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Abstract

Real-world sequential decision making is char-001
acterized by sparse rewards and large decision002
spaces, posing significant difficulty for expe-003
riential learning systems like tabula rasa rein-004
forcement learning (RL) agents. Large Lan-005
guage Models (LLMs), with a wealth of world006
knowledge, can help RL agents learn quickly007
and adapt to distribution shifts. In this work,008
we introduce Language Guided Exploration009
(LGE) framework, which uses a pre-trained010
language model (called GUIDE ) to provide011
decision-level guidance to an RL agent (called012
EXPLORER ). We observe that on Science-013
World (Wang et al., 2022), a challenging text en-014
vironment, LGE outperforms vanilla RL agents015
significantly and also outperforms other sophis-016
ticated methods like Behaviour Cloning and017
Text Decision Transformer.018

1 Introduction019

Reinforcement Learning (RL) has been used with020

great success for sequential decision making tasks.021

AI assistants whether text based (Li et al., 2022;022

Huang et al., 2022) or multi-modal (Chang et al.,023

2020; Patel et al., 2023), have to work with large024

action spaces and sparse rewards. In such settings,025

the approach of random exploration is inadequate.026

One needs to look for ways to use external infor-027

mation either to create a dense reward model or to028

reduce the size of action space. In this work we029

focus on the latter approach.030

We make a simple observation that, in many031

cases, the textual description of the task or goal032

contains enough information to completely rule033

out certain actions, thereby greatly reducing the034

size of the effective action space. For example,035

as shown in Fig.1, if the task description is “De-036

termine if a metal fork is electrically conductive”,037

then one can safely rule out actions that involve038

objects like sink, apple, and actions like eat, smell,039

etc. Motivated by this observation, we introduce040
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Figure 1: The Language Guided Exploration (LGE)
Framework: The Guide uses contrastive learning to pro-
duce a set of feasible action given the task description
thereby reducing substantially the space of possible ac-
tions. The Explorer, an RL agent, then uses the set of
actions provided by the Guide to learn a policy and pick
a suitable action using it.

the Language Guided Exploration (LGE) frame- 041

work that uses an RL agent but augments it with 042

a Guide model that uses world knowledge to rule 043

out large number of actions that are infeasible or 044

highly unlikely. Along with removing irrelevant 045

actions, the frameworks supports generalization in 046

unseen environments where new objects may ap- 047

pear. For example, if the model observed an apple 048

in the environment during training, at test time, the 049

environment may contain an orange instead. But 050

the guide, which posses commonsense may under- 051

stand that all fruits are equally relevant or irrelevant 052

for the given task. 053

To test our framework, we use the highly chal- 054

lenging benchmark called SCIENCEWORLD (Wang 055

et al., 2022), which consists of a purely text based 056

environment where the observations, actions, and 057

inventory are expressed using natural language text. 058

SCIENCEWORLD embodies the major challenges 059

faced by RL agents in realy world applications: the 060

template based actions with slots for verbs and ob- 061
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jects produce a combinatorially large action space,062

the long natural language based observations make063

for a challenging state representation, and the re-064

wards signals based mainly on the completion of065

challenging tasks create a delayed and sparse re-066

ward signal. Following are the main contributions067

of our work:068

We propose a novel way to allow language069

guided exploration for RL agents. The task instruc-070

tions are used to identify relevant actions using071

a contrastively trained LM. The proposed GUIDE072

model that uses contrastive learning has not been073

explored for text environments before.074

We demonstrate significantly stronger results075

on the SCIENCEWORLD environment when com-076

pared to methods that use Reinforcement Learning,077

and more sophisticated methods like Behaviour078

Cloning (Wang et al., 2023) and Text Decision079

Transformer (Chen et al., 2021).080

2 Related Work081

Text-based environments (Lebling et al., 1979; Yin082

and May, 2019; Murugesan et al., 2020; Côté et al.,083

2019) provide a low-cost alternative to complex084

2D/3D environments, and real world scenarios, for085

the development of the high-level learning and086

navigation capabilities of the AI agents. Due to087

the complexity of these environments, tabula rasa088

RL agents (He et al., 2016; Zahavy et al., 2018;089

Yao et al., 2020) struggle to learn anything use-090

ful. Therefore several methods like imitation learn-091

ing, use of knowledge graphs (Ammanabrolu and092

Hausknecht, 2020), Case-Based Reasoning (Atzeni093

et al., 2022), behavior cloning (Chen et al., 2021),094

intrinsically motivated RL, and language motivated095

RL (Du et al., 2023; Adeniji et al., 2023) have been096

proposed. The main aim of all these methods is097

to use external knowledge or a handful of gold tra-098

jectories to guide the learning. In our work, we099

address the same issue in a much direct and gener-100

alizable manner by reducing the size of the action101

space using an auxiliary model called the Guide.102

3 Methodology103

Notation: The text environment, a partially ob-104

servable Markov decision process (POMDP) con-105

sists of (S, T,A,R, Õ,Ω). In SCIENCEWORLD,106

along with the description of the current state,107

the observation also consists of a task description108

τ ∈ T that stays fixed throughout the evolution of109

a single trajectory, i.e., Õ = O × T , where O is110

the set of textual descriptions of the state and T is 111

the set of tasks (including different variations of 112

each task). Note that the set of tasks are divided 113

into different types and each type of task has differ- 114

ent variations, i.e., T =
⋃Γ

γ=1

⋃Vγ

v=1 τγ,v, where Γ 115

is the number of task types and Vγ is the number 116

of variations for the task type γ. Gold trajectories 117

Gγ,v = {a1, a2, .., aT } are available for each γ, v. 118

3.1 The LGE framework 119

We propose a Language Guided Exploration Frame- 120

work (LGE), which consists of an an RL agent 121

called the EXPLORER , and an auxiliary model 122

that scores each action called the GUIDE . The 123

EXPLORER starts in some state sampled from ini- 124

tial state distribution d0. At any time step t, a set of 125

all valid actions Aγ,v,t is provided by the environ- 126

ment. This set, constructed using the cross product 127

of action templates and the set of objects (see Fig.1) 128

is extremely large, typically in thousands. The 129

GUIDE uses the task description τγ,v, to produce a 130

set of most relevant actions Âγ,v,t ⊂ Aγ,v,t. With a 131

probability 1− ϵ (resp. ϵ), the EXPLORER samples 132

an action from Âγ,v,t using its policy π(a|st) (resp., 133

from Aγ,v,t). Algorithm 1 in Appendix A.1 out- 134

lines the steps involved in the LGE framework 135

using a DRRN (He et al., 2016) based EXPLORER. 136

3.1.1 EXPLORER 137

The EXPLORER learns a separate policy πγ for 138

each task type γ ∈ Γ by exploring the the envi- 139

ronment.1 We use the Deep Reinforcement Rele- 140

vance Network (DRRN) (He et al., 2016) as our 141

EXPLORER, as it has shown to be the strongest 142

baseline in Wang et al. (2022). However, our frame- 143

work allows to swap the DRRN with any other RL 144

agent. The DRRN uses Q-learning with with pri- 145

oritized experience replay to perform policy im- 146

provement using a parametric approximation of the 147

action value function Q(s, a).2 The current state 148

st is represented by concatenating the representa- 149

tions of the past observation ot−1, inventory it and 150

look around lt, each encoded by separate GRUs, 151

i.e., hst = ( fθo(ot−1) : fθi(it) : fθl(lt) ) . Each 152

relevant action a ∈ Arel,t is encoded in the same 153

manner: hat = fθa(at). Here f∗ are the respec- 154

tive GRU encoders, θ∗ their parameters and “ : ” 155

1The agent learns a separate policy of each task type but
this policy is common across all variations for that particular
task type.

2We follow the implementation of DRRN provided in
Hausknecht et al. (2019).
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denotes concatenation. The value function Q(s, a)156

is represented using a linear layer over the con-157

catenation of the action and state representations158

Q(st, at|θ) = W T · (hst : hat) + b, where θ is159

a collection of θo, θi, θl, θa, W and b. During160

training, a stochastic policy based on the value161

function is used: â ∼ π(a|s) ∝ Q(s, a|θ), while162

at inference time we use greedy sampling: â =163

argmaxaQ(s, a|θ).164

3.1.2 GUIDE165

While LLMs are capable of scoring the relevant ac-166

tions without any finetuning, we observed that due167

to the idiosyncrasies of the SCIENCEWORLD envi-168

ronment, it is beneficial to perform some finetuning.169

We use SimCSE (Gao et al., 2021), a contrastive170

learning framework, to finetune the GUIDE LM.171

The training data {τi, Gi}Mi=1, which consists of172

task descriptions τi = τγ,v ∈ T along with the173

set of corresponding gold actions Gi = Gγ,v. The174

GUIDE model gϕ is used to embed the actions and175

the task descriptions into a shared representation176

space where the similarity score of a task and an177

action is expressed as s(τ, a) = gϕ(τ) · gϕ(a)
λ , with178

λ being the temperature parameter. The training179

objective is such that the embeddings of a task are180

close to those of the corresponding relevant actions,181

expressed using the following loss function:182

l(ϕ; τi, Gi) = − log
es(τi, a

+)

es(τi,a+) +
∑

a−∈Ni

es(τ,a−)
,183

where a+ ∼ Gi is a relevant action and Ni is a184

fixed sized subset of irrelevant actions.3185

Note that since we only have access to a small186

amount of gold trajectories (3442) for training, we187

take special steps to avoid overfitting, which is the188

main issue plaguing the imitation learning based189

methods. First, we only provide the task descrip-190

tion to the GUIDE and not the full state information.191

Second, unlike the EXPLORER, which uses differ-192

ent policy for each task type, we train a common193

GUIDE across all tasks.194

4 Experiments and Results195

As done in Wang et al. (2022), the variations of196

each task type are divided into training, validation197

and test sets. Both GUIDE and EXPLORER are198

trained only using the training variations.199

3Details of the models used and the training data are pro-
vided in Appendix A.1.

Model top-k RSR MAP GAR GAR (%) GARR

Gg 50 0.71 0.52
N/A N/A N/A

Gτ 50 0.9 0.66

Guide
50 0.99 0.68

7.4 ± 16.2 1.8 ± 9.4 0.31 ± 2.320 0.94 0.67
10 0.79 0.61

Table 1: Various metrics used to evaluate the GUIDE
in isolation. Note that for the baselines Gg and Gτ , we
cannot compute GAR.

4.1 Evaluating the GUIDE 200

Before the joint evaluation, we evaluate the GUIDE 201

in isolation. We sample 5 variations from the vali- 202

dation set for each task type and compute the three 203

metrics: GAR, RST and MAP. We use the follow- 204

ing two intuitive but strong baselines: 205

(1) Gold per-task (Gτ ): We create a set of 50 206

most most used actions in gold trajectories of all 207

training variations of a particular task. The Gold 208

per-task baseline, predicts an action to be relevant 209

if it belongs to this set. 210

(2) Gold Global (Gg) : Similar to Gold per-task 211

but we use 50 most used actions in Gold trajectories 212

of all training variations for all tasks. 213

Gold Action Rank (GAR): At any time step t, 214

GAR(γ, v, t) is defined as the rank of the gold at in 215

the set of valid actions Aγ,v,t, and the Gold Action 216

Reciprocal Rank (GARR) is defined as 1/GAR. 217

Since the size of Aγ,v,t is variable for every t, we 218

also report percent GAR. As seen in Table 1, the 219

gold action gets an average rank of 7.42, which is 220

impressive because |Aγ,v,t| averages around 2000. 221

Relevant Set Recall (RSR): GAR ranks a single 222

optimal action at any time, but multiple valid action 223

sequences may exist for task completion. Although 224

all viable paths are not directly accessible, we esti- 225

mate them. For each time step t in variation τγ,v, 226

a set of gold relevant actions Ãγ,v,t is identified 227

by intersecting the gold trajectory Gγ,v with valid 228

actions at t, so Ãγ,v,t = {a | a ∈ Gγ,v ∩ Aγ,v,t}. 229

The GUIDE’s effectiveness is measured by its recall 230

of this set, considering its top-k predicted actions 231

Âγ,v,t. Relevant Set Recall (RSR) is calculated as 232

RSR(γ, v, t) =
|Âγ,v,t∩Ãγ,v,t|

|Ãγ,v,t|
. As seen in Table 1, 233

the GUIDE has almost perfect average recall of 0.99 234

while selecting top 50 actions for the EXPLORER 235

at every step of the episode. 236

Mean Avg. Precision (MAP): The GUIDE also 237

functions as a binary classifier, predicting the rele- 238
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Relevant Gold Actions Selected By GUIDE

open cupboard,focus on soap in kitchen, pick up metal pot,move metal pot to sink,pour metal pot into metal pot,
move soap in kitchen to metal pot, open cupboard, activate stove,move metal pot to stove, pick up thermometer,
move metal pot to stove, open freezer, wait, go to outside, open glass jar,look around, open drawer in cupboard,
go to outside,wait1, open drawer in counter,open oven,move ceramic cup to sink,pick up ceramic cup,open fridge,
pick up thermometer, open door to hallway, activate sink, mix metal pot, pour ceramic cup into ceramic cup,
pick up metal pot,look around,activate stove pick up sodium chloride, wait1, focus on metal pot, pick up soap in kitchen

Table 2: Column 1 shows the relevant gold actions for the task “Change of State (variation 1 from the dev set)”, and
column two shows the set of actions selected by the GUIDE. The missed gold actions are in Red, while selected
gold actions are in Green

vance of each action in Aγ,v,t. Using a threshold-239

free metric like average precision score (Pedregosa240

et al., 2011), the GUIDE achieves a superior av-241

erage precision score of 0.68 compared to base-242

lines. Coupled with perfect recall at 50, this in-243

dicates the GUIDE’s strong generalization ability244

on new variations and robust performance across245

various thresholds. We observe that the threshold246

that produces best MAP is 0.52, which corresponds247

to |Âγ,v,t| = 28 on average. So, to be conservative,248

we use k = 50 in the subsequent evaluations. Table249

5 shows an example of the set of actions selected250

by GUIDE for the task “Change of state”.251

4.2 Evaluating LGE252

We follow the same evaluation protocol as (Wang253

et al., 2022) and evaluate two versions of the LGE254

framework, one with a fixed ϵ of 0.1 and the other255

with ϵ increasing from 0 to 1. Table 3 reports the256

means returns for each task.257

LGE improves significantly over the RL base-258

line. The DRRN agent, which only uses RL, per-259

forms the best among the baselines. The proposed260

LGE framework (last two columns), improves the261

performance of DRRN on 18 out of 30 tasks. On262

average the LGE with ϵ = 0.1, improves the mean263

returns by 35% (0.17→ 0.23).264

LGE is better than much more complex, special-265

ized methods. The behaviour cloning (BC) model,266

uses a Macaw (Tafjord and Clark, 2021) model fine-267

tuned on the gold trajectories to predict the next ac-268

tion. The Text Decision Transformer (TDT) (Chen269

et al., 2021) models the complete POMDP trajec-270

tories as a sequence and is capable of predicting271

actions that maximize long-term reward. As seen in272

Table 3, the simpler LGE framework outperforms273

both TDT and BC. This shows the importance of274

having an RL agent in the framework that can adapt275

to the peculiarities of the environment.276

Increasing ϵ does not always help. ϵ = 1 corre-277

sponds using only the EXPLORER—ideal once the278

policy is trained well. However, we observe that279

Task DRRN* BC* TDT* LGE inc LGE fix Delta

T0 0.03 0.00 0.00 0.04 0.02 0.01(↑)
T1 0.03 0.00 0.00 0.02 0.03 0.00
T2 0.01 0.01 0.00 0.00 0.00 -0.01(↓)
T3 0.04 0.00 0.01 0.02 0.03 -0.01(↓)
T4 0.08 0.01 0.02 0.08 0.08 0.00
T5 0.06 0.01 0.02 0.06 0.07 0.01(↑)
T6 0.10 0.04 0.04 0.08 0.11 0.01(↑)
T7 0.13 0.03 0.07 0.13 0.13 0.00
T8 0.10 0.02 0.05 0.08 0.1 -0.02(↓)
T9 0.07 0.05 0.05 0.06 0.06 -0.01(↓)
T10 0.20 0.04 0.05 0.23 0.29 0.09(↑)
T11 0.19 0.21 0.19 0.39 0.19 0.20(↑)
T12 0.26 0.29 0.16 0.18 0.56 0.30(↑)
T13 0.56 0.19 0.17 0.55 0.60 0.04(↑)
T14 0.19 0.17 0.19 0.19 0.67 0.48(↑)
T15 0.16 0.03 0.05 0.18 0.17 0.02(↑)
T16 0.09 0.08 0.03 0.10 0.094 0.01(↑)
T17 0.20 0.06 0.10 0.21 0.25 0.05(↑)
T18 0.29 0.16 0.20 0.30 0.27 0.01(↑)
T19 0.11 0.05 0.07 0.11 0.11 0.00
T20 0.48 0.26 0.20 0.55 0.89 0.41(↑)
T21 0.31 0.02 0.20 0.33 0.32 0.02(↑)
T22 0.47 0.14 0.16 0.64 0.46 0.17(↑)
T23 0.10 0.02 0.07 0.17 0.18 0.08(↑)
T24 0.09 0.04 0.02 0.16 0.05 0.07(↑)
T25 0.13 0.05 0.04 0.24 0.25 0.12(↑)
T26 0.13 0.05 0.04 0.25 0.24 0.12(↑)
T27 0.13 0.04 0.04 0.21 0.21 0.08(↑)
T28 0.19 0.06 0.06 0.19 0.22 0.03(↑)
T29 0.17 0.13 0.05 0.17 0.16 0.00

Avg. 0.17 0.08 0.08 0.20 0.23 0.06(↑)

Table 3: Zero-shot performance of the agents on test
variations of across all tasks. The columns with * are
reported from Wang et al. (2022). The Delta column is
the difference between DRRN and the best LGE model.
The names of the tasks are in Table 4 in Appendix.

the actions provided by the GUIDE almost always 280

contain the right action and increasing ϵ does not 281

always help. 282

5 Conclusion 283

We proposed a simple and effective framework for 284

using the knowledge in LMs to guide RL agents in 285

text environments, and showed its effectiveness on 286

the SCIENCEWORLD environment when used with 287

DRRN. Our framework is generic and can extend 288

to work with other RL agents. We believe that the 289

positive results observed in our work will pave the 290

way for future work in this area. 291
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6 Limitations292

Our work is the first to use a pre-trained language293

model as a guide for RL agents in text environ-294

ments. This paper focuses on the ScienceWorld295

environment, which is an English only environ-296

ment. Moreover, it focuses mainly on scientific297

concepts and skills. To explore other environments298

in different languages with different RL agents will299

be an interesting future work.300
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A Appendix428

A.1 Implementation details429

A.1.1 GUIDE’s architecture430

We use a BERT-base model (Devlin et al., 2019)431

as the GUIDE. We also performed a rudimentary432

experiment of fine-tuning the Encoder part of the433

770M Macaw (Tafjord and Clark, 2021) model (T5434

Large model pretrained on Question Answering435

datasets in Science Domain), but could not achieve436

the same quality of pruning post training as the437

smaller BERT-base model. This could be attributed438

to two reasons:439

1. The size of the training dataset may not be440

enough to train the large number of parame-441

ters in the bigger Macaw model (thus leading442

to underfitting).443

2. We used a smaller batch size for training the444

Macaw model using similar compute as the445

BERT-base model (16GB GPU memory). As446

the contrastive loss depends on in-batch exam-447

ples for negative samples, the smaller batch-448

size could mean less effective signal to train449

the model. We would explore a fairer com-450

parison with similar training settings as the451

BERT model in future work.452

The anonymized code for this work is available453

at at this repository: https://anonymous.4open.454

science/r/language-guided-rl-9C25455

A.1.2 Training the GUIDE456

The supervised contrastive loss framework in (Gao457

et al., 2021) needs a dataset consisting of example458

triplets of form (xi, x+i and x−i ) where xi and x+i459

are semantically related and x−i is an example of460

a hard negative (semantically unrelated to xi, but461

more still more similar than any random sample).462

For training the Guide, we want to anchor the463

task descriptions closer in some embedding space464

to relevant actions and away from irrelevant actions.465

Thus we prepare a training data {(τi, a+i , a
−
i )}Mi=1,466

consists of tuples of task descriptions τi = τγ,v ∈467

T along with a relevant action a+i ∼ Gγ,v and468

an irrelevant action a−i ∼ Nγ (fixed size set of469

irrelevant actions for every task γ).470

Preparing Nγ : We simulate gold trajectories471

from 10 random training variations for each task-472

type γ ∈ Γ, and keep taking a union of the473

valid actions at each time step to create a large474

union of valid actions for that task-type. Nγ =475

TaskID Task Name

T0 Changes of State (Boiling)
T1 Changes of State (Any)
T2 Changes of State (Freezing)
T3 Changes of State (Melting)
T4 Measuring Boiling Point (known)
T5 Measuring Boiling Point (unknown)
T6 Use Thermometer
T7 Create a circuit
T8 Renewable vs Non-renewable Energy
T9 Test Conductivity (known)
T10 Test Conductivity (unknown)
T11 Find an animal
T12 Find a living thing
T13 Find a non-living thing
T14 Find a plant
T15 Grow a fruit
T16 Grow a plant
T17 Mixing (generic)
T18 Mixing paints (secondary colours)
T19 Mixing paints (tertiary colours)
T20 Identify longest-lived animal
T21 Identify longest-then-shortest-lived animal
T22 Identify shortest-lived animal
T23 Identify life stages (animal)
T24 Identify life stages (plant)
T25 Inclined Planes (determine angle)
T26 Task 26 Friction (known surfaces)
T27 Friction (unknown surfaces)
T28 Mendelian Genetics (known plants)
T29 Mendelian Genetics (unknown plants)

Table 4: List of Task Names with their task ID’s

⋃10
v=1

⋃
tAγ,v,t. Now, this set is used for sampling 476

hard negatives for a given task description. For a 477

batch of size N, the loss is computed as: 478

l(ϕ) = −
N∑
i=1

log
es(τi, a

+
i )∑N

j=1 e
s(τi,a

−
j ) + es(τi,a

+
j )

,

(1)

479

The final training dataset to train the GUIDE 480

LM on 30 task-types consisting of 3442 training 481

variations had 214535 tuples. The LM was trained 482

with a batch size of 128, on 10 epochs and with a 483

learning rate of 0.00005. 484

A.1.3 Training and evaluating the Explorer 485

We use similar approach as (Wang et al., 2022) to 486

train and evaluate the Explorer. The DRRN archi- 487

tecture is trained with embedding size and hidden 488

size = 128, learning rate = 0.0001, memory size 489

= 100k, priority fraction (for experience replay) = 490
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0.5. The model is trained simultaneously on 8 envi-491

ronment threads at 100k steps per thread. Episodes492

are reset if they reach 100 steps, or success/failure493

state.494

After every 1000 training steps, evaluation is per-495

formed on 10 randomly chosen test variations. The496

final numbers reported in table 4 are the average497

score of last 10% test step scores.498

A.2 More examples499

Table 2 shows an example of the out of the GUIDE.500

501
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Algorithm 1 Training Algorithm: LANGUAGE GUIDED EXPLORATION FRAMEWORK

Initialize replay memory D to capacity C
Initialize Explorer’s Q-network with random weights θ
Initialize updateFrequency, totalSteps
for episode = 1 to M do

env, v, d← sampleRandomEnv(’train’, T )
Sample initial state s1 from d0 and get Avalid,1
for t = 1 to N do

totalSteps += 1
Identify k most relevant actions using Guide:
Ârelevant,t ← Guide.top_k(Avalid,t, k, dT,v)
randomNumber ∼ Uniform(0, 1)
if randomNumber > ϵ then

at ∼ Multinomial(softmax({Q(st, a|θ) for a ∈ Ârelevant,t}))
else

at ∼ Multinomial(softmax({Q(st, a|θ) for a ∈ Avalid,t}))
Execute at, observe rt+1, st+1, Avalid,t+1

Store (st, at, rt+1, st+1, Avalid,t+1) in D
if totalSteps mod updateFrequency = 0 then

Sample batch from D
Lcumulative = 0
for each (s, a, r, s′, A′) in batch do

δ = r + γmaxa′∈A′ Q(s′, a′|θ)−Q(s, a|θ)
Compute Huber loss L:

L =

{
1
2δ

2 if |δ| < 1

|δ| − 1
2 otherwise

Lcumulative += L

Update θ with Adam optimizer:
θ ← AdamOptimizer(θ,∇θLcumulative)

Update state: st ← st+1
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Relevant Gold Actions Selected By Pruner

focus on inclined plane with a soapy water surface,look at inclined plane with a soapy water surface,
look around, move block to inclined plane with a soapy water surface, look at inclined plane with a steel surface,
move block to inclined plane with a steel surface, move block to inclined plane with a steel surface, focus on inclined plane with a steel surface,
focus on inclined plane with a steel surface,go to hallway, go to hallway, look around,wait1connect red wire terminal 2 to anode in green light bulb,
wait1,look at inclined plane with a soapy water surface, connect red wire terminal 2 to cathode in green light bulb,
move block to inclined plane with a soapy water surface, connect battery cathode to red wire terminal 1,
look at inclined plane with a steel surface connect black wire terminal 2 to anode in green light bulb,

connect red wire terminal 2 to anode in red light bulb,
connect black wire terminal 2 to cathode in green light bulb,
connect battery cathode to black wire terminal 1,
connect red wire terminal 2 to cathode in red light bulb,
connect black wire terminal 2 to anode in red light bulb,
connect black wire terminal 2 to cathode in red light bulb, open freezer, wait, pick up red wire
focus on red light bulb,pick up black wire, focus on green light bulb, pick up green light bulb,
pick up black wire, focus on green light bulb, pick up green light bulb

Table 5: Qualitative analysis of Validation set trajectories for the ScienceWorld Task "Friction Known Surfaces" for variation 0
at step 17. Note: Missed gold actions are in Red, while selected gold actions are in Green
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