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Abstract

We consider a selection problem where sequentially arrived applicants apply for a
limited number of positions/jobs. At each time step, a decision maker accepts or
rejects the given applicant using a pre-trained supervised learning model until all
the vacant positions are filled. In this paper, we discuss whether the fairness notions
(e.g., equal opportunity, statistical parity, etc.) that are commonly used in classifica-
tion problems are suitable for the sequential selection problems. In particular, we
show that even with a pre-trained model that satisfies the common fairness notions,
the selection outcomes may still be biased against certain demographic groups.
This observation implies that the fairness notions used in classification problems
are not suitable for a selection problem where the applicants compete for a limited
number of positions. We introduce a new fairness notion, “Equal Selection (ES),”
suitable for sequential selection problems and propose a post-processing approach
to satisfy the ES fairness notion. We also consider a setting where the applicants
have privacy concerns, and the decision maker only has access to the noisy version
of sensitive attributes. In this setting, we can show that the perfect ES fairness can
still be attained under certain conditions.

1 Introduction

Machine learning (ML) techniques have been increasingly used for automated decision-making in
high-stake applications such as criminal justice, loan application, face recognition surveillance, etc.
While the hope is to improve societal outcomes with these ML models, they may inflict harm by being
biased against certain demographic groups. For example, companies such as IBM, Amazon, and
Microsoft had to stop sales of their face recognition surveillance technology to the police in summer
2020 because of the significant racial bias [1, 2]. COMPAS (Correctional Offender Management
Profiling for Alternative Sanctions), a decision support tool widely used by courts across the United
States to predict the recidivism risk of defendants, is biased against African Americans [3]. In lending,
the Apple card application system has shown gender biases by assigning a lower credit limit to
females than their male counterparts [4].

To measure and remedy the unfairness issues in ML, various fairness notions have been proposed.
They can be roughly classified into two categories [5]: 1) Individual fairness: it implies that similar
individuals should be treated similarly [6, 7, 8]. 2) Group fairness: it requires that certain statistical
measures to be equal across different groups [9, 10, 11, 12, 13, 14, 15]. In this work, we mainly
focus on the notions of group fairness. We consider a sequential selection problem where a set of
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applicants compete for limited positions and sequentially enter the decision-making system.1 At each
time step, a decision maker accepts or rejects an applicant until m positions are filled. Each applicant
can be either qualified or unqualified and has some features related to its qualification state. While
applicants’ true qualification states are hidden to the decision maker, their features are observable.
We assume the decision maker has access to a pre-trained supervised learning model, which maps
each applicant’s features to a predicted qualification state (qualified or unqualified) or a qualification
score indicating the applicant’s likelihood of being qualified. Decisions are then made based on these
qualification states/scores. Note that this pre-trained model can possibly be biased or satisfy certain
group fairness notions (e.g., equal opportunity, statistical parity, etc.).

To make a fair selection with respect to multiple demographic groups, each applicant’s group
membership (sensitive attribute) is often required. However, in many scenarios, such information
can be applicants’ private information, and applicants may be concerned about revealing them to the
decision maker. As such, we further consider a scenario where instead of the true sensitive attribute,
each applicant only reveals a noisy version of the sensitive attribute to the decision maker. We adopt
the notion of local differential privacy [16] to measure the applicant’s privacy. This notion has been
widely used by researchers [17, 18, 19] and has been implemented by Apple, Google, Uber, etc.

In this paper, we say the decision is fair if the probability that each position is filled by a qualified
applicant from one demographic group is the same as the probability of filling the position by a
qualified applicant from the other demographic group. We call this notion equal selection (ES). We
first consider the case where the decision maker has access to the applicants’ true sensitive attributes.
With no limit on the number of available positions (i.e., no competition), our problem can be cast as
classification, and statistical parity and equal opportunity constraints are suitable for finding qualified
applicants. However, when the number of acceptances is limited (e.g., job application, college
admission, award nomination), we can show that the decisions made based on a pre-trained model
satisfying statistical parity or equal opportunity fairness may still result in discrimination against a
demographic group. It implies that the fairness notions (i.e., statistical parity and equal opportunity)
defined for classification problems, are not suitable for sequential selection problems with the limited
number of acceptances. We then propose a post-processing method by solving a linear program,
which can find a predictor satisfying the ES fairness notion. Our contributions can be summarized as
follows,

1. We introduce Equal Selection (ES), a fairness notion suitable for the sequential selection problems
which ensures diversity among the selected applicants.To the best of our knowledge, this is the
first work that studies the fairness issue in sequential selection problems.

2. We show that decisions made based on a pre-trained model satisfying statistical parity or equal
opportunity fairness notion may still lead to an unfair and undesirable selection outcome. To
address this issue, we use the ES fairness notion and introduce a post-processing approach which
solves a linear program and is applicable to any pre-trained model.

3. We also consider a scenario where the applicants have privacy concerns and only report the
differentially private version of sensitive attributes. We show that the perfect ES fairness is still
attainable even when applicants’ sensitive attributes are differentially private.

4. The experiments on real-world datasets validate the theoretical results.

Related work. Learning fair supervised machine learning models has been studied extensively in the
literature. In general, there are three main approaches to finding a fair predictor,

1. Pre-processing: remove pre-existing biases by modifying the training datasets before the training
process [20, 21];

2. In-processing: impose certain fairness constraint during the training process, e.g., solve a con-
strained optimization problem or add a regularizer to the objective function [22, 23];

3. Post-processing: mitigate biases by changing the output of an existing algorithm [10, 24].

Among fairness constraints, statistical parity, equalized odds, and equal opportunity have gained
an increasing attention in supervised learning. Dwork et al. [25] studies the relation between
individual fairness and statistical parity. They identify conditions under which individual fairness
implies statistical parity. Hardt et al. in [10] introduce a post-processing algorithm to find an optimal

1Rolling admission, job application, and award nomination are examples of sequential selection problems
with limited approvals/positions. On the other hand, there is no competition in the credit card application as the
number of approvals is unlimited.
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binary classifier satisfying equal opportunity. Corbett-Davies et al. [26] consider the classification in
criminal justice with the goal of maximizing public safety subject to a group fairness constraint (e.g.,
statistical parity, equalized odds, etc.). They show that the optimal policy is in the form of a threshold
policy. Cohen et al. [27] design a fair hiring policy for a scenario where the employer can set various
tests for each candidate and observe a noisy outcome after each test.

There are also works studying both privacy and fairness issues in classification problems. Cummings
et al. in [28] examine the compatibility of fairness and privacy. They show that it is impossible
to train a differentially private classifier that satisfies the perfect equal opportunity and is more
accurate than a constant classifier. This finding leads to several works that design differentially private
and approximately fair models [29, 30, 31]. For instance, [29] introduces an algorithm to train a
differentially private logistic regression model that is approximately fair. Jagielski et al. [30] propose
a differentially private fair learning method for training an approximately fair classifier which protects
privacy of sensitive attributes. Mozannar et al. [31] adopt local differential privacy as the privacy
notion and examine the possibility of training a fair classifier given the noisy sensitive attributes that
satisfy local differential privacy. In a similar line of research, [32, 33, 34] focus on developing fair
models using noisy but not differentially private sensitive attributes. Note that all of the above works
assume that the number of acceptances is unlimited (i.e., no competition), and every applicant can be
selected as long as it is predicted as qualified.

Our work is closely connected to the literature on selection problems. Unlike classification problems,
the number of acceptances is limited in selection problems, and an applicant may not be selected even
if it is predicted as qualified. Kleinberg and Raghavan [35] focus on the implicit bias in selection
problems and investigate the importance of the Rooney Rule in the selection process. They show that
this rule effectively improves both the disadvantaged group’s representation and the decision maker’s
utility. Dwork et al. [14] also study the selection problem but consider individual fairness notion.
Khalili et al. [13] study the compatibility of fairness and privacy in selection problems. They use
the exponential mechanism and show that it is possible to attain both differential privacy and perfect
fairness. Note that the selection in all of these works is one shot, i.e., the applicant pool is static, and
all the applicants come as a batch but not sequentially.

Fairness in reinforcement learning and online learning is also studied in the literature. In [36], an
algorithm is considered fair if it does not prefer an action over another if the long-run reward of the
latter is higher than the former. The goal is to learn an optimal long-run policy satisfying such a
requirement. Note that this fairness constraint does not apply to classification or selection problems.
Joseph et al. [37] consider a multi-armed bandit problem with the following fairness notion: Arm i
should be selected with higher probability than arm j in round t only if arm i has higher mean reward
than arm j in round t. This notion is not applicable to our selection problem with a group fairness
notion. Metevier et al. [38] study an offline multi-armed bandit problem under group fairness notions.
However, their method does not address the fairness issue in selection problems because their model
does not consider the competition among applicants.

The remainder of the paper is organized as follows. We present our model and introduce the ES
fairness in Section 2. We then propose a fair sequential selection algorithm using pre-trained binary
classifiers in Section 3. Sequential selection problems using qualification scores are studied in Section
4. We present our numerical experiments in Section 5.

2 Model

We consider a sequential selection problem where individuals indexed by N = {1, 2, 3, . . .} apply
for jobs/tasks in a sequential manner. At time step i, individual i applies for the task/job and either
gets accepted or rejected. The goal of the decision maker is to select m applicants, and s/he continues
the process until m applicants get accepted. Each individual i is characterized by tuple (Xi, Ai, Yi),
where Yi ∈ {0, 1} is the hidden state representing whether individual i is qualified (Yi = 1) for the
position or not (Yi = 0), Xi ∈ X is the observable feature vector, and Ai ∈ {0, 1} is the sensitive
attribute (e.g., gender) that distinguishes an individual’s group identity. In this paper, we present
our results for a case where m = 1. The result can be generalized to m > 1 by repeating the
same process for m times. We assume tuples (Xi, Ai, Yi), i = 1, 2, . . . are i.i.d. random variables
following distribution fX,A,Y (x, a, y). For the notational convenience, we sometimes drop index i
and use tuple (X,A, Y ), which has the same distribution as (Xi, Ai, Yi), i = 1, 2, . . ..
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Pre-trained supervised learning model. We assume the decision maker has access to a pre-trained
supervised learning model r : X × {0, 1} → R ⊆ [0, 1] that maps (Xi, Ai) to Ri = r(Xi, Ai), i.e.,
the predicted qualification state or the qualification score indicating the likelihood of being qualified.
In particular, if R = {0, 1}, then r(·, ·) is a binary classifier and Ri = 0 (resp. Ri = 1) implies that
applicant i is predicted as unqualified (resp. qualified); if R ≠ {0, 1}, then Ri = r(Xi, Ai) indicates
the qualification score and a higher Ri implies that the individual is more likely to be qualified.

Selection Procedure. At time step i, an applicant with feature vector Xi and sensitive attribute Ai

arrives, and the decision maker uses the output of supervised learning model r(Xi, Ai) to select
or reject the individual. If r(·, ·) is a binary classifier (i.e., R = {0, 1}), then the decision maker
selects applicant i if r(Xi, Ai) = 1 and rejects otherwise. If R ̸= {0, 1}, then r(Xi, Ai) indicates
the likelihood of i being qualified and the decision maker uses threshold τ ∈ [0, 1] to accept/reject
the applicant, i.e., accept applicant i if r(Xi, Ai) ≥ τ .

Fairness Metric. Based on sensitive attribute A, the applicants can be divided into two demographic
groups. We shall focus on group fairness. Before introducing our algorithm for fair sequential
selection, we first define the fairness notion in our setting.

In general, when there is no competition, the fairness notion used in classification problems (e.g.,
Statistical Parity (SP) [25] and Equal Opportunity (EO) [10]) can improve fairness. However, in
our selection problem, where the number of positions is limited, those fairness notions should be
adjusted. In particular, as we will see throughout this paper, the decision maker may reject all the
applicants from a demographic group while satisfying SP or EO. This shows that EO and SP do not
improve diversity among the selected applicants. This motivates us to propose the following fairness
notion for (sequential) selection problems, which improves diversity among the selected applicants.

Definition 1 (Equalized Selection (ES)). Let M : X × {0, 1} → {0, 1} be an algorithm used by a
decision maker at every time step to reject/select an applicant until one applicant is selected. Let Ea

denote the event that an applicant with sensitive attribute A = a (a ∈ {0, 1}) is selected, and Ỹ = 1

(resp. Ỹ = 0) the event that a qualified (resp. unqualified) applicant is selected under M (·). Then
the selection algorithm M (·) satisfies Equal Selection (ES)2 if

Pr{E0, Ỹ = 1} = Pr{E1, Ỹ = 1}. (1)

To compare the ES notion with SP and EO and understand why SP and EO may lead to undesirable
outcomes in a selection problem, consider an example where 100 qualified applicants are competing
for three positions. Among them, 90 are from group 0, while ten are from group 1. Under ES, the
probability that each position is filled with an applicant from group 0 is the same as that from group 1.
Therefore, we expect that the selected applicants are diverse and coming from both groups. However,
neither statistical parity nor equal opportunity cares about diversity, and they are likely to result in all
the positions being filled by the majority group.

The perfect fairness is satisfied when Equation (1) holds. The ES fairness notion can also be relaxed
to an approximate version as follows.

Definition 2 (γ-Equal Selection). M (·) satisfies γ-Equal Selection (γ-ES) if

|Pr{E0, Ỹ = 1} − Pr{E1, Ỹ = 1}| ≤ γ. (2)

Note that γ ∈ [0, 1] quantifies the fairness level, the smaller γ implies the fairer selection outcome.

Accuracy Metric. Another goal of the decision maker is to maximize the probability of selecting a
qualified applicant. Therefore, we define the accuracy of a selection algorithm as follows.

Definition 3. A selection algorithm is θ-accurate if Pr(Ỹ = 1) = θ.

Here, θ ∈ [0, 1] quantifies the accuracy level, and the larger θ implies the higher accuracy.

2Similar to EO fairness in classifications, ES fairness only concerns the equity among the qualified applicants.
If the qualification of selected applicants doesn’t matter, we can consider Pr{E0} = Pr{E1} as the fairness
notion. While our paper focuses on the notion in Equation (1), all the analysis and results can be extended for
Pr{E0} = Pr{E1}. See Appendix A.1 for more details.
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3 Fair Selection Using Binary Classifier

3.1 Fair selection without privacy guarantee

In this section, we assume that r(·, ·) is a binary classifier and Ri = r(Xi, Ai) ∈ {0, 1}. At time
step t ∈ {1, 2, . . .}, if Rt = 1, then individual t is selected and the decision maker stops the process.
Otherwise, the selection process continues until one applicant is being selected. First, we identify a
condition under which the perfect ES fairness is satisfied.
Theorem 1. When the pre-trained model r(·, ·) is a binary classifier, the perfect ES fairness (1) is
satisfied if and only if the following holds,

Pr{R = 1, A = 0, Y = 1} = Pr{R = 1, A = 1, Y = 1}. (3)

Corollary 1. If the pre-trained binary classifier r(·, ·) satisfies Equal Opportunity fairness defined
as Pr{R = 1|Y = 1, A = 0} = Pr{R = 1|Y = 1, A = 1} [10], then the selection procedure is
perfect ES fair if and only if Pr{A = 0, Y = 1} = Pr{A = 1, Y = 1}.

Note that the condition in Corollary 1 generally does not hold. It shows that equal opportunity (EO)
and equal selection (ES) are not compatible with each other.

ES-Fair Selection Algorithm. We now introduce a post-processing approach to satisfying ES
fairness. Suppose a fair predictor Z ∈ {0, 1} is used to accept (Z = 1) or reject (Z = 0) an
applicant. The predictor Z is derived from sensitive attribute A and the output of pre-trained classifier
R = r(X,A) based on the following conditional probabilities,

αa,ŷ := Pr{Z = 1|A = a,R = ŷ}, ŷ ∈ {0, 1}, a ∈ {0, 1}.3

Therefore, the fair predictor Z can be found by finding four variables αa,ŷ, ŷ ∈ {0, 1}, a ∈ {0, 1}.
We re-write accuracy Pr{Ỹ = 1} using variables αa,ŷ as follows.

Pr{Ỹ = 1}=
∞∑
i=1

Pr{Zi = 1, Yi = 1, {Zj = 0}i−1
j=1} =

∞∑
i=1

Pr{Zi = 1, Yi = 1}
i−1∏
j=1

Pr{Zj = 0}

=
Pr{Z = 1, Y = 1}
1− Pr{Z = 0}

= Pr{Y = 1|Z = 1} =

∑
ŷ,a αa,ŷ · Pr{R = ŷ, Y = 1, A = a}∑

ŷ,a αa,ŷ · Pr{A = a,R = ŷ}
,

where
∑

ŷ,a :=
∑

ŷ∈{0,1},a∈{0,1}. To further simplify the notations, denote
∑

ŷ :=
∑

ŷ∈{0,1},
PA,R(a, ŷ) := Pr{A = a,R = ŷ} and PR,Y,A(ŷ, y, a) := Pr{R = ŷ, Y = y,A = a}. Unlike [10],
the problem of finding an optimal ES-fair predictor Z, which maximizes the accuracy, is a non-linear
and non-convex problem. This optimization problem can be written as follows,4

max
{αa,ŷ∈[0,1]}

∑
ŷ,a αa,ŷ · PR,Y,A(ŷ, 1, a)∑

ŷ,a αa,ŷ · PA,R(a, ŷ)

s.t. (ES)
∑

ŷ
α0,ŷ · PR,Y,A(ŷ, 1, 0) =

∑
ŷ
α1,ŷ · PR,Y,A(ŷ, 1, 1). (4)

Even though (4) is a non-convex problem, it can be reduced to a linear program below and solved
efficiently using the simplex method.
Theorem 2. Assume that

[
minŷ∈{0,1},a∈{0,1} PA,R(a, ŷ)

]
is not zero. Let α̂a,ŷ, a ∈ {0, 1}, ŷ ∈

{0, 1} be the solution to the following linear problem,

max
{αa,ŷ∈[0,1]}

∑
ŷ,a

αa,ŷ · PR,Y,A(ŷ, 1, a)

s.t. (ES)
∑

ŷ
α0,ŷ · PR,Y,A(ŷ, 1, 0) =

∑
ŷ
α1,ŷ · PR,Y,A(ŷ, 1, 1),∑

ŷ,a
αa,ŷ · PA,R(a, ŷ) = minŷ∈{0,1},a∈{0,1} PA,R(a, ŷ). (5)

Then, α̂a,ŷ, a ∈ {0, 1}, ŷ ∈ {0, 1} is the solution to optimization (4). If linear program (5) does not
have a solution, then optimization (4) has no solution.

3Because Z is derived from R and A, Z and X are conditionally independent given R and A. Moreover, Z
and Y are also conditionally independet given R and A.

4In Appendix A.2, we will explain how we can write the ES fairness constraint in terms of αa,ŷ .
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Note that the quality (i.e., accuracy) of predictor Z obtained from optimization problem (5) depends
on the quality of predictor R. Let Z∗ be the optimal predictor among all possible predictors satisfying
ES fairness (not among the predictors derived from (A,R)). In the next theorem, we identify
conditions under which the accuracy of Z is close to accuracy of Z∗.
Theorem 3. If |Pr{Y = 1|Z∗ = 1} − Pr{Y = 1|R = 1}| ≤ ϵ and Pr{A = a|Y = 1, R = 1} =
Pr{A = a|R = 1},∀a ∈ {0, 1}, then |Pr{Y = 1|Z∗ = 1} − Pr{Y = 1|Z = 1}| ≤ ϵ.

Note that Pr{Y = 1|Z∗ = 1} and Pr{Y = 1|Z = 1} are accuracy of Z∗ and Z, respectively. This
theorem implies that under certain conditions, if the accuracy of pre-trained model R is sufficiently
close to the accuracy of Z∗, then the accuracy of predictor Z is also close to the accuracy of Z∗.

3.2 Fair selection using differentially private sensitive attributes

In this section, we assume the applicants have privacy concerns, and their true sensitive attributes
cannot be used directly in the decision-making process.5 Such a scenario has been studied before in
classification problems [30, 31]. We adopt local differential privacy [16] as the privacy measure. Let
Ãi ∈ {0, 1} be a perturbed version of the true sensitive attribute Ai. We say that Ãi is ϵ-differentially
private if Pr{Ãi=a|Ai=a}

Pr{Ãi=a|Ai=1−a} ≤ exp{ϵ},∀a ∈ {0, 1}, where ϵ is the privacy parameter and sometimes
is referred to as the privacy leakage, the larger ϵ implies a weaker privacy guarantee.

Diffrentially private Ãi can be generated using the randomized response algorithm [39], where Ãi is
generated based on the following distribution,6

Pr{Ãi = a|Ai = a} =
eϵ

1 + eϵ
, Pr{Ãi = 1− a|Ai = a} =

1

1 + eϵ
, i ∈ {1, 2, . . .}. (6)

We assume the decision maker does not know the actual sensitive attribute Ai at time step i, but
has access to the noisy, differentially private Ãi generated using the randomized response algorithm.
Hence, the decision maker aims to find a set of conditional probabilities Pr{Z = 1|Ã = ã, r(X, Ã) =
ŷ}, ã ∈ {0, 1}, ŷ ∈ {0, 1} to generate a predictor Z that satisfies the ES fairness constraint.

We show in Lemma 1 that even though the true sensitive attribute A is not known to the decision
maker at the time of decision-making, the predictor Z derived from (r(X, Ã), Ã) and the subsequent
selection procedure can still satisfy the perfect ES fairness. Denote PA,Y,r(X,ã)(a, y, ŷ) := Pr{A =
a, Y = y, r(X, ã) = ŷ} and Pr(X,ã)|A(ŷ|a) := Pr{r(X, ã) = ŷ|A = a} to simplify notations.
Assumption 1. The true sensitive attributes A are included in the training dataset and are available
for training function r(·, ·). Therefore, ∀a, ã, ŷ,Pr{A = a, Y = 1, r(X, ã) = ŷ} is available before
the decision making process starts. However, sensitive attribute Ai is not available at time step i.

Lemma 1. Let βã,ŷ = Pr{Z = 1|Ã = ã, r(X, Ã) = ŷ}. Predictor Z derived from (r(X, Ã), Ã)
satisfies the ES fairness notion if and only if the following holds,∑

ŷ
β0,ŷ · eϵ · PA,Y,r(X,0)(0, 1, ŷ) +

∑
ŷ
β1,ŷ · PA,Y,r(X,1)(0, 1, ŷ)

=
∑

ŷ
β0,ŷ · PA,Y,r(X,0)(1, 1, ŷ) +

∑
ŷ
β1,ŷ · eϵPA,Y,r(X,1)(1, 1, ŷ). (7)

A trivial solution satisfying (7) is βã,ŷ = 0, ã ∈ {0, 1}, ŷ ∈ {0, 1}, under which the predictor Z is a
constant classifier and assigns 0 to every applicant, i.e., it rejects all the applicants. It is thus essential
to make sure that constraint (7) has a feasible point other than βã,ŷ = 0, ã ∈ {0, 1}, ŷ ∈ {0, 1}. The
following lemma introduces a sufficient condition under which (7) has a non trivial feasible point.
Lemma 2. There exists a feasible point except βã,ŷ = 0, ã ∈ {0, 1}, ŷ ∈ {0, 1} that satisfies (7) if

ϵ > maxa∈{0,1} − ln Pr{R = 1, A = a, Y = 1}. (8)

Using Lemma 1, a set of conditional probabilities βã,ŷ for generating the optimal ES-fair predictor Z
can be found by the following optimization problem.

max{βã,ŷ∈[0,1]} Pr{Ỹ = 1} s.t. Equation (7) (9)

5Sometimes the decision-maker cannot use the true sensitive attribute by regulation. Even if there is no
regulation, the applicants may be reluctant to provide the true sensitive attribute.

6Note that Ã is derived purely from A. As a result, (X,Y ) and Ã are conditional independent given A.
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While optimization problem (9) is not a linear optimization (see the proof of the next theorem in the
appendix), the optimal βã,ŷ can be found by solving the following linear program.
Theorem 4. Assume that minã,ŷ[PA(ã) · eϵ ·Pr(X,ã)|A(ŷ|ã)+PA(1− ã) ·Pr(X,ã)|A(ŷ|1− ã)] > 0.
Let β̂ã,ŷ, ã ∈ {0, 1}, ŷ ∈ {0, 1} be the solution to the following optimization problem.

max
{βã,ŷ∈[0,1]}

∑
ã,ŷ

βã,ŷ

[
eϵPA,Y,r(X,ã)(ã, 1, ŷ) + PA,Y,r(X,ã)(1− ã, y, ŷ)

]
s.t.

∑
ã,ŷ

βã,ŷ

[
PA(ã) · eϵ · Pr(X,ã)|A(ŷ|ã) + PA(1− ã) · Pr(X,ã)|A(ŷ|1− ã)

]
= minã,ŷ

[
PA(ã) · eϵ · Pr(X,ã)|A(ŷ|ã) + PA(1− ã) · Pr(X,ã)|A(ŷ|1− ã)

]
,

Equation (7), (10)

where PA(ã) := Pr{A = ã}, PA(1− ã) := Pr{A = 1− ã}, and
∑

ã,ŷ :=
∑

ã∈{0,1},ŷ∈{0,1}. Then,

β̂ã,ŷ, ã ∈ {0, 1}, ŷ ∈ {0, 1} is the solution to optimization (9). If linear program (10) does not have
a solution, then optimization (9) has no solution neither.

4 Selection Using Qualification Score

4.1 Fair selection without privacy guarantee

In this section, we consider the case where R = [0, 1] and the supervised model r(·, ·) generates
a qualification score, which indicates an applicant’s likelihood of being qualified. The decision
maker selects/rejects each applicant based on the qualification score. We consider a common
method where the decisions are made based on a threshold rule, i.e., selecting an applicant if its
qualification score R = r(X,A) is above a threshold τ . In other words, prediction Zτ is derived

from (R,A) based on the following, Zτ =

{
1 if R ≥ τ
0 o.w. . To simplify the notations, denote

FR(τ) := Pr{R ≤ τ}, FR|a(τ) := Pr{R ≤ τ |A = a}, FR|a,y(τ) := Pr{R ≤ τ |A = a, Y = y}
and PA,Y (a, y) := Pr{A = a, Y = y}. Then we have,

Pr{Ea, Ỹ = 1} =

∞∑
i=1

PA,Y (a, 1) · (1− FR|a,1(τ)) · (FR(τ))
i−1 =

PA,Y (a, 1)(1− FR|a,1(τ))

1− FR(τ)
.

Predictor Zτ satisfies the ES fairness notion if and only if,

PA,Y (0, 1) · (1− FR|0,1(τ)) = PA,Y (1, 1) · (1− FR|1,1(τ)). (11)

Since a threshold τ that satisfies (11) may not exist, we use group-dependent thresholds for two
demographic groups. Let τa be the threshold used to select an applicant with sensitive attribute
A = a. Then, ES fairness holds if and only if the following is satisfied,

PA,Y (0, 1) · (1− FR|0,1(τ0)) = PA,Y (1, 1) · (1− FR|1,1(τ1)). (12)

The decision maker aims to find the optimal thresholds for two groups by maximizing its accuracy
subject to fairness constraint (12). Under thresholds τ0 and τ1, the accuracy is given by,

Pr{Ỹ = 1} =
PA,Y (0, 1)(1− FR|0,1(τ0)) + PA,Y (1, 1)(1− FR|1,1(τ1))

1− ητ0,τ1
,

where ητ0,τ1 = FR|0(τ0) · Pr{A = 0}+ FR|1(τ1) · Pr{A = 1}. To find the optimal τ0 and τ1, the
decision maker solves the following optimization problem,

max
τa∈[0,1]

PA,Y (0, 1)(1− FR|0,1(τ0)) + PA,Y (1, 1)(1− FR|1,1(τ1))

1− ητ0,τ1
s.t. PA,Y (0, 1)(1− FR|0,1(τ0)) = PA,Y (1, 1)(1− FR|1,1(τ1)). (13)

If R = [0, 1] and the probability density function of R conditional on A = a and Y = 1 is
strictly positive over [0, 1], optimization problem (13) can be easily turned into a one-variable
optimization over closed interval [0, 1] and the fairness constraint can be removed (see Appendix A.3
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for more details). An optimization problem over a closed-interval can be solved using the Bayesian
optimization approach [40]. In Appendix A.3, we further consider a special case when R|A, Y is
uniformly distributed and find the closed form of the optimal thresholds.

When score R is discrete (i.e., R = {ρ1, . . . , ρn′}), optimization problem (13) can also be solved
easily using exhaustive search with the time complexity of O((n′)2).

Next, we show that maximizing Pr{Ỹ = 1} subject to the equal opportunity fairness notion can lead
to an undesirable outcome.
Theorem 5. Let Z be the predictor derived by thresholding R ∈ {ρ1, . . . , ρn′} using thresholds
τ0, τ1. Moreover, assume that accuracy (i.e., Pr{Y = 1|Z = 1}) is increasing in τ0 and τ1, and
Pr{R = ρn′ |A = a, Y = 1} ≤ γ,∀a ∈ {0, 1}. Then, under γ-EO (i.e., |Pr{Z = 1|A = 0, Y =
1} − Pr{Z = 1|A = 1, Y = 1}| ≤ γ), one of the following pairs of thresholds is fair optimal.

• τ0 > ρn′ and τ1 = ρn′ (in this case, Pr{R ≥ τ0|A = 0, Y = 1} = 0).

• τ1 > ρn′ and τ0 = ρn′ (in this case, Pr{R ≥ τ1|A = 1, Y = 1} = 0).

Theorem 5 implies that under certain conditions, it is optimal to reject all the applicants from a
single demographic group under EO fairness notion. In other words, the EO fairness cannot improve
diversity among the selected applicants. We can state a similar theorem for the SP fairness notion
(See Appendix A.4).

4.2 Fair selection using qualification score and private sensitive attributes

Similar to Section 3.2, we consider the case where the decision maker uses differentially private
Ã instead of true sensitive attribute A during the decision-making process. Let Z̃ be the predictor

derived from r(X, Ã) and Ã according to the following, Z̃ =

{
1 if r(X, Ã) ≥ τ̃Ã
0 o.w. , where

τ̃Ã = τ̃0 if Ã = 0, and τ̃Ã = τ̃1 otherwise. Lemma 3 introduces a necessary and sufficient
condition under which predictor Z̃ satisfies the perfect ES fairness. Let F r(X,ã),A,Y (τ̃ã, a, y) :=

Pr{r(X, ã) ≥ τ̃ã, A = a, Y = y} and F r(X,ã),A(τ̃ã, a) := Pr{r(X, ã) ≥ τ̃ã, A = a} and
F r(X,ã),A,Ã(τ̃ã, a, ã) := Pr{r(X, ã) ≥ τ̃ã, A = a, Ã = ã}.

Lemma 3. Predictor Z̃ satisfies the perfect ES fairness if and only if τ̃0 and τ̃1 satisfy the following,

eϵ · F r(X,0),A,Y (τ̃0, 0, 1) + F r(X,1),A,Y (τ̃1, 0, 1) = eϵ · F r(X,1),A,Y (τ̃1, 1, 1) + F r(X,0),A,Y (τ̃0, 1, 1). (14)

Accuracy Pr{Ỹ = 1} can be written as a function of τ̃0 and τ̃1 (see Section A.5 for details),

Pr{Ỹ = 1} =
Pr{Z̃ = 1, Y = 1}

Pr{Z̃ = 1}
=

∑
a,ã F r(X,ã),A,Y,Ã(τ̃ã, a, 1, ã)∑

a,ã F r(X,ã),A,Ã(τ̃ã, a, ã)

=
eϵ

∑
a F r(X,a),A,Y (τ̃a, a, 1) +

∑
a F r(X,a),A,Y (τ̃a, 1− a, 1)

eϵ
∑

a F r(X,a),A(τ̃a, a) +
∑

a F r(X,a),A(τ̃a, 1− a)
, (15)

where
∑

a :=
∑

a∈{0,1} and
∑

a,ã :=
∑

a,ã∈{0,1}. Following Lemma 3, the optimal thresholds τ̃0
and τ̃1 can be found by maximizing accuracy Pr{Ỹ = 1} subject to fairness constraint (14). That is,

maxτ̃0,τ̃1 Pr{Ỹ = 1} s.t. Equation (14). (16)

Similar to optimization (13), if R = {ρ1, ρ2, . . . , ρn′}, then solution to (16) can be found through
the exhaustive search with time complexity O((n′)2).

5 Numerical Example
FICO credit score dataset [41].7 FICO credit scores have been used in the US to determine the
creditworthiness of people. The dataset used in this experiment includes credit scores from four

7The datasets used in this paper do not include any identifiable information. The codes are available here.
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demographic groups (Asian, White, Hispanic, and Black). Cumulative density function (CDF)
Pr(R ≤ τ |A = a) and non-default rate Pr(Y = 1|R = τ,A = a) of each racial group can be
calculated from the empirical data (see [10] for more details). In our experiments, we normalize
the credit scores from [350,850] to [0,100] and focus on applicants from White (A = 0) and Black
(A = 1) demographic groups. The sample sizes of the white and black groups in the dataset are
133165 and 18274 respectively. Therefore, we estimate group representations as Pr(A = 0) =
1− Pr(A = 1) = 133165

133165+18274 = 0.879.

Figure 1a illustrates the CDF of FICO scores of qualified (i.e., non-default) applicants from
White and Black groups. Since Pr{R ≤ ρ|Y = 1, A = 0} is always below Pr{R ≤
ρ|Y = 1, A = 1}, black qualified (non-default) applicants are likely to be assigned lower
scores as compared to the white qualified applicants. Therefore, selecting an applicant based
on FICO scores will lead to discrimination against black people. We consider three fair-
ness notions in our sequential selection problem: equal opportunity (EO), statistical parity
(SP), and equal selection (ES). We say the selection satisfies γ-equal opportunity (γ-EO) if∣∣Pr{R ≥ τ0|A = 0, Y = 1} − Pr{R ≥ τ1|A = 1, Y = 1}

∣∣ ≤ γ. Similarly, we say the deci-
sion satisfies γ-SP if

∣∣Pr{R ≥ τ0|A = 0} − Pr{R ≥ τ1|A = 1}
∣∣ ≤ γ.

Table 1 summarizes the selection outcomes under ES, SP, and EO. It shows that the accuracy under
EO and SP is almost the same as the accuracy under ES fairness. However, the probability that a
qualified person is selected from the Black group (i.e., selection rate of Black) under EO and SP is
almost zero. This is because the Black group is the minority group (only 12% of the applicants are
black). This issue can be addressed using ES fairness which tries to improve diversity. Notice that the

Table 1: Equal Opportunity (EO) v.s. Statistical Parity (SP) v.s. Equal Selection (ES)

Fairness metric τ0 τ1 Pr{E0, Ỹ = 1} Pr{E1, Ỹ = 1} Accuracy

0.01-EO 99.5 99.5 0.990 0 0.990
0.001-EO 99.5 99.5 0.990 0 0.990
0.01-SP 99.5 99.5 0.990 0 0.990

0.001-SP 99.5 99.5 0.990 0 0.990
0.01-ES 98.5 84.5 0.483 0.491 0.974

0.001-ES 98.0 65.0 0.483 0.483 0.966

optimal thresholds τ0, τ1 in Table 1 are close to the maximum score 100, especially under EO and SP
fairness notions. This is because in optimization (13), we have assumed there is no time constraint
for the decision maker to find a qualified applicant (i.e., infinite time horizon), and the selection
procedure can take a long time. To make the experiment more practical, we add the following time
constraint to optimization (13): the probability that no applicant is selected after 100 time steps
should be less than 1

2 , i.e.,

Pr{No one is selected in 100 time steps} =
(
Pr{R < τA}

)100
=

(
Pr{A = 0}Pr{R < τ0|A = 0}+ Pr{A = 1}Pr{R < τ1|A = 1}

)100 ≤ 0.5. (17)

Table 2 summarizes the results when we add the above condition to (13). By comparing Table 2 with
Table 1, we observe that Pr{E1, Ỹ = 1} slightly increases under EO ans SP fairness after adding
time constraint (17). Nonetheless, the probability that a qualified applicant is selected from the black
community under EO ans SP fairness is still close to zero. More discussions and numerical results
about the time constraint are provided in Appendix A.7.

Adult income dataset [42]. Adult income dataset contains the information of 48,842 individuals,
each individual has 14 features including gender, age, education, race, etc. In this experiment, we
consider race (White or Black) as the sensitive attribute. We denote White race by A = 0 and Black
race by A = 1. After removing the points with missing values or with the race other than Black
and White, we obtain 41,961 data points, among them 37376 belong to the White group. For each
data point, we convert all the categorical features to one-hot vectors. In this experiment, we assume
the race is individuals’ private information, and we aim to evaluate how performances of different
selection algorithms are affected by the privacy guarantee. The goal of the decision maker is to select
an individual whose annual income is above $50K and ensure the selection is fair.
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Table 2: Equal Opportunity (EO) v.s. Statistical Parity (SP) v.s. Equal Selection (ES) after adding
time constraint (17)

Fairness metric τ0 τ1 Pr{E0, Ỹ = 1} Pr{E1, Ỹ = 1} Accuracy

0.01-EO 98.0 97.5 0.947 0.042 0.989
0.001-EO 98.0 97.0 0.931 0.058 0.989
0.01-SP 98.0 98.0 0.976 0.013 0.989

0.001-SP 98.0 94.0 0.873 0.115 0.988
0.01-ES 98.0 65.5 0.487 0.480 0.967

0.001-ES 98.0 65.0 0.483 0.483 0.966
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Figure 1: (a) CDF of FICO scores for non-default applicants from White and Black groups. (b)
Accuracy Pr{Ỹ = 1} as a function of ϵ for the adult dataset. (c) Pr{Ỹ = 1, Ea} of each group. (d)
Disparity γ = |Pr{E0, Ỹ = 1} − Pr{E1, Ỹ = 1}| as a function of ϵ.

We first train a logistic regression classifier (using sklearn package and default parameters) as the pre-
trained model. Then for each privacy parameter ϵ, we calculate the probability mass function PÃ(ã)
using Equation (6). Then, we calculate the joint probability density PA,Y,r(X,ã)(a, 1, ŷ) and solve
optimization problem (10) to generate a fair predictor for our sequential selection problem. Repeating
the process for different privacy loss ϵ, we can find Pr{Ỹ = 1},Pr{E0, Ỹ = 1},Pr{E1, Ỹ = 1}
as a function of privacy loss ϵ. As a baseline, we compare the performance of our algorithm with
the following scenarios: 1) Equal opportunity (EO): replace the ES fairness constraint with the
EO constraint in (9) and find the optimal predictor.8 2) No fairness constraint (None): remove the
fairness constraint in optimization (9) and find a predictor that maximizes accuracy Pr{Ỹ = 1}.

Figure 1b illustrates the accuracy level θ = Pr{Ỹ = 1} as a function of privacy loss ϵ. Based on
Lemma 2, optimization problem (10) has a non-zero solution if ϵ is larger than a threshold. This is
verified in Figure 1b. It shows that if ϵ ≥ 2.7, then problem (10) has a non-zero solution. Note that the
threshold in Lemma 2 is not tight because maxa∈{0,1} − ln Pr{R = 1, A = a, Y = 1} = 4.9 > 2.7.
Under ES fairness, accuracy Pr{Ỹ = 1} starts to increase at ϵ = 2.7, and it reaches 0.66 as ϵ→ ∞.
Lastly, when ϵ ≥ 3, the accuracy under ES fairness is almost the same as that under EO or under no
fairness constraint.

Figure 1c illustrates Pr{E0, Ỹ = 1} and Pr{E1, Ỹ = 1} as functions of privacy loss. In the case
with EO fairness and the case without a fairness constraint, the selection rate of black people always
remains close to zero. In contrast, under ES fairness, the available position is filled from Black
and White people with the same probability. Figure 1d shows the disparity (i.e., |Pr{E0, Ỹ =

1}−Pr{E1, Ỹ = 1}| ). As expected, disparity remains 0 under ES while it is large in the other cases.

Limitation and Negative Societal Impact: 1) We made some assumptions to simplify the problem.
For instance, we considered an infinite time horizon and assumed the individuals can be represented
by i.i.d. random variables. 2) The proposed fairness notion and the results associated with it are only
applicable to our sequential selection problem. This notion may not be suitable for other scenarios.

8See Appendix A.6 for more details about expressing the EO constraint as a function of βã,ŷ .
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