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ABSTRACT
Despite the vast amount of information encoded in knowledge
graphs, they often remain incomplete. Neural networks, in particu-
lar Graph Convolutional Neural Networks, have been shown to be
effective predictors to complete information about the class affilia-
tion of entities in knowledge graphs. However, these models remain
ignorant to their predictions confidence due to their used point
estimate of a softmax output. In this paper, we combine Graph Con-
volutional Neural Networks with recent developments in the field
of Evidential Learning by placing a Dirichlet distribution on the
class probabilities to overcome this problem. We use the continuous
output of a Graph Convolutional Neural Network as parameters for
a Dirichlet distribution. In this way, the predictions of the model are
represented as a distribution over possible softmax outputs, rather
than a point estimate of a softmax output. The experiments show
that a better performance in predicting class affiliations can be
achieved compared to recent models. In addition, the experiments
show that this approach overcomes the well-known problem of
overconfident prediction of deterministic neural networks.
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1 INTRODUCTION
Knowledge Graphs (KGs) encode factual knowledge in the form
of triples (subject-relation-object pairs), which is used in various
applications, including Question Answering [22] and information
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retrieval [20, 21] to enhance the performance of the systems. De-
spite the enormous effort made to keep the knowledge encoded in
the KGs up-to-date and consistent [5], the KGs are often incomplete.
Due to the huge amount of information, manual maintenance to
complete missing factual knowledge is not feasible [11]. In particu-
lar, encoding factual knowledge about the class affiliation of entities
is of great importance for automatic reasoning and inference of
information from the knowledge graph.

In recent years, GraphConvolutional Neural Networks (GCN) [6–
8, 16] have been used in particular to predict the missing class affil-
iations of entities. Other methods that use distance-based scoring
functions, such as TransE [2], learn embeddings for entities, but un-
like GCN, these are no end-to-end models, but a second model must
be learned subsequently to predict missing class affiliations. Further
methods like RDF2Vec [14, 15] orWeisfeiler-Lehman Graph Kernels
(WL) [3, 19] are neither end-to-end models, but use graph-specific
features to predict missing class affiliations.

Due to the superior performance of GCN models in predicting
class affiliations of entities resulting from the end-to-end approach,
these models have been widely used in recent years. However, these
deterministic models1 are often overconfidentwith their predictions
and ignorant to their predictions confidence due to the use of a
point estimate of a softmax output. We therefore address these two
issues and combine GCN with recent developments in the field of
evidential learning [1, 17, 18]. In this work, we propose Evidential
Graph Convolutional Neural Networks (E-R-GCNs), which can be
considered as an extension to previous R-GCNs [16]. Instead of
using a softmax output layer and thus a single point estimate, we
use a conjugate prior distribution to represent the predictions of
the model as a distribution over possible softmax outputs. Given
that the prediction of class affiliations of entities is considered as a
discrete multinomial distribution, we use the Dirichlet distribution
as the conjugate prior distribution accordingly.

In the next section, we will introduce the model (Section 2),
followed by conducted experiments (Section 3), highlighting in
particular the improved performance compared to the previous R-
GCN model, as well as showing that E-R-GCN does not suffer from
being overconfident in predictions compared to the current R-GCN
model. We will with an outline of the benefits of this modeling in
real-world use cases and an outlook on future work.

2 APPROACH
The approach of the introduced model for entity classification (E-
R-GCN) is shown in Figure 1 and combines methods of GCN [16]
and quantifying uncertainty in neural networks [18]. This figure

1Once Neural Networks are trained they are deterministic.
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Figure 1: Approach for entity classification using E-R-GCN. The E-R-GCN predicts the parameters 𝛼 of a Dirichlet distribu-
tion given the KG and an entity (e.g. Entity 1). Based on the Dirichlet distribution, categorical distributions can be drawn,
representing the class assignment for the given input.

shows a subgraph of the dataset AIFB [13] in which various entities
have written different publications and are working in projects.
The class affiliation of the entities are encoded in colors. In general,
a softmax function is typically used in the output layer of GCNs
for classification tasks, but even with a high softmax output for a
particular class, the model can be uncertain in its predictions and
it is a point estimator. Therefore, the idea is to predict the param-
eters of a Dirichlet distribution from which multiple categorical
distributions can be drawn. A Dirichlet distribution is used as it is
the conjugate prior of a categorical distribution and a multiclass
classification problem is characterized by estimating the categor-
ical distributions of the classes. Depending on the predictions of
the parameters of the Dirichlet distribution, the concentration of
the drawn distributions can be on one class or, if there is a larger
uncertainty, it can be spread over several classes.

In order to predict the Dirichlet parameters, we use a ReLU
function instead of a softmax function in the output layer of a GCN.
Since the Dirichlet distribution is characterized by the parameters
𝛼𝐾 ∈ 𝑅+, where 𝐾 denotes the number of classes2 and 𝐾 > 2
always holds, we denote the output of the GCN as evidence (𝑒) and
apply the following formula to ensure that 𝛼𝐾 ∈ 𝑅+ holds true.

𝛼𝑖𝑘 = 𝑒𝑖𝑘 + 1 (1)

Following previous work in the field of evidential learning, we
use a loss function that minimizes the prediction error and the vari-
ance of the Dirichlet distribution, as well as a regularization term
that penalizes the predictive distribution, which do not contribute
to data fit. Given that the we intend to design and train a GCN to
form multinomial opinions for the entity classification of a given
sample 𝑖 as a Dirichlet distribution where 𝑝𝑖 is the prediction, the
expected probability for the 𝑘-th output of the sample results from
the mean of the respective Dirichlet distribution, where 𝑆 =

∑𝐾
𝑖=1 𝛼𝑖

represents the Dirichlet strength.

𝑝𝑖𝑘 =
𝛼𝑖𝑘

𝑆𝑖
(2)

Kullback-Leibler (KL) divergence is incorporated into the loss
in order to ensure that the total evidence decreases to zero, even
for samples that cannot be correctly classified. Hereby we follow

2In Figure 1 is 𝐾 = 3, since three different classes exist in the KG, encoded in colors
(red, blue and purple). No class affiliation is given for Entity 1 as we want to predict
the class for this entity.

the recommendation of Sensoy et al. [17], which has been shown
in empirical experiments to provide the most stable performance
with respect to classification. We denote 𝑁 as the total number of
samples and 𝑦𝑖 as the actual one-hot encoded class affiliation for
sample 𝑖 . The loss of our approach is then given by the following
formula, where 𝜆𝑡 = 𝑚𝑖𝑛(1.0, 𝑡10 ) ∈ [0, 1] is the annealing factor
with timestep 𝑡 , Γ(·) is the gamma function, and𝜓 (·) is the digamma
function.

𝐿(Θ) =
𝑁∑
𝑖=1

𝐾∑
𝑗=1

(𝑦𝑖 𝑗 − 𝑝𝑖 𝑗 )2 +
𝑝𝑖 𝑗 (1 − 𝑝𝑖 𝑗 )
(𝑆𝑖 + 1)︸                                 ︷︷                                 ︸

Minimizing prediction error and variance of the Dirichlet

+ (3)

𝜆𝑡

𝑁∑
𝑖=1

log

(
Γ(∑𝐾

𝑘=1 𝛼𝑖𝑘 )
Γ(𝐾)Π𝐾

𝑘=1Γ(𝛼𝑖𝑘 )

)
+

𝐾∑
𝑘=1

(𝛼𝑖𝑘 − 1)
[
𝜓 (𝛼𝑖𝑘 ) −𝜓

( 𝐾∑
𝑗=1

𝛼𝑖 𝑗
) ]

︸                                                                                  ︷︷                                                                                  ︸
KL divergence to penalize divergences that do not contribute to data fit

In order to specify the uncertainty and thus detect out-of-distri-
bution samples in the predictions using a conjugate prior, we use
the Dempster-Shafer Theory of Evidence (DST) [4]. A belief mass is
defined, which corresponds to a Dirichlet distribution from which
the uncertainty can be derived. The uncertainty, denoted as 𝑢, is
defined as follows:

𝑢 =
𝐾

𝑆
(4)

3 EXPERIMENTS
Datasets. Following related work [13, 16], we use the well-known
datasets AIFB, MUTAG, BGS, and AM for evaluation. The datasets
are modeled as graphs in the form of triples (subject-relation-object
pairs). The class affiliation of the entities is modeled as a triple as
well. For the dataset AIFB the class affiliation is modeled by the
relations employs and affiliation, MUTAG by hasLithogenesis, BGS as
objectCategory and for AM asmaterial. These relations are removed
beforehand in order not to affect the learning process. We use
predefined train/test set splits for training and testing. Statistics on
the datasets used are shown in Table 1 and more information about
the datasets can be obtained in the originally mentioned paper [13].
Metrics. Following previous work [14–16], we use accuracy to
measure the performance of themodels.We run the experiments ten
times and report the average performance on the existing test splits.
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Table 1: Datasets used in the experiments along with the
number of entities, relations, edges, labels and classes. La-
beled denotes the subset of entities that have labels and that
are to be classified, meaning the number of test instances.

Dataset AIFB MUTAG BGS AM

Entities 8,285 23,644 333,845 1,666,764
Relations 45 23 103 133
Edges 29,043 74,227 916,199 5,988,321
Labeled 176 340 146 1,000
Classes 4 2 2 11

Baselines. We compare our approach, with recent state-of-the-
art models in entity classification. The baseline includes strong
models as R-GCN [16], RDF2Vec [14, 15], Feat [12] and WL [3, 19].
R-GCN uses an end-to-end relational graph convolutional network
and a cross-entropy loss for entity classification. RDF2Vec extracts
random walks, which are then used in a skipgram model [9, 10] to
learn embeddings. These embeddings are used for the subsequent
classification. WL uses graph kernels that count substructures in
graphs and Feat uses hand-designed feature extractors3.

3.1 Entity Classification
The results of the experiments on the test benchmark for entity
classification is reported in Table 2. Based on the existing work on
R-GCN [16], we used the same hyperparameter settings for these
experiments as well, since these have been identified as the best
hyperparameter choice based on a validation set. Accordingly, for
R-GCN and E-R-GCN we trained a 2-layer model with 16 hidden
units (10 for AM), a weight decay of 0.5e-3, a learning rate of 0.01,
and using Adam 50 epochs. Following experiments of R-GCN [16]
and RDF2Vec [14], we used a linear SVM for classifying the entities
in the RDF2Vec and WL approach.

Considering the results for entity classification in Table 2 we
observe on the one hand that our model E-R-GCN achieves state-of-
the-art results on AIFB and AM, outperforming R-GCN in particular,
and on the other hand that the results reported in R-GCN [16] are
confirmed. In both datasets AIFB and AM, which are originally
modeled as RDF, E-R-GCN can outperform the baselines. Using a
Dirichlet distribution on class probabilities and assigning a R-GCN
to its parameters achieves a higher performance on the test dataset
and, moreover, makes no overconfident predictions. We will discuss
these aspects in more detail in Section 3.2.

Compared to the AIFB and AM datasets, E-R-GCN can outper-
form R-GCN on the MUTAG and BGS datasets, but not WL on
MUTAG and RDF2Vec on BGS. The reason is that the underlying
model of E-R-GCN is the same as R-GCN and therefore contains
similar characteristics. Both MUTAG and BGS are not originally
RDF graphs, but datasets which were converted into RDF. MUTAG
represents a chemical compound, where either atomic bonds or
the presence of a certain feature is indicated by the relations used.
Similarly, BGS encodes information about various rocks using hier-
archical feature descriptions, where either the presence of a certain
feature or feature hierarchy is indicated by the relations used. As
3https://github.com/TobiWeller/E-R-GCN

Table 2: Averaged entity classification results in accuracy
over ten runs on the test split.

Model AIFB MUTAG BGS AM

Feat 55.55 77.94 72.41 66.66
WL 80.55 80.88 86.20 87.37
RDF2Vec 88.88 67.20 87.24 88.33
R-GCN 92.22 73.97 75.86 89.14

E-R-GCN 95.56 74.56 76.55 89.85

a result of this modeling, the labeled entities in MUTAG and BGS
are connected only by high-degree hub nodes in which a particu-
lar feature is present for more precise determination of the label.
Due to the accumulation of messages from neighboring nodes in
R-GCN and E-R-GCN, these features are not allocated sufficient
value, resulting in them being neglected at high-degree nodes.

3.2 Predictive Uncertainty Performance
In order to first understand the output and the predicted uncer-
tainty, we visualize the Dirichlet distribution using the predicted
𝛼 parameters. For this purpose, we use the AIFB dataset and only
three of the four classes, since the Dirichlet distribution is usually
visualized as a triangle. Figure 2 shows the predicted 𝛼 parameter
for three entities of the AIFB dataset. In the first case, we observe
a clear assignment of the entity id57instance to the class affilia-
tion4 (𝛼 = (1, 1, 77.37877), 𝑢 = 0.051). In the second example, the
entity id2096instance, the predicted alpha parameters indicate a def-
inite assignment to the class affiliation2 (𝛼 = (31.56, 4.35, 1.00), 𝑢 =

0.10). The uncertainty is slightly increased, yet low that the model
does not consider this entity to be an out-of-distribution sample,
not following the training data. In the case of the third entity,
id2094instance, the assignment between the classes affiliation2 and
affiliation3 is not definite (𝛼 = (6.50, 8.74, 1.52), 𝑢 = 0.20). The entity
id2094instance belongs to the affiliation2, but due to the predicted
alpha parameters and the Dirichlet distribution, an assignment to
the class affiliation3 is most likely predicted. This indecision be-
tween the two classes can be visualized very well with the Dirichlet
distribution. The uncertainty is slightly increased, which is due to
the indecisiveness of the two class affiliations. Nevertheless, the
uncertainty is not too high so that it cannot be assumed that this
entity does not follow the distribution of the other entities of the
training set, i.e. it is an outlier. The higher uncertainty is due to

affiliation4

affiliation2 affiliation3 affiliation2 affiliation3 affiliation2 affiliation3

affiliation4 affiliation4
id57instance id2096instance id2094instance

Figure 2: Visualizations of Dirichlet parameters predicted by
our method to different entities in the test split.
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Figure 3: Comparison of predictions between E-R-GCN and R-GCN with increasing number of triples. While R-GCN suffers
much more on collapses in its probability assignment to the class affiliation4 (right panel), these fluctuations are not equally
pronounced in E-R-GCN (left panel).

relationships of common papers with entities of affiliation2, not
due to unknown distribution.

To demonstrate validate the robustness of the evidential model
and the advantage of modeling uncertainty compared to using a
standard softmax output of deep neural networks, we show to
what extent the classification probability and uncertainty using
the proposed method change compared to existing models that use
a softmax function as classification probability. For this we use a
similar approach as related papers [17]. We train the models on the
training dataset and apply it on an unseen subgraph, containing
the entity id2136instance from the test split. We first remove all
eleven incoming and outgoing relations of this entity and apply
the models to the resulting subgraph. We then gradually randomly
add the eleven relations back to the subgraph one by one and
apply the models to each, measuring performance and uncertainty.
This experimental setup will show how the models perform when
applying them on subgraphs with different amounts of information,
and how measuring the uncertainty can help to decide whether
applying the model on this unknown subgraph is reasonable.

Figure 3 shows the results of this experiment. We compare E-R-
GCN with R-GCN, since both use the same model but with different
loss functions and are therefore most suitable for comparison. For
both Models, in the absence of any information about the entity (i.e.
no triples to describe the entity), the probabilities of the assignments
are equal to 0.25 across all classes. With increasing number of
triples and thus information about the entity, the probability of
the assignment to the class affiliation4, which is the correct class,
increases. At the same time, the uncertainty of the E-R-GCN is 1.0
when no information about the entity is given (i.e., it is an out-of-
distribution sample w.r.t. the training set), and drops sucessively
when adding information about the entity.

Considering Figure 3, R-GCN is generally overconfident in its
predictions. For better visualization, the predictions of both models
have been marked at the locations 1, 5, and 11. R-GCN assigns
significantly higher probabilities to the class affiliation4, especially
at position 1, when the entity is described by only one triple, the
probability is already significantly higher than that of E-RGCN.
Due to this overestimation there are stronger drops in the proba-
bility assignment to the class affiliation4, in particular at position
2 and in [5, 8], when adding further triples about the entity. In

contrast, the probability assignments to the classes in the model
E-R-GCN are much more robust, so that the fluctuations are not as
significant. This moderate probability progression leads to much
more trustworthy and comprehensible predictions, especially when
considering an online learning approach. To validate the model,
we also applied it on a completely different knowledge graph for
which it was not trained, i.e., a subgraph of DBpedia to predict
the class affiliation of the entity Barack Obama4. The uncertainty
was 1.0, as expected, since the model was never trained on this
graph. However, based on the specification of this uncertainty of
the model, this can be used as an indicator of whether or not the
model at hand is suitable for application on this graph5.

4 CONCLUSIONS
In this work, we have shown how to combine Relational Graph
Convolutional Neural Networks with recent research in the field of
Evidential Learning for entity classification. Instead of using a soft-
max function as an output layer like in previous R-GCN models, we
have designed the model by placing a Dirichlet distribution on the
class probabilities. The experimental results show a performance
increase compared to the previous R-GCN model. The use of the
evidential learning approach makes no overconfident predictions
and allows to specify uncertainties of the model and thus to ac-
curately determine whether a model is suitable for prediction on
a subgraph, which is currently not considered in classical ML ap-
proaches. This is particularly important when considering dynamic
changes in knowledge graphs or to detect out-of-distribution sam-
ples. We would like to pursue this approach further in the future,
both applying the learning approach to extensions to R-GCN, e.g.,
with attention layers, and modifying the model to allow knowledge
graph completions in dynamic knowledge graphs. Furthermore,
we would like to apply this approach within an active learning
framework, using the uncertainty metric for determining which
data points should be labeled.
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