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Abstract

This paper considers learning deep features from long-

tailed data. We observe that in the deep feature space, the

head classes and the tail classes present different distribu-

tion patterns. The head classes have a relatively large spa-

tial span, while the tail classes have a significantly small

spatial span, due to the lack of intra-class diversity. This

uneven distribution between head and tail classes distorts

the overall feature space, which compromises the discrimi-

native ability of the learned features. In response, we seek

to expand the distribution of the tail classes during train-

ing, so as to alleviate the distortion of the feature space. To

this end, we propose to augment each instance of the tail

classes with certain disturbances in the deep feature space.

With the augmentation, a specified feature vector becomes

a set of probable features scattered around itself, which is

analogical to an atomic nucleus surrounded by the electron

cloud. Intuitively, we name it as “feature cloud”. The intra-

class distribution of the feature cloud is learned from the

head classes, and thus provides higher intra-class varia-

tion to the tail classes. Consequentially, it alleviates the

distortion of the learned feature space, and improves deep

representation learning on long tailed data. Extensive ex-

perimental evaluations on person re-identification and face

recognition tasks confirm the effectiveness of our method.

1. Introduction

Large-scale datasets play a crucial role in deep repre-

sentation learning, as well as in many other deep learning

based visual tasks. In the real-world, large-scale datasets

often exhibit extreme long-tailed distribution [8, 10]. Con-

cretely, some identities have sufficient samples, while for

other massive identities, only very few samples are avail-

able. They are defined as the head classes and tail classes,

respectively. Long-tailed distribution poses great challenge
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to deep representation learning [1].

We investigate the impact of long-tailed distribution with

focus on the deeply learned feature space. In a specified

deep representation task, i.e., person re-identification (re-

ID), We visualize several neighboring head classes in Fig. 1

and find that the sample number is an important factor for

intra-class diversity. Firstly we observe the original distri-

bution of the head classes in Fig. 1 (a). The head classes

can be well distinguished with a distinct margin. With rich

intra-class diversity, each head class occupies a wide span in

the feature space. Further, we reduce the samples of some

head classes so they change to tail classes. As is shown

in Fig. 1 (b), we discover that samples from tail class dis-

tribute narrowly in the learned feature space, due to the lack

of intra-class diversity. This uneven distribution distorts the

overall feature space and consequentially compromises the

discriminative ability of the learned features.

To be more concrete, we further quantitatively investi-

gate the intra-class diversity w.r.t. the long-tailed distribu-

tion. Given a specified class, we calculate the geometric an-

gles between the features and the corresponding class center

in the deep feature space. We transform a re-ID dataset (i.e.,

DukeMTMC-reID) into a long-tailed one by setting some

classes to have only 4 samples. Under a popular baseline

for deep representation learning [35], the variations of head

classes are distributed within 0.463 ± 0.030 (95% Confi-

dence Interval (CI)). In contrast, the variations of tail classes

are significantly small, with 0.288 ± 0.023 as the 95% CI.

Such observations further confirms that 1) tail classes have

smaller variance and 2) the sample number per class is the

dominating factor on the variance.

With this insight, we propose to transfer the intra-class

distribution of head classes to tail classes in the feature

space. Our target is to encourage the tail classes to achieve

similar intra-class angular variability with the head classes

in training. Specifically, we first calculate the distribution

of angles between the features of head class and their corre-

sponding class center. By averaging the angular variances

of all the head classes, we obtain the overall variance of

head classes. Next, we consider transferring the variance



Figure 1. We select several classes from DukeMTMC-reID dataset [44, 24] then visualize features in the embedding layer with t-SNE [32].

(a) The visualization of features from head classes (dot). With the wide region in the feature space, each class can be well distinguished.

(b) We reduce the samples of some head classes so that they become tail classes (triangle). With these tail classes, the spanned feature

space is narrowed, which leads to the distortion of the original feature space. So it is hard for the tail classes to be separated from other

classes. (c) In training, the space is expanded for the tail class so that it is pushed away from others.

of head class to each tail class. To this end, we propose to

augment each tail class instance with certain disturbances in

the deep feature space. With the augmentation, a specified

feature vector becomes a set of probable features scattered

around itself, which is termed “feature cloud”. Each in-

stance with the corresponding feature cloud will have a rel-

atively large distribution range, making the tail classes have

a similar angular distribution with head class. Our method

enforces stricter supervision on the tail classes, and thus

leads to higher within-class compactness. As Fig. 1 (c)

shows, with the compensation of intra-class diversity dur-

ing training, the tail classes are separated from other classes

by a clear margin. Under the setting of re-ID mentioned be-

fore, the intra-class angular variance of tail classes turns out

over even lower (than the tail classes in baseline), which is

cenntered at 0.201.

Moreover, to improve the flexibility of the method, we

abandon the explicit definition of head class and tail class.

Compared with some methods that divide the two classes,

our approach makes the calculation entirely related to the

distribution of dataset, and there is no human interference.

We summarize the contributions of our work as follows:

• We propose a learnable embedding augmentation per-

spective to alleviate the problem of discriminative

feature learning on long-tailed data, which transfers

the intra-class angular distribution learned from head

classes to tail classes.

• Extensive ablation experiments on re-ID and face

recognition demonstrate the effectiveness of the pro-

posed method.

2. Related Work

Feature learning on imbalanced datasets. Re-

cent works for feature learning on imbalanced data are

mainly divided into three manners: re-sampling [1], re-

weighting [21], and data augmentation[3]. The re-sampling

technique includes two types: over-sampling the tail classes

and under-sampling the head classes. Over-sampling man-

ner samples the tail data repeatedly, which enables the clas-

sifier to learn tail classes better. But it may lead to over-

fitting of tail classes. To reduce the risk of over-fitting,

SMOTE [2] is proposed to generate synthetic data of the

tail class. It randomly places the newly created instances

between each tail class data point and its nearest neighbor.

The under-sampling manner [6] reduces the amount of data

from head classes while keeping the tail classes. But it may

lose valuable information on head classes when data imbal-

ance is extreme. The re-weighting approach assigns differ-

ent weights for different classes or different samples. The

traditional method re-weights classes proportionally to the

inverse of their frequency of samples. Cui et al. [4] improve

the re-weighting by the inverse effective number of sam-

ples. Li et al. [18] propose a method which down-weights

examples with either very small gradients or large gradients

because examples with small gradients are well-classified

and those with large gradients tend to be outliers. Recently,

data augmentation methods based on Generative Adversar-

ial Network (GAN) [3] are popular. [41] and [9] transfer the

semantic knowledge learned from the head classes to com-

pensate tail classes, which encourage the tail classes to have

similar data distribution to the head classes. All the meth-

ods divide the classes into the head or tail class, while our

method abandons the constraint.

Loss function. Loss function plays an important role

in deep feature learning, and the most popular one is the

Softmax loss [28]. However, it mainly considers whether

the samples can be correctly classified and lacks the con-

straint of inter-class distance and intra-class distance. In or-

der to improve the feature discrimination, many loss func-
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Figure 2. Overview of our proposed framework. The head data and tail data are fed into the deep network to obtain the features. We

calculate the distribution of angles between the features and the class center for head class and tail class, respectively. Subsequently, we

transfer the angular variance of head class (red curve) to tail class (green curve). In other words, based on the original distribution of tail

class, we add an additional distribution (yellow curve). Then we get a new distribution of tail class (blue curve). Finally, we use the head

data and the new tail data to calculate the loss.

tions are proposed to enhance the cosine and angular mar-

gins between different classes. Wen et al. [39] design a

center loss to reduce the distance between the sample and

the corresponding class center. The L2-Softmax [23] and

NormFace [34] add normalization to produce represented

features and achieve better performance. Besides normal-

ization, adding a margin can enhance the discrimination

of features by inserting distance among samples of differ-

ent classes. A-Softmax Loss [20] normalizes the weights

and adds multiplicative angular margins to learn more di-

visible angular characteristics. CosFace [35] adds an ad-

ditive cosine margin to compress the features of the same

class in a compact space, while enlarging the gap of fea-

tures of different classes. ArcFace [5] puts an additive mar-

gin into angular space so that the loss relies on both sine

and cosine dynamically to learn more angular characteris-

tics. CosFace [35] and ArcFace [5] are chosen as baseline.

Althoughwe model the intra-class angle, which is similar

to them, our goal is to solve the problem of discriminative

feature learning on long-tailed data.

3. The Proposed Approach

In this section, A brief description of our method is given

in Section 3.1. We review the baseline in Section 3.2. We

describe the updating process of the class center and the

calculation of angular distribution in Section 3.3. The con-

struction of the feature cloud is detailed in Section 3.4.

3.1. Overview of Framework

The framework of our method is shown in Fig. 2. First,

the head data and tail data are fed into the deep model to

extract features. And we consider to model the distribution

of intra-class features by the distribution of angles between

features and their corresponding class center. Then the cen-

ter of each class is calculated, as to be detailed in Sec-

tion 3.3. We build an angle memory for each class, which is

used to store the angles between the features and their class

center. Assuming the angles obey the Gaussian distribution,

the angular distributions of head class and tail class can be

denoted as θh ∼ N(µh, σ
2
h) and θt ∼ N(µt, σ

2
t ), respec-

tively. Next, we transfer the angular variance learned from

the head class to every tail class. Consequently, the intra-

class angular diversity of tail class is similar to the head

class. Specifically, we build a feature cloud around each

tail instance. An instance sampled from the feature cloud

has the same identity with the tail instance. The angle be-

tween them is θ∆ and θ∆ ∼ N(0, σ2
h − σ2

t ). We assume the

two distribution: θt ∼ N(µt, σ
2
t ) and θ∆ ∼ N(0, σ2

h − σ2
t )

are independent of each other. By transformation, the

new intra-class angular distribution of tail class is built as

θt + θ∆ ∼ N(µt, σ
2
h) in training process. Finally, we use

the original features of head classes and the reconstructed

features of tail classes to calculate the loss.

3.2. Baseline Methods

The traditional softmax loss optimizes the decision

boundary between two categories, but it lacks the con-

straint of inter-class distance and intra-class distance. Cos-

Face [35] effectively minimizes intra-class distance and

maximums inter-class distance by the introducing a co-

sine margin to maximize the decision margin in the angular

space. The loss function can be formulated as:

L1 = −
1

N

N∑

n=1

log
es(cos(θyn )−mc)

es(cos(θyn )−mc) +
∑C

j 6=yn
es cos(θj)

,

(1)
where N and C are the mini-batch size and the number of

total classes, respectively. yn is the label of n-th image.



We define the feature vector of n-th image and the weight

vector of class yn as fn and Wy , respectively. fn and Wy

are normalized by l2 normalisation and the norm of feature

vector is rescaled to s. θyn
is the angle between the weight

Wy and the feature fn. mc is a hyper-parameter controlling

the magnitude of the cosine margin.

Different from CosFace [35], ArcFace [5] employs an

additive angular margin loss, which is formulated as:

L2 = −
1

N

N∑

n=1

log
es(cos(θyn+ma))

es(cos(θyn+ma)) +
∑C

j 6=yn
es cos(θj)

,

(2)
where ma is an additive angular margin penalty between

feature vector fn and its corresponding Wy . It aims to en-

hance the intra-class compactness and inter-class distance

simultaneously.

In this paper, we choose CosFace [35] and ArcFace [5]

as baseline. The reasons are as follows:

• They have achieved the state-of-the-art performance in

the face recognition task, which can be seen as strong

baselines in the community of deep feature learning.

• They optimize the intra-class similarity by achieving

much lower intra-class angular variability. Since our

method employs intra-class angles to model the intra-

class feature distribution, the two loss functions can be

naturally combined with our method.

3.3. Learning the intraclass angular distribution

The intra-class angular diversity can intuitively show the

diversity of intra-class features. In this section, we study the

distribution of angles between the features and their corre-

sponding class center. ci denotes the i-th class center of

features. fk
i is the k-th instance feature of class i. ci has

the same dimension as fk
i . So, we can calculate the angle

between fk
i and ci as follow:

βi,k = arccos(
fk
i ci

||fk
i ||||ci||

), (3)

where the ci should be updated in the training process-

ing. Ideally, we need to take the entire training samples

into account and average the features of every class in each

epoch. Obviously, this approach is impractical and ineffi-

cient. Inspired by [39], we also perform the update based

on a mini-batch. In each mini-batch, the class center is com-

puted by averaging the feature vectors of the corresponding

class. To avoid the misleading by some mislabelled sam-

ples, we set a center learning rate γ to update the class cen-

ter. The updating method of ci is formulated as:

cli = (1− γ)cli + γcl−1
i , (4)

where cli is the center of class i in l-th mini-batch. Each

class center is updated by the center of current and previous

mini-batch.

Transfer

Figure 3. We transfer the intra-class angular distribution learned

from the head class to the tail class.

For the class i, we maintain an angle memory βi to

store the angles between the features and their correspond-

ing class center ci. The size of angle memory is formulated

as:

Si = Ki × P. (5)

Ki is the sample number of the i-th class. P is a hyper-

parameter determining the angle memory per class. Then

we calculate the mean µi and variance σ2
i of βi. The angular

distribution of the class i is formulated as N(µi, σ
2
i ).

3.4. Constructing the feature cloud for tail data

In this section, we elaborate the process of constructing

the feature cloud for a tail instance. First, like the previous

works [41, 46], we assign a label to mark the head and tail

class, yielding the vanilla version. On the other hand, we

introduce a full version which abandons the explicit division

of head and tail class. This manner is more flexible since it

is only related to the distribution of the dataset.

Vanilla version. We strictly divide the head class and the

tail class through a threshold T . If the number of samples

belonging to class i is larger than T , the i-th class is defined

as a head class. Otherwise, it is defined as a tail class.

In the Section 3.3, we have calculated the angular dis-

tribution of each class, which is assumed to lie in Gaussian

distribution. By averaging the variance of all head classes,

we obtain the overall variance of the head class. The mean

is computed in the similar way. So the overall angular dis-

tribution of the head class is as follow:

µh =

Ch∑
z=1

µz

Ch

, σ2
h =

Ch∑
z=1

σ2
z

Ch

, (6)

where Ch is the number of head classes. µz and σ2
z is the

angular mean and variance of the z-th head class, respec-

tively. µh and σ2
h describe the overall angular distribution

of the head class. We can also obtain the class center for ev-

ery tail class. The angular distribution of the x-th tail class

is denoted as N(µx
t , σ

x
t
2).

For the head classes, they include sufficient samples

which show the intra-class angular diversity. In general, σh

is greater than σt, so our target is to transfer σ2
h to each tail

class. As is shown in Fig. 3, we construct a feature cloud

around each feature of x-th tail class. By this way, the space



spanned by tail class is enlarged, in training, and the real

tail instances are pushed away from other classes. The an-

gle between the feature belonging to the x-th tail class and

a feature sampled from its corresponding feature cloud is

αx, where αx ∼ N(0, σ2
h − σx

t
2) and αx ∈ R

1×C . In train-

ing, the feature sampled from the feature cloud shares the

same identity with the real tail feature. We have assumed

the two distributions: N(µx
t , σ

x
t
2) and N(0, σ2

h − σx
t
2) are

independent of each other in Section 3.1. So the original

angular distribution of the x-th tail class is transferred from

N(µx
t , σ

x
t
2) to N(µx

t , σh
2).

The new loss functions based on CosFace [35] and Arc-

Face [5] are defined as:

L3 = −
1

N

N∑

n=1

log
es(cos(θyn+αy)−mc)

es(cos(θyn+αy)−mc) +
∑C

j 6=yn
es cos(θj+αy)

,

(7)

L4 = −
1

N

N∑

n=1

log
es(cos(θyn+αy+ma))

es(cos(θyn+αy+ma)) +
∑C

j 6=yn
es cos(θj+αy)

,

(8)

in Eq.7 and 8, θ + α and θ + α + ma are all clipped in

the range [0, π]. N and C are the mini-batch size and class

number, respectively. θyn
is the angle between the feature

fn and the weight Wy . s is the scale, and mc, ma are the

cosine margin and the angular margin in CosFace [35] and

ArcFace [5], respectively. If yn is a head class, αy = 0. As

the training progresses, the tail class has the rich angular

diversity as head class.

Actually, we approximate the angle (θ′) between the fea-

ture sampled from feature cloud and the weight. If α > 0,

we approximate θ′ by the upper bound of it, and the lower

bound when α ≤ 0. The proof is given below.

Proposition. We denote a feature in the tail class as f , and

W is the corresponding weight vector in the full connection

layer. f ′ is a feature randomly sampled from the feature

cloud around f .

〈f,W 〉 = θ, 〈f, f ′〉 = α+, 〈W, f ′〉 = θ′,

‖f‖ = ‖w‖ = ‖f ′‖ = 1, 0 ≤ θ + α+ ≤ π,

where 〈a, b〉 represents the angle between vector a and b,
and ‖a‖ represent the norm of vector a. We want to prove:

|θ − α+| ≤ θ′ ≤ θ + α+.

Proof. Simply, we suppose that f = [1, 0, · · · , 0], then

W = [cos θ, w2, · · · , wn]. We use the Householder

transformation [13] to transform W to V , where V =
[cos θ, sin θ, 0, · · · , 0]. Let P = I − 2U · UT , where U =

W − V /‖W − V ‖, then f = Pf, V = PW, f̂ ′ = Pf ′. P
is an orthogonal transformation which preserves the inner

product and norm. Therefore, we have

〈f, V 〉 = θ, 〈f, f̂ ′〉 = α+, 〈V, f̂ ′〉 = θ′.

Denote f̂ ′ = [f̂ ′
1, f̂

′
2, · · · , f̂

′
n], then

cosα+ = f · f̂ ′ = f̂ ′
1, f̂ ′

2

2
+ · · ·+ f̂ ′

n

2
= sin2α+.

We get f̂ ′
2 sin θ ∈ [−sinα+sinθ, sinα+sinθ], where θ ∈

[0, π]. Further, we have

cos θ′ = f̂ ′ · V = cosα+ cos θ + f̂ ′
2 sin θ,

cos θ′ ∈ [cos(θ + α+), cos(θ − α+)].

We get the conclusion: |θ − α+| ≤ θ′ ≤ θ + α+.

Although α ∼ N(0, σ2), we only need to focus on α ∈
[−π, π], since θ + α is clipped in the range [0, π].

• when 0 ≤ α ≤ π, substituting α for α+, we have

|θ − α| ≤ θ′ ≤ θ + α, in which θ + α is the upper

bound.

• when −π ≤ α ≤ 0, substituting −α for α+, we have

|θ − (−α)| ≤ θ′ ≤ θ + α, which is equivalent to

θ + α ≤ θ′ ≤ θ − α, so θ + α is the lower bound.

Full version. The distorted feature space is well repaired

by constructing a feature cloud around a tail instance. But

the process in the vanilla version is inflexible. We set a

threshold T to divide the head and tail classes, artificially.

The overall angular distribution in Eq.6 only depends on

the head classes. In the full version, the explicit definition

is discarded. We have observed that the intra-class diversity

is positively correlated with the sample number, in general.

Therefore, we calculate the overall variance by weighting

the angular variance of each class. The weight is the sample

number per class. The final variance is formulated as:

σ2 =

C∑

i=1

(Ki − 1)σ2
i∑

(Ki − 1)
, (9)

where C is the number of classes, and Ki is the number of

samples belong to class i. σ2
i is the angular variance of the

i-th class. A smaller Ki means that the variance of the i-th
class almost has no contribution to the final variance, so the

final variance mainly depends on the classes with sufficient

samples. For i-th class, if σ2
i < σ2, it means the class i has

poor intra-class diversity. Therefore αy is available in Eq.7

and 8, and we construct the feature cloud for each instance

sampled from class i.
The advantage of the full version is that the calculation

of feature cloud entirely depends on the distribution of the

dataset. There is no human interference in the process.

4. Experiments

In this section, we conduct extensive experiments to con-

firm the effectiveness of our method. First we describe the

experimental settings. Then we show the performance on

person re-identification and face recognition with different

long-tailed settings.



4.1. Settings

Person re-identification. Evaluations are conducted on

three datasets: Market-1501 [42], DukeMTMC-reID [24,

44] and MSMT17 [37]. To study the impact of the ratio

between head classes and tail classes on training a re-ID

system, we construct several long-tailed datasets based on

the original dataset. We rank the classes by their number of

samples. The top 150, 100, 50 and 20 identities are marked

as the head class, respectively. The rest is treated as the

tail classes, and the number of samples is reduced to 5 each

class. In this way, we form the training sets of 〈H150, S5〉,
〈H100, S5〉, 〈H50, S5〉, and 〈H20, S5〉. For training, we

choose the widely used ResNet-50 [11] as the backbone.

The last layer of the network is followed by a Batch Nor-

malization layer (BN). The optimizer is Adam. The scale

s and mc of CosFace [35] are set to be 24 and 0.2, respec-

tively. The scale s and ma of ArcFace [35] are set to be 16
and 0.2, respectively. The learning rate of class center γ is

set to be 0.1. For testing, the 2048-d global features after

BN are used for evaluation. The cosine distance of features

is computed as the similarity score. We use two evaluation

metrics: Cumulative Matching Characteristic (CMC) and

mean average precision(mAP) to evaluate our method.

Face recognition. We adopt the widely used dataset

MS-Celeb-1M for training. The original MS-Celeb-1M

data is known to be very noisy, so we clean the dirty face

images and exclude the 79K identities and 1M images. We

rank the classes through the number of samples they have.

The top 5K and 3K are selected as head classes. Among

the rest classes, we select the first 10K and 20K as tail

classes and randomly pick 5 images per class. In this way,

we form the training set of 〈H5K,T20K〉, 〈H5K,T10K〉,
〈H3K,T20K〉 and 〈H3K,T10K〉. The face images are

resized to 112 × 112. For training, we choose the ResNet-

18 [11] as our backbone. We train the model for 30 epoch

by adopting the triangular learning rate policy[26], and con-

struct feature cloud at the start of the third cycle. The scale

s and mc of CosFace [35] are set to be 64 and 0.35. The

scale s and ma of ArcFace [35] are set to be 64 and 0.5.

We extract 512-D features for model inference. For test-

ing, we evaluate our method on LFW [14], MegaFace chal-

lenge1 (MF1) [17] and IJB-C [22]. We report our results

on the Rank-1 accuracy of LFW and MF1, and different

TPR@FPR of IJB-C TPR@FPR.

4.2. Experiments on person reidentification

Performance of baseline. Table 1 reports the results of

the baseline. We compare our baseline with the advanced

methods. Our baseline achieves very competitive perfor-

mance, which is reliable.

Comparison with state-of-the-art approaches. We

compare our full version with the state-of-the-art methods

on Market-1501 and DukeMTMC-reID. The comparisons

Methods
Market-1501 DukeMTMC MSMT17

mAP Rank-1 mAP Rank-1 mAP Rank-1

HA-CNN [19] 75.7 91.2 63.8 80.5 - -

PCB [30] 77.4 92.3 66.1 81.8 40.4 68.2

Mancs [33] 82.3 93.1 71.8 84.9 - -

CosFace 79.5 92.4 73.0 85.6 49.2 75.3

ArcFace 81.1 92.5 73.2 85.8 50.5 75.5

Table 1. Comparison with the advanced methods on the Market-

1501, DukeMTMC-reID and MSMT17 datasets

Methods
Market-1501 DukeMTMC

mAP Rank-1 mAP Rank-1

GF

SVDNet [29] 62.1 82.3 56.8 76.7

BraidNet [36] 69.5 83.7 69.5 76.4

CamStyle [47] 71.6 89.5 57.6 78.3

Advesarial [15] 70.4 86.4 62.1 79.1

Dual [7] 76.6 91.4 64.6 81.8

Mancs [33] 82.3 93.1 84.9 71.8

IANet [12] 83.1 94.4 73.4 87.1

DG-Net [43] 86.0 94.8 74.8 86.6

PF

AACN [40] 66.9 85.9 59.2 76.8

PSE [25] 69.0 87.7 62.0 79.8

PCB [30] 77.4 92.3 66.1 81.8

SPReID [16] 81.3 92.5 70.9 84.4

Ours
LEAP-CF 84.2 94.4 74.2 87.8

LEAF-AF 83.2 93.5 74.2 86.9

Table 2. Comparison with state-of-the-art methods on Market-

1501 and DukeMTMC-reID. Three groups: global features(GF),

part features(PF) and ours. LEAP-CF and LEAP-AF are our full

version combined with CosFace and ArcFace, respectively.

are reported in Table 2. It shows that our baseline has sur-

passed many advanced methods. And our method further

improve the performance compared with baseline. Specif-

ically, LEPA-CF achieves 94.4% on rank-1 for Market-

1501, and 87.8% on rank-1 for DukeMTMC-reID. We

also evaluate our method on a recently released dataset

MSMT17 [37]. The result is shown in Table 3. Compared

with DG-Net [43], our performance is very close to it. How-

ever, our method is a simple but efficient method, which

does not use GAN to generate many image-level samples.

Methods mAP Rank-1 Rank-5 Rank-10

GoogleNet [31] 23.0 47.6 65.0 71.8

Pose-driven [27] 29.7 58.0 73.6 79.4

Verif-Identif [45] 31.6 60.5 76.2 81.6

GLAD [38] 34.0 61.4 76.8 81.6

PCB [30] 40.4 68.2 81.2 85.5

IANet [12] 46.8 75.5 85.5 88.7

DG-Net [43] 52.3 77.2 87.4 90.5

LEAP-CF 50.8 76.7 86.9 90.0

LEAP-AF 51.3 76.3 86.5 89.8

Table 3. Comparison with advanced methods on the MSMT17.

Evaluation with the vanilla version. We evaluate the
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Figure 4. Comparison of vanilla version and full version on Market-1501 and DukeMTMC-reID. LEAP-CV and LEAP-AV are our vanilla

version combined with CosFace and ArcFace, respectively. LEAP-CF and LEAP-AF are our full version combined with CosFace and

ArcFace, respectively.

Dataset → Market-1501 DukeMTMC

Train ↓ Method ↓ mAP Rank-1 mAP Rank-1

〈H150, S5〉

CosFace 67.3 86.3 57.3 75.6

LEAP-CV 70.6 86.9 59.4 77.1

ArcFace 70.6 87.3 60.2 77.6

LEAP-AV 71.3 87.9 60.6 78.7

〈H100, S5〉

CosFace 62.8 83.3 52.6 70.3

LEAP-CV 68.7 86.5 55.6 74.8

ArcFace 68.0 86.6 56.7 74.8

LEAP-AV 69.8 87.3 57.9 76.5

〈H50, S5〉

CosFace 60.5 80.7 48.0 67.7

LEAP-CV 67.3 84.9 53.1 73.0

ArcFace 64.2 83.8 51.1 71.1

LEAP-AV 67.1 84.6 54.4 73.5

〈H20, S5〉

CosFace 55.6 78.6 47.0 66.0

LEAP-CV 64.1 83.2 52.4 72.7

ArcFace 60.1 81.1 50.5 69.3

LEAP-AV 64.3 82.2 54.2 73.7

Table 4. Controlled experiments by varying the ratio between head

and tail data. H is the number of head class. S denotes that the

sample number per tail class. CosFace and ArcFace are baselines.

LEAP-CV and LEAP-AV are vanilla versions combined with Cos-

Face and ArcFace.

effectiveness of the vanilla version. For comparison, we

train the baseline model on the long-tailed re-ID datasets

under the supervision of CosFace [35] and ArcFace [5]. We

compare our method with baseline methods. The results

are shown in Table 4. We have the following observations.

First, compared with CosFace, ArcFace has higher Rank-1

and mAP accuracy on the same long-tailed setting. For ex-

ample, on Market-1501 with 〈H20, S5〉, ArcFace achieves

the Rank-1 accuracy of 81.1%, while the Rank-1 accuracy

of CosFace is 78.6%. This indicates that Arcface has a

stronger robustness for the long-tailed re-ID. Second, in

different long-tailed settings, the proposed LEAP method

combined with CosFace and ArcFace achieves consistently

better results than the baseline with significant margins.

This indicates that the LEAP is a robust method for long-

tailed data distribution. Third, as the long-tailed distribu-

tion is more serious, the improvement of our method be-

comes even more obvious. For example, in the 〈H20, S5〉
setting on DukeMTMC-reID, the improvement of LEAP-

CV reaches +6.7% (from 66.0% to 72.7%) in the Rank-1

accuracy.

Comparison between vanilla version and full version.

We show the results comparison of vanilla version and full

version under different long-tailed settings in Fig. 4. We

observe that the full version obtains the results very close to

vanilla version, and even better results in some settings. By

this experiment, we justify that compared with those meth-

ods which need a label to distinguish between head class

and tail class, the full version is more flexible.

Dataset → Market-1501 DukeMTMC

Train ↓ Method ↓ mAP Rank-1 mAP Rank-1

〈H20, S5〉

CosFace 55.6 78.6 47.0 66.0

LEAP-CF 65.2 83.4 52.7 72.8

ArcFace 60.1 81.1 50.5 69.3

LEAP-AF 63.9 83.2 54.2 73.6

〈H20, S4〉

CosFace 43.1 67.7 36.0 53.7

LEAP-CF 54.7 76.8 42.6 63.0

ArcFace 49.4 73.8 39.7 58.8

LEAP-AF 56.5 77.9 44.2 64.4

〈H20, S3〉

CosFace 31.9 55.5 25.6 40.8

LEAP-CF 43.5 67.2 33.2 51.1

ArcFace 36.2 60.1 28.9 46.7

LEAP-AF 44.1 66.1 34.3 53.3

Table 5. Impact analysis of different tail data for feature learning.

The impact of tail data. When the head class is re-

duced gradually and the tail data is increasing, the results

are shown in Table 5, we observe the effect of tail data on

performance. We gradually reduce the samples of each tail

class, which results in insufficient training data, and the per-

formance of the model drops dramatically. However, our

method still makes a large margin improvement over the

baseline. For example, in the 〈H20, S3〉 setting on Market-

1501, even the number of samples for each tail class is only

3, the improvement of LEAP-CF reaches +11.7% (from



Test → LFW MegaFace IJB-C(TPR@FPR)

Train ↓ Method ↓ Rank-1 Rank-1 1e-3 1e-4 1e-5

〈H5K,T10K〉

CosFace 98.73 81.41 83.35 73.32 63.42

LEAP-CV 98.88 81.78 83.83 73.96 64.64

ArcFace 98.60 81.08 82.30 72.45 62.46

LEAP-AV 98.67 81.69 83.16 72.97 63.22

〈H5K,T20K〉

CosFace 98.87 82.72 84.77 76.71 68.19

LEAP-CV 98.98 83.16 84.82 77.21 68.88

ArcFace 98.73 82.76 84.45 76.22 66.93

LEAP-AV 99.10 83.36 85.70 77.77 68.05

〈H3K,T10K〉

CosFace 97.65 72.27 79.08 68.06 56.52

LEAP-CV 97.97 73.19 79.60 69.18 58.89

ArcFace 97.82 72.45 78.24 66.99 55.31

LEAP-AV 98.07 73.43 78.84 67.82 55.75

〈H3K,T20K〉

CosFace 98.02 74.06 81.21 71.68 61.03

LEAP-CV 98.23 75.18 81.87 72.16 62.62

ArcFace 98.28 75.24 81.09 71.36 61.60

LEAP-AV 98.73 76.28 82.61 73.21 62.72

Table 6. Face recognition results on LFW, MF1 and IJB-C are reported by varying the ratio between head and tail classes in training sets.

H and T is the number of head class and tail class, respectively.
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Figure 5. Different timings of constructing the feature cloud for tail

data. (a) Combined our method with CosFace [35]. (b) Combined

our method with ArcFace [5]

55.5% to 67.2%) in the Rank-1 accuracy.

Timing of feature cloud for tail data. We investigate

the effect of timing of constructing a feature cloud for tail

data on Market-1501 and DukeMTMC-reID dataset. We

take a long-tailed version: 〈H20, S4〉 as an example. The

varying curve of the results is shown in Fig. 5. (a) Com-

bined with CosFace [35]. When epoch is in the range of 10
to 30, our results are just marginally impacted and the best

results are achieved. (b) Combined with ArcFace [5]. Our

results are impacted just marginally and the best results are

achieved from 20-th to 30-th epoch.

4.3. Experiments on face recognition

To further verify the observations in the re-ID task, we

perform a similar set of experiments on the face recognition

task. Different from re-ID, the dataset of face recognition

has a relatively large scale. In order to improve the training

efficiency, we update the class center every 5 iteration. The

result is shown in Table 6. On LFW, our performance is

improved slightly since LFW has been well solved. MF1

and IJB-C are the most challenging testing benchmark for

face recognition. We report the Rank-1 accuracy of MF1

and TPR@FPR of IJB-C. Compared with the baseline, our

method obtains consistency improvement. For example, in

the 〈H3K,T10K〉 setting, we evaluate our method on IJB-

C, the LEAP-CV improves TPR@FPR(1e-5) from 56.52%

to 58.89%. in the 〈H3K,T20K〉 setting, we evaluate our

method on MF1, the LEAP-CV improves Rank-1 accuracy

from 74.06% to 75.18%.

5. Conclusions

This paper proposes a novel approach for deep represen-

tation learning on long-tailed data. We observe that in the

deeply-learned feature space, the tail classes are prone to

lack of intra-class diversity, which consequentially distorts

the overall distribution of feature space. In response, we en-

hance the diversity of tail class with augmentation embed-

ded in deep feature space. The pattern of the augmentation

is learned from the head classes (with abundant intra-class

diversity) and transferred to tail classes in the manner of fea-

ture cloud. Experiments on person re-identification and face

recognition demonstrate the effectiveness of our method on

deep feature learning with long-tailed distribution.



References

[1] Mateusz Buda, Atsuto Maki, and Maciej A Mazurowski. A

systematic study of the class imbalance problem in convo-

lutional neural networks. Neural Networks, 106:249–259,

2018. 1, 2

[2] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and

W Philip Kegelmeyer. Smote: synthetic minority over-

sampling technique. Journal of artificial intelligence re-

search, 16:321–357, 2002. 2

[3] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha,

Sunghun Kim, and Jaegul Choo. Stargan: Unified genera-

tive adversarial networks for multi-domain image-to-image

translation. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 8789–8797,

2018. 2

[4] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge

Belongie. Class-balanced loss based on effective number of

samples. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 9268–9277,

2019. 2

[5] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos

Zafeiriou. Arcface: Additive angular margin loss for deep

face recognition. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 4690–

4699, 2019. 3, 4, 5, 7, 8

[6] Chris Drummond, Robert C Holte, et al. C4. 5, class im-

balance, and cost sensitivity: why under-sampling beats

over-sampling. In Workshop on learning from imbalanced

datasets II, volume 11, pages 1–8. Citeseer, 2003. 2

[7] Yang Du, Chunfeng Yuan, Bing Li, Lili Zhao, Yangxi Li, and

Weiming Hu. Interaction-aware spatio-temporal pyramid at-

tention networks for action classification. In Proceedings

of the European Conference on Computer Vision (ECCV),

pages 373–389, 2018. 6

[8] Mark Everingham, Luc Van Gool, Christopher KI Williams,

John Winn, and Andrew Zisserman. The pascal visual object

classes (voc) challenge. International journal of computer

vision, 88(2):303–338, 2010. 1

[9] Hang Gao, Zheng Shou, Alireza Zareian, Hanwang Zhang,

and Shih-Fu Chang. Low-shot learning via covariance-

preserving adversarial augmentation networks. In Advances

in Neural Information Processing Systems, pages 975–985,

2018. 2

[10] Yandong Guo, Lei Zhang, Yuxiao Hu, Xiaodong He, and

Jianfeng Gao. Ms-celeb-1m: A dataset and benchmark for

large-scale face recognition. In European Conference on

Computer Vision, pages 87–102. Springer, 2016. 1

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 6

[12] Ruibing Hou, Bingpeng Ma, Hong Chang, Xinqian Gu,

Shiguang Shan, and Xilin Chen. Interaction-and-aggregation

network for person re-identification. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 9317–9326, 2019. 6

[13] Alston S Householder. Unitary triangularization of a non-

symmetric matrix. Journal of the ACM (JACM), 5(4):339–

342, 1958. 5

[14] Gary B Huang, Marwan Mattar, Tamara Berg, and Eric

Learned-Miller. Labeled faces in the wild: A database

forstudying face recognition in unconstrained environments.

2008. 6

[15] Houjing Huang, Dangwei Li, Zhang Zhang, Xiaotang Chen,

and Kaiqi Huang. Adversarially occluded samples for per-

son re-identification. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 5098–

5107, 2018. 6

[16] Mahdi M Kalayeh, Emrah Basaran, Muhittin Gökmen,

Mustafa E Kamasak, and Mubarak Shah. Human seman-

tic parsing for person re-identification. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 1062–1071, 2018. 6

[17] Ira Kemelmacher-Shlizerman, Steven M Seitz, Daniel

Miller, and Evan Brossard. The megaface benchmark: 1

million faces for recognition at scale. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 4873–4882, 2016. 6

[18] Buyu Li, Yu Liu, and Xiaogang Wang. Gradient harmonized

single-stage detector. In Proceedings of the AAAI Confer-

ence on Artificial Intelligence, volume 33, pages 8577–8584,

2019. 2

[19] Wei Li, Xiatian Zhu, and Shaogang Gong. Harmonious at-

tention network for person re-identification. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 2285–2294, 2018. 6

[20] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha

Raj, and Le Song. Sphereface: Deep hypersphere embedding

for face recognition. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 212–220,

2017. 3

[21] Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan,

Kaiming He, Manohar Paluri, Yixuan Li, Ashwin Bharambe,

and Laurens van der Maaten. Exploring the limits of weakly

supervised pretraining. In Proceedings of the European Con-

ference on Computer Vision (ECCV), pages 181–196, 2018.

2

[22] Brianna Maze, Jocelyn Adams, James A Duncan, Nathan

Kalka, Tim Miller, Charles Otto, Anil K Jain, W Tyler

Niggel, Janet Anderson, Jordan Cheney, et al. Iarpa janus

benchmark-c: Face dataset and protocol. In 2018 Inter-

national Conference on Biometrics (ICB), pages 158–165.

IEEE, 2018. 6

[23] Rajeev Ranjan, Carlos D Castillo, and Rama Chellappa. L2-

constrained softmax loss for discriminative face verification.

arXiv preprint arXiv:1703.09507, 2017. 3

[24] Ergys Ristani, Francesco Solera, Roger Zou, Rita Cucchiara,

and Carlo Tomasi. Performance measures and a data set for

multi-target, multi-camera tracking. In European Conference

on Computer Vision, pages 17–35. Springer, 2016. 2, 6

[25] M Saquib Sarfraz, Arne Schumann, Andreas Eberle, and

Rainer Stiefelhagen. A pose-sensitive embedding for per-

son re-identification with expanded cross neighborhood re-



ranking. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 420–429, 2018.

6

[26] Leslie N Smith. Cyclical learning rates for training neural

networks. In 2017 IEEE Winter Conference on Applications

of Computer Vision (WACV), pages 464–472. IEEE, 2017. 6

[27] Chi Su, Jianing Li, Shiliang Zhang, Junliang Xing, Wen Gao,

and Qi Tian. Pose-driven deep convolutional model for per-

son re-identification. In Proceedings of the IEEE Interna-

tional Conference on Computer Vision, pages 3960–3969,

2017. 6

[28] Yi Sun, Xiaogang Wang, and Xiaoou Tang. Deep learning

face representation from predicting 10,000 classes. In Pro-

ceedings of the IEEE conference on computer vision and pat-

tern recognition, pages 1891–1898, 2014. 2

[29] Yifan Sun, Liang Zheng, Weijian Deng, and Shengjin Wang.

Svdnet for pedestrian retrieval. In Proceedings of the IEEE

International Conference on Computer Vision, pages 3800–

3808, 2017. 6

[30] Yifan Sun, Liang Zheng, Yi Yang, Qi Tian, and Shengjin

Wang. Beyond part models: Person retrieval with refined

part pooling (and a strong convolutional baseline). In Pro-

ceedings of the European Conference on Computer Vision

(ECCV), pages 480–496, 2018. 6

[31] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1–9, 2015.

6

[32] Laurens Van Der Maaten. Accelerating t-sne using tree-

based algorithms. The Journal of Machine Learning Re-

search, 15(1):3221–3245, 2014. 2

[33] Cheng Wang, Qian Zhang, Chang Huang, Wenyu Liu, and

Xinggang Wang. Mancs: A multi-task attentional network

with curriculum sampling for person re-identification. In

Proceedings of the European Conference on Computer Vi-

sion (ECCV), pages 365–381, 2018. 6

[34] Feng Wang, Xiang Xiang, Jian Cheng, and Alan Loddon

Yuille. Normface: l 2 hypersphere embedding for face veri-

fication. In Proceedings of the 25th ACM international con-

ference on Multimedia, pages 1041–1049. ACM, 2017. 3

[35] Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong

Gong, Jingchao Zhou, Zhifeng Li, and Wei Liu. Cosface:

Large margin cosine loss for deep face recognition. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 5265–5274, 2018. 1, 3, 4, 5, 6,

7, 8

[36] Yicheng Wang, Zhenzhong Chen, Feng Wu, and Gang Wang.

Person re-identification with cascaded pairwise convolu-

tions. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 1470–1478, 2018. 6

[37] Longhui Wei, Shiliang Zhang, Wen Gao, and Qi Tian.

Person transfer gan to bridge domain gap for person re-

identification. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 79–88,

2018. 6

[38] Longhui Wei, Shiliang Zhang, Hantao Yao, Wen Gao, and

Qi Tian. Glad: Global-local-alignment descriptor for pedes-

trian retrieval. In Proceedings of the 25th ACM international

conference on Multimedia, pages 420–428. ACM, 2017. 6

[39] Yandong Wen, Kaipeng Zhang, Zhifeng Li, and Yu Qiao. A

discriminative feature learning approach for deep face recog-

nition. In European conference on computer vision, pages

499–515. Springer, 2016. 3, 4

[40] Jing Xu, Rui Zhao, Feng Zhu, Huaming Wang, and Wanli

Ouyang. Attention-aware compositional network for person

re-identification. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 2119–

2128, 2018. 6

[41] Xi Yin, Xiang Yu, Kihyuk Sohn, Xiaoming Liu, and Man-

mohan Chandraker. Feature transfer learning for face recog-

nition with under-represented data. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 5704–5713, 2019. 2, 4

[42] Liang Zheng, Liyue Shen, Lu Tian, Shengjin Wang, Jing-

dong Wang, and Qi Tian. Scalable person re-identification:

A benchmark. In Proceedings of the IEEE international con-

ference on computer vision, pages 1116–1124, 2015. 6

[43] Zhedong Zheng, Xiaodong Yang, Zhiding Yu, Liang Zheng,

Yi Yang, and Jan Kautz. Joint discriminative and generative

learning for person re-identification. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 2138–2147, 2019. 6

[44] Zhedong Zheng, Liang Zheng, and Yi Yang. Unlabeled sam-

ples generated by gan improve the person re-identification

baseline in vitro. In Proceedings of the IEEE International

Conference on Computer Vision, pages 3754–3762, 2017. 2,

6

[45] Zhedong Zheng, Liang Zheng, and Yi Yang. A discrimi-

natively learned cnn embedding for person reidentification.

ACM Transactions on Multimedia Computing, Communica-

tions, and Applications (TOMM), 14(1):13, 2018. 6

[46] Yaoyao Zhong, Weihong Deng, Mei Wang, Jiani Hu,

Jianteng Peng, Xunqiang Tao, and Yaohai Huang. Unequal-

training for deep face recognition with long-tailed noisy data.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 7812–7821, 2019. 4

[47] Zhun Zhong, Liang Zheng, Zhedong Zheng, Shaozi Li,

and Yi Yang. Camera style adaptation for person re-

identification. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 5157–

5166, 2018. 6


