
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GARLIC: GAussian Representation LearnIng
for spaCe partitioning

Anonymous authors
Paper under double-blind review

Abstract

We present GARLIC, a representation learning approach for Euclidean
approximate nearest neighbor (ANN) search in high dimensions. Existing
partitions tend to rely on isotropic cells, fixed global resolution, or balanced
constraints, which fragment dense regions and merge unrelated points in
sparse ones, thereby increasing the candidate count when probing only a
few cells. Our method instead partitions Rd into anisotropic Gaussian cells
whose shapes align with local geometry and sizes adapt to data density.
Information-theoretic objectives balance coverage, overlap, and geometric
alignment, while split/clone refinement introduces Gaussians only where
needed. At query time, Mahalanobis distance selects relevant cells and
localized quantization prunes candidates. This yields partitions that reduce
cross-cell neighbor splits and candidate counts under small probe budgets,
while remaining robust even when trained on only a small fraction of the
dataset. Overall, GARLIC introduces a geometry-aware space-partitioning
paradigm that combines information-theoretic objectives with adaptive den-
sity refinement, offering competitive recall–efficiency trade-offs for Euclidean
ANN search.

1 Introduction

Let X = {xi}n
i=1 ⊂ Rd be a finite point set, q ∈ Rd a query, and δE : Rd × Rd → R≥0

the Euclidean distance. For an integer k ≥ 1, the exact k-Nearest Neighbor Search (NNS)
problem returns the k closest points Nk(q) ⊆ X. Its approximate variant, k-ANN, relaxes
this by requiring Ak(q) ⊆ X, |Ak(q)| = k, such that maxa∈Ak(q) δE(q, a) ≤ c δE

(
q, x(k)(q)

)
,

for some approximation factor c ≥ 1, where x(k)(q) denotes the k-th true neighbor of q. We
restrict attention to Euclidean spaces of hundreds of dimensions, and to indices defined by
partitions of Rd into cells, where a query inspects only a few cells and re-ranks the resulting
candidates. Nearest neighbor search in this setting is a canonical problem of high-dimensional
geometry and algorithms, with consequences across information retrieval, computer vision,
robotics, and data analysis (Lowe, 2004; Cai et al., 2021; Shakhnarovich et al., 2008; Aumüller
et al., 2020; Douze et al., 2024).
ANN algorithms attempt to reduce cost in two independent ways. Sketch-based tech-
niques (Razenshteyn, 2017; Wang et al., 2014) attempt to compress every point into a
short-coded representation, a summary, so that approximate distances can be quickly evalu-
ated. Index-based methods (Gani et al., 2016) pre-partition the space, and examine only a
subset of the point set, at query time. The two approaches are complementary and often
combined in practice. The focus of this work is on indexing methods, and most specifically
space-partitioning in the

(
Rd, δE

)
metric space (Aumüller et al., 2020). The space is divided

into cells Bg, each storing data points, and a query touches only those stored in the cell that
contains the query point (plus a few neighbors for higher recall).
Space-partition indices are practical and efficient with their small space overhead, each cell
stores a representative, e.g., a centroid, and a list of point IDs, far less than e.g., graph indices
need (Malkov & Yashunin, 2018). Cells can be queried in parallel by different cores, read in
one-shot by GPUs, and fetched as one block (I/O call) from the disk storage (Johnson et al.,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2019; Douze et al., 2024; Jayaram Subramanya et al., 2019). These strengths hold only when
the cells are well built, whether by fixed, data-independent rules or by partitions learned
from the data. What drives performance is how cells are built. Data-independent (Andoni
& Indyk, 2008; Andoni et al., 2018) rules fix splits a priori (e.g., random hyperplanes, simple
trees), so they build in O(|X|d) time but ignore the geometry of X, and recall degrades on
clustered or curved regions. Data-dependent schemes (e.g., k-means/IVF families (Jegou
et al., 2010), learned hashing (Wang et al., 2015)) fit cell parameters to X and usually
improve recall per number of candidates visited.
In practice, partitions often tend to be isotropic, for example Voronoi cells around k-means
centroids (Lloyd, 1982; Arthur & Vassilvitskii, 2007), and a single global number of cells K
is chosen. These design choices then cause predictable errors on heavy-tailed data (Clauset
et al., 2009). Partition resolution, a single global number of cells K applied everywhere,
means dense regions get fragmented into many small (near-spherical) cells, while sparse
regions are covered by a few large ones (Du et al., 1999). Balanced partitions on non-uniform
data create a complementary problem: in dense zones they split true neighbors across cells,
and in sparse zones they pack unrelated points together to meet the size target (Malinen
& Fränti, 2014; Aumüller et al., 2020). Neighborhoods are approximately Euclidean only
locally; large cells merge unrelated regions, while overly small ones fragment continuous
neighborhoods. To recover locality one must either increase K or probe (touch), many
adjacent cells (Johnson et al., 2019; Lv et al., 2007), which raises candidate (distance) counts
and hurts low-probe regimes. This leaves a concrete gap: partitions that capture local
geometry and adapt their local resolution (effective cell size / expected cell cardinality) to
density under a principled objective that balances reconstruction fidelity against candidate
count.
Contributions. We propose GARLIC, a geometry-aware space-partition index for Eu-
clidean ANN, optimized under an information-theoretic objective that balances coverage,
overlap, and budget efficiency. Under this objective, GARLIC learns a probabilistic partition
of Rd into Gaussian cells whose shape and placement align with local principal directions
and whose sizes adapt to local density, adding capacity only where needed through local
adaptive refinement. The resulting partition reduces cross-cell neighbor splits and candidate
counts under small probe budgets.

• Anisotropic, density-adaptive partition. GARLIC represents Rd with Gaussian
cells that follow local geometry and adapt to density, improving within-cell neighbor
cohesion under small candidate budgets. (Section 2.1 – 2.3)

• Information-theoretic objective. We balance coverage, overlap, and probe
efficiency via expected Mahalanobis coverage, an assignment-entropy penalty, and
geometric anchoring regularization. (Section 2.2)

• Local adaptive refinement. We add Gaussians only where needed through
split/clone operations triggered by cell size and spill ratio, avoiding a single global
resolution (one K everywhere). (Section 2.3)

• Budget-centric evaluation and analysis. We report competitive performance
across multiple accuracy and distortion metrics under candidate and distance budgets
on standard Euclidean benchmarks, and provide build/query/space complexity
together with ablations that isolate each component’s contribution (Section 3,
Appendix A.1).

1.1 Related Work

Traditional ANN Families. ANN methods fall into three main families: (i) sketching
and compression, which encode vectors into compact codes for fast distance estimation (e.g.,
product quantization (Jegou et al., 2010), optimized PQ (Ge et al., 2013), iterative quantiza-
tion (Gong et al., 2012)); (ii) index-based methods, which pre-organize the dataset to reduce
the number of points touched at query time (e.g., IVF (Jegou et al., 2010), PCA-trees (Sproull,
1991), randomized projections and Johnson–Lindenstrauss-based embeddings (Anagnostopou-
los et al., 2018); and (iii) graph-based methods, which traverse neighborhood graphs during

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

search (e.g., HNSW (Malkov & Yashunin, 2018), DiskANN (Jayaram Subramanya et al.,
2019)). Within indices, our work focuses on the sub-family of space-partition indices, which
balance memory efficiency with parallelizability and provide a probe-based complexity model
compatible with GPU and IO acceleration.

Data-Independent Partitions. Data-independent indices split space according to fixed
random rules, ignoring the geometry of the dataset. A canonical example is hyperplane
LSH, which assigns points based on the sign of random projections and can be queried
more flexibly via multi-probing (Indyk & Motwani, 1998; Lv et al., 2007). These methods
offer theoretical guarantees and fast build times, but their isotropic and geometry-agnostic
partitions lead to poor recall on clustered or manifold-structured data. GARLIC instead
learns anisotropic, density-adaptive cells aligned with the underlying data geometry.

Data-Dependent Partitions. Classical learned indices often rely on isotropic partitions
with a fixed global number of cells. k-Means and its inverted-file variants (IVF) assign points
to centroid Voronoi cells (Lloyd, 1982; Jegou et al., 2010), while PCA-trees split recursively
along principal components (Sproull, 1991). Scalable extensions include mini-batch k-
means (Sculley, 2010), BIRCH, which builds a hierarchical clustering tree with compact
representations (Zhang et al., 1996), and BLISS, which incrementally refines partitions for
large datasets (Gupta et al., 2022). These methods are efficient, but their isotropic cells and
global resolution fragment dense regions and mix unrelated points in sparse ones. Neural
LSH takes a different approach by building balanced cuts of the k-NN graph and training a
classifier to extend them to Rd (Dong et al., 2020). While this can outperform k-means in
some settings, the emphasis on balance rather than geometry often splits true neighbors in
dense areas and merges unrelated points in sparse areas, raising candidate counts. Gaussian
mixture models (GMMs) capture local covariance through Mahalanobis metrics and soft
assignments (Dempster et al., 1977; Banerjee et al., 2005). These models demonstrate
the benefits of anisotropy, but they maximize likelihood rather than probe efficiency and
do not refine capacity locally. GARLIC combines the strengths of these directions by
learning anisotropic, density-adaptive partitions with local split/clone refinement under an
information-theoretic probe-budget objective, explicitly tailored to ANN retrieval.
The remainder of this work is organized as follows: Section 2 introduces the GARLIC
framework, including Gaussian parameterization, the information-theoretic optimization
objective, and adaptive refinement strategies. Section 3 presents our experimental evaluation
on standard Euclidean benchmark datasets, a set of crucial ablation studies, and GARLIC’s
limitations. Finally, conclusions are drawn in Section 4.

2 Method

GARLIC uses a collection of Gaussians G = {N (µi, Σi)}i, whose means and covariances
adapt to the underlying data distribution, to partition X ⊂ Rd into cells for ANN. We choose
Gaussians because their mean µ and covariance Σ jointly encode geometry and statistics:
eigenvectors of Σ capture local principal directions, eigenvalues control anisotropy and
effective dimensionality, and the Mahalanobis distance δ2

M (x, gi) = (x − µi)⊤Σ−1
i (x − µi) =

∥L−1
i (x − µi)∥2

2, is the canonical quadratic form associated with the covariance. Level
sets of δM correspond to χ2

d probability contours, giving a calibrated notion of coverage.
Parameterizing Σ via its Cholesky factor yields closed-form (Section 2.1), differentiable
gradients while guaranteeing positive definitenes, which makes Gaussians uniquely well-suited
among partitioning primitives for end-to-end optimization, unlike boxes or zonotopes that
lack smooth probabilistic distance functions. Compared to alternatives such as Gaussian log-
likelihood, which adds normalization terms unrelated to retrieval efficiency, or KL divergence,
which compares distributions rather than points, Mahalanobis provides a direct, efficient,
and anisotropy-aware metric for both training and retrieval.
We train the Gaussians with information-theoretic objectives that balance coverage, assign-
ment confidence, and structural consistency (Section 2.2), and refine capacity only where
needed via split and clone operations, avoiding uniform or balanced partitions that frag-
ment dense regions or merge sparse ones (Dong et al., 2020; Gong et al., 2012; Arthur &

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Initialization d-dim Gaussians

Adaptive Refinement

Clone

Split
Optimization

L

Figure 1: Overview of GARLIC. Input vectors are represented by Gaussian cells (means,
covariances) optimized with information-theoretic objectives for coverage, confidence, and
consistency. Cell density is refined adaptively via split/clone operations, and queries use
spherical quantization with Mahalanobis distance for cell selection and retrieval. Blue arrows
indicate transferring information of gradients (back-propagation) or statistics.

Vassilvitskii, 2006; Kumar et al., 2008; Abdullah et al., 2014; Sproull, 1991; McNames, 2001)
(Section 2.3). At query time, each Gaussian cell is equipped with a local hyper-spherical
quantization index to narrow candidate searches (Section 2.4), and Mahalanobis distances are
again used for cell selection and prioritized bin search (Section 2.5). This approach enables
GARLIC to adapt to data geometry while maintaining efficient retrieval, as illustrated in
Figure 1.

2.1 Gaussian Parameterization

Each Gaussian gi is defined by its mean µi ∈ Rd and covariance Σi ∈ Rd×d, parameterized
as Σi = LiLi

⊤, Li ∈ Rd×d being a lower triangular Cholesky factor of matrix Σi, ensuring
positive definiteness (a prerequisite for valid Gaussian distributions). The means µi are
initialized using K-Means++ (Arthur & Vassilvitskii, 2007) on a subset of the training set.
Cholesky factors Li are initialized as: Li = log(δ̄E) · Id + ϵ, where Id ∈ Rd×d is the identity
matrix, and δ̄E is the mean Euclidean distance of each µi to its three nearest neighbors. This
ensures that the initial scale of each Gaussian reflects the local data density. Perturbation
ϵ ∈ Rd×d is a random lower-triangular matrix with entries ϵjk = 2σ(rjk) − 1 if j > k and 0
otherwise, where rjk ∼ U(0, 0.01) and σ(·) is the sigmoid function. This construction yields
diagonal-dominant Li, stabilizing optimization while allowing anisotropic covariances.

2.2 Optimization Objective

High-dimensional indexing requires objectives that remain stable under the curse of dimension-
ality and robust to heterogeneous feature distributions. Classical partitioning heuristics (e.g.,
balanced splits, uniform clustering) degrade in such regimes: dense regions are fragmented,
sparse regions are merged, and distance metrics lose discriminative power Aggarwal et al.
(2001); Aumüller et al. (2020). To overcome this, we draw inspiration from self-supervised
learning methods such as VICReg Bardes et al. (2022) and Barlow Twins Zbontar et al.
(2021), which employ information-theoretic objectives to increase representational capacity
without supervision. Analogously, we introduce objectives that guide Gaussians to (i) cover
the data distribution, (ii) assign points with high confidence, and (iii) remain anchored to
local structure. This replaces heuristic spatial rules with principled, differentiable criteria
suited to high-dimensional retrieval.
More specifically, we introduce a divergence-based objective that acts as a reconstruction loss,
and regularize it to prevent information explosion (i.e., uncontrolled growth and excessive
overlap of Gaussians). The divergence loss Ldiv is defined as:

Ldiv = 1
N

∑
x∈X

(
min
gi∈G

δM (x, gi) − τ

)+
, (1)

where δM (x, gi) = ||L−1
i (x − µi)||2 denotes the Mahalanobis distance, (·)+ = max(0, ·) and

τ a standard deviation threshold. It penalizes points that fall outside a Gaussian’s coverage

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

radius (δM (xi, gi) > τ), encouraging Gaussians to expand and cover these points, while
points inside (δM (xi, gi) ≤ τ) do not contribute, allowing controlled expansion but preventing
infinite growth.
Still, Gaussians can overlap, leading to redundant information and performance loss. To
surpass this issue, and mitigate fuzzy assignments of points to Gaussians, we introduce a
covariance-based regularization, which encourages each Gaussian to dominate its assigned
points. Specifically, given a point x, we define its coverage set, i.e., the set of Gaussians
that satisfy the coverage radius constraint, as M(x) = {gi ∈ G | δM (x, gi) ≤ τ}. Then, we
compute the normalized soft-assignment probabilities based on Euclidean distances (δE)
as pi(x) = e−δE (x,µi)/

∑
gj∈M(x) e−δE (x,µj) + ϵ, ∀gi ∈ M(x). The covariance loss Lcov is

defined as:

Lcov = 1 − 1
N

∑
x∈X

max
gi∈M(x)

pi(x) (2)

This loss encourages highly confident (low-entropy) assignments, thereby reducing ambiguity
and stabilizing optimization.

(a) Clone operation. (light red) re-
gion where dM (x, gi) ≤ τ ; (blue) outer
shell τ ≤ dM (x, gi) ≤ eτ ; (gray) {x :
dM (x, gi) ≥ eτ}; (red) mean of the new
gaussian; (green) new covariance matrix.
(purple - lime) denote increasing data
density.

(b) Grad flow: Ldiv, Lcov, Lanchor

Figure 2: Gaussian refinement and
associated loss gradients.

To further prevent excessive expansion of Gaussians
caused by the divergence objective and ensure that
each Gaussian aligns with its assigned points, we
introduce the anchor loss Lanchor:

Lanchor = 1
d|G|

∑
gi∈G

(
||µi − µ̂i||22 + α||LiLi

⊤ − Σ̂i||2F
)

,

(3)

where µ̂i and Σ̂i = Cov(x ∈ Bgi
) are the empirical

mean and covariance of points assigned to Gaussian
gi, and α is a hyperparameter balancing position and
shape. This loss constrains Gaussians by anchoring
them closely to their local data distributions, restrain-
ing uncontrolled growth from other loss terms and
maintaining geometric alignment. Finally, our loss
function is defined as:

L = λdiv · Ldiv + λcov · Lcov + λanchor · Lanchor,

where λdiv, λcov and λanchor are hyperparameters bal-
ancing the importance of each term.

2.3 Adaptive Refinement

Controlling the number of Gaussians during training
is key for adapting to data complexity; allocating
more in dense regions and fewer in simpler ones. We
employ an adaptive refinement strategy that adjusts
the Gaussian set based on local point density. Prior
approaches rely on positional gradients to guide re-
finement (Kerbl et al., 2023), but these become sparse
and unreliable in high dimensions. In our case, we
also require search efficiency, so we refine Gaussians whose cell cardinality exceeds a threshold:
|Bg| > γ · |X|. Splitting is performed by applying clustering (Arthur & Vassilvitskii, 2007)
to produce new means µ1, µ2, while covariances are scaled down as L1 = L2 = α · L, with
α < 1.
For cloning, we target Gaussians with a high ratio of outside points to interior ones Bin

gi
=

{x ∈ X : δM (x, gi) ≤ τ}. Instead of using all nearest outside points, we focus on a

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

boundary region, and select k = ρ · |Bout
g | points, where ρ ∈ (0, 1) is a sampling ratio

and Bout
gi

= {x ∈ X : τ < δM (x, gi) < eτ and gi = arg mingj∈G δM (x, gj)} with e > 1 is
the set of all boundary points. The sampled subset S = {x1, x2, ..., xk} ⊂ Bout

g is chosen
randomly without replacement. This sampling approach serves several purposes, reducing
computational cost, as density estimation in high dimensions is expensive, providing statistical
robustness by focusing on representative points and helping to avoid outliers that might
exist in the boundary region as Figure 2 showcases. The candidate Gaussians are picked
with regard to the ratio of boundary to interior points: |Bout

g |/|Bin
g | > β. The center of

the new Gaussian is placed at the point with the highest local density in the boundary
region, such that for a point p in the boundary region, we compute its local density as the
inverse mean Euclidean distance from the 3-NN and select the point with the highest density:
p∗ = arg maxp ρ(p). The covariance matrix is then cloned, with Lnew = L. In our method,
splitting is prioritized over cloning: when a Gaussian grows too large, we first partition it to
reduce cell cardinality and maintain search efficiency. Cloning is applied only if splitting
is not triggered, serving to refine coverage near dense boundary regions without inflating
candidate counts unnecessarily.

2.4 Quantization

After optimizing our Gaussians, we assign points that fall outside the coverage radius to the
nearest Gaussian such that our final cells are: Bgi

= {x ∈ X | δM (x, gi) ≤ τ} ∪ {x ∈ X |
δM (x, gi) > τ and gi = arg mingj∈G δM (x, gj)}. While Gaussian cells provide an effective
partition of the space, brute-force search within them is still prohibitive in high dimensions.
Standard ANN methods usually quantize globally, ignoring the anisotropy and local geometry
already captured by our Gaussians. We instead introduce a localized quantization scheme:
once points are assigned to cells, each cell is treated in its own coordinate system, where
Euclidean structure is better aligned with the underlying data. Quantizing in this local
basis reduces the number of distance computations per query, while preserving the geometry
captured by Mahalanobis distance.
For each cell Bg, we apply PCA to reduce dimensionality while preserving the local structure
Pg = PCA({x − x̄g | x ∈ Bg}, r) where x̄g is the mean of points in cell Bg, r is the
reduced dimensionality (typically r ≪ d, constant in practice), and Pg ∈ Rd×r contains
the top-r principal components. This step both lowers computational cost and aligns the
local coordinate system with the main variance directions of the data. Each point x ∈ Bg

is then projected into this subspace xr = P⊤
g (x − x̄g), which embeds the data in Rr while

preserving Euclidean structure up to the discarded components. Finally, we convert xr into
hyperspherical coordinates s = cart2sph(xr) = (s1, s2, . . . , sr), where s1 denotes the radial
component ∥xr∥2 and s2, . . . , sr are angular coordinates. This reparameterization retains
the Euclidean metric but enables partitioning along radial and angular directions.
The hyperspherical space is partitioned into bins Qg = {Bi,j | i ∈ {1, . . . , nr}, j ∈
{1, . . . , na} r−1}, with radial boundaries ri = rmin + (rmax − rmin) i

nr
, i = 0, . . . , nr, and

angular boundaries θj,k = θmin,k + (θmax,k − θmin,k) j
na

, j = 0, . . . , na, k = 1, . . . , r − 1. The
dominant cost of index construction comes from full Mahalanobis-based assignments during
optimization, requiring O(|X| · K · d2) time per iteration, while initialization, refinement,
and PCA quantization add only lower-order terms (see Appendix A.3).

2.5 Inference

Given a query q, we first select the top-kG Gaussians by Mahalanobis score δM (q, g). For
each selected Gaussian g, we project q to its local PCA space qr

g = P⊤
g (q−x̄g) and convert to

hyperspherical coordinates sg = cart2sph(qr
g). We prioritize bins by a query-to-bin distance

computed in the reduced Euclidean space. Each bin Bi,j is defined by spherical bounds
r ∈ [ri, ri+1] and θk ∈ [θjk,k, θjk+1,k] for k = 1, . . . , r − 1. We define:

d(qr
g, Bi,j) = min

ϕ∈Rr

∥∥qr
g − sph2cart(ϕ)

∥∥
2 s.t. ri ≤ ϕ1 ≤ ri+1, θjk,k ≤ ϕk+1 ≤ θjk+1,k.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

If sg lies inside Bi,j, then d(qr
g, Bi,j) = 0; otherwise we solve the bound-constrained prob-

lem (Byrd et al., 1995) initialized at ϕ1 = clip(∥qr
g∥2, [ri, ri+1]) and ϕk+1 = 0.5(θjk,k+θjk+1,k).

Bins in Qg are sorted by d(qr
g, ·) ascending and scanned until a bin budget ρ ∈ (0, 1] of bins

per cell is exhausted (typically ρ = 0.3). Within each visited bin we compute exact Euclidean
distances in the original space between q and all points indexed in that bin, aggregating
candidates across the kG selected Gaussians. The final result is obtained by selecting the
overall nearest neighbors among the accumulated candidates, with the dominant inference
cost coming from distance computations (see Appendix A.3).

Ours K-Means N-LSH ITQ CP-LSH
HP-LSH PCA Tree Faiss-IVF Faiss-IVFPQFS

BIRCH GMM Ours 5% Ours 2.5% Ours 1%

100 101 102

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(×103)

(a) Efficiency (Sift)

103 1040.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) SIFT1M

102 1030.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c) MNIST

102 1030.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(d) Fashion-MNIST

Figure 3: Efficiency and retrieval performance across datasets, measured via Recall@1.
Methods closer to the top-left (↖) indicate a better trade-off between accuracy and candidate
count. GARLIC performs especially well in the low-probe regime. Our method is trained in
10% for SIFT-1M unless stated otherwise.

3 Experiments

Datasets. We evaluate our method on three benchmark datasets: SIFT1M (Lowe, 2004)
(128-dimensional image descriptors with one million points), MNIST (LeCun et al., 1998)
and Fashion-MNIST (Xiao et al., 2017) (784-dimensional vectors from 28 × 28 grayscale
images) following the standard setup in ANN-Benchmarks (Aumüller et al., 2020). Further
information about the datasets can be found in the Appendix.
Evaluation. We evaluate GARLIC on the approximate nearest neighbor task, reporting
Recall@1 and as function of the number of distance computations while varying the probe
budget. Recall@1 measures the accuracy of the very first retrieved neighbor, reflecting
ranking performance, and is strict. In Appendix A.1, we showcase more related metrics
such as ϵ-Recall, empricial c-approximation factors and mean relative error. We use distance
computations, rather than wall-clock latency (QPS), as the efficiency axis. Distance com-
putations capture the algorithmic effort of a search procedure independently of hardware
and implementation details (different CPUs/GPUs, BLAS kernels, batching, I/O) (Aumüller
et al., 2020; Peng et al., 2023). This metric directly reflects the goal of space-partitioning
methods, which is to minimize the number of distances required to achieve a target recall.
Baselines and Comparisons. We evaluate GARLIC against representative approximate
nearest neighbor methods such as k-Means++ (Arthur & Vassilvitskii, 2006), BIRCH (Zhang

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

103 104

0.5

0.6

0.7

0.8

0.9

Ours 1%
Ours 2.5%
Ours 5%
Ours 10%
Faiss-IVF (1%)
Faiss-IVF (2.5%)
Faiss-IVF (5%)
Faiss-IVF (10%)

(a) Generalization

0 5 10 15

0.5

0.6

0.7

0.8

0.9

(×103)

10k
20k
50k
75k

(b) Batch size

0 10 20 30

0.5

0.6

0.7

0.8

0.9

(×103)

| |init | |final
100-1022
200-1023
300-1021
400-1024
500-1020
600-1026
700-1013
800-1027
900-1028
1000-1029

(c) |G| impact

0 5 10

0.5

0.6

0.7

0.8

0.9

(×103)

Random
K-Means
FPS

(d) Initialization

0 10 20 30

0.5

0.6

0.7

0.8

0.9

(×103)

=0.001
=0.005
=0.01
=0.025
=0.05
=0.075
=0.1

(e) Split threshold γ

0 5 10 15

0.5

0.6

0.7

0.8

0.9

(×103)

e=1.5
e=2
e=2.2
e=5
e=12

(f) Clone threshold e

Figure 4: (a) Generalization with limited training data. (b) Batch size effect. (c) Impact of
initial number of Gaussians. (d) Effect of different initialization strategies. (e) Impact of split
threshold γ, with higher values increasing accuracy at the cost of more probes. (f) Effect of
clone threshold e. The blue dashed regards the parameters used in main experiments, and
top-left is better (↖), while all y-axis report Recall@1 and x-axis candidate counts.

et al., 1996), Gaussian Mixture Models (GMM) (Dempster et al., 1977; Banerjee et al., 2005),
Neural-LSH (N-LSH) (Dong et al., 2020), Hyperplane LSH (HP-LSH) (Indyk & Motwani,
1998), Cross-polytope LSH (CP-LSH) (Andoni et al., 2015), ITQ (Gong et al., 2012), PCA
Tree (Kumar et al., 2008; Abdullah et al., 2014; Sproull, 1991; McNames, 2001), Faiss-IVF
and Faiss-IVFPQFS (Douze et al., 2024). All baselines were run under identical conditions,
using the standardized ANN-Benchmarks datasets and query splits, with hyperparameters
optimized according to their respective publications and usage.

Table 1: Effect of loss terms and adap-
tive refinement average Recall@1 /
Candidates (×105). Higher is better.

Configuration Performance ↑
Loss terms

w/ all 16.20
Ldiv + Lcov 15.38
Ldiv + Lanchor 10.64
Ldiv 9.78

Split & Clone
w/ both 16.20
w/ split 14.22
w/ clone 5.45
w/o any 4.63

Results and Analysis. We present performance
curves across datasets, reporting Recall@1 as a func-
tion of the number of retrieved candidates. As shown
in Figure 3, our method performrs efficiently with re-
spect to other baselines. GARLIC generally achieves
preferable recall–efficiency trade-offs than traditional
space partitioning methods, including inverted-file
indices (Faiss-IVF, IVFPQFS), hashing approaches
(HP-LSH, CP-LSH, Neural-LSH), and tree-based
methods (PCA-Tree, BIRCH). Figure 3(a) evaluates
efficiency through Recall@1-per-probe versus build
time. All GARLIC variants occupy the upper-left
region, indicating favorable trade-offs: lightweight
models trained with 1% of the data already surpass
strong baselines, while larger-capacity variants (e.g.,
10% training) further improve recall without exces-
sive cost. In contrast, competing methods cluster in
lower-efficiency or higher-cost regions, reflecting less balanced trade-offs between indexing
overhead and search quality.
Ablation study. We conduct ablation studies to isolate the effect of key design choices and
components. Unless stated otherwise, experiments are on SIFT-1M with a training subset
of 5% of |X|, and Recall@1 is measured against distance computations. We investigate
the robustness and data efficiency of our method through controlled downsampling of the
training set. As shown in Figure 4(a), our method consistently maintains strong performance
across varying training sizes. Notably, even with only 1% of the training data, our model
outperforms the Faiss-IVF variants of up to 10% training size in terms of Recall@1 versus

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

the number of retrieved candidates. This trend remains consistent across higher percentages,
demonstrating that our approach learns a compact yet highly effective representation of the
data distribution. Furthermore, Figure 4(b) highlights the batch-size effect (here using a
fixed training subset of 100k points instead of 50k), where larger batches yield consistently
better performance. Finally, Figure 4(c) shows that more initial Gaussians produce better
results at equal iterations, reflecting faster convergence. This happens because adaptive
density control targets spatial placement rather than Gaussian count.
We next evaluate core design hyperparameters. In Figure 4(d), we investigate initialization
strategies for Gaussian centers, revealing that K-Means initialization consistently outperforms
alternatives. Although farthest point sampling (FPS) achieves comparable recall, it requires
approximately 50% more probes, and catching up to K-Means requires more training time. In
Figure 4(e), the split threshold γ, controlling the density condition for Gaussian subdivision,
is examined. The optimal values are γ = 0.005 and γ = 0.01, though γ = 0.005 requires
more time due to more frequent splits. As for the clone threshold e, depicted in Figure 4(f),
which determines the outer shell for cloning, it remains stable across different values, with
e = 2.2 being preferable in situations requiring high recall.
Table 1 analyzes the impact of loss terms, adaptive refinement and covariance configurations.
Split and clone are pivotal for performance, while the covariance term (Lcov) significantly
boosts retrieval. The anchor term (Lanchor) has minor effect on raw performance but is
essential for making Gaussians geometrically informative. Additional ablations and results
are provided in the Appendix.
Limitations and Future Work. GARLIC employs Mahalanobis distance and Gaussian
primitives, which assume a Euclidean metric and are therefore not directly compatible with
angular similarity. This may be addressed by adopting angular counterparts, such as von
Mises–Fisher distributions, which we leave for future work. The trade-off between recall and
latency can be further enhanced by augmenting the number of Gaussians and organizing
them within tree structures (e.g., KD-tree or Ball-tree over Gaussian means), reducing query
cost. The spatial complexity scales quadratically with dimensionality (O(Kd2)) due to full
anisotropic covariances; this challenge can be mitigated through low-rank approximations
or quantization of Cholesky factors. Finally, while the method shows some sensitivity to
initialization, this is alleviated by the information-theoretic objectives and the progressive
refinement via split and cloning. Beyond these limitations, GARLIC is naturally incremental:
each Gaussian cell maintains sufficient statistics (mean, covariance, cardinality), allowing new
data to be integrated through online updates. Combined with local split/clone refinement,
this enables streaming and online learning scenarios without rebuilding the entire index. We
leave a systematic evaluation of this capability to future work.

4 Conclusions

We introduced GARLIC, a geometric structure that learns the underlying distribution for
both approximate nearest neighbor search and classification. By combining information-
theoretic objectives with adaptive refinement (split and clone), and representing the space
via anisotropic Gaussians, our method achieves competitive performance in Euclidean
approximate nearest neighbor, particularly in low-probe regimes. Experiments demonstrate
competitive recall-efficiency tradeoffs and robustness under severe data reduction, highlighting
its generalization capabilities.

Statements

Ethics Statement. Our method is evaluated exclusively on publicly available benchmark
datasets. These datasets contain no personally identifiable or sensitive information, and
their licenses are respected. To the best of our knowledge, the proposed method does not
raise ethical concerns. We adhere to the ICLR Code of Ethics and Code of Conduct.

Reproducibility Statement. We provide detailed descriptions of our initialization, opti-
mization, refinement strategies, and hyperparameters in the main text and Appendix A. All

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

datasets are standard and publicly available. We will release the full source code, trained
models, and experiment scripts upon publication to facilitate reproducibility and support
future research.

LLM Usage. Large language models (LLMs) were used to assist in editing and rephrasing
parts of the manuscript for clarity, and to accelerate the creation of visualizations (e.g.,
diagnostic figures). All technical contributions, algorithms, and experiments were designed,
implemented, and validated by the authors.

References
Amirali Abdullah, Alexandr Andoni, Ravindran Kannan, and Robert Krauthgamer. Spec-

tral approaches to nearest neighbor search. In 2014 IEEE 55th Annual Symposium on
Foundations of Computer Science, pp. 581–590. IEEE, 2014.

Charu C Aggarwal, Alexander Hinneburg, and Daniel A Keim. On the surprising behavior
of distance metrics in high dimensional space. In International conference on database
theory, pp. 420–434. Springer, 2001.

Evangelos Anagnostopoulos, Ioannis Z Emiris, and Ioannis Psarros. Randomized embeddings
with slack and high-dimensional approximate nearest neighbor. ACM Transactions on
Algorithms (TALG), 14(2):1–21, 2018.

Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. Communications of the ACM, 51(1):117–122, 2008.

Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and Ludwig Schmidt.
Practical and optimal lsh for angular distance. In C. Cortes, N. Lawrence, D. Lee,
M. Sugiyama, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 28. Curran Associates, Inc., 2015. URL https://proceedings.neurips.cc/
paper_files/paper/2015/file/2823f4797102ce1a1aec05359cc16dd9-Paper.pdf.

Alexandr Andoni, Piotr Indyk, and Ilya Razenshteyn. Approximate nearest neighbor search
in high dimensions. In Proceedings of the International Congress of Mathematicians: Rio
de Janeiro 2018, pp. 3287–3318. World Scientific, 2018.

David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding.
Technical report, Stanford, 2006.

David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful seeding. In
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’07, pp. 1027–1035, USA, 2007. Society for Industrial and Applied Mathematics.
ISBN 9780898716245.

Martin Aumüller, Erik Bernhardsson, and Alexander Faithfull. Ann-benchmarks: A bench-
marking tool for approximate nearest neighbor algorithms. Information Systems, 87:
101374, 2020.

Arindam Banerjee, Srujana Merugu, Inderjit S Dhillon, and Joydeep Ghosh. Clustering with
bregman divergences. Journal of machine learning research, 6(Oct):1705–1749, 2005.

Adrien Bardes, Jean Ponce, and Yann LeCun. VICReg: Variance-invariance-covariance
regularization for self-supervised learning. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=xm6YD62D1Ub.

Richard H Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A limited memory algorithm for
bound constrained optimization. SIAM Journal on scientific computing, 16(5):1190–1208,
1995.

Yixi Cai, Wei Xu, and Fu Zhang. ikd-tree: An incremental kd tree for robotic applications.
arXiv preprint arXiv:2102.10808, 2021.

10

https://proceedings.neurips.cc/paper_files/paper/2015/file/2823f4797102ce1a1aec05359cc16dd9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/2823f4797102ce1a1aec05359cc16dd9-Paper.pdf
https://openreview.net/forum?id=xm6YD62D1Ub

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Aaron Clauset, Cosma Rohilla Shalizi, and Mark EJ Newman. Power-law distributions in
empirical data. SIAM review, 51(4):661–703, 2009.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from
incomplete data via the em algorithm. Journal of the royal statistical society: series B
(methodological), 39(1):1–22, 1977.

Yihe Dong, Piotr Indyk, Ilya Razenshteyn, and Tal Wagner. Learning space partitions for
nearest neighbor search. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=rkenmREFDr.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-
Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library.
arXiv preprint arXiv:2401.08281, 2024.

Qiang Du, Vance Faber, and Max Gunzburger. Centroidal voronoi tessellations: Applications
and algorithms. SIAM review, 41(4):637–676, 1999.

Abdullah Gani, Aisha Siddiqa, Shahaboddin Shamshirband, and Fariza Hanum. A survey
on indexing techniques for big data: taxonomy and performance evaluation. Knowledge
and information systems, 46(2):241–284, 2016.

Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. Optimized product quantization for
approximate nearest neighbor search. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2946–2953, 2013.

Yunchao Gong, Svetlana Lazebnik, Albert Gordo, and Florent Perronnin. Iterative quanti-
zation: A procrustean approach to learning binary codes for large-scale image retrieval.
IEEE transactions on pattern analysis and machine intelligence, 35(12):2916–2929, 2012.

Gaurav Gupta, Tharun Medini, Anshumali Shrivastava, and Alexander J. Smola. Bliss:
A billion scale index using iterative re-partitioning. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, KDD ’22, pp. 486–495,
New York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450393850.
doi: 10.1145/3534678.3539414. URL https://doi.org/10.1145/3534678.3539414.

Charles R Harris, K Jarrod Millman, Stéfan J Van Der Walt, Ralf Gommers, Pauli Virtanen,
David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J Smith, et al.
Array programming with numpy. Nature, 585(7825):357–362, 2020.

Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the
curse of dimensionality. In Proceedings of the Thirtieth Annual ACM Symposium on
Theory of Computing, STOC ’98, pp. 604–613, New York, NY, USA, 1998. Association
for Computing Machinery. ISBN 0897919629. doi: 10.1145/276698.276876. URL https:
//doi.org/10.1145/276698.276876.

Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri, Ravishankar Krish-
nawamy, and Rohan Kadekodi. Diskann: Fast accurate billion-point nearest neighbor
search on a single node. Advances in neural information processing Systems, 32, 2019.

Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest
neighbor search. IEEE transactions on pattern analysis and machine intelligence, 33(1):
117–128, 2010.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus.
IEEE Transactions on Big Data, 7(3):535–547, 2019.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian
splatting for real-time radiance field rendering. ACM Trans. Graph., 42(4):139–1, 2023.

Neeraj Kumar, Li Zhang, and Shree Nayar. What is a good nearest neighbors algorithm
for finding similar patches in images? In Computer Vision–ECCV 2008: 10th European
Conference on Computer Vision, Marseille, France, October 12-18, 2008, Proceedings,
Part II 10, pp. 364–378. Springer, 2008.

11

https://openreview.net/forum?id=rkenmREFDr
https://doi.org/10.1145/3534678.3539414
https://doi.org/10.1145/276698.276876
https://doi.org/10.1145/276698.276876

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory,
28(2):129–137, 1982.

David G Lowe. Distinctive image features from scale-invariant keypoints. International
journal of computer vision, 60:91–110, 2004.

Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. Multi-probe lsh: efficient
indexing for high-dimensional similarity search. In Proceedings of the 33rd international
conference on Very large data bases, pp. 950–961, 2007.

Mikko I Malinen and Pasi Fränti. Balanced k-means for clustering. In Joint IAPR
international workshops on statistical techniques in pattern recognition (SPR) and
structural and syntactic pattern recognition (SSPR), pp. 32–41. Springer, 2014.

Yu A Malkov and Dmitry A Yashunin. Efficient and robust approximate nearest neighbor
search using hierarchical navigable small world graphs. IEEE transactions on pattern
analysis and machine intelligence, 42(4):824–836, 2018.

James McNames. A fast nearest-neighbor algorithm based on a principal axis search tree.
IEEE Transactions on pattern analysis and machine intelligence, 23(9):964–976, 2001.

A Paszke. Pytorch: An imperative style, high-performance deep learning library. arXiv
preprint arXiv:1912.01703, 2019.

Yun Peng, Byron Choi, Tsz Nam Chan, Jianye Yang, and Jianliang Xu. Efficient approximate
nearest neighbor search in multi-dimensional databases. Proceedings of the ACM on
Management of Data, 1(1):1–27, 2023.

Ilya Razenshteyn. High-dimensional similarity search and sketching: algorithms and
hardness. PhD thesis, Massachusetts Institute of Technology, 2017.

David Sculley. Web-scale k-means clustering. In Proceedings of the 19th international
conference on World wide web, pp. 1177–1178, 2010.

Gregory Shakhnarovich, Trevor Darrell, and Piotr Indyk. Nearest-neighbor methods in
learning and vision. IEEE Trans. Neural Networks, 19(2):377, 2008.

Robert F Sproull. Refinements to nearest-neighbor searching in k-dimensional trees.
Algorithmica, 6:579–589, 1991.

Jingdong Wang, Heng Tao Shen, Jingkuan Song, and Jianqiu Ji. Hashing for similarity
search: A survey. arXiv preprint arXiv:1408.2927, 2014.

Jun Wang, Wei Liu, Sanjiv Kumar, and Shih-Fu Chang. Learning to hash for indexing big
data—a survey. Proceedings of the IEEE, 104(1):34–57, 2015.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-
supervised learning via redundancy reduction. In International conference on machine
learning, pp. 12310–12320. PMLR, 2021.

Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: an efficient data clustering
method for very large databases. ACM sigmod record, 25(2):103–114, 1996.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A Appendix

This appendix provides additional details and experiments as mentioned in the main paper.
Section A.1 provides additional results and ablation studies to the ones presented in Section 3
of the main paper. Section A.1.1 contains visualization of diagnostics and statistics regarding
our proposed method, to provide a comprehensive understanding of its behavior. Section A.2
contains additional technical details regarding the datasets used and the experimental setup,
as well as the training pipeline. Section A.3 discusses and provides detailed computational
time and space complexity for the build and query procedures of GARLIC.

A.1 Further Results

We extend the analysis of the experimental section, by further examining the impact of
individual design choices in GARLIC and providing results. Unless noted otherwise, for
each result presented as abblation, we sample a training set of 50.000 (5%) from SIFT-1M
and only change the requested parameters while keeping all others as is, while reporting
recall@1 against distance computations. In each figure, the parameters used in the main
experiments are represented by the method indicated by the blue dashed line, and optimal
outcomes are achieved when positioned on the top left of the figures (↖). When comparing,
for eadability, we choose to exclude GMM, Neural-LSH, and ITQ for their inconsistent and
unstable performance.

Ours K-Means BIRCH CP-LSH
HP-LSH PCA Tree Faiss-IVF Faiss-IVFPQFS

103 104

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ε
-r

ec
al

l
@

0.
01

SIFT

102 103

0.4

0.5

0.6

0.7

0.8

0.9

1.0
MNIST

102 103
0.0

0.2

0.4

0.6

0.8

1.0
FMNIST

103 104

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ε
-r

ec
al

l
@

0.
1

102 103
0.5

0.6

0.7

0.8

0.9

1.0

102 103

0.2

0.4

0.6

0.8

1.0

103 104

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
re

ci
si

on
@

10

102 103
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

102 103
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 5: Additional distortion-aware accuracy results (higher is better). Each curve
reports performance as a function of the candidate budget (x-axis). Panels show ε-Recall at
ε ∈ {0.01, 0.10} and P@10 across SIFT1M, MNIST, and FMNIST. Methods closer to the
top-left (↖) are more accurate under smaller candidate budgets.

We evaluate retrieval quality using both accuracy- and distortion-based criteria, as shown in
Figures 5 and 6. Beyond Recall@1, we report Precision@10 (P@10), capturing the fraction of
retrieved points among the top-10 that are true neighbors. To assess approximation tightness
for the nearest neighbor, we measure the distance ratio between the returned neighbor and

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

the exact nearest neighbor. From this we derive: (i) ε-Recall, the fraction of queries where
the retrieved distance is within a factor (1 + ε) of the ground-truth (with ε ∈ {0.01, 0.10});
(ii) the percentiles r95 and r99, which correspond to empirical c-approximation factors at
the 95th and 99th percentiles; and (iii) the mean relative error, REmean, summarizing the
average stretch beyond the true nearest-neighbor distance. These metrics complement recall
by quantifying how close the returned distances are to the exact nearest neighbor, and follow
standard practice in ANN-Benchmarks.

Ours K-Means BIRCH CP-LSH
HP-LSH PCA Tree Faiss-IVF Faiss-IVFPQFS

103 104
1.0

1.2

1.4

1.6

1.8

2.0

r9
5

SIFT

102 103
1.0

1.1

1.2

1.3

1.4

1.5

MNIST

102 103
1.0

1.2

1.4

1.6

1.8

2.0
FMNIST

103 104

1.2

1.4

1.6

1.8

2.0

2.2

r9
9

102 103
1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

102 103
1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

103 1040.00

0.02

0.04

0.06

0.08

R
E

m
ea

n

102 103
0.00

0.02

0.04

0.06

0.08

0.10

102 103
0.0

0.1

0.2

0.3

0.4

Figure 6: Approximation tightness summaries (lower is better). We report the 95th and
99th percentiles of the distance ratio (r95, r99) and the mean relative error (REmean =
E[r − 1]) versus the candidate budget. Methods closer to the bottom-left (↙) achieve tighter
approximations with fewer candidates.

Across datasets we observe consistent trends: ε-Recall at 1% and 10% rapidly approaches 1.0,
indicating that even under small probe budgets the vast majority of retrieved neighbors lie
within 1%–10% of the true nearest-neighbor distance. The r95 and r99 curves remain close
to 1.0, showing that 95%–99% of queries admit near-exact retrieval, while REmean stays low
and stable, confirming that average distortion is minimal. Together with high P@10, these
results demonstrate that the learned Gaussian partitions not only achieve strong recall but
also return candidates that are quantitatively close to the exact nearest neighbors, providing
both efficiency and fidelity in the ANN process.

Additional Abblation Studies In Figure 7(a), the contribution of each loss term to the
optimization process is analyzed. The results indicate that the covariance loss Lcov produces
the most significant performance improvement, while the anchor loss Lanchor functions as an
effective regularizer, grounding each Gaussian by aligning it with its corresponding point
distribution. Figure 7(b) demonstrates the effects of our adaptive refinement operations,
where the split and clone mechanisms improve retrieval performance when used together,
each contributing by providing complementary benefits to the quality of representation.
Figure 7(c), addresses the parameter τ within Ldiv, demonstrating that τ = 3 is the optimal
choice, particularly in scenarios involving a limited number of probes. Values surpassing

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

those presented in our study (τ > 3) result in less optimal outcomes. For instance, τ = 4
demonstrates a Recall@1 value of 0.67 when evaluated with 154264 probes.

0 5 10 15

0.5

0.6

0.7

0.8

0.9

(×103)

Ldiv + Lcov + Lanchor

Ldiv

Ldiv + Lcov

Ldiv + Lanchor

(a) Loss terms

0 10 20 30

0.5

0.6

0.7

0.8

0.9

(×103)

w/o any
w/ both
w/ split
w/ clone

(b) Split & clone impact

0 5 10 15 20

0.5

0.6

0.7

0.8

0.9

(×103)

=0
=1
=2
=3

(c) ReLU parameters τ

0 10000 20000 30000 40000

0.5

0.6

0.7

0.8

0.9

Q100
Q70
Q50
Q30
Q25
Q20
Q10

(d) Quantization

0.0 0.3 0.6

0.5

0.6

0.7

0.8

0.9

(×103)

d=121
d=289
d=529
d=784

(e) Dimensionality effect

Figure 7: Parameter ablations: (a) Impact of different loss term combinations on the
Recall-Probe tradeoff, showing that the full loss (Ldiv + Lcov + Lanchor) provides the best
balance. (b) Effect of split and clone operations, demonstrating that these operations improve
efficiency while maintaining accuracy. (c) Impact of ReLU parameter τ in the divergence
loss. (d) Effect of embedding dimensionality, showing GARLIC’s robustness across different
dimensions. (e) Efficient search via partial cell scanning. The blue dashed method regards
the parameters used in main experiments, and top-left is better (↖).

Furthermore, Figure 7(d) demonstrates the impact of our quantization scheme. In particular,
it exhibits strong performance across a broad quantization range (20−100%), with only the
most aggressive setting (10%) leading to degradation. This indicates that our quantization
strategy is robust and well-aligned with our model structure. Finally, Figure 7(e) examines
dimensionality effects using Fashion-MNIST data resized to various dimensions (to simulate
higher-dimensional embeddings). The results confirm that GARLIC maintains strong
performance across a wide range of dimensionalities.

Table 2: Effect of anisotropy on average Re-
call@1 / Probe (×105). Higher is better. As
anisotropy decreases, performance degrades
due to excessive probe usage.

Configuration Performance ↑
Covariance structure

Anisotropic 16.20
Diagonal 1.22
Isotropic 0.75

Covariance structure vs performance.
We conduct a targeted study to assess the
impact of different covariance configurations-
namely, full (anisotropic), diagonal, and
isotropic-affect the performance of GARLIC.
As shown in Table 2, reducing the Gaussian
expressiveness from full to diagonal and then
to isotropic leads to a notable decline in av-
erage Recall@1 per probe. While diagonal
and isotropic configurations reduce both the
parameter count and computation per Gaus-
sian to a linear level, O(k · d), they lead to
aggressive pruning and an increased number
of probes to make up for the representational loss. This suggests that space complexity
cannot be drastically reduced without harming retrieval quality because simpler Gaussian
parameterizations result in degraded locality and coverage.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.1.1 Qualitative Results

To gain a more comprehensive understanding of the model’s behavior, we present a collection
of diagnostic visualizations applied to the Fashion-MNIST, MNIST, and SIFT datasets.
These plots illustrate structural characteristics, including local coverage, reconstruction
fidelity, density patterns, and curvature statistics of the learned Gaussian components. All
visualizations are conducted on a randomly sampled subset of training points, utilizing the
learned parameters independently of test data supervision.

Reconstruction landscape (Fashion-MNIST)

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

Re
co

ns
tru

ct
io

n
er

ro
r

Reconstruction landscape (MNIST)

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Re
co

ns
tru

ct
io

n
er

ro
r

Reconstruction landscape (SIFT)

3.0

3.2

3.4

3.6

3.8

4.0

Re
co

ns
tru

ct
io

n
er

ro
r

Covariance landscape (Fashion-MNIST)

2

3

4

5

6

7

8

M
ea

n
co

ve
ra

ge
 c

ou
nt

Covariance landscape (MNIST)

2.0

2.5

3.0

3.5

4.0

4.5

M
ea

n
co

ve
ra

ge
 c

ou
nt

Covariance landscape (SIFT)

5

10

15

20

25

30

M
ea

n
co

ve
ra

ge
 c

ou
nt

0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225
Local density

0

2

4

6

8

10

12

14

Co
ve

ra
ge

 (#
 G

au
ss

ia
ns

 w
ith

 M
ah

al
an

ob
is

<
) Per-point coverage vs local density (Fashion-MNIST)

0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250
Local density

0

1

2

3

4

5

6

7

8

Co
ve

ra
ge

 (#
 G

au
ss

ia
ns

 w
ith

 M
ah

al
an

ob
is

<
) Per-point coverage vs local density (MNIST)

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Local density

0

10

20

30

40
Co

ve
ra

ge
 (#

 G
au

ss
ia

ns
 w

ith
 M

ah
al

an
ob

is
<

) Per-point coverage vs local density (SIFT)

Figure 8: Diagnostic visualizations across Fashion-MNIST (left), MNIST (middle), and SIFT
(right). Top row: minimum Mahalanobis reconstruction error; middle row: average Gaussian
coverage per point; bottom row: relationship between local density and Gaussian coverage.
Bottom row’s colormap depicts frequency-density, in logarithmic scale.

Coverage and reconstruction diagnostics. Figure 8 illustrates three diagnostic views,
each calculated for a different dataset (Fashion-MNIST, MNIST, and SIFT), to evaluate
the accuracy of the Gaussian models in representing the datasets. The top row includes
the reconstruction landscape, which visualizes the minimum Mahalanobis distance from each
point to any Gaussian. For each dataset, we employ PCA to project the points onto a
two-dimensional space and calculate the average reconstruction error of proximate points on
a grid. This heatmap highlights how well the Gaussian shells approximate the distribution
of data throughout the space.
The middle row shows the coverage landscape, which counts how many Gaussians fall within
the Mahalanobis threshold τ for each data point. Coverage is computed per point, projected
to 2D, and smoothed via k-NN averaging over a grid. This plot reflects the redundancy and
spatial spread of the Gaussian coverage. We observe that areas with low reconstruction error
tend to be have high coverage.
The bottom row depicts the relationship between local density and Gaussian coverage. For
each point, we compute its local density via the inverse mean distance to its 10 nearest
neighbors and correlate this with its coverage count. The resulting 2D histograms reveal
structural patterns where regions of higher density generally exhibit greater coverage while
sparse regions receive fewer assignments. This aligns with our goal of achieving balanced
coverage while maintaining good reconstruction fidelity.

Curvature-based diagnostics. Figure 9 provides four views exploring the relationship
between curvature and structural properties of the Gaussian assignments across datasets, to

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

6 8 10 12 14 16 18 20
Mean radius

0.02

0.04

0.06

0.08

0.10

0.12

Cu
rv

at
ur

e
st

d

Per-Gaussian curvature std vs radius (Fashion-MNIST)

6 8 10 12 14 16 18 20 22
Mean radius

0.04

0.06

0.08

0.10

0.12

0.14

Cu
rv

at
ur

e
st

d

Per-Gaussian curvature std vs radius (MNIST)

3 4 5 6 7 8 9 10 11
Mean radius

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Cu
rv

at
ur

e
st

d

Per-Gaussian curvature std vs radius (SIFT)

6 8 10 12 14 16 18 20
Mean radius

0.35

0.40

0.45

0.50

0.55

0.60

Cu
rv

at
ur

e
m

ea
n

Per-Gaussian mean curvature mean vs radius (Fashion-MNIST)

6 8 10 12 14 16 18 20 22
Mean radius

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Cu
rv

at
ur

e
m

ea
n

Per-Gaussian mean curvature mean vs radius (MNIST)

3 4 5 6 7 8 9 10 11
Mean radius

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Cu
rv

at
ur

e
m

ea
n

Per-Gaussian mean curvature mean vs radius (SIFT)

0.02 0.04 0.06 0.08 0.10 0.12
Curvature std (within Gaussian)

25

50

75

100

125

150

175

200

225

Co
ve

ra
ge

 (#
 a

ss
ig

ne
d

po
in

ts
)

Per-Gaussian coverage vs curvature std (Fashion-MNIST)

0.04 0.06 0.08 0.10 0.12 0.14
Curvature std (within Gaussian)

50

100

150

200

250

300

Co
ve

ra
ge

 (#
 a

ss
ig

ne
d

po
in

ts
)

Per-Gaussian coverage vs curvature std (MNIST)

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
Curvature std (within Gaussian)

0

50

100

150

200

250

300

Co
ve

ra
ge

 (#
 a

ss
ig

ne
d

po
in

ts
)

Per-Gaussian coverage vs curvature std (SIFT)

0.35 0.40 0.45 0.50 0.55 0.60
Curvature mean (within Gaussian)

25

50

75

100

125

150

175

200

225

Co
ve

ra
ge

 (#
 a

ss
ig

ne
d

po
in

ts
)

Per-Gaussian coverage vs mean curvature (Fashion-MNIST)

0.25 0.30 0.35 0.40 0.45 0.50 0.55
Curvature mean (within Gaussian)

50

100

150

200

250

300

Co
ve

ra
ge

 (#
 a

ss
ig

ne
d

po
in

ts
)

Per-Gaussian coverage vs mean curvature (MNIST)

0.30 0.35 0.40 0.45 0.50 0.55 0.60
Curvature mean (within Gaussian)

0

50

100

150

200

250

300

Co
ve

ra
ge

 (#
 a

ss
ig

ne
d

po
in

ts
)

Per-Gaussian coverage vs mean curvature (SIFT)

Figure 9: Curvature diagnostics across Fashion-MNIST (left), MNIST (middle), and SIFT
(right). Row 1: standard deviation of local curvature vs radius; Row 2: mean local curvature
vs radius; Row 3: Gaussian coverage vs curvature std; Row 4: Gaussian coverage vs curvature
mean. Coloring accounts for density.

examine wheather the learned model is informative and geometrically consistent with the
data x ∈ X.
The first row shows the standard deviation of local curvature as a function of the average
radius (l2) per Gaussian. For each Gaussian, we collect nearby assigned points (under
Mahalanobis threshold τ), compute their curvature via PCA-based local flatness, and report
the standard deviation. Each bin aggregates Gaussians by radius and variation in curvature,
highlighting the stability of their local geometry, where for each dataset curvatures deviations
tend to be around ∼ 0.06.
The second row reports the mean curvature of each Gaussian against its average radius.
This indicates the intrinsic dimensionality and shape complexity of regions assigned to
Gaussians of different spatial extent. In general, we see that mean curvature tends to be
∼ 0.5, suggesting a moderate level of local non-linearity, especially for Gaussians with smaller
support. As the radius increases, curvature remains relatively stable, indicating consistent
local geometry across scales.
The third row depicts how Gaussian coverage (number of assigned points) varies with the
curvature standard deviation of the assigned region. We observe that most Gaussians exhibit
low curvature variability (std ∼ 0.06), indicating that points within each Gaussian tend to
have similar geometric structure. Moreover, there is no clear correlation between coverage
and curvature std, implying that heavily used Gaussians are not more geometrically diverse
than others. This suggests a form of balanced representation capacity across Gaussians.
The fourth row shows coverage as a function of mean curvature, where Gaussians with
high coverage have curvature patterns similar to those with low coverage.
Figure 10 demonstrates the capability of GARLIC to capture the intrinsic geometric structure
of high-dimensional data with locally varying dimensionality. The anisotropy histograms

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

2 4 6 8 10 12 14 16

max/ min

0

20

40

60

80

100

120

140

C
ou

nt

Anisotropy histogram (SIFT)

25 50 75 100 125 150 175 200

max/ min

0

10

20

30

40

50

C
ou

nt

Anisotropy histogram (MNIST)

50 100 150 200 250

max/ min

0

10

20

30

40

50

60

70

C
ou

nt

Anisotropy histogram (Fashion-MNIST)

0 2 4 6 8 10
Band-width k (±k diagonals)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 F

ro
be

ni
us

 e
ne

rg
y

Banded covariance energy (SIFT)

Mean
Min-max range

0 2 4 6 8 10
Band-width k (±k diagonals)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 F

ro
be

ni
us

 e
ne

rg
y

Banded covariance energy (MNIST)

Mean
Min-max range

0 2 4 6 8 10
Band-width k (±k diagonals)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 F

ro
be

ni
us

 e
ne

rg
y

Banded covariance energy (Fashion-MNIST)

Mean
Min-max range

0.65 0.70 0.75 0.80 0.85 0.90 0.95

diag()2/ 2
F

0

20

40

60

80

100

C
ou

nt

Diagonality histogram (SIFT)

0.3 0.4 0.5 0.6 0.7 0.8 0.9

diag()2/ 2
F

0

10

20

30

40

50

60

C
ou

nt

Diagonality histogram (MNIST)

0.3 0.4 0.5 0.6 0.7 0.8 0.9

diag()2/ 2
F

0

10

20

30

40

C
ou

nt

Diagonality histogram (Fashion-MNIST)

117 119 121
deff @ 0.95

0

50

100

150

200

250

300

350

400

Co
un

t

Effective dimension histogram (SIFT)

667 709 739
deff @ 0.95

0

5

10

15

20

25

30

Co
un

t

Effective dimension histogram (MNIST)

635 723 739
deff @ 0.95

0

5

10

15

20

25

30

Co
un

t

Effective dimension histogram (Fashion-MNIST)

0 20 40 60 80 100 120
Eigenvalue index

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

ex
pl

ai
ne

d
va

ri
an

ce

Explained variance surface (SIFT)

Mean
Min-max range

0 100 200 300 400 500 600 700 800
Eigenvalue index

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

ex
pl

ai
ne

d
va

ri
an

ce

Explained variance surface (MNIST)

Mean
Min-max range

0 100 200 300 400 500 600 700 800
Eigenvalue index

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

ex
pl

ai
ne

d
va

ri
an

ce

Explained variance surface (Fashion-MNIST)

Mean
Min-max range

Figure 10: Spectral diagnostics across datasets (SIFT, MNIST, Fashion-MNIST; columns)
and Gaussian properties (rows). Each subplot shows a different measure: anisotropy, band
energy, diagonality, effective dimension, and explained variance.

(first row) reveal how Gaussians adapt to regions of different local dimensionality, with
λmax/λmin ratios ranging from nearly isotropic to highly stretched configurations across all
datasets. Rather than simply partitioning space uniformly, Gaussians adapt their shapes
to the underlying manifold structure, as confirmed by the diagonality histograms (third
row) and effective dimension measurements (fourth row). This representation allows us to
model stratified data where different intrinsic dimensionalities coexist, allowing the data
to become pancake-like for surface regions, needle-like for curve regions, and ball-like for
volumetric areas. Unlike traditional space partitioning methods, GARLIC models the
underlying data distribution probabilistically, not just approximating distances for retrieval.
The explained variance surfaces (bottom row) show that Gaussians efficiently capture the
relevant dimensions at each location, enabling estimation of true manifold distances rather
than just Euclidean distances to samples. This provides more semantically meaningful results
in regions where the intrinsic dimensionality is lower than the ambient space. This completes
the supplementary material.

A.2 Implementation details

This subsection summarizes all implementation and training-specific parameters used in
our model, including optimizer schedules, architectural constants, and adaptive procedures
such as splitting, cloning and pruning. These details provide context for reproducibility and

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

support the complexity analysis in the main paper. Furthermore, there are dataset specifics,
such as licenses and descriptions.

Table 3: Dataset Information

Dataset Dimension Size Description License
SIFT1M 128 1M Image descriptors CC0
MNIST 784 70K Handwritten digits CC BY-SA 3.0
Fashion-MNIST 784 70K Fashion items MIT

Datasets. We evaluate our method on three standard benchmark datasets: (1) SIFT1M
Lowe (2004), containing one million 128-dimensional SIFT descriptors that capture scale-
and rotation- invariant local image features; (2) MNIST LeCun et al. (1998), con-
sisting of 70,000 grayscale handwritten digit images (28×28 pixels) flattened to 784-
dimensional vectors; and (3) Fashion-MNIST Xiao et al. (2017), a more challenging
variant with the same format but featuring 10 categories of fashion items. For re-
trieval tasks, we used the ANN-Benchmark Aumüller et al. (2020) versions of these
datasets (available at http://ann-benchmarks.com/sift-128-euclidean.hdf5, http:
//ann-benchmarks.com/mnist-784-euclidean.hdf5, and http://ann-benchmarks.com/
fashion-mnist-784-euclidean.hdf5) to ensure a standardized comparison with existing
methods.

Experimental setup. Our method was implemented in Python, using optimized libraries
such as PyTorch Paszke (2019) and NumPy Harris et al. (2020). The experiments were carried
out on an Intel Core i7-7820X CPU (16 threads), a Quadro RTX 8000 GPU (48 GB VRAM)
and 125 GiB of RAM.

Training configuration. Batch sizes of 50000 are used for SIFT, and 20000 for MNIST
and Fashion-MNIST datasets, with z-score normalization by subtracting the mean and
dividing by the standard deviation. The number of training epochs is 250, with a typical
early stop at 120. Gaussian updates are scheduled with two phases: a warm-up phase lasting
35 epochs and an optimization phase where structural operations like splitting and cloning
are triggered every 35 epochs and pruning every 60.

Learning rate schedule. The learning rates follow a linear warm-up and exponential
decay scheme. Specifically, for the Cholesky parameters, the rates are subjected to a warm-up
phase from 1×10−7 to 5×10−4, followed by a decay to 9×10−5. In terms of the means, they
are warmed up from 1 × 10−7 to 9 × 10−3, and subsequently decay to 3 × 10−3. Notably, the
learning rate associated with the means is maintained at a relatively higher level than that
of the covariances. This approach is designed to promote the adjustment of the Gaussian
centers rather than the expansion of their radii.

Adaptive refinement. Splitting is applied to Gaussians with cardinality exceeding a
fraction of the dataset γ = 1 × 10−2, using DBSCAN or K-Means, as fallback, with c = 2
clusters. The covariance of each new Gaussian is scaled down by 9 × 10−1. Cloning selects
dense regions just outside the Gaussian boundary, defined by a Mahalanobis shell with inner
threshold τ and outer threshold (1 + e) · τ , where e = 2.2 controls the shell thickness. From
the set of points referenced in (τ, eτ], a random selection of 60% is made. Cloning is not
performed on a Gaussian unless its cardinality surpasses a threshold specified by 8 × 10−4|X|.
Gaussians that have degenerated into a single point are eliminated. Pruning is executed at
intervals of every 60 epochs.

Quantization. Local PCA is performed per cell using top-3 eigenvectors. Reduced points
are quantized using a spherical grid with nradial = 6 and nangular = 4, forming directional
bins per Gaussian.

19

http://ann-benchmarks.com/sift-128-euclidean.hdf5
http://ann-benchmarks.com/mnist-784-euclidean.hdf5
http://ann-benchmarks.com/mnist-784-euclidean.hdf5
http://ann-benchmarks.com/fashion-mnist-784-euclidean.hdf5
http://ann-benchmarks.com/fashion-mnist-784-euclidean.hdf5

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Loss. The total loss is a weighted sum of three components: divergence λdiv = 1.0,
covariance λcov = 1.0, and anchor term λanchor = 10−2, with a weight α = 10−1 that
balances position and shape. When calculating the Lcov loss, a numerical epsilon of 1×10−12

is used to ensure stability.

A.3 Complexity Analysis

We analyze the computational time and space complexity of our method in three parts:
index construction, query execution, and storage. The analysis is expressed in terms of
standard parameters, including the dataset size |X|, embedding dimension d, the number
of Gaussians K, and the reduced PCA dimension r ≪ d. Our goal is to ensure that each
component remains scalable with respect to high-dimensional data and large-scale datasets.
We summarize the complexity of each phase below.

Index build complexity. Let I be the number of optimization steps and K ′ the initial
number of Gaussians. We denote by S, C, and P the number of splits, clones, and pruned
Gaussians, respectively, and define the final number of Gaussians as K = K ′ + S + C − P .
Let |Bg| be the average cell size, c the number of K-Means clusters used during splitting,
and k′ the number of candidate points sampled per cloning operation.
For the initialization, since we use K-Means++ on K ′ total cluster centers, we need O(K ′ ·
d · |X|) time. For the optimization part, we need to perform a total number of I iterations
of full Mahalanobis-based point-to-Gaussian assignment, thus a total of O(I · |X| · K · d2)
worst-case time. Separate from the optimization, we analyze the split, clone and prune
operations that are not applied on every iteration of the optimization. (i) The split operation
runs DBSCAN or K-Means (with c clusters), thus for a total of S such operations we would
need O(S · (|Bg| · d · c + d2)); (ii) the clone operation locates the subset of points outside
the Gaussian’s boundary (between τ · σ and (1 + ϵ) · τ · σ) for which it identifies new local
modes, thus for a total of C operations, it leads to O(C · (k′2 · d + d2)); and (iii) the prune
operation simply removes low-cardinality Gaussians and reassigns the points to the nearest
active Gaussian, which takes O(P · |Bg| · d) time. For the quantization of each Gaussian,
PCA is performed on all points inside the Gaussian, which projects the data into reduced
local bases. In total, for the quantization we need O(K ′ · |Bg| · d2 + |X| · d · r) time. From
all the terms described, the optimization term dominates.

Query complexity. Let K be the number of Gaussians, k the number selected per query,
d the dimension, r the PCA dimension, b the number of bins per Gaussian, T the number of
optimization steps to find the shortest distance from the query point to the boundary of
a spherical bin in the reduced PCA space, ρ the probed bin ratio, and β the average bin
size. For a single query, we first need to measure distances from the set of Gaussians, which
takes O(K · d2). Then, for the k nearest Gaussians we need to locate the subset of data to
be examined. For this, for each of the selected k Gaussians, we need to compute the local
PCA projections (O(k · d · r)), then compute and sort the spherical distances to all b bins
(O(k · b · r · T)), of which only the ρ fraction is probed. From each, up to β candidates are
gathered and re-ranked using Euclidean distance, which needs O(k · ρ · b · β · d) time. In
practice, the re-ranking factor dominates the complexity, which is sublinear.

Space complexity. Let K be the number of Gaussians, d the data dimension, and
N = |X| the dataset size. The model stores mean vectors µ ∈ RK×d, Cholesky parameters
L ∈ RK×d×d, and cells storing point indices, requiring O(N) space. Thus, the total space
complexity is:

O
(
K · (d2 + d) + N

)
where K · d2 dominates. Still, space complexity can be reduced to O (K · d) by enforcing
diagonal covariance matrices, at the expense of reduced expressiveness in anisotropic regions
of the space.

20

	Introduction
	Related Work

	Method
	Gaussian Parameterization
	Optimization Objective
	Adaptive Refinement
	Quantization
	Inference

	Experiments
	Conclusions
	Appendix
	Further Results
	Qualitative Results

	Implementation details
	Complexity Analysis

