
Under review as a conference paper at ICLR 2024

SAPLING: SUCCESSIVE ADAPTATION AND
COMPRESSION WITH LAYER DROPPING FOR LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Specializing Large language models (LLMs) for local deployment and domain-
specific use can deliver state-of-the-art performance while meeting latency and
privacy requirements. However, conventional task-specific adaptation does not
show both memory saving and inference speedup at deployment time. Practical
compression techniques like quantization and pruning require hardware support or
system optimization to achieve measured inference speedup. We propose Sapling,
which can retain LLMs’ capacity in a specific knowledge domain and achieve
inference speedup on any hardware and deep learning systems by reducing the
model depth. Sapling is based on the knowledge localization phenomenon we
empirically observed and verified on LLMs, and achieves model compression via
successive layer dropping. We evaluated Sapling on LLaMA-7B. At inference time,
the models adapted on medical, legal, and financial datasets have all demonstrated
reliable performance, comparable memory saving, 1.2 to 8.5× inference speedup
on consumer-level hardware compared to state-of-the-art quantization algorithms,
depending on how well the algorithms are supported by efficient accelerator kernels.

1 INTRODUCTION

Large language models (LLMs) are gaining prominence, with a growing interest in specializing
them for specific domains like medicine (Thirunavukarasu et al., 2023), law (Yue et al., 2023),
and finance (Wu et al., 2023b), and deploying locally to address latency and privacy concerns in
sensitive data use cases. For example, understaffed clinics can benefit from deploying medical-
specialized LLM-based chatbots on local devices. However, the sheer amount of memory and
computation required for inference present significant barriers to deploying specialized LLMs in such
resource-limited scenarios.

Post-training quantization (PTQ) is a primary technique to fit LLMs into resource-limited environ-
ments for inference, by reducing the bit precision of LLMs’ weights to as low as 4 or even 3 bits,
without significantly degrading model performance. However, to translate theoretical inference
speedup into wall-clock speedup, most PTQ methods (Dettmers et al., 2022; Xiao et al., 2023; Frantar
et al., 2022; Lin et al., 2023) require efficient kernels and even additional support from hardware
vendors to provide corresponding quantized computational operators, which, unfortunately, is not
easily accessible. Consequently, incorporating the latest quantization techniques in practice often
slows down model inference, evidenced in Table 1, with the exception of AWQ (Lin et al., 2023),
which is equipped with a decoding implementation that supports quantized weights. Similar results
were observed on many post-training LLM pruning algorithms such as Kwon et al. (2022); Frantar &
Alistarh (2023a); Sun et al. (2023) which require hardware support for unstructured and structured
sparse tensor operations.

In light of these limitations, this paper explores a new way of compressing LLMs. We are motivated
by recent findings about knowledge localization (Meng et al., 2022b; Li et al., 2023) in LLMs.
Particularly, knowledge localization shows that middle layers in LLMs contribute more to the domain-
specific knowledge generation process (Meng et al., 2022a; Azaria & Mitchell, 2023). Within each
layer, attention modules are more likely to extract general semantic correlation while MLP layers
are more task-specific (Geva et al., 2020). Inspired by this phenomenon, we hypothesize that each
decoder block, especially its MLP layer, weighs differently for different knowledge domains. By

1



Under review as a conference paper at ICLR 2024

0.30.40.50.60.70.80.91.0

Remaining Model Size
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

LLaMA-7B fine-tuned on SciQ

layer dropping (calibration) + sparse update (r = 1/4)
layer dropping (calibration) + full update (r = 1)
full-FT performance

0.30.40.50.60.70.80.91.0

Remaining Model Size
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

LLaMA-7B fine-tuned on MedMCQA

layer dropping (calibration) + sparse update (r = 1/4)
layer dropping (calibration) + sparse update (r = 1)
full-FT performance

(a) On SciQ and MedMCQA, LLaMA-7B can be
reduced to 40% and 50% of its original size respec-
tively, while maintaining roughly 95% of their fully
fine-tuned performance.

0.30.40.50.60.70.80.91.0

Remaining Model Size
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

LLaMA-7B fine-tuned on SciQ

one layer dropped at a time
two layers dropped at a time
full-FT performance

0.30.40.50.60.70.80.91.0

Remaining Model Size
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

LLaMA-7B fine-tuned on MedMCQA

one layer dropped at a time
two layers dropped at a time
full-FT performance

(b) Sapling’s performance is upper bound by the
granularity of dropping 1 layer at a time. Dropping
2 layers at a time in general performs worse. The
results generalize to other tasks.

Figure 1. We ran two successive layer-dropping experiments on LLaMA-7B. One is performed on a common-
sense QA benchmark, SciQ, and the other on an medical QA benchmark, MedMCQA. Performances are
evaluated on a subset of the validation set.

dropping less important layers during fine-tuning, we aim to achieve a balance between memory
footprint, inference speed, and domain-specific performance with a shallower specialized LLM.

To validate this hypothesis, we conducted extensive layer-dropping experiments on domain-specific
datasets (Pal et al., 2022; Chalkidis et al., 2021; Maia et al., 2023), in which we drop one insignificant
layer after one epoch of fine-tuning. Layer-dropping results, as shown in Figure 1a, indicate that
up to 60% of the parameters can be dropped without significant performance degradation. On the
other hand, model specialized to one domain via layer dropping show significantly compromised
performance on a different domain. This verifies our hypothesis that different layers of a pre-trained
LLM store different domain knowledge.

Building on these findings, we introduce Sapling, a model compression framework employing
successive layer dropping, capable of compressing LLMs to > 50% of their original size while
preserving their domain-specific performance. Sapling uses a calibration dataset to identify and drop
the most insignificant layers after each iteration. We also developed a sparse update scheme to only
train on the most important layers while neglecting the ones that might eventually be dropped.

LLMs pruned via Sapling show comparable ML performance on domain tasks compared to the
fine-tuned full model, with far fewer parameters – hence significantly decreased memory and flops
requirement at inference. Unlike PTQ or existing pruning methods, Sapling does not alter precision
nor introduce sparse computation, therefore it does not depend on specialized kernels. Since Sapling
is performed during fine-tuning, it is orthogonal from other model compression techniques.

The key contributions of this paper are: (1) We observe and empirically verify the layer-wise
knowledge localization phenomenon on contemporary LLMs; (2) We design Sapling, a new approach
for model compression. Sapling prunes LLMs during fine-tuning, by discovering and removing
unimportant layers. (3) We show Sapling achieves > 2× memory saving and > 2× inference speedup
in comparison with the model in full size on medical, legal, and financial domain-specific datasets.
We also show Sapling’s ability to realize 1.2− 8.5× inference speedup than the baseline quantization
and pruning approaches. As a side benefit, Sapling offers a flexible "continuum" of target model sizes
compared to other compression methods.

2 RELATED WORK

Task-specific adaptation. A typical workflow for task-specific adaptation is to first fine-tune (Wu
et al., 2023a; Yang et al., 2023; Huang et al., 2023b;a) or even pre-train (Wu et al., 2023b; Cui et al.,
2023; Shah et al., 2023) LLMs on task-specific datasets before applying any of the following three
model compression techniques for reliable performance during inference: quantization, distillation,
and pruning. In our case, we adopt layer-dropping to compress the model step-by-step during
fine-tuning, i.e., we adapt LLMs to domain-specific tasks by identifying and retaining important
layers for the target domain.

Quantization effectively mitigates memory consumption by reducing the bit-widths of LLMs’
weights and activations. Quantization has featured its ability to retain LLM’s zero-shot ability

2



Under review as a conference paper at ICLR 2024

Table 1. Deployment-time model inference overhead breakdown (LLaMA-7B, on single V100 GPU, sequence
length 512 , batch size 1). The Overhead entry refers to the overhead of running the corresponding model
compression algorithm after fine-tuning. The Final Mem entry refers to the ratio of final compressed model size
versus the original model size in memory.

Techniques Overhead (s) Inference Throughput (tokens/s) Final Mem

FP16 N/A 16.6 100%

LLM.int8() 57.3 4.1 ≥ 50%
GPTQ-int4 371.5 7.2 > 25%
AWQ-int4 542.9 29.3 > 25%

Sparse-GPT (2:4) 215.4 21.2 100%
Masked Pruning 253.2 17.7 100%

Activation-based Pruning 0.54 16.1 100%

Sapling (40%) N/A 34.9 ≥ 40%

with measured memory saving and theoretical speedup. The state-of-the-art quantization algo-
rithms (Dettmers et al., 2022; Xiao et al., 2023) require implementations of efficient kernels whose
efficiency relies on hardware support. To realize measured speedup for inference, decoding imple-
mentation for the specific quantization format is required (Dettmers et al., 2023; Lin et al., 2023).
Sapling, on the other hand, does not depend on specialized kernels and it’s making the model more
efficient by reducing its depth. The performance gain can therefore be generalized to any hardware.

Pruning aims to remove unimportant weights to reduce FLOPs. Latest post-training pruning
algorithms for LLMs focus on unstructured sparsity at neuron- or attention-head level (Liu et al.,
2023; Sun et al., 2023; Frantar & Alistarh, 2023b) that need efficient kernels and hardware support
for the corresponding sparsity patterns, without which it’s hard to achieve measured efficiency
improvement. Sapling again requires none.

Layer-dropping, on the other hand, takes advantage of the layer-wise memory retrieval pattern,
that we call layer-wise specialization. Some prior work examines layer-wise specialization by
investigating the effect of layer dropping before fine-tuning a foundation model on downstream
data (Sajjad et al., 2023) or during the per-training stage (Zhang & He, 2020) (accelerate training
with layer-dropping) to improve its efficiency. Sapling conducts layer-dropping during fine-tuning,
reducing model size and adapting the model for specialized task simultaneously.

Knowledge localization. At layer-wise granularity, evidences (Meng et al., 2022b; Frantar &
Alistarh, 2023a) show middle decoder blocks in LLMs contribute more to the domain-knowledge
generation process while initial blocks are for low-level information (shallow patterns) extraction and
last few blocks capture semantic patterns for next-token generation (Azaria & Mitchell, 2023). Within
each decoder block, experiments (Geva et al., 2020; Meng et al., 2022a) show that MLP layers are
most responsible for task-specific memory retrieval and factual association. The attention layers, on
the other hand, are meant to capture semantic correlation among all input tokens and therefore less
specialized (Shaw et al., 2018). Sapling leverages different roles MLP and self-attention layers play
to localize and drop the most insignificant layer.

3 METHOD

In this section, we begin by presenting our hypothesis and empirical evidence concerning the existence
of layer-wise specialization for various downstream tasks in §3.1, as well as evidences for LLMs’
ability to retain task-specific performance during fine-tuning as long as the more important layers
are trained and updated. These insights, inspired by knowledge localization, inform the overarching
fine-tuning framework detailed in Section §3.2, which utilizes successive layer-dropping techniques to
make specialized LLMs shallower and more efficient. §3.3 introduces two target selection algorithms.
Several metrics are discussed and analyzed as the “importance” scores to choose which attention and
MLP layer to drop. The comprehensive algorithm is outlined in Algorithm 1.

3.1 PRELIMINARIES AND LAYER-WISE SPECIALIZATION

Auto-regressive language models compose of a decode-only architecture, where each decoder block
is made of one multi-head attention (MHA) layer and MLP layer. Based on observations and findings

3



Under review as a conference paper at ICLR 2024

Algorithm 1 Sapling.

1: Input: Training data x ∈ X for the domain-specific task, pre-trained LLM f(·) with parameters θ, training
function F (·) that optimizes some objective ℓ, importance score metric s, sparse update ratio r, accuracy
thresholding function Ca (ai) or efficiency thresholding function Ce (Mi, Ti), ai, Mi and Ti are model’s
accuracy, memory consumption and latency after the i-th layer is dropped. Buffers for sets AX andMX in
Hypothesis 1.

2: i← 0, AX ← ∅,MX ← ∅, UX := AX
⋃
MX , θ0 ← θ;

3: GUX0
= f (·), n← total number of layers in f(·);

4: Sparse update: Calculate initial si for each layer. Freeze layers in accordance with r.
5: choose thresholding function C (·) ∈ {Ca, Ce} that decides whether to exit;
6: while not C (·) do
7: Run training function to update the set of all parameters F (·) : θi → θ′i;
8: m← 0, U ← ∅;
9: while m ̸= n do

10: Calculate layer-wise importance score sm, append sm to U ;
11: m+ = 1;
12: end while
13: Choose which layer to drop with index m s.t. sm = min(U), append sm to UX ;
14: Remove parameters: θ′i → θ′i+1;
15: Remove layer m an update the model: GUXi

→ GUXi+1
;

16: end while
17: return GUX

from previous studies on knowledge localization as described in Section 2, there are increasing
evidences that there exists task-dependent memory retrieval pattern at layer-wise granularity, that we
call layer-wise specialization.

Formally, consider a pre-trained model f (x; θ), where x ∈ Rs is an input sequence with sequence
length s and embedding dimension n, θ ∈ RD is a parameter vector that parameterizes f (·) with a
total parameter size of D.

Consider layernorm to be part of the MHA and MLP layer along with residual connection with each
layer indexed by i ∈ {1, . . . , N}, where N is the total number of layers in a model. Let the input to
each decoder layer DECi be yi−1 at the current generation step, the corresponding output at layer i
can be denoted as

yi = DECi

(
yi−1

)
:= MLPi

(
MHAi

(
yi−1

))
, (1)

At i = 1, the input has yi−1 = y0 = (y0,1, . . . , y0,T−1, y0,T ), where T is the current timestamp and
yt is token generated by a previous timestamp t < T .

Let the feature space for inputs of a downstream task be X and input tokens y0,t ∈ X , and the feature
space for generated output tokens be yN,t ∈ Y in Equation 2.

yN = DECN ◦ DECN−1 ◦ · · · ◦ DEC0 (y0) = f (y0; θ) , (2)

Our basic assumption is that for each downstream task, there exists a feature space X , where X can
be described as a random variable from a distribution DX , and Y is a random variable from DY . Our
hypothesis is:

Hypothesis 1 Let the set of all attention layers in Equation 1 be A and the set of all MLP layers
be M. For all input sequences x0 generated from X , there exists a set of attention and MLP layers
AX ⊂ A, MX ⊂ M such that the function composition of UX = AX

⋃
MX can be fine-tuned on

the joint distribution DXY for the downstream task to get a function GUX with GUX (y0) = y′N . It
suffices that output of the model y′N is generated with random variable Y ′ from DY′ and DY′ is a
close approximation of DY for the full model.

Note that the order of function composition for UX is in accordance with their original order in
Equation 1.

To validate our hypothesis, we track the performance of successive layer-dropping on a wide range
of QA datasets with different domain specializations as our measure of the resemblance between
DY′ and DY′ . Experiments are conducted on a set of widely adopted QA datasets and performance

4



Under review as a conference paper at ICLR 2024

change is tracked during fine-tuning with a small calibration dataset. Figure 1a indicates the set UX
and layer-wise specialization exist as Sapling gives competitive performance in comparison with the
full fine-tuning baseline with as small as 40% of the layers.

3.2 FINE-TUNING WITH SUCCESSIVE LAYER DROPPING

In addition to the ordinary fine-tuning procedure for language models, Sapling iteratively picks a
layer to drop after one epoch of training and gradually reduces the model depth. This gives Sapling
the advantages of reduced memory consumption and inference latency at deployment time.

Empirical experiments in Figure 1b dictate that among different layer dropping schemes, successive
layers dropping during fine-tuning perform much better than batched layer dropping before or after
fine-tuning. In other words, drastically changing the model from f(y0; θ0) → GUX (y0; θf ) by
dropping many parameters at a time generally gives bad results (Syed et al., 2023). This function
GUX (y0; θf ) maps the generated outputs to a distribution DYf

that’s very distinct from DY and
result in bad domain-specific performance. Note that θf is the parameter vector and DY is the
output distribution for the full model after fine-tuning. Successive layer dropping, on the other hand,
allows domain-specific specialization to be done step by step with f(y0; θ0) → GUX1

(y0; θ′1) →
GUX2

(y0; θ′2) · · · → GUX (y0; θ
′
f ) where θ′i is the parameter vector after i epochs. GUXi

(·) is the model
right after the i-th epoch with the corresponding set of remaining layers being UXi

.

This observation aligns the intuition that gradually changing the function’s parameterization with most
important layers retained allows generated outputs to transit more smoothly from D′

Y0
→ D′

Y1
→

· · · → D′
Yf

such that D′
Yf

is a close approximation of DY for the full model after fine-tuning. It
thereby provides more evidences to verify our hypothesis in Section 3.1 with an additional constraint:

Proposition 1 The functional R : f(·) → GUXi
(·) needs to be decomposed into successive layer-

dropping operators {r0, . . . , rf} such that the parameter vector θ′i’s dimensionality only changes
by a small decrement at a time to gradually adapts a downstream task with the most representative
parameters.

Due to the iterative nature of the aforementioned layer dropping algorithm, the time complexity of
fine-tuning increases from O(1) to O(N) where N is the number of layers to be dropped.

In practical scenarios, this approach enables users to efficiently exchange a longer model adaptation
time for improved inference-time performance. This aligns with the typical development-deployment
cycle observed in many real-world applications. In such cases, developers often have the flexibility to
accommodate longer development periods but place higher demands on deployment-time performance.
For instance, during situations characterized by labor shortages, smaller, specialized LLMs designed
for medical and financial QA tasks, with low latency, become the preferred choice for large-scale
deployment in clinical and banking services.

3.3 TARGET SELECTION ALGORITHMS

One important aspect of Sapling is choosing the right layer from UXi
to drop after the i-th epoch

and thereby satisfy the successive distribution shift condition (Proposition 1). We introduce two
techniques to assign each layer an importance score, where a lower importance score means the layer
contribute less to the model’s performance on a downstream task.

The first method is a performance scan based on a small calibration dataset. Before each time a
layer is to be dropped, a small subset of the fine-tuning dataset’s validation set is sampled as the
calibration dataset. For each layer, its importance score is the reciprocal of the model’s performance
after dropping the layer. Calibration scanning gives the importance score of any layer i and the
expression is presented in Equation 3, where ai ∈ [0, 100] is the accuracy of the model after dropping
the i-th layer and δ is a small positive number such that 100

1+δ2 is the maximum importance score when
ai = 0.

si,scan =
100− ai

(1 + δ2) + (1 + δ) ai
(3)

The second method is to make activation-norm comparison on different layers’ activations. Recent
studies (Dettmers et al., 2022; Xiao et al., 2023; Sajjad et al., 2023) have shown preserving information

5



Under review as a conference paper at ICLR 2024

carried by activations is critical to model’s performance when it comes to model compression
techniques.

In prior model compression works, entry-wise absolute values of each layer’s activation tensor are
tracked. All outliers with large magnitudes are identified and guarded as failing to preserve their
accuracy would result in general performance degradation on many tasks. In our work, our goal is
to only preserve activations that are meaningful to the knowledge domain of interest. We can drop
the rest to trade the model’s generality for efficiency and specialization. A new metric is therefore
needed to quantify the importance of an activation.

Our assumption in Section 3.1 is that there exists a feature space X and a corresponding low intrinsic
dimension (Aghajanyan et al., 2020). Since activation tensors with higher entry-wise matrix norm
generally have higher ranks, layers that map inputs to high-rank representations with sparse domain-
specific knowledge are less preferred as they contradict our basic assumption. Hence, We use
activation-norm metric to identify and drop the layers with high entry-wise matrix norms.

Among common matrix norms including the ℓ2,1 norm, the Forbenius norm and the nuclear norm, at
the same numerical value, the Forbenius norm usually matches with dense and high-rank matrices
while the nuclear norm is more likely to match with low-rank ones (Yu & Yiquan, 2018). We choose
the Forbenius norm to identify activations with high-rank representations and sparse domain-specific
knowledge. Dropping the one with highest norm is analogous to Forbenius norm minimization. Let
{∥Xj∥F } be the set of Forbenius norm for all remaining layers in the model f (·). This activation-
norm importance score can be expressed in the form of Equation 4 such that si,norm ∈ (0, 100].

si,norm =
100min {∥Xj∥F }

∥Xi∥F
(4)

3.4 SPARSE UPDATE AS A REGULARIZATION

In Sapling, an important observation is that some less important layers will eventually be dropped
regardless whether they have been tuned. But evidences show fine-tuning all layers could, in effect,
perform worse than only updating a selection of more important layers.

There are two reasons for the possible performance degradation. First, catastrophic forgetting has
been a well recognized problem when a language model is trained on downstream data with all
parameters are updated(Lee et al., 2022). Second, layer dropping in Sapling is conducted on the
premise that some layers carry less information for a task and can be discarded. However, fine-tuning
all layers is based on a contradictory premise that all layers need to be updated for downstream
adaptation. As a result, it’s natural to adopt a sparse update scheme where we only update the layers
with greatest chance to be kept after layer dropping.

To identity which layers to be updated and which to be frozen, we run layer-wise importance score
scanning with a calibration dataset before any fine-tuning is done. This gives an initial distribution
of all layers’ importance scores and probability to be dropped in the first epoch. According to
Section 4.3, since the initial distribution is highly correlated with the latter ones, we can assume
fine-tuning with layer dropping won’t significantly disturb each layer’s importance score and use this
initial distribution to infer each layer’s overall probability to be dropped. For a sparse update ratio r,
only up to N ′ = r ×N layers will be updated in Sapling. It’s possible for any of the N ′ layers to be
dropped during fine-tuning. Each time this occurs, no additional layers will be made trainable.

4 EXPERIMENTS

In this section, we present experiments that provide empirical evidences for our hypothesis as well
as the effectiveness of Sapling. The test suite spans a wide range of knowledge domains including
common-sense, medical, legal and financial QA benchmarks to demonstrate Sapling’s generalizability
on a different tasks. All experiments reported in this section are conducted on LLaMA-7B with
training and testing performed on NVIDIA V100 32GB servers.

6



Under review as a conference paper at ICLR 2024

0.10.20.30.40.50.60.70.80.91.0
LLaMA-7B Remaining Model Size

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Acc. on SciQ vs. Model Size Trade-off Space

layer dropping (calibration + activation-norm) + sparse update (r = 1/4)
full-FT performance
W8A8 quantization (LLM.int8)
W4A16 quantization (AWQ)
W4A16 quantization (GPTQ)
Sparse-GPT (2:4 sparse)
Wanda (2:4 sparse)

0.10.20.30.40.50.60.70.80.91.0
LLaMA-7B Remaining Model Size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

Acc. on MedMCQA vs. Model Size Trade-off Space

layer dropping (calibration + activation-norm) + sparse update (r = 1/4)
full-FT performance
W8A8 quantization (LLM.int8)
W4A16 quantization (AWQ)
W4A16 quantization (GPTQ)
Sparse-GPT (2:4 sparse)
Wanda (2:4 sparse)

Figure 2. The Parento Frontier of LLaMA-7B-Sapling on SciQ and MedMCQA. Sapling has a much wider
spectrum of operating points to fit the model into different hardware with competitive performance.

Table 2. Performance comparison of LLaMA-7B variants on QA benchmarks. The numerical values are
percentage in accuracy. Sapling∗ here refers to Sapling with sparse update at r = 1

4
, calibration scanning and

activation-norm tie breaker. For sparse-FT, the frozen layers are determined by calibration scanning and r = 1
4

.

models PIQA SciQ MedMCQA LexGLUE_casehold FinanceQA Final Mem

human (expert) N/A N/A 80.0 N/A N/A N/A

LLaMA-7B 77.4 89.7 22.4 32.1 33.6 100%
+ Full-FT 82.4 95.6 54.6 42.9 45.1 100%

+ Sparse-FT 83.1 95.4 53.7 43.4 46.9 100%

+ LLM.int8() 81.7 93.6 54.0 42.0 44.9 > 50%
p + AWQ-int4 78.7 91.8 N/A N/A N/A > 25%

+ Sapling∗ 78.1 93.4 48.6 41.9 43.2 ≥ 50%
+ Sapling∗ 74.6 91.6 47.5 39.5 41.3 ≥ 40%
+ Sapling∗ 68.5 87.3 45.8 36.8 38.0 ≥ 30%

4.1 PERFORMANCE ON QA BENCHMARKS

To test which of the methods can compress the model to the fullest extent while maintaining more
than 90% performance of the full-finetuning baseline, we compare the performance of different sparse
update schemes and target selection algorithms. The results are summarized in Table 3. On each
QA benchmark, we also compare the best specialized model obtained from Sapling and other model
compression techniques. The results are presented in Table 2.

Methods. In addition to the two target selection methods introduced in Section 3.3, we device a new
two-step algorithm that leverages both methods, which corresponds to the entry “both” in Table 3.
This method adopts the more effective calibration scanning as the primary method for layer dropping
target selection and uses activation-norm comparison as the tie-breaker strategy when there are more
than one layer have the same importance score from calibration scanning. We can see from Table 3
the two-step algorithm gives the best specialized model at every sparse update ratios.

For each of the three methods, we evaluate specialized models performance when they are trained
with different sparse update ratio r =

{
1, 1

2 ,
1
4 ,

1
8

}
. As we can see in Table 3, results show Sapling

performs the worst when all layers are updated with a sparse update ratio r = 1. With a ratio of
r = 1

4 , the model can be compressed to a greatest extent with more than 20 decoder layers dropped
while maintaining a satisfactory accuracy (≥ 90% in comparison with the full fine-tuned model).

Baselines. We use full fine-tuning (full-FT) as our most basic baseline. We also include a sparse
fine-tuning (sparse-FT) baseline that only updates the salient layers identified by calibration scanning
with the optimal sparse update ratio

(
r = 1

4

)
. While LLM pruning approaches can give inference

speedup as shown in Table 1, they are generally incapable of reducing memory consumption without
hardware support. As a result, we benchmark Sapling with the state-of-the-art LLM quantization
techniques: LLM.int8(), GPTQ and AWQ. They are used as stronger baselines that permit both
memory saving and potential inference speedup.

QA benchmarks. We use common-sense QA benchmarks inculuding SciQ (Johannes Welbl, 2017)
and PIQA (Bisk et al., 2020) to test LLM’s ability of understanding and making basic inference about

7



Under review as a conference paper at ICLR 2024

Table 3. Performance comparison of LLaMA-7B Sapling variants on QA benchmarks with combinations
of sparse update techniques (Section 3.2) and target selection algorithms (Section 3.3). Final model sizes
are obtained by running Sapling variants, where layer dropping stops at the moment where performance
degrades to < 90% of the Full-FT baseline on average. For sparse-FT, the frozen layers are determined by
calibration scanning and r = 1

4
.

methods PIQA SciQ MedMCQA LexGLUE_casehold FinanceQA Final Mem

LLaMA-7B
w/o fine-tuning 77.4 89.7 22.4 32.1 33.6 100%

+ Full-FT 82.4 95.6 54.6 42.9 45.1 100%
+ Sparse-FT 83.1 95.4 53.7 43.3 46.9 100%

LLaMA-7B-Sapling (r = 1)
+ calibration 72.2 85.3 45.2 36.0 41.3 ≥ 70%

+ activation-norm 74.6 44.1 41.5 34.2 39.9 ≥ 80%
+ both 73.5 89.1 46.8 36.5 40.4 ≥ 55%

LLaMA-7B-Sapling
(
r = 1

2

)
+ calibration 73.1 86.2 44.9 37.1 40.3 ≥ 50%

+ activation-norm 74.6 41.3 39.0 35.2 38.6 ≥ 75%
+ both 74.5 89.4 47.6 37.5 39.8 ≥ 40%

LLaMA-7B-Sapling
(
r = 1

4

)
+ calibration 74.5 86.7 45.3 36.7 41.2 ≥ 40%

+ activation-norm 72.7 84.6 43.5 34.9 39.5 ≥ 70%
+ both 73.1 88.9 47.0 38.0 39.8 ≥ 35%

LLaMA-7B-Sapling
(
r = 1

8

)
+ calibration 73.2 86.3 43.5 37.4 40.6 ≥ 60%

+ activation-norm 74.6 83.1 41.0 33.5 39.2 ≥ 70%
+ both 74.4 90.2 44.7 38.4 39.5 ≥ 45%

the physical world the way ordinary humans do. To further assess Sapling’s capacity for domain-
specific adaptation, we also evaluate its performance on medical, legal, and financial QA datasets:
MedMCQA (Pal et al., 2022), LexGLUE-casehold (Chalkidis et al., 2021), and FinanceQA (Bharti,
2023) respectively. For LexGLUE, evaluations are done on the "law" subset of MMLU (Hendrycks
et al., 2020). For FinanceQA, the dataset includes a combination of FiQA (Maia et al., 2023),
Stanford-Alpaca (Taori et al., 2023), and ChatGPT QA dialogues. Evaluations of are conducted on
the "economics" subset of MMLU for its pertinence to financial knowledge.

4.2 MEMORY CONSUMPTION AND LATENCY

We argue the Sapling has a two-fold advantage. The first one is efficiency and the other is flexibility.

On the efficiency side, Sapling has both deployment-time memory saving and inference speedup. We
compare specialized model acquired from Sampling with other quantization baselines as shown in
Table 1 and Figure 2. The state-of-the-art quantization techniques are able to reduce inference-time
memory consumption to nearly a quarter in size. Sapling exploits the model depth degree of freedom
and is able to achieve competitive memory saving compared to the quantization baselines with faster
inference speed (Table 1).

On the flexibility side, as we can see from Figure 2, quantization and pruning offers a very limited set
of operating points corresponding to each of the bit precision scheme for each model. Since sparsity
ratio in pruning can not be easily translated into memory saving, pruning oftentimes gives even fewer
operating points in the trade-off space. In contrast, the Parento frontiers of Sapling span a wide range
of operating points. As a result, Sapling is more flexible and is capable of fitting a model to a wide
spectrum of hardware.

4.3 ABLATION STUDIES

In this section, we conduct ablation studies to cross-validate the performance of specialized models
on other tasks, various layer-dropping patterns, and different levels of layer-dropping granularity.

8



Under review as a conference paper at ICLR 2024

Table 4. Performance of specialized LLaMA-7B on other QA benchmarks.The percentage in parenthesis
indicates the percentage of total parameters remained in the specialized model.

model PIQA SciQ MedMCQA LexGLUE_casehold FinanceQA

w/o fine-tuning (100%) 77.4 89.7 22.4 32.1 33.6

PIQA specialized (40%) 74.6 81.1 14.4 17.8 18.2

SciQ specialized (40%) 61.5 90.6 18.9 13.0 16.5

MedMCQA specialized (40%) 54.9 78.2 47.5 12.4 14.8

LexGLUE specialized (40%) 62.4 73.1 9.1 39.5 18.3

FinanceQA specialized (40%) 55.3 72.5 13.8 21.7 38.0

layer indices

0
10

20
30

ep
och

s

0481216202428

ac
c

1.0
0.5
0.0
0.5

Self-Attention, 32 Iters of Sapling on SciQ

layer indices

0
10

20
30

ep
och

s

0481216202428

ac
c

1.0
0.5
0.0
0.5
1.0

MLP, 32 Iters of Sapling on SciQ

layer indices

0
10

20
30

ep
och

s

0481216202428
ac

c

1.0

0.5

0.0

0.5

Self-Attention, 32 Iters of Sapling on MedMCQA

layer indices

0
10

20
30

ep
och

s

0481216202428

ac
c

1.0

0.5

0.0

0.5

MLP, 32 Iters of Sapling on MedMCQA

layer indices

0
10

20
30

ep
och

s

0481216202428

ac
c

1.0

0.5

0.0

0.5

Self-Attention, 32 Iters of Sapling on LexGLUE

layer indices

0
10

20
30

ep
och

s
0481216202428

ac
c

1.0

0.5

0.0

0.5

MLP, 32 Iters of Sapling on LexGLUE

layer indices

0
10

20
30

ep
och

s

0481216202428

ac
c

1.0

0.5

0.0

0.5

Self-Attention, 32 Iters of Sapling on FinanceQA

layer indices

0
10

20
30

ep
och

s

0481216202428

ac
c

1.0

0.5

0.0

0.5

MLP, 32 Iters of Sapling on FinanceQA

Figure 3. Layer dropping patterns when Sapling (calibration + activation-norm tie breaker) is applied to
LLaMA-7B on QA benchmarks. Results for the first 32 iterations are shown. At this point, the model has been
reduced to one half of its original size with nearly no performance loss, evidenced in Table 2. The numerical
value -1 is assigned to discarded layers as accuracy no longer applies.

Performance cross-validation tests specialized models’ performance degradation on other domain-
specific tasks to provide more empirical evidences for the existence of layer-wise specialization.
Results of each specialized model’s performance on other tasks are provided in Table 4.

Layer-dropping Patterns for each of the downstream task shown in Figure 3, there are a few
key observations can be made: (1) LLaMA-7B have different layer dropping patterns on different
tasks, (2) there are significantly more MLP layers are dropped than the self-attention ones. The first
observation provides more empirical evidences for layer-wise specialization while the second for
knowledge localization, which argues domain knowledge is stored in MLPs.

Multi-layer dropping results are provided in Figure 1b, where we try dropping 2 layers at a time to
see how well the specialized model is able to retain its performance. However, we find that dropping
more than 1 layer at a time breaks the layer-dropping pattern. In cases where two or more consecutive
MLP layers and attention layers are removed all together result in sudden accuracy drop.

5 CONCLUSION

We propose Sapling, a task-specific adaption and model compression pipeline for contemporary
LLMs. Sapling reduces deployment-time memory cost and inference latency by identifying and
discarding less significant layers to reduce the specialized model’s depth. Unlike baselines, Sapling
can obtain both wall-clock inference speedup and memory saving without the need for specialized
hardware and efficient computational kernels. We hope that Sapling paves the path for making LLMs
accessible to the wider public in personal and professional use cases.

9



Under review as a conference paper at ICLR 2024

6 ETHICS STATEMENT

While increasing accessibility and lightweighting language models can extend their usability to a
wider audience, there are notable downsides to consider. Specializing LLMs may result in reduced
accuracy and sophistication in other aspects, making them less capable of handling complex tasks
that require knowldge from multiple domains. Furthermore, higher accessibility means users with
malicious intent could exploit these models more easily. Striking a balance between accessibility and
maintaining the integrity and reliability of language models is essential to ensure their responsible
use in various applications.

REFERENCES

Armen Aghajanyan, Luke Zettlemoyer, and Sonal Gupta. Intrinsic dimensionality explains the
effectiveness of language model fine-tuning. arXiv preprint arXiv:2012.13255, 2020.

Amos Azaria and Tom Mitchell. The internal state of an llm knows when its lying. arXiv preprint
arXiv:2304.13734, 2023.

Gaurang Bharti. gbharti/finance-alpaca, 2023. URL https://huggingface.co/datasets/
gbharti/finance-alpaca. Accessed: 2023-09-20.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning
about physical commonsense in natural language. In Thirty-Fourth AAAI Conference on Artificial
Intelligence, 2020.

Ilias Chalkidis, Abhik Jana, Dirk Hartung, Michael Bommarito, Ion Androutsopoulos, Daniel Martin
Katz, and Nikolaos Aletras. Lexglue: A benchmark dataset for legal language understanding in
english. arXiv preprint arXiv:2110.00976, 2021.

Jiaxi Cui, Zongjian Li, Yang Yan, Bohua Chen, and Li Yuan. Chatlaw: Open-source legal large
language model with integrated external knowledge bases. arXiv preprint arXiv:2306.16092, 2023.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm. int8 (): 8-bit matrix
multiplication for transformers at scale. arXiv preprint arXiv:2208.07339, 2022.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashk-
boos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-quantized represen-
tation for near-lossless llm weight compression. arXiv preprint arXiv:2306.03078, 2023.

Elias Frantar and Dan Alistarh. Massive language models can be accurately pruned in one-shot.
arXiv preprint arXiv:2301.00774, 2023a.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. 2023b.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
key-value memories. arXiv preprint arXiv:2012.14913, 2020.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Quzhe Huang, Mingxu Tao, Zhenwei An, Chen Zhang, Cong Jiang, Zhibin Chen, Zirui Wu, and Yan-
song Feng. Lawyer llama. https://github.com/AndrewZhe/lawyer-llama, 2023a.

Quzhe Huang, Mingxu Tao, Zhenwei An, Chen Zhang, Cong Jiang, Zhibin Chen, Zirui Wu, and
Yansong Feng. Lawyer llama technical report. ArXiv, abs/2305.15062, 2023b.

Matt Gardner Johannes Welbl, Nelson F. Liu. Crowdsourcing multiple choice science questions.
2017.

10

https://huggingface.co/datasets/gbharti/finance-alpaca
https://huggingface.co/datasets/gbharti/finance-alpaca
https://github.com/AndrewZhe/lawyer-llama


Under review as a conference paper at ICLR 2024

Woosuk Kwon, Sehoon Kim, Michael W Mahoney, Joseph Hassoun, Kurt Keutzer, and Amir
Gholami. A fast post-training pruning framework for transformers. Advances in Neural Information
Processing Systems, 35:24101–24116, 2022.

Yoonho Lee, Annie S Chen, Fahim Tajwar, Ananya Kumar, Huaxiu Yao, Percy Liang, and
Chelsea Finn. Surgical fine-tuning improves adaptation to distribution shifts. arXiv preprint
arXiv:2210.11466, 2022.

Xiaopeng Li, Shasha Li, Shezheng Song, Jing Yang, Jun Ma, and Jie Yu. Pmet: Precise model editing
in a transformer. arXiv preprint arXiv:2308.08742, 2023.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq: Activation-
aware weight quantization for llm compression and acceleration. arXiv preprint arXiv:2306.00978,
2023.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivastava,
Ce Zhang, Yuandong Tian, Christopher Re, et al. Deja vu: Contextual sparsity for efficient llms
at inference time. In International Conference on Machine Learning, pp. 22137–22176. PMLR,
2023.

Macedo Maia, André Freitas, and Alexandra et al. Balahur. fiqa, 2023. URL https://sites.
google.com/view/fiqa/home. Accessed: 2023-09-20.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. Advances in Neural Information Processing Systems, 35:17359–17372, 2022a.

Kevin Meng, Arnab Sen Sharma, Alex Andonian, Yonatan Belinkov, and David Bau. Mass-editing
memory in a transformer. arXiv preprint arXiv:2210.07229, 2022b.

Ankit Pal, Logesh Kumar Umapathi, and Malaikannan Sankarasubbu. Medmcqa: A large-scale
multi-subject multi-choice dataset for medical domain question answering. In Conference on
Health, Inference, and Learning, pp. 248–260. PMLR, 2022.

Hassan Sajjad, Fahim Dalvi, Nadir Durrani, and Preslav Nakov. On the effect of dropping layers of
pre-trained transformer models. Computer Speech & Language, 77:101429, 2023.

Nigam H Shah, David Entwistle, and Michael A Pfeffer. Creation and adoption of large language
models in medicine. JAMA, 330(9):866–869, 2023.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representations.
arXiv preprint arXiv:1803.02155, 2018.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach for
large language models. arXiv preprint arXiv:2306.11695, 2023.

Aaquib Syed, Phillip Huang Guo, and Vijaykaarti Sundarapandiyan. Prune and tune: Improving
efficient pruning techniques for massive language models. 2023.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Arun James Thirunavukarasu, Darren Shu Jeng Ting, Kabilan Elangovan, Laura Gutierrez, Ting Fang
Tan, and Daniel Shu Wei Ting. Large language models in medicine. Nature medicine, pp. 1–11,
2023.

Chaoyi Wu, Xiaoman Zhang, Ya Zhang, Yanfeng Wang, and Weidi Xie. Pmc-llama: Further
finetuning llama on medical papers. arXiv preprint arXiv:2304.14454, 2023a.

Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski, Mark Dredze, Sebastian Gehrmann, Prabhan-
jan Kambadur, David Rosenberg, and Gideon Mann. Bloomberggpt: A large language model for
finance. arXiv preprint arXiv:2303.17564, 2023b.

11

https://sites.google.com/view/fiqa/home
https://sites.google.com/view/fiqa/home
https://github.com/tatsu-lab/stanford_alpaca


Under review as a conference paper at ICLR 2024

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099. PMLR, 2023.

Hongyang Yang, Xiao-Yang Liu, and Christina Dan Wang. Fingpt: Open-source financial large
language models. arXiv preprint arXiv:2306.06031, 2023.

Song Yu and Wu Yiquan. Subspace clustering based on latent low rank representation with frobenius
norm minimization. Neurocomputing, 275:2479–2489, 2018.

Shengbin Yue, Wei Chen, Siyuan Wang, Bingxuan Li, Chenchen Shen, Shujun Liu, Yuxuan Zhou,
Yao Xiao, Song Yun, Wei Lin, et al. Disc-lawllm: Fine-tuning large language models for intelligent
legal services. arXiv preprint arXiv:2309.11325, 2023.

Minjia Zhang and Yuxiong He. Accelerating training of transformer-based language models with
progressive layer dropping. Advances in Neural Information Processing Systems, 33:14011–14023,
2020.

12


	Introduction
	Related Work
	Method
	Preliminaries and Layer-Wise Specialization
	Fine-Tuning with Successive Layer Dropping
	Target Selection Algorithms
	Sparse update as a Regularization

	Experiments
	Performance on QA Benchmarks
	Memory Consumption and Latency
	Ablation Studies

	Conclusion
	Ethics statement

