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Abstract

While large language models (LLMs) have001
rapidly improved performance on a broad num-002
ber of tasks, they still fall often fall short on003
reasoning tasks. Wang et al. (2023) propose004
self-consistency, finding that sampling multiple005
rationales before taking a majority vote stably006
improves performance across a wide variety of007
closed-answer reasoning tasks. Standard self-008
consistency aggregates the numerical outputs009
of these rationales; our work instead incorpo-010
rates the content of the rationales to identify011
consensus responses, re-weighting solutions012
based on patterns found in their vector em-013
beddings of sequence outputs. By doing so014
we analyze and evaluate the implied effect of015
consistent reasoning paths over the traditional016
focus on numerical outputs, while improving017
accuracy on common benchmarks by weighting018
based on semantically consistent answers.019

1 Introduction020

High-level thoughts so far: there are some impres-021

sive results that are buried deep in the results sec-022

tion (outlier detection first and foremost; inverse023

weighing next). Take those and put them at the024

beginning. Some of the results (k-means, e.g.) are025

more so additional studies and should be put there026

to clarify the narrative. Goal here is to streamline027

things and make it very clear to a reviewer what028

the contributions of the paper are.029

In recent years, the development of large lan-030

guage models has witnessed remarkable strides,031

with significant advancements in their accuracy032

and expressive capabilities. (Brown et al., 2020;033

Sarker, 2021; Naveed et al., 2023; Bubeck et al.,034

2023) Despite these achievements, models still per-035

form suboptimally in domains such as mathematic,036

commonsense, and complex algorithmic reasoning.037

(Hendrycks et al., 2021)038

We build on the framework of self-consistency,039

a technique that samples and ensembles multiple040

model responses to improve prediction quality (Mi- 041

alon et al., 2023). Our paper introduces various 042

methods that improve performance and accuracy 043

by exploiting semantic contrast between genera- 044

tions. We propose multiple techniques that adds 045

a separate filtering layer to discard irrelevant, in- 046

accurate or degenerated responses. Furthermore 047

we introduce the application of semantic vector 048

embeddings in relationship to self-consistency to 049

group consistent model outputs, aiding identifica- 050

tion of alike responses to estimate an accurate rep- 051

resentation about output sequences. Additionally 052

weighting responses based of these semantic repre- 053

sentations has shown an inclining effect on model 054

performance in terms of accuracy. We also ex- 055

plore the impact of weighting responses based on 056

these semantic representations. Figure 1 exemplary 057

illustrates our filtering process after mapping em- 058

beddings to a two-dimensional space. 059

Overall, we show that self-consistency with se- 060

mantic marginalization not only substantially im- 061

proves accuracy on a range of benchmarks, but also 062

can be used as a filtering mechanism to improve 063

robustness towards nonsensical and degenerated 064

responses. By addressing these issues we want to 065

provide multiple methods that can be utilized as a 066

framework towards improvement of performance 067

and more textually aware and concise sequences in 068

the majority responses. 069

Our contributions are as follows: 070

1. Clustering Based on Embedding Vectors: 071

Our research successfully clustered results 072

based on embedding vectors. This approach 073

can be instrumental in identifying underlying 074

patterns and structures in complex data sets. 075

2. Weighted Results Analysis: We introduced 076

a novel approach to weigh results based on 077

their mapped position relative to the overall 078

mean of all data points. This method offers a 079
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Figure 1: Default self-consistency comprises three steps: (1) Prompt a model with chain-of-thought reasoning; (2)
Generate n sampled sequences, and (3) Marginalize results based on the most occurring numerical output.
Our proposed method samples results and marginalizes not only based on consistency in the output but also on
the consistency of the employed reasoning path. Our assumption is that Language Models often apply the correct
reasoning but lack the ability to conduct the needed mathematical operations correctly. We utilize this concept to let
reasoning paths improve the confidence in similar reasoning responses.

refined data analysis technique that could be080

beneficial in large-scale data studies.081

3. Anomaly Handling via Marginalization:082

We developed a method to marginalize out083

anomalous points based on mapped embed-084

ding vectors, enhancing the robustness and085

reliability of data-driven models, particularly086

in scenarios with noisy or outlier data.087

4. Sequence Similarity Evaluation using Co-088

sine Similarity: We evaluated the similarity089

between subsequent responses using cosine090

similarity, providing a quantitative measure of091

the effectiveness of response generation algo-092

rithms in maintaining thematic consistency.093

2 Methodology094

2.1 Semantic marginalization techniques095

We analyse a range of mechanisms for weighting096

and categorization.097

1. Generate candidate responses: Given a query098

of few-shot examples, we generate n samples099

based on chain of thought prompting. (Wei100

et al., 2022)101

2. Embed reasoning paths: Here, we deviate102

from the typical sentence-wise approach used103

in BERT models. Instead, we take the entire104

sequence, including the generated responses, 105

and use fine-tuned variants of BERT-models 106

to embed the answer in semantic space. 107

3. Filter and marginalize: We use various al- 108

gorithms to filter and marginalize out results 109

based on its featurized embedding vector. 110

2.1.1 Inverse-distance weighting 111

In a set of examples, it is common to observe that 112

general answers exhibit similar operational patterns 113

and behaviors. This observation underpins the ap- 114

plication of inverse distance weighting, a technique 115

where each vector in the set is assigned a weight 116

based on its distance from a reference point or 117

query. The essence of this approach lies in the prin- 118

ciple that vectors closer to the query are more likely 119

to be relevant and thus are given greater weight in 120

the decision-making or reasoning process. 121

We calculate the weights for each data point and 122

normalize the weights so that they sum to 1. The 123

process is shown below. To quantify these distances 124

and subsequent weights, we adapt a radial basis 125

function. 126

centroid =
1

N

N∑
i=1

data_embedding[i] 127

128
distances[i] = ∥data_embeddings[i]− centroid∥ 129
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130

weights[i] =
1

distances[i]
131

Optional normalization step:132

weights[i] =
weights[i]∑N
i=1 weights[i]

133

In these formulations:134

• centroid symbolizes the geometric center of135

all data points.136

• distances[i] denotes the distance of the i-th137

data point from the centroid.138

• weights[i] indicates the normalized weight of139

the i-th data point, derived from its distance140

to the centroid.141

• N is the total number of data points in the142

dataset.143

• data_embedding[i] represents the vector rep-144

resentation of the i-th data point.145

• ∥·∥ signifies an arbitrary distance function,146

including but not limited to Euclidean and147

Manhattan distance.148

Our results are evaluated with Euclidean dis-149

tance. Additionally, we use Manhattan (L1)-150

distance as an alternative approach to Euclidean151

distance to measure the closeness of relevant data152

points, which is more robust to outliers.153

2.1.2 Identification of Anomalous Data Points154

Our research involved a thorough examination of155

different techniques for detecting outliers, specifi-156

cally focusing on methods such as k-nearest neigh-157

bors (KNN), isolation forest (ISF), and One-class158

support vector machines (OCSVM) (Liu et al.,159

2008; Manevitz and Yousef, 2002; Cover and Hart,160

1967).161

For the KNN method, the distance D(x, y) be-162

tween two points x and y in an n-dimensional space163

is calculated using the formula:164

D(x, y) =

√√√√ n∑
i=1

(xi − yi)2 (1)165

This formula helps in determining the closeness of166

data points in the feature space.167

In the ISF approach, the anomaly score s(x, n)168

of a data point x is determined based on the path169

length h(x) within the isolation tree, using the for- 170

mula: 171

s(x, n) = 2
−E(h(x))

c(n) (2) 172

Here, E(h(x)) represents the average path length 173

and c(n) is a normalization factor. 174

Lastly, for the OCSVM technique, the objective 175

is to find the parameters ω, b, and ζi that minimize: 176

min
ω,b,ζ

1

2
ωTω + C

n∑
i=1

ζi (3) 177

Subject to constraints: ω and b define the hyper- 178

plane, ζi are slack variables allowing for anomalies, 179

and C balances margin maximization with classifi- 180

cation error minimization, preventing disregarding 181

data points. 182

The objective of this analysis was to effectively 183

isolate data points that significantly diverge from 184

the norm. This is particularly relevant in identify- 185

ing instances of flawed reasoning, degenerated out- 186

puts, or hallucinations within the model response. 187

2.2 Sequence comparison 188

To get a direct comparison of effectiveness between 189

evaluating the embedding position in correlation 190

to its other datapoints and evaluating wise we used 191

cosine similarity to evaluate direct similarities be- 192

tween sequences. 193

Therefore we take n1, n2, n3, . . . , ni which rep- 194

resents distinct elements in our set N , where each 195

element n corresponds to a featurized embedding 196

in the vector space. 197

Then we determine the cosine similarity between 198

all vectors (Here na and nb) given by the formula: 199

cosine_similarity(na, nb) =
na · nb

∥na∥2∥nb∥2
200

For a given rationale ne, we evaluate the cosine 201

similarity between ne and each ni in the set N . 202

∀ni ∈ N, calculate cosine_similarity(ne, ni) 203

Then, we aggregate the weights (or scores) of all 204

these cosine similarity results for ne. By summing: 205

Sne =
∑
i

cosine_similarity(ne, ni) 206

where Sne represents the aggregated score for 207

ne. 208

This process is then repeated for each element 209

nj in the set N , resulting in a series of aggregated 210

scores Sn1 , Sn2 , Sn3 , . . . , Sni . 211
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These scores are then summed based on their an-212

swer decision. This system effects that the highest213

consensual response gets chosen as the solution.214

2.3 Abstract Consistency215

One of our findings utilizes the premise that expos-216

ing the model to a spectrum of different tempera-217

tures facilitates the model of more diverse decision-218

making processes. This process could be harnessed219

to improve the introduced semantic marginaliza-220

tion methods. Our configuration is explained in221

more detail in Appendix D.222

3 Experimental Setup223

We conduct multiple experiments with varying se-224

tups in form of different benchmarks tested on each225

model to cover a broad range of possible outputs.226

Detailed information on the configurations used for227

out models can be found in Appendix C.228

3.1 Dimensionality reduction229

We test dimensionality reduction with PCA and t-230

SNE to see performance and preservation of the dis-231

tribution on different algorithms. (Pearson, 1901;232

Hotelling, 1933; Jolliffe, 2002) A detailed overview233

is referenced in Section 5.5.234

Additionally use the t-SNE for the visualization235

of high-dimensional vector spaces, the configura-236

tion is explained in Appendix J. (van der Maaten237

and Hinton, 2008)238

3.2 Datasets239

3.2.1 Arithmetic reasoning240

We evaluate arithmetic reasoning on AQuA-RAT241

and SVAMP. (Ling et al., 2017; Patel et al., 2021)242

We also use GSM8K (Cobbe et al., 2021) for243

some ablations to evaluate performance on lower-244

difficulty problems.245

3.2.2 Code synthesis246

To test our hypothesis on code generation we use247

HumanEval introduced by Chen et al. (2021) in248

connection with OpenAI.249

3.3 Language Models250

Our models are divided into generators, which pro-251

vide the reasoning/result sequences of of which we252

build the solutions and featurizers, which convert253

the output sequences into suitable vector represen-254

tations.255

3.3.1 Generators 256

• GPT-3.5: For our evaluation we use the 257

closed-source GPT-3.5 model architecture 258

which is a transformer based large-scale lan- 259

guage created by OpenAI.(Brown et al., 2020) 260

261

• Llama 2: Llama 2 is a collection of open- 262

weight Transformer models that perform 263

well on a multitude of common benchmarks. 264

We evaluate the 7-billion parameter variant. 265

(Touvron et al., 2023) 266

267

• Mistral 7B: Mistral 7B is a strong front to 268

back transformer model. (Jiang et al., 2023) It 269

outperforms larger-parameter models in pro- 270

cessing large contextual information. We are 271

using version 0.1 of the model.1 272

3.3.2 Featurizers 273

All of our featurizers are based on the BERT- 274

architecture. (Devlin et al., 2019) This enables us 275

to use different fine-tuned models to produce more 276

concise embedding-vectors based on the given task. 277

• roBERTa: roBERTa (Liu et al., 2019) is an 278

"robustly" fine-tuned 125M parameter model 279

derived from the original BERT architecture, 280

featuring careful optimization to outperform 281

its predecessor on several natural language 282

processing benchmarks. 283

284

• sciBERT: sciBERT is a 110M parameter 285

BERT-model fine-tuned on a multi-domain 286

corpus of roughly 1.14M scientific pub- 287

lications, making it particularly adept at 288

understanding more complex terminology 289

and structure in academic contexts. (Beltagy 290

et al., 2019) 291

292

• MathBERT: MathBERT is a 100M token 293

BERT-model that is fine-tuned on mathe- 294

matical language based on up to an college 295

level math curriculum, books and math arXiv- 296

paper-abstracts.(Shen et al., 2023) 297

• codeBERT: codeBERT is a 125M parame- 298

ter fine-tuned BERT model for coding assign- 299

ments with a more pronounced understanding 300

of code. (Feng et al., 2020) 301

1Our employed model does not utilize instruction tuning.
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4 Results302

4.1 Weighting results303

4.1.1 Arithmetic reasoning304

The results presented in Table 1 demonstrate no-305

table improvements in accuracy when inverse dis-306

tance weighting is applied, particularly in scenarios307

with higher variance in overall numerical outputs.308

The weighting models based on the inverse of the309

distance outputs have shown to improve overall310

self-consistency by an average margin of 3.75%311

for AQuA-rat and 0.9% for SVAMP.312

The use of Euclidean distance has yielded higher313

average results but also greater variance in accu-314

racy compared to Manhattan distance. This sug-315

gests that penalizing more deviating results can be316

beneficial for models with stronger performance.317

We observe the same correlational increase in per-318

formance in higher parameter models as already319

percieved in self-consistency and chain-of-thought320

prompting.321

4.1.2 Weighted Code Synthesis322

As evidenced in Table 2, employing inverse dis-323

tance weighting enhances the quality of code syn-324

thesis. This method consistently selects the sample325

with the greatest weighting, aligning it closer to326

the aggregate mean. Importantly, this approach327

demonstrates a preference for clean and concise328

code. This increases the likelihood of a sample329

being nearer to the mean, especially when the ma-330

jority of code samples exhibit qualities of clarity331

and brevity.332

Table 2: Model Performance Overview on HumanEval
at pass@1

accuracy (%)

Model Dataset Avg. Inverse Distance
default Weighting

Mistral HumanEval 18.7 23.8 (+5.1)

4.2 Self-consistency with outlier detection333

Outlier detection proves crucial for enhancing the334

overall quality of the results. This technique ef-335

fectively marginalizes points that detract from the336

model’s self-consistency and filters out irrelevant337

responses. This refinement in output quality is evi-338

dent even when the quantity of samples is reduced,339

suggesting that the effectiveness of anomaly detec-340

tion techniques is not solely dependent on sample341

size. 2 Results show meaningful increases in per- 342

formance over the default. Anomaly detection3, 343

while showing a frailty across different results with 344

deviations up to 1% of the baseline, becomes a piv- 345

otal method when considering the dual benefit of 346

outlier detection. 347

By selectively sampling out these outlier points, 348

not only is the relevance of the responses main- 349

tained, but the model’s self-consistency is ensured 350

in a reduced sample space. This suggests that using 351

outlier detection techniques can lead to a cleaner 352

analysis and a more comprehensive distribution of 353

relevant results, aiding in understanding the actual 354

deviation of reasoning paths that are significant to 355

the results. 356

4.3 Direct comparison of Sequences 357

To get a direct comparison of effectiveness between 358

evaluating the embedding position in correlation to 359

its other datapoints and evaluating sequence wise 360

we used cosine similarity to evaluate direct similar- 361

ities between sequences. (Gatto et al., 2023) 362

Model AQuA-rat SVAMP
LLAMA 2 25.0 (+0.2) 46.9 (+0.4)
MISTRAL 29.8 (+3.6) 70.2 (+1.7)
GPT3.5 65.4 (+6.0) 80.3 (+0.5)

Table 4: Showcasing cosine similarity (weighted) com-
pared to all rationales

These results show that when sequences get 363

weighted based on maintained consistency between 364

all responses, we exhibit results that are more prone 365

to errors and reveal higher accuracy that got lost in 366

default self-consistency. 367

4.4 Abstract Consistency 368

While default self-consistency samples of one static 369

temperature models often present results that are ei- 370

ther deterministic or overly random, our employed 371

mechanism allows the model to find a "sweet-spot" 372

that lies high emphasis on wide-ranging but sen- 373

sical reasoning paths. To leverage this, we sam- 374

ple from a wide distribution of different reasoning 375

paths, from a variety of 5 different temperatures 376

2The obtained results exhibited slight deviations between
the different configurations. An extensive review across differ-
ent sets of configurations and parameters can be found under
Appendix H.1 to H.3.

3To provide a more stable assessment, we average the
results across all variations of different parameters.
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Model Method AQuA-rat SVAMP
SC baseline 24.8 46.5

Llama 2 7B Inverse distance 24.6 (-0.2) 47.4 (+0.9)
L1 inverse distance 23.9 (-0.9) 46.7 (+0.2)
SC baseline 25.6 68.5

Mistral 7B Inverse distance 29.0 (+3.4) 69.8 (+0.3)
L1 inverse distance 28.6 (+3.0) 69.8 (+1.3)
SC baseline 59.4 79.8

GPT 3.5 Inverse distance 68 (+8.6) 81.0 (+1.2)
L1 inverse distance 68 (+8.6) 80 (+0.2)

Table 1: Comparison of Inverse distance weighting on different distance metrics and models

Model Method AQuA-rat SVAMP
Best Average Best Average

LLAMA 2

SC baseline 24.8 24.8 46.5 46.5
Isolation Forest 28.45 26.04 45.94 45.60
K-nearest-neighbors 25.40 25.37 45.85 45.71
Oneclass SVM 26.70 24.25 44.94 43.30

Mistral

SC baseline 25.6 25.6 68.5 68.5
Isolation Forest 26.61 25.97 68.84 68.34
K-nearest-neighbors 25.91 25.66 68.84 68.52
Oneclass SVM 28.45 26.08 67.23 65.33

GPT3.5

SC baseline 59.4 59.4 79.8 79.8
Isolation Forest 65.27 63.73 84.65 84.28
K-nearest-neighbors 62.81 60.04 84.64 84.42
Oneclass SVM 59.55 59.26 85.23 84.54

Table 3: Outlier detection performance on SVAMP and AQuA-rat. Performance increase over baseline of n > 1%
featured in bold.

per generation. These findings show that Abstract377

Consistency not only provides a wider range of out-378

puts with a more diverse spectrum of answers, but379

also performs above average compared to default380

self-consistency.

Method Accuracy (%)

Self-Consistency 46.50
Abstract consistency MV 46.53
Abstract consistency
(weighted)

48.54

Table 5: Weighted self-consistency with varying levels
of abstraction improves performance over default.

381
It is to note that higher temperature showed a de-382

gree of randomness that can lead to higher degener-383

ation. However this limiting factor can be mitigated384

when applied with inverse temperature weighting385

and improve performance of up to 2.5%. The ef-386

fect of different temperature sets can be found in 387

Appendix I 388

5 Additional studies 389

5.1 Finetuned featurizers 390

The process of converting rationales into seman- 391

tic embedding vectors was applied to multiple 392

featurizer-models at different forms of fine-tuning 393

to measure the ability of models to effectively con- 394

vert sequences into fitting embedding vectors. 395

BERT-Model avg distance (↓)
RoBERTa 48.697
MathBERT 45.892 (-2.8)
SciBERT 45.281 (-3.4)

Table 6: Featurizers finetuned on similar distributions
tend to pack answers more tightly together

The results revealed elevated results for SciB- 396
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ERT and MathBERT when compared to RoBERTa.397

This is likely due to RoBERTa’s general robust398

training where in contrast, both MathBERT and399

SciBERT exhibit stronger performance4. We con-400

jecture that this is due to their training data being401

more representative of the reasoning tasks that we402

evaluate on here (Sun et al., 2020). This obser-403

vation suggests that improper or "unfitting" fine-404

tuning reduces overall data point density, resulting405

in a loss of information within the produced vectors,406

and consequently hindering subsequent marginal-407

ization techniques (Merchant et al., 2020).408

5.2 Comparison and effects409

Meta-Reasoning over multiple chains of410

thoughts While meta reasoning has proven411

effective on tasks that have qualitative evident412

information, its ability to stay consistent between413

arithmetic operations and its subsequent reasoning414

path witnesses the same limiations as default415

self-consistency and chain of thought. (Yoran et al.,416

2023)417

5.3 Evaluation on clusters418

The implementation of k-means clustering5419

showed that regardless of the fact that reasoning420

can be improved by detailed mappings, clustering421

didn’t attribute to enhance the quality of the seman-422

tic evaluation. Additionally we reason this to be423

attributed to two limiting factors:424

1. Lower amount of samples used for evaluation425

2. To broad marginalization and consideration as426

outlying points427

We systematically experimenting with a spectrum428

of values for the parameter k, with a significant429

emphasis on k=2 to ensure that the clusters would430

still provide a sufficient amount of associated ra-431

tionales with each cluster to utilize the effect of432

self-consistency.433

Our objective was to ensure that these more sub-434

stantial clusters provide a robust framework for the435

influence of self-consistency. It is probable that436

higher amounts of samples enables not only better437

and more accurate clustering but enables higher438

values of k to show higher performance.439

4Tested on arithmetic samples only, due to their greater
variability and problem-solving scope compared to the more
logic-bound and less varied nature of coding tasks.

5Averaged over 10 random states to ensure an representa-
tive example. Please refer to Appendix G.2 for the unaveraged
values.

Table 7: Performance using k-means for outlier detec-
tion, with k = 2

Model AQuA-rat SVAMP
LLAMA 2 24.16 42.47
Mistral 24.83 62.52
GPT-3.5 65.52 78.67

Table 8: Averaged over 10 runs, clustering has shown
volatility based on initial cluster placement. The unaver-
aged runs are referenced in Appendix G.2

This method implies that the predictions asso- 440

ciated with the majority cluster are the ones for 441

which the model exhibits the greatest overall confi- 442

dence. A detailed accessment of the found results 443

can be accessed in Appendix G.1. 444

5.4 Result augmentation 445

To enhance the quality of our embeddings and en- 446

sure they are not clustered solely based on output 447

results, we implemented a process of result aug- 448

mentation. This involved removing end results 449

before generating embedding vectors, which were 450

then used to form clusters. Our findings demon- 451

strate that this approach shows the influence of in- 452

conclusive answers without results and proves that 453

even incorrect outputs can still be used in differ- 454

ent methods to enhance overall output quality and 455

mechanisms that make use of semantic evaluation. 456

Mistral Llama-2 GPT 3.5
0
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2
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0.33
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Figure 2: Accuracy representation with and without
incorporating results from None numerical solutions.

5.5 Robustness to dimensionality reduction 457

Inverse distance has shown high variance over dif- 458

ferent dimensionality reduction techniques which 459

impacts accuracy on a margin that overall decreases 460

performance. 461
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In high-dimensional spaces, both Euclidean and462

Manhattan distances demonstrate effective perfor-463

mance, making them viable for visualization pur-464

poses. However, they are less suitable for weight-465

ing data points when benchmarking performance.466

Model Dataset PCA t-SNE
LLAMA 2 AQuA-rat 22.98 25.0
LLAMA 2 SVAMP 43.04 42.84
MISTRAL AQuA-rat 26.21 25.81
MISTRAL SVAMP 66.77 63.76
GPT3.5 AQuA-rat 66.23 63.37
GPT3.5 SVAMP 80.15 79.16

Table 9: Dimensionality reduced results that improve
quality over default are featured in Bold.

5.6 Correlation of Sequence Length on Model467

Performance468

We observe a correlation6 indicating statistical sig-469

nificance, supporting the robustness of the observed470

trend between the average sequence length gener-471

ated by our models and the improvement in accu-472

racy when employed with inverse distance weight-473

ing.474

We attribute this to the increased importance of475

exemplar selection across longer chains of thought476

that can be more prone to outliers over the course477

of the reasoning process.478

Dataset Model Avg. Seq.
Length

Avg. Accuracy
Increase (%)

AQUA-rat GPT3.5 102.40 8.6
AQUA-rat Mistral 53.24 3.2
SVAMP MISTRAL 52.92 0.8
SVAMP LLAMA 2 52.29 0.5
SVAMP GPT3.5 49.71 1,3
AQUA-rat LLAMA 2 49.58 -1.55

Table 10: Comparison of Sequence Length and Accu-
racy Increase

6 Related Work479

-480

Reasoning has been identified as an ubiquitous481

issue, across many domains in Large Language482

Models (Creswell et al., 2022). After Rae et al.483

(2021) highlighted the challenges in reasoning484

across various domains in Large Language Models,485

subsequent research has increasingly focused on486

enhancing these models reasoning capabilities.487

6ρ = 0.83, p-value 0.042

One general method applied in many of those stud- 488

ies, is few-shot learning which shown positive 489

results in guiding a model into a more contextually 490

aware and accurate direction. By training with a 491

small but highly fitting set of examples, these mod- 492

els demonstrate an enhanced ability to infer and 493

apply knowledge. (Brown et al., 2020) 494

Furthermore fine-tuning has shown positive results 495

on specialized data in a broad amount of areas. Re- 496

search by Radford and Narasimhan (2018) shows 497

that targeted fine-tuning can notably enhance the 498

model’s performance in certain areas. 499

One other significant advancement in the area that 500

has synergized with few shot has been the develop- 501

ment of the ’chain of thought’ prompting, which 502

guides LLM’s to mimic human-like step-by-step 503

reasoning processes. (Wei et al., 2022) We also 504

draw information from Saparov and He (2023) 505

which discusses chain-of-thought on a fundamental 506

level. In the context of our research, we extend the 507

concept of self-consistency, as originally proposed 508

by Wang et al. (2023). 509

7 Conclusion and discussion 510

This study demonstrates that a model’s reasoning 511

path can be a relevant attribute when evaluating 512

responses. We overview straightforward yet effec- 513

tive methods to improve self-consistency by uti- 514

lizing the coherency and consistency of reasoning 515

sequences, while maintaining sequence production. 516

Furthermore, manipulating output sequences serves 517

not just to improve accuracy but data quality and ro- 518

bustness. Marginalizing outliers specifically shows 519

promise for increasing reliability and integrity of 520

evaluation sequences. Additionally, sampling from 521

different temperatures improves over static sam- 522

pling. Future work may use these techniques to 523

increase commonsense reasoning performance or 524

apply the reasoning path methods and marginaliza- 525

tion for other intrinsic evaluations. 526

8 Limitations 527

Our study proposes the application of semantic 528

vector representations to group and weigh model 529

outputs, which is designed to facilitate the identifi- 530

cation of consensus responses (Wang et al., 2023). 531

Semantic vectors must capture the subtle varia- 532

tions in meaning and context, which is particularly 533

hard in abstract reasoning tasks without a sufficient 534

amount of context making prompting techniques 535

to enhance the models output structure and size an 536

8



important factor as visualized in Table 10. The pro-537

cess of clustering based on semantic vectors can be538

challenging due to the nuanced and abstract nature539

of reasoning processes. This limitation underscores540

the need for advanced featurization models and ex-541

plicit choice of a fitting fine-tuned model (Merchant542

et al., 2020). Like showcased in Table 6, multiple543

models should be considered for semantic analysis,544

to ensure that the model outputs are grouped in545

a way that truly reflects their underlying meaning546

and relevance.547

9 Reproducibility Statement548

Our experiments include a variety of models with549

different sizes: Microsoft Phi1.5B is publicly avail-550

able at https://huggingface.co/microsoft/551

phi-1_5/tree/main and can be used under the552

Microsoft Research License.553

GPT-3 has an API that is open for public use554

https://openai.com/blog/openai-api.555

Mistral 7B is available for unrestricted use556

under the Apache 2.0 license, while its model557

architecture and setup are open source https:558

//github.com/mistralai/mistral-src.559

Llama 2 is a model with restricted access, made560

available by Meta. You can gain access to it by561

requesting permission through the provided Meta562

license. You can find more information about it at563

https://ai.meta.com/llama/.564

All of our BERT models are built upon the565

BERT-base model developed by google-research,566

which is accessible under the Apache 2.0 license567

including MathBERT and sciBert. RoBERTa and568

codeBERT can be used under the MIT license.569

570

Our Datasets as well as used configuration571

for our language Models, are accessible throughout572

this paper and in the Appendix to aid the repro-573

ducibilty of our experiments.574

A majority of our experiments were done using575

huggingface to access datasets, models and576

general data. Some of the used algorithms were577

implemented with scikit-learn (Pedregosa et al.,578

2011) and the sklearn api (Buitinck et al., 2013).579

9.1 GPU usage580

approx. Hours GPU Model Memory
200 h NVIDIA T4 15GB
50 h NVIDIA V100 16GB
50 h NVIDIA A100 40GB

581

10 Ethical Considerations & Risks 582

Language Models can produce factual incorrect in- 583

formation and might induce biases based on user 584

prompts. 585

The employed featurizers, based on BERT models, 586

have been trained exclusively on English language 587

corpora, making them unsuitable and inconsistent 588

when utilized with texts in other languages, poten- 589

tially altering results negativly. 590

Mistral 7B does not include content moderation. 591

We encourage anyone to use produced results and 592

capabilities of Language Models in a responsible 593

manner. 594
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11 Appendices 812

A Perplexity of generated Sequences 813

Table 11 illustrates that there is no apparent cor- 814

relation between the performance of the models 815

and their respective perplexity scores. A notable 816

trend is the consistently better performance on the 817

SVAMP dataset compared to AQuA-rat, likely at- 818

tributable to the simpler nature of SVAMP’s ques- 819

tions. Furthermore, the Mistral model exhibits a 820

slightly superior performance, which can be as- 821

cribed to its higher accuracy across both datasets. 822

This suggests that the confidence in the sequences 823

remains robust, regardless of the model choice and 824

accuracy. 825

Model Dataset Perplexity
SVAMP Mistral 0.1422
SVAMP LLAMA 2 0.1483
AQUA-rat Mistral 0.1841
AQUA-rat LLAMA 2 0.1861

Table 11: Perplexity Scores across different Models,
"best" result is featured in bold.
Not evaluated on GPT-3.5 due to limited possibilities
on the OpenAI public API.

B N-Gram Rationale Comparison 826

B.1 Rouge-N as a performance measure 827

Contrary to GPT-3.5’s performance in terms of ac- 828

curacy, it under performs in comparison when tak- 829

ing ROUGE metrics into account. As expected it 830

excels in generating accurate, contextually relevant 831

responses but expressed responses more detailed 832

in a more comprehensive fashion, leading to lower 833

ROUGE scores due to the strictly accurate less 834

extensive rationale annotated in the dataset. (Lin, 835

2004) 836

The other Models like LLAMA 2 7B and Mistral 837

7B produce higher scores. This might be related to 838

factors like style of writing and higher text length 839
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which although it leads to more comprehensive em-840

beddings lowers it’s score when compared with a841

metric like Rouge-N as visible in Table 10842

LLAMA MISTRAL GPT-3.5

0.12

0.14

0.16

0.18

0.167
0.173

0.123R
ou

ge
-N

Sc
or

e

Rouge-N Score Comparison among Models
on AQuA-rat

Figure 3: The ROUGE-N score was applied solely to
the AQuA-rat dataset, as datasets like SVAMP provide
numerical answers instead of sequential/textual ratio-
nales.

B.2 N-Gram weighting843

N-Grams are often used for context understanding,844

aiding tasks like sentiment analysis and language845

modeling In our study, we used N-Grams to weigh846

their impact on results, testing different ’n’ values847

to see how they affect accuracy outcomes.848

Table 12: Weighting results based on N-Gram overlap
with n = 2

Model AQUARAT SVAMP
LLAMA 2 15.5 32.8
MISTRAL 16.7 47.1
GPT3.5 25.3 63.9

The low accuracy and poor results, coupled with849

a degree of randomness in the result distribution,850

indicate challenges in effectively correlating text851

using N-Grams. We experimented with different852

values of ’n’ for N-Grams, aiming to improve per-853

formance, but encountered limitations. As depicted854

in the table, the effectiveness of N-Grams varied,855

suggesting that the pure similar wording in ratio-856

nales cant be utilized in an effective way to im-857

prove or even stably perform similar to the base-858

line. Higher values of "n" consecutively worsened859

results.860

C Model configurations 861

Configurations may deviate slightly on GPT3.5 due 862

to usage via the public API. 863

• top-k: 50 864

• top-p: 50 865

• sampling: true 866

• max-new-tokens: see Appendix C.1 867

• temperature: see Appendix D.1 868

C.1 max-new-tokens 869

We used a default of 150 max-new-tokens across 870

all models on SVAMP, due to the complexity and 871

length of sequences on AQuA-rat we chose 200 872

max-new-tokens. Due to the length of Code tasks 873

we set the max generation of new tokens to 400 on 874

humaneval. 875

D Abstract consistency 876

D.1 Temperature sets 877

We tested our theory of abstraction on a variety of 878

temperature sets and found that set 1 exhibits the 879

best balance between diversity and correctness in 880

our examples. Therefore, it outperforms the other 881

proposed sets. 882

Set 1 (t) Set 2 (t) Set 3 (t)
0.9 0.7 0.5
0.8 0.6 0.4
0.7 0.5 0.3
0.6 0.4 0.2
0.5 0.3 0.1

Table 13: Each Temperature is tested on 1/5 of the
samples per generation, to ensure an even distribution.

All other experiments have been conducted on 883

a static temperature of 0.8 to aid reproducibility 884

and comparability between results and effects of 885

the employed mechanisms. 886

D.2 Weighing abstract consistency 887

We propose several methods for weighing se- 888

quences from different temperatures. Additionally, 889

we employ a weighing system based on the inverse 890

of the applied temperature. Furthermore, we con- 891

ducted tests using weighted squared inverse weight- 892

ing on a small subset. However, these tests did not 893

yield substantially elevated results and performed 894

on a similar margin. 895
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E Used k-shot prompts896

The used 8-Shot prompt for mathematical897

reasoning follows the example provided in pg. 43898

and use the on pg. 36 referenced set for AQuA on899

the AQuA-rat dataset with of the original Chain of900

thought paper.901

902
Q: There are 15 trees in the grove. Grove903

workers will plant trees in the grove today. After904

they are done, there will be 21 trees. How many905

trees did the grove workers plant today?906

A: We start with 15 trees. Later we have 21 trees.907

The difference must be the number of trees they908

planted. So, they must have planted 21 - 15 = 6909

trees. The answer is 6.910

Q: If there are 3 cars in the parking lot and 2 more911

cars arrive, how many cars are in the parking lot?912

A: There are 3 cars in the parking lot already. 2913

more arrive. Now there are 3 + 2 = 5 cars. The914

answer is 5.915

Q: Leah had 32 chocolates and her sister had 42. If916

they ate 35, how many pieces do they have left in917

total?918

A: Leah had 32 chocolates and Leah’s sister had919

42. That means there were originally 32 + 42 = 74920

chocolates. 35 have been eaten. So in total they921

still have 74 - 35 = 39 chocolates. The answer is922

39. Q: Jason had 20 lollipops. He gave Denny923

some lollipops. Now Jason has 12 lollipops. How924

many lollipops did Jason give to Denny?925

A: Jason had 20 lollipops. Since he only has 12926

now, he must have given the rest to Denny. The927

number of lollipops he has given to Denny must928

have been 20 - 12 = 8 lollipops. The answer is 8.929

Q: Shawn has five toys. For Christmas, he got two930

toys each from his mom and dad. How many toys931

does he have now?932

A: He has 5 toys. He got 2 from mom, so after that933

he has 5 + 2 = 7 toys. Then he got 2 more from934

dad, so in total he has 7 + 2 = 9 toys. The answer935

is 9.936

Q: There were nine computers in the server room.937

Five more computers were installed each day, from938

monday to thursday. How many computers are939

now in the server room?940

A: There are 4 days from monday to thursday. 5 941

computers were added each day. That means in 942

total 4 * 5 = 20 computers were added. There were 943

9 computers in the beginning, so now there are 9 + 944

20 = 29 computers. The answer is 29. 945

Q: Michael had 58 golf balls. On tuesday, he 946

lost 23 golf balls. On wednesday, he lost 2 more. 947

How many golf balls did he have at the end of 948

wednesday? 949

A: Michael initially had 58 balls. He lost 23 on 950

Tuesday, so after that he has 58 - 23 = 35 balls. On 951

Wednesday he lost 2 more so now he has 35 - 2 = 952

33 balls. The answer is 33. 953

Q: Olivia has $23. She bought five bagels for $3 954

each. How much money does she have left? 955

A: She bought 5 bagels for $3 each. This means 956

she spent 5 * $3 = $15 on the bagels. She had $23 957

in beginning, so now she has $23 - $15 = $8. The 958

answer is 8 959

960
Proposed 4-shot on AQuA(-rat): 961

Q: John found that the average of 15 numbers is 962

40. If 10 is added to each number then the mean of 963

the numbers is? 964

Answer Choices: (a) 50 (b) 45 (c) 65 (d) 78 (e) 64 965

A: If 10 is added to each number, then the mean 966

of the numbers also increases by 10. So the new 967

mean would be 968

50. The answer is (a). 969

Q: If a / b = 3/4 and 8a + 5b = 22,then find the 970

value of a. 971

Answer Choices: (a) 1/2 (b) 3/2 (c) 5/2 (d) 4/2 (e) 972

7/2 973

A: If a / b = 3/4, then b = 4a / 3. So 8a + 5(4a / 3) 974

= 22. This simplifies to 8a + 20a / 3 = 22, which 975

means 44a / 3 = 22. So a is equal to 3/2. The 976

answer is (b). 977

Q: A person is traveling at 20 km/hr and reached 978

his destiny in 2.5 hr then find the distance? 979

Answer Choices: (a) 53 km (b) 55 km (c) 52 km 980

(d) 60 km (e) 50 km 981

A: The distance that the person traveled would 982

have been 20 km/hr * 2.5 hrs = 50 km. The answer 983

is (e). 984

Q: How many keystrokes are needed to type the 985

numbers from 1 to 500? 986

Answer Choices: (a) 1156 (b) 1392 (c) 1480 (d) 987

1562 (e) 1788 988

A: There are 9 one-digit numbers from 1 to 9. 989

There are 90 two-digit numbers from 10 to 99. 990

There are 401 three-digit numbers from 100 to 500. 991

9 + 90(2) + 401(3) = 1392. The answer is (b). 992
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993

994

Our generation on humaneval were conducted 0-995

shot using just the raw prompt given by the dataset.996

F Datasets997

We use the configuration splits for testing as sug-998

gested by default. We employ a test split of 1000999

samples on SVAMP and 1.3K for GSM8K. For1000

AQuA-rat, our test includes the full set of 254 ex-1001

amples.1002

G K-means Clustering1003

Across our study we employed kmeans to cluster1004

datapoints mapped by our featurizer model.1005

G.1 Clustering effects1006

Clustering has shown diminishing returns in terms1007

of accuracy, however the herein provided evidence1008

shows that clustering with k-means provides a no-1009

table advantages which even tho the accuracy was1010

low can be used as a diagnostic tool and similarity1011

measure1012

G.1.1 Silouhette score1013

We used the silhouette score to evaluate clustering1014

effectiveness. This score measures how similar1015

an object is to its own cluster compared to other1016

clusters, ranging from -1 to 1.1017

Our obtained averaged silhouette score equals1018

0.41, suggesting a moderate level of distinction1019

between clusters. This range indicates that, on av-1020

erage, objects within a cluster are closer to each1021

other than to objects in other clusters, but the sepa-1022

ration is not highly distinct.1023

This finding suggests that clusters are indicating1024

a clear structure in sentence and wording of results1025

and due to Kmeans nature perform better on higher1026

sample sizes.1027

1028

G.1.2 Average correct datapoint proportion1029

Despite the fragility shown during evaluation on1030

benchmarks, the k-means accurately categorizes1031

the majority of correct answer within the prepon-1032

derant cluster, not only based on cluster size. This1033

implies that the method, even with limited data,1034

captures essential patterns effectively.1035

High-performing models are more likely to ad-1036

here closely to the chosen method. This is because1037

when most answers are correct, there’s a lower1038

chance of incorrect responses outweighing the cor- 1039

rect ones, which could lead to inaccuracies. 1040

Table 14: Proportion of correct responses in the majority
cluster compared to total true responses.

Model SVAMP AQUA-rat

LLAMA 2 68.8 56.6
MISTRAL 66.2 46.2

GPT3.5 69.4 55.5

The shown results indicate a trend demonstrating 1041

that the selected cluster is more likely to feature 1042

the majority of correct responses, with an average 1043

of 60.5%. 1044

We witness the same strides towards higher sam- 1045

ple sizes with the usage of k-means as already con- 1046

veyed in the original self-consistency paper, here 1047

larger sample sizes might be able to capture the 1048

amount of correct answers in a more favorable man- 1049

ner due to their enabled potential for a higher num- 1050

ber of clusters, capturing more nuanced and subtle 1051

variations rather than the broad range of responses. 1052

G.1.3 Cluster density comparison 1053

The primary cluster and the ostensibly weaker, 1054

later-disregarded cluster exhibit comparable per- 1055

formance in terms of the average distance of the 1056

data points to its subsequent cluster centroid. 1057

Table 15: Average Deviation for clusters

Method Model Chosen Disregarded
cluster cluster

SVAMP LLAMA 2.037 2.567
SVAMP MISTRAL 2.981 3.800
SVAMP GPT 4.428 4.513
AQuA-rat LLAMA 0.838 0.670
AQuA-rat MISTRAL 0.871 0.598
AQuA-rat GPT3.5 3.649 3.684

G.2 Clustering results 1058

Due to k-means inherent randomness during initial- 1059

ization, we average its performance over 10 runs. 1060

1061
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Table 16: Results of LLAMA 2

SVAMP
Run Number random state Accuracy (%)

1 10 42.31
2 20 42.40
3 30 42.25
4 40 41.99
5 50 41.94
6 60 42.80
7 70 43.07
8 80 42.70
9 90 42.35

10 100 42.89

AQuA-rat

Run Number random state Accuracy (%)

1 10 25.47
2 20 24.53
3 30 22.38
4 40 24.51
5 50 26.76
6 60 23.81
7 70 25.12
8 80 24.02
9 90 22.58
10 100 22.42

Table 17: Results of Mistral 7B

SVAMP
Run Number random state Accuracy (%)

1 10 62.72
2 20 62.45
3 30 62.74
4 40 61.88
5 50 62.46
6 60 62.22
7 70 62.15
8 80 61.69
9 90 63.04

10 100 63.85

AQuA-rat

Run Number random state Accuracy (%)

1 10 23.18
2 20 23.11
3 30 24.77
4 40 25.45
5 50 25.93
6 60 26.39
7 70 25.00
8 80 26.51
9 90 25.24
10 100 22.73

Table 18: Results of GPT3.5

SVAMP
Run Number random state Accuracy (%)

1 10 78.56
2 20 79.06
3 30 78.86
4 40 78.66
5 50 78.86
6 60 78.07
7 70 79.36
8 80 78.36
9 90 78.56

10 100 78.36

AQuA-rat

Run Number random state Accuracy (%)

1 10 68.07
2 20 70.28
3 30 65.32
4 40 66.82
5 50 66.67
6 60 69.71
7 70 66.67
8 80 67.79
9 90 68.72
10 100 65.12
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H Outlier detection across different1062

parameters1063

H.1 k-nearest neighbor results1064

In the k-nearest neighbor (KNN) algorithm,1065

parameters such as the number of neighbors1066

(n_neighbors), the distance metric (metric), and the1067

algorithm used for computing nearest neighbors1068

were varied. The best-performing configuration in1069

terms of accuracy was found with n_neighbors1070

set to 5, using the euclidean metric using the1071

ball_tree algorithm and a threshold of 90% that1072

concluded to an averaged accuracy of 56.18% with1073

all Models and Datasets.1074

H.2 Isolation forest results1075

For the Isolation Forest, the grid search varied1076

parameters including the number of estimators1077

(n_estimators), the contamination factor, and the1078

max samples size. The configuration yielding the1079

highest accuracy utilized n_estimators=200, con-1080

tamination=auto, and max_samples=auto with 1081

an performance of 58.56% averaged across all 1082

Models and Datasets. 1083

H.3 support vector machines results 1084

In the case of Support Vector Machines (SVM), the 1085

kernel type (kernel), the regularization parameter 1086

(nu), and the gamma value were among the pa- 1087

rameters adjusted. The most accurate results were 1088

achieved with a linear kernel, nu set to 0.01, and 1089

gamma set to scale. The average accuracy was 1090

55.17% 1091

I Abstract consistency on different 1092

temperature sets 1093

Higher temperature in generative models intro- 1094

duces a degree of randomness that can negatively 1095

impact performance by increasing degeneration in 1096

model outputs. However, this limiting factor can 1097

be partially mitigated through techniques such as 1098

inverse temperature weighting. When applied ap- 1099

propriately alongside temperature variation. The 1100

benefits of higher temperature are not monotonic 1101

- beyond an optimal level, continuing to increase 1102

temperature will again degrade performance. There 1103

exists a sweet spot where judiciously elevated tem- 1104

perature and re-weighting allows models to pro- 1105

duce greater diversity without excessive degrada- 1106

tion which we found to lay between t = 0.5 and t = 1107

0.9. 1108

J t-SNE 1109

To emphasize the separation and clustering since it 1110

provides more visually informative representations 1111

that can aid in data exploration and pattern recog- 1112

nition tasks superior to PCA We select a perplexity 1113

parameter of 2, grounded in the fact that local dis- 1114

tributions yield a more informative representation 1115

than global distributions. 1116

This is attributed to the increased density of points 1117

in close proximity, enhancing the detail captured 1118

in the mapping. 1119

16



perplexity = 2 perplexity = 7

Figure 6: Based on a test on a subset of arithmetic reasoning examples, evaluated on 10, 15 and 20 generated outputs
based on baseline self-consistency with the in Appendix E provided n-Shot prompts.
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