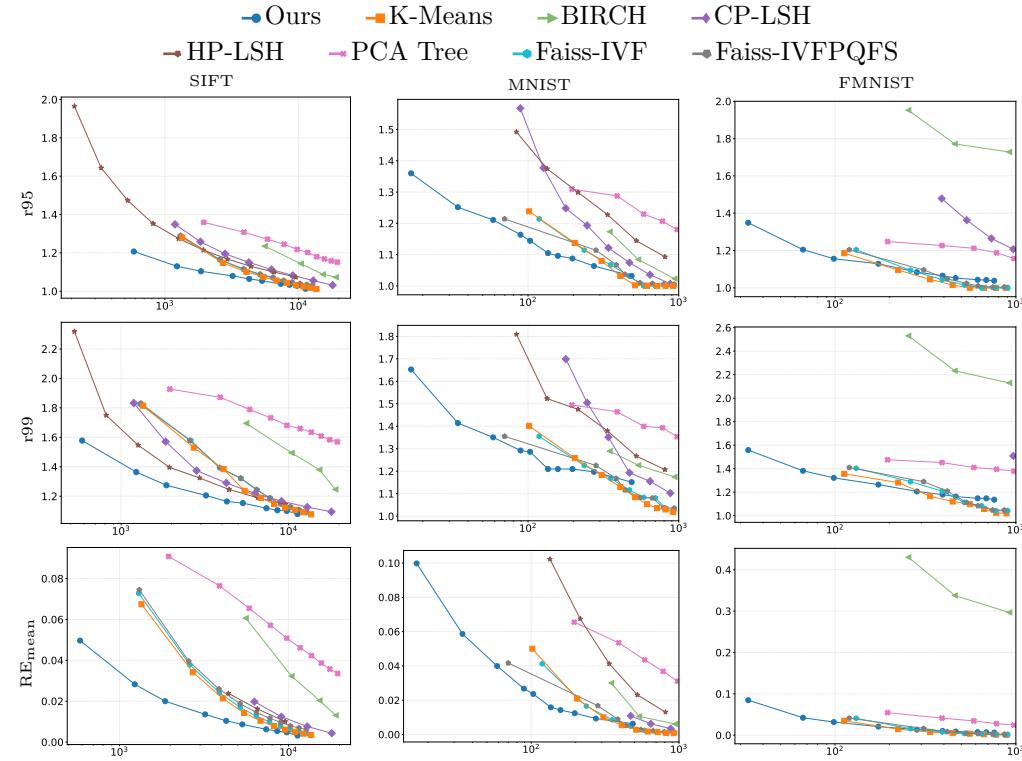
659 We extend the analysis of the experimental section, by further examining the impact of
 660 individual design choices in GARLIC and providing results. Unless noted otherwise, for
 661 each result presented as ablation, we sample a training set of 50.000 (5%) from SIFT-1M
 662 and only change the requested parameters while keeping all others as is, while reporting
 663 recall@1 against distance computations. In each figure, the parameters used in the main
 664 experiments are represented by the method indicated by the blue dashed line, and optimal
 665 outcomes are achieved when positioned on the top left of the figures (↖). When comparing,
 666 for readability, we choose to exclude GMM, Neural-LSH, and ITQ for their inconsistent and
 667 unstable performance.



694 Figure 5: Additional distortion-aware accuracy results (**higher is better**). Each curve
 695 reports performance as a function of the candidate budget (x-axis). Panels show ε -Recall
 696 at $\varepsilon \in \{0.01, 0.10\}$ and P@10 across SIFT1M, MNIST, and FMNIST. Methods closer to the
 697 top-left (↖) are more accurate under smaller candidate budgets.

698 We evaluate retrieval quality using both accuracy- and distortion-based criteria, as shown in
 699 Figures 5 and 6. Beyond Recall@1, we report Precision@10 (P@10), capturing the fraction of
 700 retrieved points among the top-10 that are true neighbors. To assess approximation tightness
 701 for the nearest neighbor, we measure the distance ratio between the returned neighbor and

702 the exact nearest neighbor. From this we derive: (i) ε -Recall, the fraction of queries where
 703 the retrieved distance is within a factor $(1 + \varepsilon)$ of the ground-truth (with $\varepsilon \in \{0.01, 0.10\}$);
 704 (ii) the percentiles $r95$ and $r99$, which correspond to empirical c -approximation factors at
 705 the 95th and 99th percentiles; and (iii) the mean relative error, RE_{mean} , summarizing the
 706 average stretch beyond the true nearest-neighbor distance. These metrics complement recall
 707 by quantifying how close the returned distances are to the exact nearest neighbor, and follow
 708 standard practice in ANN-Benchmarks.

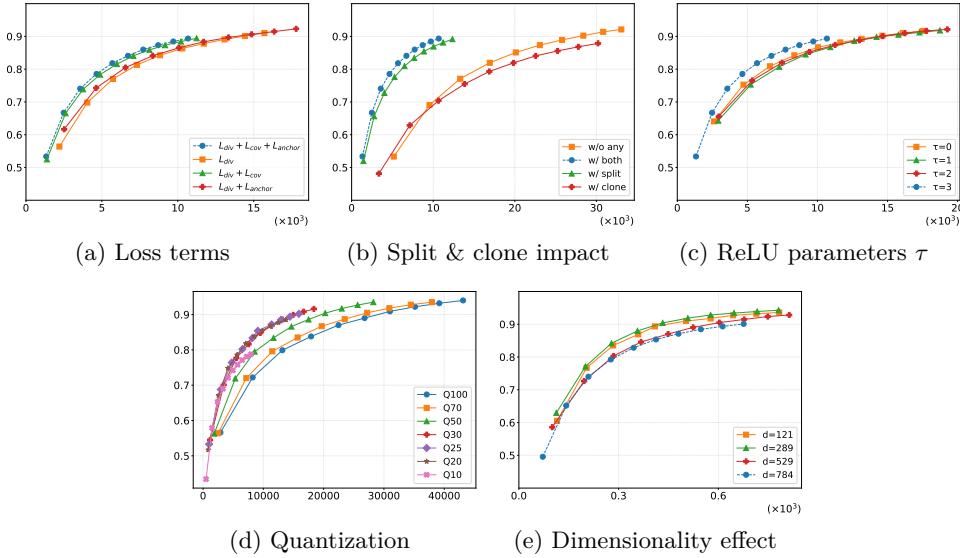


735 Figure 6: Approximation tightness summaries (**lower is better**). We report the 95th and
 736 99th percentiles of the distance ratio ($r95$, $r99$) and the mean relative error ($RE_{\text{mean}} =$
 737 $\mathbb{E}[r - 1]$) versus the candidate budget. Methods closer to the bottom-left (\swarrow) achieve tighter
 738 approximations with fewer candidates.

740 Across datasets we observe consistent trends: ε -Recall at 1% and 10% rapidly approaches 1.0,
 741 indicating that even under small probe budgets the vast majority of retrieved neighbors lie
 742 within 1%–10% of the true nearest-neighbor distance. The $r95$ and $r99$ curves remain close
 743 to 1.0, showing that 95%–99% of queries admit near-exact retrieval, while RE_{mean} stays low
 744 and stable, confirming that average distortion is minimal. Together with high P@10, these
 745 results demonstrate that the learned Gaussian partitions not only achieve strong recall but
 746 also return candidates that are quantitatively close to the exact nearest neighbors, providing
 747 both efficiency and fidelity in the ANN process.

748 **Additional Abblation Studies** In Figure 7(a), the contribution of each loss term to the
 749 optimization process is analyzed. The results indicate that the covariance loss \mathcal{L}_{cov} produces
 750 the most significant performance improvement, while the anchor loss $\mathcal{L}_{\text{anchor}}$ functions as an
 751 effective regularizer, grounding each Gaussian by aligning it with its corresponding point
 752 distribution. Figure 7(b) demonstrates the effects of our adaptive refinement operations,
 753 where the split and clone mechanisms improve retrieval performance when used together,
 754 each contributing by providing complementary benefits to the quality of representation.
 755 Figure 7(c), addresses the parameter τ within \mathcal{L}_{div} , demonstrating that $\tau = 3$ is the optimal
 756 choice, particularly in scenarios involving a limited number of probes. Values surpassing

756 those presented in our study ($\tau > 3$) result in less optimal outcomes. For instance, $\tau = 4$
 757 demonstrates a Recall@1 value of 0.67 when evaluated with 154264 probes.
 758



778 Figure 7: Parameter ablations: (a) Impact of different loss term combinations on the
 779 Recall-Probe tradeoff, showing that the full loss ($L_{div} + L_{cov} + L_{anchor}$) provides the best
 780 balance. (b) Effect of split and clone operations, demonstrating that these operations improve
 781 efficiency while maintaining accuracy. (c) Impact of ReLU parameter τ in the divergence
 782 loss. (d) Effect of embedding dimensionality, showing GARLIC’s robustness across different
 783 dimensions. (e) Efficient search via partial cell scanning. The blue dashed method regards
 784 the parameters used in main experiments, and top-left is better (↖).
 785
 786

787 Furthermore, Figure 7(d) demonstrates the impact of our quantization scheme. In particular,
 788 it exhibits strong performance across a broad quantization range (20–100%), with only the
 789 most aggressive setting (10%) leading to degradation. This indicates that our quantization
 790 strategy is robust and well-aligned with our model structure. Finally, Figure 7(e) examines
 791 dimensionality effects using Fashion-MNIST data resized to various dimensions (to simulate
 792 higher-dimensional embeddings). The results confirm that GARLIC maintains strong
 793 performance across a wide range of dimensionalities.
 794
 795

796 Covariance structure vs performance.

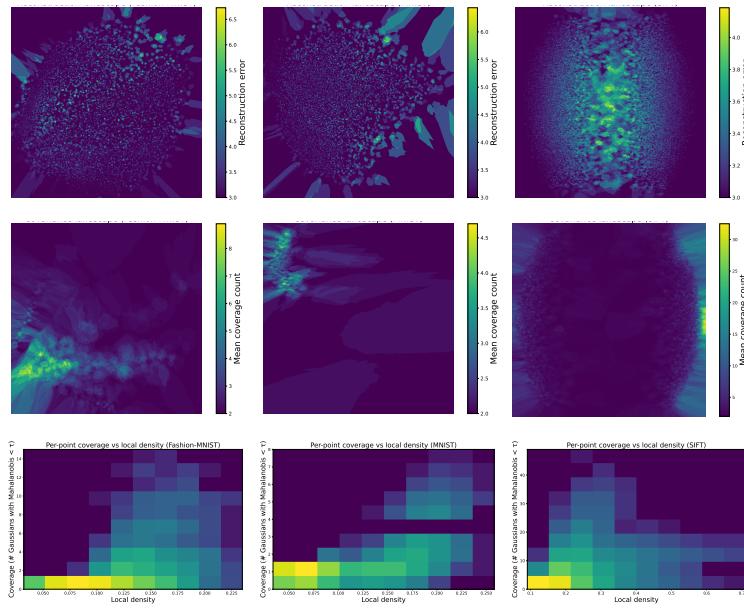
797 We conduct a targeted study to assess the
 798 impact of different covariance configurations—
 799 namely, full (anisotropic), diagonal, and
 800 isotropic—affect the performance of GARLIC.
 801 As shown in Table 2, reducing the Gaussian
 802 expressiveness from full to diagonal and then
 803 to isotropic leads to a notable decline in aver-
 804 age Recall@1 per probe. While diagonal and
 805 isotropic configurations reduce both the
 806 parameter count and computation per Gaus-
 807 sian to a linear level, $\mathcal{O}(k \cdot d)$, they lead to
 808 aggressive pruning and an increased number
 809 of probes to make up for the representational
 810 loss. This suggests that space complexity
 811 cannot be drastically reduced without harming
 812 retrieval quality because simpler Gaussian
 813 parameterizations result in degraded locality and coverage.

Table 2: Effect of anisotropy on average Recall@1 / Probe ($\times 10^5$). Higher is better. As anisotropy decreases, performance degrades due to excessive probe usage.

Configuration	Performance ↑
Covariance structure	
Anisotropic	16.20
Diagonal	1.22
Isotropic	0.75

810 A.1.1 QUALITATIVE RESULTS
811

812 To gain a more comprehensive understanding of the model’s behavior, we present a collection
813 of diagnostic visualizations applied to the Fashion-MNIST, MNIST, and SIFT datasets.
814 These plots illustrate structural characteristics, including local coverage, reconstruction
815 fidelity, density patterns, and curvature statistics of the learned Gaussian components. All
816 visualizations are conducted on a randomly sampled subset of training points, utilizing the
817 learned parameters independently of test data supervision.



832 Figure 8: Diagnostic visualizations across Fashion-MNIST (left), MNIST (middle), and SIFT
833 (right). Top row: minimum Mahalanobis reconstruction error; middle row: average Gaussian
834 coverage per point; bottom row: relationship between local density and Gaussian coverage.
835 Bottom row’s colormap depicts frequency-density, in logarithmic scale.
836

837
838 **Coverage and reconstruction diagnostics.** Figure 8 illustrates three diagnostic views,
839 each calculated for a different dataset (Fashion-MNIST, MNIST, and SIFT), to evaluate
840 the accuracy of the Gaussian models in representing the datasets. The **top row** includes
841 the *reconstruction landscape*, which visualizes the minimum Mahalanobis distance from each
842 point to any Gaussian. For each dataset, we employ PCA to project the points onto a
843 two-dimensional space and calculate the average reconstruction error of proximate points on
844 a grid. This heatmap highlights how well the Gaussian shells approximate the distribution
845 of data throughout the space.

846 The **middle row** shows the *coverage landscape*, which counts how many Gaussians fall within
847 the Mahalanobis threshold τ for each data point. Coverage is computed per point, projected
848 to 2D, and smoothed via k-NN averaging over a grid. This plot reflects the redundancy and
849 spatial spread of the Gaussian coverage. We observe that areas with low reconstruction error
850 tend to be have high coverage.

851 The **bottom row** depicts the *relationship between local density and Gaussian coverage*. For
852 each point, we compute its local density via the inverse mean distance to its 10 nearest
853 neighbors and correlate this with its coverage count. The resulting 2D histograms reveal
854 structural patterns where regions of higher density generally exhibit greater coverage while
855 sparse regions receive fewer assignments. This aligns with our goal of achieving balanced
856 coverage while maintaining good reconstruction fidelity.

857
858 **Curvature-based diagnostics.** Figure 9 provides four views exploring the relationship
859 between curvature and structural properties of the Gaussian assignments across datasets, to

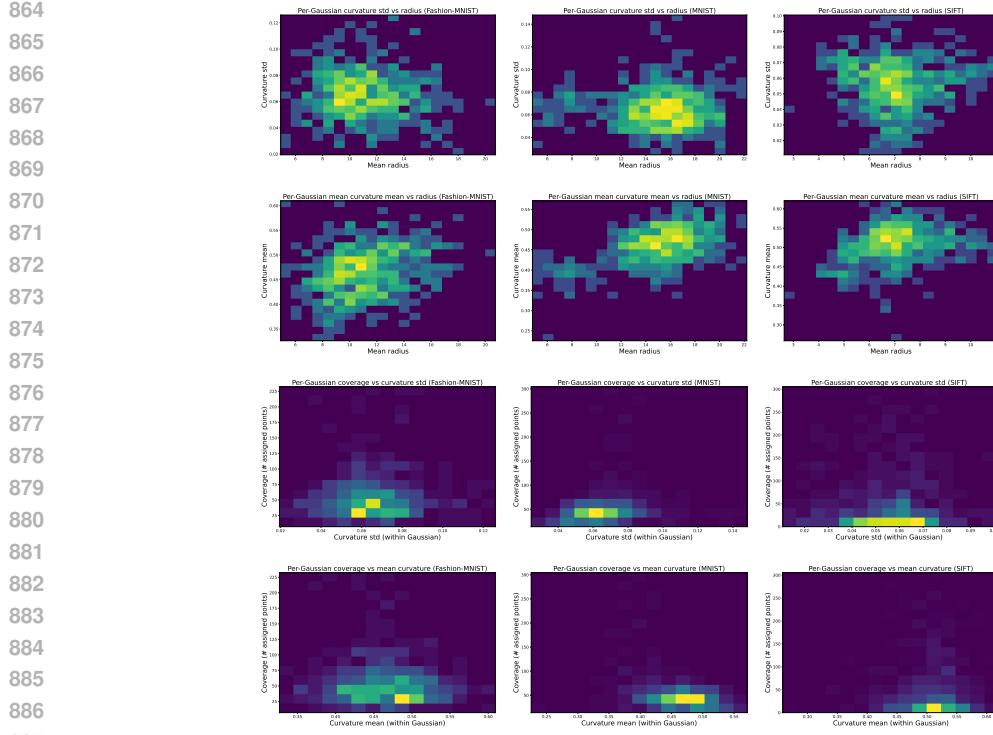


Figure 9: Curvature diagnostics across Fashion-MNIST (left), MNIST (middle), and SIFT (right). Row 1: standard deviation of local curvature vs radius; Row 2: mean local curvature vs radius; Row 3: Gaussian coverage vs curvature std; Row 4: Gaussian coverage vs curvature mean. Coloring accounts for density.

examine whether the learned model is informative and geometrically consistent with the data $x \in X$.

The **first row** shows the standard deviation of local curvature as a function of the average radius (l_2) per Gaussian. For each Gaussian, we collect nearby assigned points (under Mahalanobis threshold τ), compute their curvature via PCA-based local flatness, and report the standard deviation. Each bin aggregates Gaussians by radius and variation in curvature, highlighting the stability of their local geometry, where for each dataset curvatures deviations tend to be around ~ 0.06 .

The **second row** reports the mean curvature of each Gaussian against its average radius. This indicates the intrinsic dimensionality and shape complexity of regions assigned to Gaussians of different spatial extent. In general, we see that mean curvature tends to be ~ 0.5 , suggesting a moderate level of local non-linearity, especially for Gaussians with smaller support. As the radius increases, curvature remains relatively stable, indicating consistent local geometry across scales.

The **third row** depicts how Gaussian coverage (number of assigned points) varies with the curvature standard deviation of the assigned region. We observe that most Gaussians exhibit low curvature variability ($\text{std} \sim 0.06$), indicating that points within each Gaussian tend to have similar geometric structure. Moreover, there is no clear correlation between coverage and curvature std, implying that heavily used Gaussians are not more geometrically diverse than others. This suggests a form of balanced representation capacity across Gaussians.

The **fourth row** shows coverage as a function of mean curvature, where Gaussians with high coverage have curvature patterns similar to those with low coverage.

Figure 10 demonstrates the capability of GARLIC to capture the intrinsic geometric structure of high-dimensional data with locally varying dimensionality. The anisotropy histograms

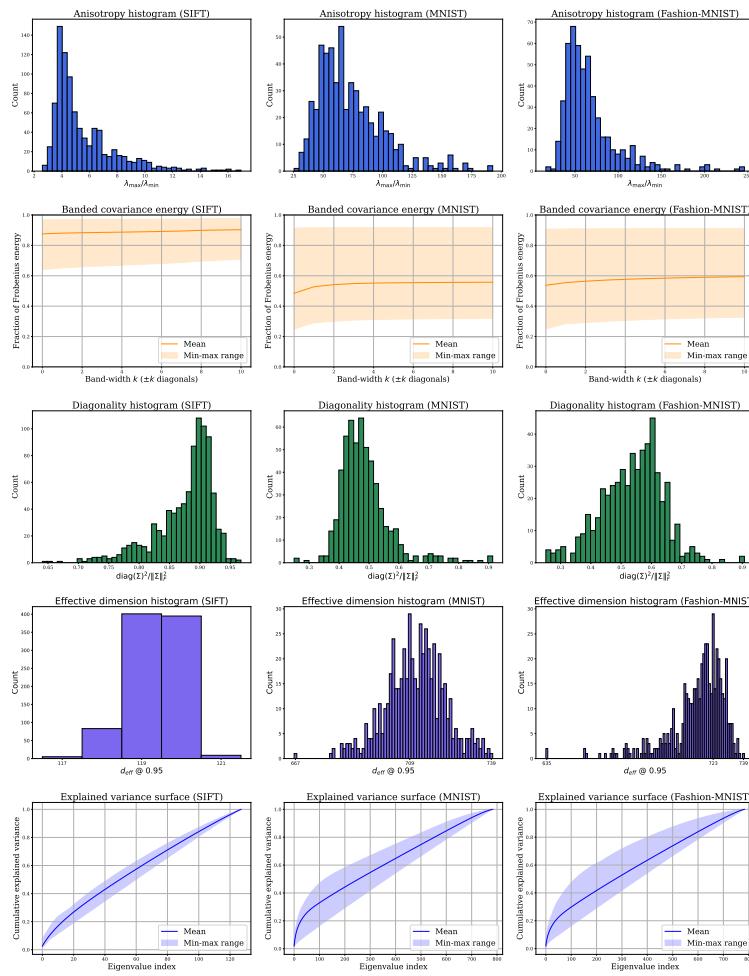


Figure 10: Spectral diagnostics across datasets (SIFT, MNIST, Fashion-MNIST; columns) and Gaussian properties (rows). Each subplot shows a different measure: anisotropy, band energy, diagonality, effective dimension, and explained variance.

(first row) reveal how Gaussians adapt to regions of different local dimensionality, with $\lambda_{\max}/\lambda_{\min}$ ratios ranging from nearly isotropic to highly stretched configurations across all datasets. Rather than simply partitioning space uniformly, Gaussians adapt their shapes to the underlying manifold structure, as confirmed by the diagonality histograms (third row) and effective dimension measurements (fourth row). This representation allows us to model stratified data where different intrinsic dimensionalities coexist, allowing the data to become pancake-like for surface regions, needle-like for curve regions, and ball-like for volumetric areas. Unlike traditional space partitioning methods, GARLIC models the underlying data distribution probabilistically, not just approximating distances for retrieval. The explained variance surfaces (bottom row) show that Gaussians efficiently capture the relevant dimensions at each location, enabling estimation of true manifold distances rather than just Euclidean distances to samples. This provides more semantically meaningful results in regions where the intrinsic dimensionality is lower than the ambient space. This completes the supplementary material.

A.2 IMPLEMENTATION DETAILS

This subsection summarizes all implementation and training-specific parameters used in our model, including optimizer schedules, architectural constants, and adaptive procedures such as splitting, cloning and pruning. These details provide context for reproducibility and

972 support the complexity analysis in the main paper. Furthermore, there are dataset specifics,
 973 such as licenses and descriptions.
 974

975 Table 3: Dataset Information
 976

977 Dataset	978 Dimension	979 Size	980 Description	981 License
SIFT1M	128	1M	Image descriptors	CC0
MNIST	784	70K	Handwritten digits	CC BY-SA 3.0
Fashion-MNIST	784	70K	Fashion items	MIT

982
 983
 984 **Datasets.** We evaluate our method on three standard benchmark datasets: (1) SIFT1M
 985 Lowe (2004), containing one million 128-dimensional SIFT descriptors that capture scale-
 986 and rotation- invariant local image features; (2) MNIST LeCun et al. (1998), con-
 987 sisting of 70,000 grayscale handwritten digit images (28×28 pixels) flattened to 784-
 988 dimensional vectors; and (3) Fashion-MNIST Xiao et al. (2017), a more challenging
 989 variant with the same format but featuring 10 categories of fashion items. For re-
 990 trieval tasks, we used the ANN-Benchmark Aumüller et al. (2020) versions of these
 991 datasets (available at <http://ann-benchmarks.com/sift-128-euclidean.hdf5>, <http://ann-benchmarks.com/mnist-784-euclidean.hdf5>, and <http://ann-benchmarks.com/fashion-mnist-784-euclidean.hdf5>) to ensure a standardized comparison with existing
 992 methods.
 993

994
 995 **Experimental setup.** Our method was implemented in Python, using optimized libraries
 996 such as PyTorch Paszke (2019) and NumPy Harris et al. (2020). The experiments were carried
 997 out on an Intel Core i7-7820X CPU (16 threads), a Quadro RTX 8000 GPU (48 GB VRAM)
 998 and 125 GiB of RAM.
 999

1000 **Training configuration.** Batch sizes of 50000 are used for SIFT, and 20000 for MNIST
 1001 and Fashion-MNIST datasets, with z-score normalization by subtracting the mean and
 1002 dividing by the standard deviation. The number of training epochs is 250, with a typical
 1003 early stop at 120. Gaussian updates are scheduled with two phases: a warm-up phase lasting
 1004 35 epochs and an optimization phase where structural operations like splitting and cloning
 1005 are triggered every 35 epochs and pruning every 60.
 1006

1007 **Learning rate schedule.** The learning rates follow a linear warm-up and exponential
 1008 decay scheme. Specifically, for the Cholesky parameters, the rates are subjected to a warm-up
 1009 phase from 1×10^{-7} to 5×10^{-4} , followed by a decay to 9×10^{-5} . In terms of the means, they
 1010 are warmed up from 1×10^{-7} to 9×10^{-3} , and subsequently decay to 3×10^{-3} . Notably, the
 1011 learning rate associated with the means is maintained at a relatively higher level than that
 1012 of the covariances. This approach is designed to promote the adjustment of the Gaussian
 1013 centers rather than the expansion of their radii.
 1014

1015 **Adaptive refinement.** Splitting is applied to Gaussians with cardinality exceeding a
 1016 fraction of the dataset $\gamma = 1 \times 10^{-2}$, using DBSCAN or K-Means, as fallback, with $c = 2$
 1017 clusters. The covariance of each new Gaussian is scaled down by 9×10^{-1} . Cloning selects
 1018 dense regions just outside the Gaussian boundary, defined by a Mahalanobis shell with inner
 1019 threshold τ and outer threshold $(1 + e) \cdot \tau$, where $e = 2.2$ controls the shell thickness. From
 1020 the set of points referenced in $(\tau, e\tau]$, a random selection of 60% is made. Cloning is not
 1021 performed on a Gaussian unless its cardinality surpasses a threshold specified by $8 \times 10^{-4}|X|$.
 1022 Gaussians that have degenerated into a single point are eliminated. Pruning is executed at
 1023 intervals of every 60 epochs.
 1024

1025 **Quantization.** Local PCA is performed per cell using top-3 eigenvectors. Reduced points
 1026 are quantized using a spherical grid with $n_{\text{radial}} = 6$ and $n_{\text{angular}} = 4$, forming directional
 1027 bins per Gaussian.
 1028

1026 **Loss.** The total loss is a weighted sum of three components: divergence $\lambda_{div} = 1.0$,
 1027 covariance $\lambda_{cov} = 1.0$, and anchor term $\lambda_{anchor} = 10^{-2}$, with a weight $\alpha = 10^{-1}$ that
 1028 balances position and shape. When calculating the \mathcal{L}_{cov} loss, a numerical epsilon of 1×10^{-12}
 1029 is used to ensure stability.

1030
 1031 **A.3 COMPLEXITY ANALYSIS**
 1032

1033 We analyze the computational time and space complexity of our method in three parts:
 1034 index construction, query execution, and storage. The analysis is expressed in terms of
 1035 standard parameters, including the dataset size $|X|$, embedding dimension d , the number
 1036 of Gaussians K , and the reduced PCA dimension $r \ll d$. Our goal is to ensure that each
 1037 component remains scalable with respect to high-dimensional data and large-scale datasets.
 1038 We summarize the complexity of each phase below.

1039 **Index build complexity.** Let I be the number of optimization steps and K' the initial
 1040 number of Gaussians. We denote by S , C , and P the number of splits, clones, and pruned
 1041 Gaussians, respectively, and define the final number of Gaussians as $K = K' + S + C - P$.
 1042 Let $|B_g|$ be the average cell size, c the number of K-Means clusters used during splitting,
 1043 and k' the number of candidate points sampled per cloning operation.

1044 For the initialization, since we use K-Means++ on K' total cluster centers, we need $\mathcal{O}(K' \cdot$
 1045 $d \cdot |X|)$ time. For the optimization part, we need to perform a total number of I iterations
 1046 of full Mahalanobis-based point-to-Gaussian assignment, thus a total of $\mathcal{O}(I \cdot |X| \cdot K \cdot d^2)$
 1047 worst-case time. Separate from the optimization, we analyze the split, clone and prune
 1048 operations that are not applied on every iteration of the optimization. (i) The split operation
 1049 runs DBSCAN or K-Means (with c clusters), thus for a total of S such operations we would
 1050 need $\mathcal{O}(S \cdot (|B_g| \cdot d \cdot c + d^2))$; (ii) the clone operation locates the subset of points outside
 1051 the Gaussian's boundary (between $\tau \cdot \sigma$ and $(1 + \epsilon) \cdot \tau \cdot \sigma$) for which it identifies new local
 1052 modes, thus for a total of C operations, it leads to $\mathcal{O}(C \cdot (k'^2 \cdot d + d^2))$; and (iii) the prune
 1053 operation simply removes low-cardinality Gaussians and reassigns the points to the nearest
 1054 active Gaussian, which takes $\mathcal{O}(P \cdot |B_g| \cdot d)$ time. For the quantization of each Gaussian,
 1055 PCA is performed on all points inside the Gaussian, which projects the data into reduced
 1056 local bases. In total, for the quantization we need $\mathcal{O}(K' \cdot |B_g| \cdot d^2 + |X| \cdot d \cdot r)$ time. From
 1057 all the terms described, the optimization term dominates.

1058 **Query complexity.** Let K be the number of Gaussians, k the number selected per query,
 1059 d the dimension, r the PCA dimension, b the number of bins per Gaussian, T the number of
 1060 optimization steps to find the shortest distance from the query point to the boundary of
 1061 a spherical bin in the reduced PCA space, ρ the probed bin ratio, and β the average bin
 1062 size. For a single query, we first need to measure distances from the set of Gaussians, which
 1063 takes $\mathcal{O}(K \cdot d^2)$. Then, for the k nearest Gaussians we need to locate the subset of data to
 1064 be examined. For this, for each of the selected k Gaussians, we need to compute the local
 1065 PCA projections ($\mathcal{O}(k \cdot d \cdot r)$), then compute and sort the spherical distances to all b bins
 1066 ($\mathcal{O}(k \cdot b \cdot r \cdot T)$), of which only the ρ fraction is probed. From each, up to β candidates are
 1067 gathered and re-ranked using Euclidean distance, which needs $\mathcal{O}(k \cdot \rho \cdot b \cdot \beta \cdot d)$ time. In
 1068 practice, the re-ranking factor dominates the complexity, which is sublinear.

1069 **Space complexity.** Let K be the number of Gaussians, d the data dimension, and
 1070 $N = |X|$ the dataset size. The model stores mean vectors $\mu \in \mathbb{R}^{K \times d}$, Cholesky parameters
 1071 $\mathbf{L} \in \mathbb{R}^{K \times d \times d}$, and cells storing point indices, requiring $\mathcal{O}(N)$ space. Thus, the total space
 1072 complexity is:

$$\mathcal{O}(K \cdot (d^2 + d) + N)$$

1073 where $K \cdot d^2$ dominates. Still, space complexity can be reduced to $\mathcal{O}(K \cdot d)$ by enforcing
 1074 diagonal covariance matrices, at the expense of reduced expressiveness in anisotropic regions
 1075 of the space.

1076
 1077
 1078
 1079