
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FLAT-LORA: LOW-RANK ADAPTION OVER A FLAT
LOSS LANDSCAPE

Anonymous authors
Paper under double-blind review

ABSTRACT

Fine-tuning large-scale pre-trained models is prohibitively expensive in terms
of computational and memory costs. Low-Rank Adaptation (LoRA), a popu-
lar Parameter-Efficient Fine-Tuning (PEFT) method, provides an efficient way to
fine-tune models by optimizing only a low-rank matrix. Despite recent progress
made in improving LoRA’s performance, the connection between the LoRA op-
timization space and the original full parameter space is often overlooked. A
solution that appears flat in the LoRA space may exist sharp directions in the full
parameter space, potentially harming generalization performance. In this paper,
we propose Flat-LoRA, an efficient approach that seeks a low-rank adaptation
located in a flat region of the full parameter space. Instead of relying on the well-
established sharpness-aware minimization approach, which can incur significant
computational and memory burdens, we utilize random weight perturbation with
a Bayesian expectation loss objective to maintain training efficiency and design a
refined perturbation generation strategy for improved performance. Experiments
on natural language processing and image classification tasks with various archi-
tectures demonstrate the effectiveness of our approach.

1 INTRODUCTION

Pre-training followed by fine-tuning is a widely adopted training pipeline among modern machine
learning practitioners for achieving state-of-the-art (SOTA) performance (Girshick et al., 2014;
Kolesnikov et al., 2020; Wortsman et al., 2022; Yu et al., 2024b), leveraging the versatile knowl-
edge within the pre-trained models. However, the enormous size of these pre-trained models makes
fine-tuning all parameters for downstream tasks resource-intensive, making it impractical to store
optimizer states or multiple model weights when dealing with multiple tasks. Recently, Low-Rank
Adaptation (LoRA) (Hu et al., 2022) has been proposed to address this resource challenge. In LoRA
fine-tuning, only a low-rank matrix is optimized and then added to the pre-trained weights after
training, incurring no additional computational or memory costs during inference. This approach
significantly reduces the number of trainable parameters, thereby lowering the training cost as well
as storage cost when dealing with different tasks.

X

4
2

0
2

4

Y

4
2

0
2

4

l

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure 1: Illustration of LoRA optimiza-
tion. LoRA constrains training in a lower-
dimensional subspace (blue). A flat minima in
LoRA subspace (blue curve) may exhibit sharp
direction in full parameter space (red curve).

Many works have been proposed to enhance the
performance of LoRA by introducing more ded-
icated budgets for rank allocation (Zhang et al.,
2023a), decomposing optimization for direction
and magnitude updates (Liu et al., 2024b), or de-
signing better initialization strategy for LoRA pa-
rameters (Meng et al., 2024; Wang et al., 2024),
etc. These studies demonstrate the significant po-
tential for improving LoRA performance. How-
ever, the connection between the LoRA optimiza-
tion space and the original full parameter space
is often overlooked. Essentially, LoRA restricts
training to a much lower-dimensional subspace,
and its performance depends on the properties of
the solutions within this subspace in relation to the
full parameter space, as the merged weights are ul-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

timately used during inference. As illustrated in Figure 1, a flat minima in the LoRA space (blue)
may exhibit sharp direction (red) in the view of the full parameter space, which potentially degener-
ates the generation performance.

It is widely believed that minima with a flatter loss landscape can better adapt to distribution shifts
between training and test datasets and lead to improved generalization performance (Hochreiter
& Schmidhuber, 1994; 1997). This idea has given rise to a well-established training strategy called
Sharpness-Aware Minimization (SAM), which has shown great generalization improvement in train-
ing neural networks. Applying SAM to large language models (LLMs)’ training together with LoRA
is certainly promising, but there are several issues should be discussed. First, unlike the existing at-
tempts that flatten the landscape in a LoRA subspace (Li et al., 2024a), which is not aware of the
sharpness outside the LoRA space, we pursue a solution that aligns with a flatter loss landscape in
the full weight space. Second, the original SAM doubles the training time cost, which is impractical
for fine-tuning large models. Additionally, to capture the sharpness of the full parameter space, we
need to calculate the gradients and store the perturbations of the full weights, which contradicts the
principles of parameter-efficient fine-tuning (PEFT). To cope with these challenges, we propose us-
ing random weight perturbations that do not require additional gradient steps and can be efficiently
stored with random seeds to maintain time efficiency and memory, and design effective generation
strategies to improve generalization performance.

Our main contribution can be summarized as follows:

• We propose Flat-LoRA that firstly aims to optimize the sharpness of the loss landscape
within the full parameter space where the low-rank adaptation resides. It incurs minimal
additional computational and memory costs and can be easily integrated with existing tech-
niques to enhance LoRA performance, delivering consistent improvements.

• We propose to use expected Bayesian loss to optimize the sharpness for keeping the training
efficiency and design effective generation strategy to generate random weight perturbation
to enhance the generalization performance, making it easy for practical usage.

• Experiments on natural language processing and computer vision tasks with various scales
of models to demonstrate that our approach can achieve state-of-the-art performance.

2 RELATED WORK

2.1 FLAT MINIMA AND GENERALIZATION

The connection between the flatness of local minima and generalization has received much atten-
tion (Hochreiter & Schmidhuber, 1997; Chaudhari et al., 2017; Keskar et al., 2017; Dinh et al., 2017;
Izmailov et al., 2018; Li et al., 2018b; Wu et al., 2020). Recently, many works have tried to improve
generalization by seeking flat minima (Tsuzuku et al., 2020; Zheng et al., 2021; Bisla et al., 2022).
For example, Chaudhari et al. (2017) propose Entropy-SGD to search for flat regions by minimizing
local entropy. Wen et al. (2018) design SmoothOut framework to smooth out the sharp minima.
Notably, Sharpness-Aware Minimization (SAM) (Foret et al., 2020) establishes a generic training
scheme for seeking flat minima by formulating a min-max problem and encourage parameters sitting
in neighborhoods with uniformly low loss, achieving state-of-the-art generalization improvements
across various tasks. However, SAM requires twice the training time as regular training, limiting its
applications to large scale training.

Another branch of methods for recovering flat minima involves minimizing the expected Bayesian
training loss under random weight perturbation (RWP), which is efficient and doesn’t require addi-
tional gradient step (Bisla et al., 2022). Wang & Mao (2021) propose Gaussian model perturbation
(GMP) as a regularization scheme for improving SGD training, but it remains inefficient for multiple
for noise sampling. Bisla et al. (2022) connect the smoothness of loss objective to generalization
and adopted filter-wise random Gaussian perturbation generation to recover flat minima and improve
generalization. Li et al. (2024c) further enhance the generalization performance of RWP by intro-
ducing an adaptive perturbation generation strategy and a mixed loss objective. (Wu et al., 2022; Li
et al., 2024b) demonstrate that injecting small random noise into LLMs before or during fine-tuning
can improve generalization. However, when applying these approaches to PEFT training, we must
be mindful of the additional memory and time costs they may introduce.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.2 LOW-RANK ADAPTION AND VARIANTS

Recent works have indicated that the intrinsic dimension for optimizing deep neural networks
(DNNs) may be significantly lower than the number of parameters (Li et al., 2018a; Gur-Ari et al.,
2018; Wu et al., 2024). Notably, Li et al. (2022a) demonstrate that the training trajectory of DNNs
can be low-dimensional and proposed subspace optimization to enhance training efficiency and ro-
bustness (Li et al., 2022b). Low-Rank Adaptation (LoRA) (Hu et al., 2022) is proposed to model the
weight changes for each layer during fine-tuning. It effectively decreases the number of trainable pa-
rameters, thereby lowering the memory burden for training and storage. This approach is currently
the mainstream because it avoids adding any overhead during inference while often demonstrating
strong performance (Wang et al., 2023; Liu et al., 2024a).

Many works have been proposed to enhance the performance of LoRA. AdaLoRA (Zhang et al.,
2023a) dynamically prunes insignificant weights during fine-tuning through singular value decom-
position (SVD), enabling allocating more rank to important areas under a fixed parameter budget.
DoRA (Liu et al., 2024b) enhances the model’s expressiveness by introducing learnable magni-
tudes that decomposes optimization for direction and magnitude updates. LoRA+ (Hayou et al.,
2024) proposes to use different learning rates for the two matrices in LoRA to improve convergence.
PiSSA (Meng et al., 2024) proposes to use to SVD decomposition of the original matrix W to
initialize the LoRA matrices, which provides a better initialization for LoRA parameters. LoRA-
GA (Wang et al., 2024) proposes to approximate the gradient of the original matrix by performing
SVD on sampled gradient and properly scaling the initialized matrices. LoRA-Pro (Wang & Liang,
2024) further proposes to align each gradient step to the full fine-tuning. Li et al. (2024a) consider
applying SAM to LoRA parameters and develop a resource-efficient SAM, balancedness-aware reg-
ularization (BAR), tailored for scale-invariant problems such as fine-tuning language models with
LoRA. In this paper, we improve LoRA by optimizing the sharpness of the full parameter space.

3 METHOD

In this section, we first give a brief review on the low-rank adaption (LoRA). We then introduce
our LoRA optimization objective considering the flatness of the landscape. We finally describe our
random perturbation generation strategy for effectively improving the generalization performance.

3.1 LORA: LOW-RANK ADAPTION

Based on the finding that DNNs’ optimization happens in a subspace with much smaller dimensions
than the number of parameters (Li et al., 2018a; 2022a), LoRA utilizes low-rank matrices to model
the weight change for each layers’ weights W ∈ Rm×n during the fine-tuning as ∆W = BA,
where B ∈ Rm×r and A ∈ Rr×n with the rank r ≪ {m,n} to achieve parameter efficiency. We
omit the scaling factor s = α/r here for simplicity as it can be merged into A and B. For the
original output h = Wx, the modified forward pass is

h = Wx+∆Wx = (W +BA)x. (1)
At initialization, matrix A is commonly initialized with Kaiming distribution (He et al., 2015) and
matrix B is set to zeros. During the training, only the low-rank matrices A and B are optimized
with the pre-trained weight W being frozen. During the inference, the low-rank matrices ∆W are
merged to the pre-trained weight W, and there is no additional computational or memory costs.

3.2 LORA WITH A FLAT LANDSCAPE

Despite recent efforts to improve LoRA performance, most studies focus solely on finding solu-
tions performing well in the LoRA space, specifically the rank r matrix space Mr = {∆W ∈
Rm×n | rank(∆W) = r}. Let f(x;W) be a transformer, and L(f(xi;W),yi) denote the loss
function (Li(W) for short; we focus on a single LoRA module). Given a dataset S = {(xi,yi)},
the empirical training loss is defined as L(W) = 1

|S|
∑|S|

i=1 Li(W). Following the well-established
sharpness-aware minimization (SAM) objective (Foret et al., 2020), Li et al. (2024a) apply SAM to
LoRA parameters and study the scale-invariant properties of these parameters with SAM:

min
A,B

max
∥(ϵA,ϵB)∥≤ρ

L (W + (B+ ϵB)(A+ ϵA)) , (2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where L(·) denotes the loss objective. However, focusing solely on the properties of the optimization
space defined by LoRA parameters may have limitations. During inference, the low-rank adaption
∆W is merged into the pre-trained weights W. A solution that performs well within the LoRA
space may be situated in a sharp region of the full parameter space, as illustrated in Figure 1, which
could potentially harm overall generalization. To be more clear, the equivalent weight perturbation
applied to W by Equ (2) is

BϵA + ϵBA+ ϵBϵA = cBB⊤∇L(W) + c∇L(W)A⊤A+ c2∇L(W)A⊤B⊤∇L(W), (3)

where c = ρ/
√

∥B⊤∇L(W)∥2 + ∥∇L(W)A⊤∥2 is a scaling factor. One can see that the pertur-
bation direction is not aligned with the direction ∇L(W), which maximizes the loss of the merged
weights as in SAM. Notably, when B is initialized as zero as defaulted in Hu et al. (2022), B will
remain small during the training (Hao et al., 2024) and Equ. (3) becomes:

BϵA + ϵBA+ ϵBϵA ≈ c∇L(W)A⊤A. (4)
This means Equ (2) only optimizes the sharpness along the column space spanned by A, which
constitutes a small subspace of the full parameter space. As demonstrated in Table 5, solely applying
SAM constraints on the LoRA parameters does not effectively improve the generalization.

Therefore, it is crucial to consider the loss landscape of L(W + ∆W), and we need to find a low
rank adaption ∆W that positions the merged weights in a flat region of the full parameter space.
Our flat loss objective can be formulated as follows:

min
A,B

max
∥ϵ∥≤ρ

L(W +BA+ ϵ). (5)

However, directly applying SAM to optimize the sharpness of the merged weight space has several
disadvantages: 1) it doubles the training cost, which is less desirable with large models, and 2)
it requires storing an additional copy of weights for perturbation, which contradicts the principle
of parameter-efficient fine-tuning. To achieve a flatter loss landscape while maintaining time and
memory efficiency, we propose relaxing the maximization problem in Eq. (5) to an expectation,
resulting in the following Bayesian expected loss objective:

min
A,B

E
ϵ∼N (0,σ2I)

L(W +BA+ ϵ), (6)

where σ controls the variance magnitude of the noise, which we will describe in the next section.
This expected loss can be seen as applying a smoothing filter over the loss landscape within the full
parameter space, and optimizing it can help recover flatter minima (Bisla et al., 2022). For each
optimization step, we would sample a noise ϵ and calculate the perturbed gradient to optimize the
low-rank matrices A and B. Note that the noise is generated based on the model weights, thus
incurring no additional gradient steps as SAM does.

3.3 EFFECTIVE RANDOM PERTURBATION GENERATION

We then describe how to effectively generate random weight perturbation, which are essential for
optimizing sharpness and enhancing generalization performance. Let W′ = W + BA. For the
merged weight W′ ∈ Rm×n that represents a linear layer with input dimension n and output di-
mension m, our design considers the following two perspectives:

• Filter structure: we aim to generate the weight noise by filter (Bisla et al., 2022). There con-
tains m filters W′ = (W′

1,:,W
′
2,:, · · · ,W′

m,:) that process the input x ∈ Rn. Elements
within a filter of larger norm should receive a larger strength of perturbation.

• Input dimension: we hope that the variance introduced to the forward pass by the added
random weight perturbation is independent of the input dimension. Given an input dimen-
sion n, the magnitude of noise added to each element should be scaled by a factor of 1/

√
n.

Finally, our random weight generation scheme is formulated as follows:

ϵ ∼ N
(
0,

σ2

n
diag(∥W′

1,:∥22, ∥W′
2,:∥22, · · · , ∥W′

m,:∥22)Im×n

)
, (7)

where Im×n denotes a matrix of size m× n with all ones. Here σ is the hyper-parameter that needs
to be selected for controlling the perturbation strength. An overview of LoRA and our Flat-LoRA is
illustrated in Figure 2.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Pretrained

Weights

𝐖0 ∈ ℝ
𝑛×𝑚

A

B

Random

Perturbation

𝝐 ∈ ℝ𝑛×𝑚
Generate

Additional Saved

Filter Norm and Seed

B

A

x

h

Pretrained

Weights

𝐖0 ∈ ℝ
𝑛×𝑚

A

B

x

h

LoRA Flat-LoRA

Figure 2: Illustration of LoRA (Left) and Flat-LoRA (Right). Flat-LoRA, building upon LoRA,
optimizes the sharpness of the merged weights in the full parameter space by adding designed ran-
dom weight perturbations. It does not require extra gradient steps as SAM and remains memory
efficient by only storing the random seed and few filter norms, which takes less than 2‰ of the
trainable parameters used by LoRA.

Analysis on the variance of the activation. We then analyze the effects of introducing random
weight perturbation on the activation. Given an input x ∈ Rn, and under the hypothesis that x is a
random vector where each element has the same variance var[xi] and expectation E[xi], we have:

var[W′
j,:x] = ∥W′

j,:∥22 · var[xi]. (8)

After injecting random weight perturbation ϵ, we have:

var[(W′ + ϵ)j,:x] = ∥W′
j,:∥22 · var[xi] + var[ϵj,:x] (9)

= ∥W′
j,:∥22 · var[xi] +

n∑
i=1

var [ϵj,ixi] (10)

= ∥W′
j,:∥22 · var[xi] + n · σ

2

n
∥W′

j,:∥2 ·
(
var[xi] + E2[xi]

)
(11)

= (1 + σ2)∥W′
j,:∥22 · var[xi] + σ2∥W′

j,:∥2 · E2[xi]. (12)

Thus, by injecting random weight perturbations ϵ, we introduce variance into the forward activation
with a rate of σ2 along with a bias term determined by the expectation of xi. Note that, since we
introduce a scaling factor of 1/n for the variance in noise generation (i.e., Equ. (7)), the resulting
increased variance is independent of the input dimension n. This increased variance helps escape
from sharp local minima. Additionally, we note that this variance would not increase exponentially
during the forward propagation of the network due to the existence of layer normalization.

Storing random seed for memory efficiency. Memory cost is an important factor to consider
for PEFT training. To optimize Eqn. (6), we first generate random perturbation ϵ and then perform
gradient descent with ∇L(W+BA+ϵ). Thus, we need to store the weight perturbation for recover-
ing the weight after obtaining the perturbed gradient. When model is large, storing a copy of weight
perturbation is prohibitive. Luckily, for random weight perturbation, we only need to store the seed
for random generator and corresponding norms for each filter ∥W′

1,:∥22, ∥W′
2,:∥22, · · · , ∥W′

m,:∥22,
allowing us to recover the random perturbation ϵ when necessary. This approach incurs minimal
additional memory and offers significant advantages over SAM, which requires calculating the full
gradient, thereby necessitating a hard copy of the perturbation that cannot be reduced.

An easier approach for mixed precision training. When mixed precision training is used, which
is commonly adopted for large-scale training, we have an easier approach to seamlessly integrate
the perturbation injection process into the precision casting, introducing no additional memory cost.
Specifically, in mixed-precision training, two copies of model weights are maintained in memory:
the full-precision FP32 weights and the half-precision FP/BF16 weights. We can inject random
weight perturbation during the half-precision auto-cast step before the forward pass, thus eliminating
the need to store a copy of the weight perturbation or the filter norms. However, our main approach

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

is to efficiently store the perturbation based on filter norms and random seed, which is more general
and does not require mixed-precision training.

4 EXPERIMENTS

In this section, we evaluate the performance of Flat-LoRA on various benchmark tasks. We first con-
duct experiments on natural language understanding tasks using a subset of GLUE datasets (Wang
et al., 2019b) with T5-base model (Raffel et al., 2020). We then experiment over image classification
tasks with CLIP ViT-B/32 model (Radford et al., 2021). Subsequently, we evaluate mathematical
reasoning and coding abilities using the Llama 2-7B model (Touvron et al., 2023). We finally give
ablation studies and discussions on our method. The code is attached in the supplement materials.

4.1 EXPERIMENTS ON NATURAL LANGUAGE UNDERSTANDING

Setting. We finetune T5-Base model on several datasets from GLUE benchmark, including MNLI,
SST, CoLA, QNLI, and MRPC, following (Wang et al., 2024). Performance is evaluated on the
development set using accuracy as the primary metric. We use LoRA with rank 8 and 16 with LoRA
alpha 16. We finetune the models with 10 epochs with a cosine learning rate schedule, except for
MNLI and QNLI we use 1 epochs. We use learning rate of 0.0005 for LoRA fine-tuning and 0.0001
for full fine-tuning with weight decay 0.1. The random perturbation strength σ is set to 0.05 with an
cosine increasing strategy. Mean and standard deviations are calculated over 3 independent trials.

Results. As shown in Table 1, Flat-LoRA consistently outperforms LoRA for ranks 8 and 16,
achieving average performance gains of 0.34% and 0.56%, respectively. In some cases, the perfor-
mance of LoRA does not improve or even deteriorate when increasing the rank from 8 to 16, as seen
with the CoLA and MRPC datasets, which are relatively small and susceptible to overfitting. Flat-
LoRA effectively addresses the overfitting issue and achieves greater improvements with increasing
LoRA rank, demonstrating the advantages of our flat loss objective.

Table 1: Results (%) on fine-tuning T5-base with a subset of GLUE datasets.

Method MNLI SST2 CoLA QNLI MRPC Avg.

Full FT 86.19±0.04 94.15±0.09 82.84±0.12 93.10±0.04 89.22±0.23 89.10

LoRA (r = 8) 86.24±0.02 94.55±0.07 82.87±0.22 93.06±0.03 88.97±0.42 89.13
Flat-LoRA (r = 8) 86.20±0.04 94.75±0.20 83.61±0.38 93.16±0.09 89.59±0.37 89.47
LoRA (r = 16) 86.49±0.06 94.52±0.21 82.89±0.44 92.97±0.05 88.89±0.44 89.15
Flat-LoRA (r = 16) 86.51±0.01 94.84±0.02 84.08±0.31 93.28±0.03 89.83±0.34 89.71

4.2 EXPERIMENTS ON IMAGE CLASSIFICATION

Setting. We finetune the CLIP-ViT-B/32 model on five image classification tasks, including CIFAR-
10/100 (Krizhevsky & Hinton, 2009), Cars (Krause et al., 2013), SVHN (Netzer et al., 2011), and
DTD (Cimpoi et al., 2014). We resize all input image to a size of 224×224 and freeze the classifi-
cation head. We try LoRA with rank 8 and 16 and finetune the models with 10 epochs with a cosine
annealing schedule. The learning rate is set to 0.0005 for LoRA and 1 × 10−5 for full fine-tuning
with weight decay 0.1. The random perturbation strength σ is set to 0.15 with an cosine increasing
strategy. Mean and standard deviations are calculated over 3 independent trials.

Results. We measure the performance with classification accuracy and report the results in Table 2.
We observe that Flat-LoRA consistently outperforms LoRA with ranks 8 and 16, showing average
improvements of 0.56% and 0.74%, respectively. Notably, Flat-LoRA with rank 8 surpasses both
LoRA with rank 16 and full fine-tuning by 0.28%. These results confirm the effectiveness of our flat
loss objective on improving LoRA performance.

4.3 RESULTS ON LLAMA-2

Setting. To evaluate the scalability of Flat-LoRA, we fine-tune Llama-2-7B (Touvron et al., 2023)
on two tasks: math and code. We use a learning rate of 5e − 4 and cosine learning rate scheduler

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Results (%) on fine-tuning CLIP ViT-B/32 with image classification datasets.

Method CIFAR-10 CIFAR-100 Cars SVHN DTD Avg.

Full FT 97.99±0.01 89.06±0.11 73.30±0.43 97.44±0.03 76.80±0.25 86.92

LoRA (r = 8) 97.90±0.02 87.74±0.13 73.22±0.53 97.49±0.08 76.86±0.34 86.64
Flat-LoRA (r = 8) 98.09±0.04 88.64±0.23 74.17±0.71 97.59±0.04 77.51±0.28 87.20
LoRA (r = 16) 97.99±0.03 88.12±0.23 73.80±0.42 97.56±0.08 77.34±0.32 86.92
Flat-LoRA (r = 16) 98.21±0.04 89.27±0.07 74.89±0.52 97.71±0.10 78.24±0.44 87.66

with a warmup ratio of 0.03. We use LoRA with rank 8 and alpha 16 and the training epoch is
set to 2. Following Wang et al. (2024), the backbone of Lllma 2-7B uses BF16 precision and the
parameters of LoRA modules use FP32 precision for better performance. For math task, we finetune
the model on MetaMathQA (Yu et al., 2024a) and evaluate it on GSM8K evaluation set (Cobbe et al.,
2021). For code task, we finetune the model on Code-Feedback (Zheng et al., 2024) and evaluate it
on HumanEval (Chen et al., 2021). We only use 100k training subsets for both tasks. The random
perturbation strength σ is set to 0.10. We also fine-tune a Llama 2-13B on the Alpaca dataset1(Taori
et al., 2023) and evaluate it on InstructEval(Chia et al., 2023), an instruction following benchmark.
The experimental setting is set to the same as that in Ren et al. (2024), and the model is evaluated
with the official code2 provided by Chia et al. (2023).

Table 3: Results (%) on fine-tuning Llama-2-7B with
GSM8K and Human-Eval datasets.

Method GSM8K Human-Eval

Full FT 59.36±0.85 35.31±2.13

LoRA (r = 8) 57.47±0.35 24.85±0.52

Flat-LoRA (r = 8) 60.65±0.23 26.22±0.79

Results. We measure the performance
of the math task by accuracy and the
code task by PASS@1 metric. From
the results in Table 3, we observe that
Flat-LoRA significantly enhances LoRA’s
performance under large-scale fine-tuning
scenarios, achieving an improvement of
+3.18% on the GSM8K dataset and 1.37%
on the Human-Eval dataset. It is important
to note that here our LoRA performance is
much stronger than the results reported in previous works, e.g., 57.47% (ours) v.s. 42.08% (Wang
et al., 2024) on GSM8K. Still, Flat-LoRA continues to demonstrate significant accuracy improve-
ments over the baseline approach, highlighting the effectiveness of pursuing the flatness of the full
parameter space when fine-tuning large LLM models.

We then focus on instruct-following tasks. From the results in Table 4, we observe that Flat-LoRA
also consistently outperforms LoRA. We find that the improvements on DROP and Human-Eval
are more pronounced (+0.71% and +1.83%, respectively), suggesting that flatter minima may better
support math-related and coding-related tasks. This observation aligns with the findings in Table 3.

Table 4: Results on instruct-following tasks. We fine-tune Llama-2-13B model on Alpaca and
evaluate InstructEval metrics.

Method MMLU DROP BBH Human-Eval

LoRA (r = 8) 51.42 37.57 34.72 13.41
Flat-LoRA (r = 8) 51.98 38.28 34.84 15.24

4.4 RESULTS ON STABLE DIFFUSION

Setting. Following the setting in DoRA (Liu et al., 2024b), we finetune SDXL (Podell et al., 2023)
with the pipeline of Dreambooth (Ruiz et al., 2023) and the popular scripts implemented by Hug-
gingFace 3. The finetuning dataset, 3D Icons4, contains 23 training images, all of which have a

1
https://huggingface.co/datasets/yahma/alpaca-cleaned

2
https://github.com/declare-lab/instruct-eval

3
https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/README_sdxl.md

4
https://huggingface.co/datasets/linoyts/3d_icon

7

https://huggingface.co/datasets/yahma/alpaca-cleaned
https://github.com/declare-lab/instruct-eval
https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/README_sdxl.md
https://huggingface.co/datasets/linoyts/3d_icon

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Flat-LoRA

3D Icon
Training targets

（23 images in total）

LoRA

Flat-LoRA

Prompt: a TOK icon of a flying bird, in the style of TOK

Figure 3: Images generated with SDXL finetuning with LoRA and Flat-LoRA on the 3D icon
datasets. The images of the same column are generated with the same seed for fair comparisons.

square. We finetune the model for 500 steps with a constant learning rate of 0.0001. The batch
size is set to 1. The LoRA rank and alpha are set to 4. The σ of Flat-LoRA is set to 0.1. Other
hyperparameters are set to default values.

Results. As shown in Figure 3, Flat-LoRA exhibits better personalization than LoRA while main-
taining better generation ability. For instance, in the second column, the image generated by Flat-
LoRA includes a distinctive square behind the bird, aligning more closely with the “icon” feature
present in the training images (top row). Furthermore, Flat-LoRA more effectively preserves the
concept of eyes, whereas in columns 1, 3, and 5, the birds generated by LoRA are missing eyes.

4.5 COMPARISON WITH OTHER METHODS

We then compare our approach with other recently proposed methods for improving LoRA, in-
cluding initialization-based methods such as PiSSA and LoRA-GA, as well as optimization-based
methods like DoRA and LoRA+. Our experiments are conducted on the CoLA and MRPC datasets
using the T5-base model with LoRA rank 8. The results are presented in Table 5. We observe that
Flat-LoRA consistently outperforms previous methods by 0.53%. Furthermore, our flat loss objec-
tive can be easily integrated with earlier approaches to yield consistent improvements by 0.31% to
0.93%. This highlights the effectiveness of considering the sharpness of the full parameter space.

Table 5: Comparison with other methods on GLUE subsets using T5-Base.

Method CoLA MRPC

LoRA (Hu et al., 2022) 82.87±0.22 88.03±0.14

PiSSA (Meng et al., 2024) 83.18±0.24 88.96±0.44

LoRA-GA (Wang et al., 2024) 81.83±0.21 87.58±0.41

DoRA (Liu et al., 2024b) 83.16±0.15 89.46±0.37

AdaLoRA (Zhang et al., 2023b) 82.58±0.56 88.29±0.33

DyLoRA (Valipour et al., 2023) 82.98±0.34 87.88±0.42

LoRA+ (Hayou et al., 2024) 81.65±0.34 89.30±0.47

Flat-LoRA (ours) 83.61±0.38 89.59±0.37

Flat-PiSSA (ours) 83.51±0.48 89.89±0.71

Flat-LoRA-GA (ours) 82.23±0.34 88.15±0.54

Flat-DoRA (ours) 83.56±0.27 89.99±0.47

Flat-LoRA+ (ours) 82.56±0.23 89.61±0.44

In this paper, we adopt a stronger training baseline, including employing a larger learning rate and
longer training epochs, which achieves significantly better performance than the results reported

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

1 4 16 64
Rank

88.0

88.5

89.0

89.5

Te
st

 A
cc

ur
ac

y
(%

)
LoRA
Flat-LoRA

(a) MRPC with T5-Base

1 4 16 64
Rank

86.5

87.0

87.5

88.0

88.5

89.0

89.5

Te
st

 A
cc

ur
ac

y
(%

)

LoRA
Flat-LoRA

(b) CIFAR-100 with ViT-B/32

Figure 4: Performance comparison under different LoRA ranks. We keep LoRA alpha to 16 and
vary the LoRA ranks among {1, 4, 16, 64}. Experiments are averaged with three independent trials.

in previous work (Wang et al., 2024). In fact, CoLA and MRPC are two datasets that achieve the
most significant improvement by LoRA-GA as reported in the original paper (Wang et al., 2024).
Under our experimental settings, LoRA-GA does not exhibit advantages over vanilla LoRA and can
perform worse. This may be because LoRA-GA adopts a smart initialization strategy by maximizing
gradient alignment with full parameter training, allowing for quicker convergence to a good local
optimum (e.g., in just one epoch). However, such an initialization strategy may not be optimal for
reaching a global optimum and exhibit unstable when the learning rate is large.

4.6 ABLATION STUDIES AND DISCUSSION

Results under different LoRA ranks. Following the settings in Section 4.1 and 4.2, we evaluate
the performance of Flat-LoRA under different LoRA ranks. The results are shown in Figure 4. We
observe that Flat-LoRA consistently outperforms LoRA across different LoRA ranks by +1.10% on
MRPC and +1.15% on CIFAR-100. Even at LoRA rank 1, which is typically underfitting, Flat-
LoRA still delivers a significant performance boost over LoRA. This highlights the importance of
considering the sharpness of the full parameter space. Additionally, as the LoRA rank increases,
we observe that LoRA’s performance can degrade due to overfitting, particularly on MRPC, which
is a small dataset with 3.7k data points. Flat-LoRA effectively mitigates this overfitting issue by
identifying flatter minima that generalize better. Thus, we conclude that Flat-LoRA enhances LoRA
fine-tuning performance not only in underfitting scenarios, where the rank is low and limited infor-
mation from the full parameter space is explored, but also in high LoRA rank situations, where the
risk of overfitting is more pronounced.

Comparison with SAM. We then compare Flat-LoRA with standard sharpness-aware minimization
approach. Specifically, we consider applying SAM to the full parameter space, i.e., W, and LoRA
parameters A,B. We follow the settings in Section 4.1 and 4.2 and select the perturbation radius
ρ among {0.01, 0.05, 0.1, 0.2, 0.3, 0.5}, where ρ = 0.05 attains the best performance. From the
results in Table 6, we observe that applying SAM on W achieves considerable better performance
that on A,B, by +1.12% on CoLA and 1.31% on MRPC. However, applying SAM on W requires
an additional memory of O(m×n) for storing the adversarial weight perturbation, which can cause
out-of-memory problem for fine-tuning large models. We also observe that directly applying SAM
to A,B does not bring performance improvement over vanilla LoRA, perhaps due to the maximum
problem in SAM’s optimization target is too strict for the LoRA subspace. Then for Flat-LoRA, we
observe that it can achieve comparable or even better performance than LoRA with SAM applied on

Table 6: Comparison with SAM on GLUE subsets using T5-Base.

Method Flat Space CoLA MRPC Additional Memory Training time

LoRA - 82.87±0.59 88.03±0.14 - 1×
LoRA+SAM A,B 82.55±0.49 87.65±0.69 O((m+ n)× r) 2×
LoRA+SAM W 83.67±0.39 88.56±0.23 O(m× n) 2×
Flat-LoRA A,B 83.19±0.70 88.81±0.51 O(m+ r) 1×
Flat-LoRA W 83.61±0.38 89.59±0.37 O(m) 1×

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0.4 0.2
0.0

0.2
0.4

0.4
0.2

0.0
0.2

0.4

1
2
3
4
5
6

0.4 0.2
0.0

0.2
0.4

0.4
0.2

0.0
0.2

0.4

1
2
3
4
5
6
7

0.4 0.2
0.0

0.2
0.4

0.4
0.2

0.0
0.2

0.4

1
2
3
4
5
6
7

0

1

2

3

4

5

6

7

0.4 0.2
0.0

0.2
0.4

0.4
0.2

0.0
0.2

0.4

1
2
3
4
5
6
7

0.4 0.2
0.0

0.2
0.4

0.4
0.2

0.0
0.2

0.4

1
2
3
4
5
6
7

0.4 0.2
0.0

0.2
0.4

0.4
0.2

0.0
0.2

0.4

1
2
3
4
5
6
7

0

1

2

3

4

5

6

7

Figure 5: Loss landscape visualization with different LoRA ranks: 1 (Left) and 16 (Middle), and
Full FT (Right), as well as different LoRA approaches: LoRA (Up) and Flat-LoRA (Down). Models
are fine-tuned on CIFAR-100 with CLIP ViT-B/32.

W, but with minor additonal memory burden, e.g. O(m). Finally, it is worth note that Flat-LoRA
maintains training efficiency as vanilla LoRA, where SAM approaches require doubled training time
due to the extra gradient step involved.

Landscape visualization. In Figure 5, we plot the loss landscape of the merged weights of LoRA
and Flat-LoRA with different loRA ranks. Following the plotting technique in (Li et al., 2018b), we
uniformly sample 11 × 11 grid points in the range of [−0.5, 0.5] from random “filter-normalized”
direction. We observe that Flat-LoRA consistently achieves a flatter loss landscape than LoRA in
both LoRA fine-tuning and full fine-tuning scenarios. An interesting observation is that when the
LoRA rank is small, the loss landscape of the merged weight space tends to be sharper, highlighting
the importance of considering the sharpness of the full parameter space when utilizing LoRA fine-
tuning. Our Flat-LoRA enables a flat loss landscape comparable to full fine-tuning with a low LoRA
rank. For instance, Flat-LoRA with a rank of 16 achieves a similarly flat landscape and obtains
comparable performance to full fine-tuning.

5 CONCLUSION

In this paper, we introduce Flat-LoRA, an efficient low-rank adaptation approach that aims to op-
timize the sharpness of the loss landscape within the full parameter space that LoRA situates in.
Deviating from standard sharpness-aware approach that incurs significant computation and mem-
ory burdens, we employ a Bayesian expectation loss objective minima and utilize designed random
weight perturbations to pursuit flat minima, maintaining the training speed and memory efficiency
characteristic of parameter-efficient fine-tuning. Flat-LoRA achieves state-of-the-art performance in
LoRA fine-tuning and can be easily integrated with previous methods for consistent improvements.
Extensive experiments on natural language processing and computer vision tasks with various scales
of models demonstrate the effectiveness of our approach.

Limitation and Future works. One limitation of this paper is that we only consider fine-tuning
and optimizing the sharpness of linear layers in transformer model. This approach is the common
practice in fine-tuning LLMs for downstream tasks (Hu et al., 2022), and the linear layers account
for the majority of model parameters (e.g. > 99%). Future works could explore optimizing the
sharpness of LayerNorm parameters, as our initial experiments in Appendix A have shown promis-
ing results. Additionally, since we can inject random weight perturbations during the autocast in
mixed-precision training, our approach holds promise for enhancing low-bit training performance.
Seeking flat minima during LoRA fine-tuning is also promising for reducing the forgetting of pre-
trained knowledge. It is also promising to design more delicate noise generation strategy to enhance
the generalization performance and improve the noise generation efficiency.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Devansh Bisla, Jing Wang, and Anna Choromanska. Low-pass filtering sgd for recovering flat
optima in the deep learning optimization landscape. In International Conference on Artificial
Intelligence and Statistics, pp. 8299–8339. PMLR, 2022.

Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Christian
Borgs, Jennifer Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-sgd: Biasing gradi-
ent descent into wide valleys. In International Conference on Learning Representations (ICLR),
2017.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Yew Ken Chia, Pengfei Hong, Lidong Bing, and Soujanya Poria. Instructeval: Towards holistic
evaluation of instruction-tuned large language models. arXiv preprint arXiv:2306.04757, 2023.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
scribing textures in the wild. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2014.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize
for deep nets. In International Conference on Machine Learning (ICML), 2017.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimiza-
tion for efficiently improving generalization. arXiv preprint arXiv:2010.01412, 2020.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for ac-
curate object detection and semantic segmentation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2014.

Guy Gur-Ari, Daniel A Roberts, and Ethan Dyer. Gradient descent happens in a tiny subspace. arXiv
preprint arXiv:1812.04754, 2018.

Yongchang Hao, Yanshuai Cao, and Lili Mou. Flora: Low-rank adapters are secretly gradient
compressors. In International Conference on Machine Learning (ICML), 2024.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient low rank adaptation of large models.
In International Conference on Machine Learning (ICML), 2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Sepp Hochreiter and Jürgen Schmidhuber. Simplifying neural nets by discovering flat minima. In
Advances in Neural Information Processing Systems (NeurIPS), 1994.

Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural computation, 1997.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations (ICLR), 2022.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wil-
son. Averaging weights leads to wider optima and better generalization. arXiv preprint
arXiv:1803.05407, 2018.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. In
International Conference on Learning Representations (ICLR), 2017.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly,
and Neil Houlsby. Big transfer (bit): General visual representation learning. In European confer-
ence on computer vision (ECCV), 2020.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In Proceedings of the IEEE international conference on computer vision work-
shops (CVPRW), 2013.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Tech-
nical Report, 2009.

Bingcong Li, Liang Zhang, and Niao He. Implicit regularization of sharpness-aware minimization
for scale-invariant problems. In ICML 2024 Workshop on Theoretical Foundations of Foundation
Models, 2024a.

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the intrinsic dimension
of objective landscapes. In International Conference on Learning Representations (ICLR), 2018a.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss land-
scape of neural nets. In Advances in Neural Information Processing Systems (NeurIPS), 2018b.

Siwei Li, Yifan Yang, Yifei Shen, Fangyun Wei, Zongqing Lu, Lili Qiu, and Yuqing Yang. Lorasc:
Expressive and generalizable low-rank adaptation for large models via slow cascaded learning.
In Findings of the Association for Computational Linguistics: EMNLP 2024, pp. 12806–12816,
2024b.

Tao Li, Lei Tan, Zhehao Huang, Qinghua Tao, Yipeng Liu, and Xiaolin Huang. Low dimensional
trajectory hypothesis is true: Dnns can be trained in tiny subspaces. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45(3):3411–3420, 2022a.

Tao Li, Yingwen Wu, Sizhe Chen, Kun Fang, and Xiaolin Huang. Subspace adversarial training.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
13409–13418, 2022b.

Tao Li, Qinghua Tao, Weihao Yan, Yingwen Wu, Zehao Lei, Kun Fang, Mingzhen He, and
Xiaolin Huang. Revisiting random weight perturbation for efficiently improving generaliza-
tion. Transactions on Machine Learning Research, 2024c. ISSN 2835-8856. URL https:
//openreview.net/forum?id=WbbgOHpoPX.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(ICCV), 2024a.

Shih-yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In Interna-
tional Conference on Machine Learning (ICML), 2024b.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular
vectors adaptation of large language models. In Advances in Neural Information Processing
Systems (NeurIPS), 2024.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for extreme summarization. ArXiv, abs/1808.08745,
2018.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
Reading digits in natural images with unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning. Granada, 2011.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis. arXiv preprint arXiv:2307.01952, 2023.

12

https://openreview.net/forum?id=WbbgOHpoPX
https://openreview.net/forum?id=WbbgOHpoPX

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning
(ICML), 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research (JMLR), 21(140):1–67, 2020.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
for machine comprehension of text. In Jian Su, Kevin Duh, and Xavier Carreras (eds.), Pro-
ceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp.
2383–2392, Austin, Texas, November 2016. Association for Computational Linguistics. doi:
10.18653/v1/D16-1264. URL https://aclanthology.org/D16-1264.

Pengjie Ren, Chengshun Shi, Shiguang Wu, Mengqi Zhang, Zhaochun Ren, Maarten de Rijke,
Zhumin Chen, and Jiahuan Pei. Mini-ensemble low-rank adapters for parameter-efficient fine-
tuning. arXiv preprint arXiv:2402.17263, 2024.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 22500–
22510, 2023.

Abigail See, Peter J. Liu, and Christopher D. Manning. Get to the point: Summarization with
pointer-generator networks. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 1073–1083, Vancouver, Canada, July
2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1099. URL https:
//www.aclweb.org/anthology/P17-1099.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Stanford alpaca: An instruction-following llama model, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama. Normalized flat minima: Exploring scale in-
variant definition of flat minima for neural networks using pac-bayesian analysis. In International
Conference on Machine Learning, pp. 9636–9647. PMLR, 2020.

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: Parameter-
efficient tuning of pre-trained models using dynamic search-free low-rank adaptation. In Pro-
ceedings of the 17th Conference of the European Chapter of the Association for Computational
Linguistics, pp. 3274–3287, 2023.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. Superglue: A stickier benchmark for general-purpose language
understanding systems. Advances in neural information processing systems, 32, 2019a.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In
International Conference on Learning Representations (ICLR), 2019b.

Shaowen Wang, Linxi Yu, and Jian Li. Lora-ga: Low-rank adaptation with gradient approximation.
In Advances in Neural Information Processing Systems (NeurIPS), 2024.

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khyathi Chandu, David
Wadden, Kelsey MacMillan, Noah A Smith, Iz Beltagy, et al. How far can camels go? exploring
the state of instruction tuning on open resources. In Advances in Neural Information Processing
Systems (NeurIPS), 2023.

Zhengbo Wang and Jian Liang. Lora-pro: Are low-rank adapters properly optimized? arXiv preprint
arXiv:2407.18242, 2024.

13

https://aclanthology.org/D16-1264
https://www.aclweb.org/anthology/P17-1099
https://www.aclweb.org/anthology/P17-1099

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Ziqiao Wang and Yongyi Mao. On the generalization of models trained with sgd: Information-
theoretic bounds and implications. In International Conference on Learning Representations
(ICLR), 2021.

Wei Wen, Yandan Wang, Feng Yan, Cong Xu, Chunpeng Wu, Yiran Chen, and Hai Li. Smoothout:
Smoothing out sharp minima to improve generalization in deep learning. arXiv preprint
arXiv:1805.07898, 2018.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In International Conference on Machine Learning (ICML), 2022.

Chuhan Wu, Fangzhao Wu, Tao Qi, and Yongfeng Huang. Noisytune: A little noise can help you
finetune pretrained language models better. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), pp. 680–685, 2022.

Dongxian Wu, Shu-Tao Xia, and Yisen Wang. Adversarial weight perturbation helps robust gener-
alization. In Advances in Neural Information Processing Systems (NeurIPS), 2020.

Yingwen Wu, Tao Li, Xinwen Cheng, Jie Yang, and Xiaolin Huang. Low-dimensional gradient helps
out-of-distribution detection. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2024.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T. Kwok,
Zhenguo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical
questions for large language models. In International Conference on Learning Representations
(ICLR), 2024a.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
for large language models. In International Conference on Learning Representations (ICLR),
2024b.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In International Con-
ference on Learning Representations (ICLR), 2023a.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He,
Yu Cheng, Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-
efficient fine-tuning. In International Conference on Learning Representations (ICLR), 2023b.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, Bill Yuchen Lin, Jie Fu, Wenhu Chen, and
Xiang Yue. Opencodeinterpreter: Integrating code generation with execution and refinement.
arXiv preprint arXiv:2402.14658, 2024.

Yaowei Zheng, Richong Zhang, and Yongyi Mao. Regularizing neural networks via adversarial
model perturbation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2021.

A EXTENDING PERTURBATION TO ALL LAYERS

We extend the injection of random weight perturbation to all layers, referred to as “Flat-LoRA (all)”.
Specifically, we additionally add perturbations to layernorm layers, biases, and class embeddings,
etc. We generate noise based on the absolute weight |W|. From the results in Table A1, we observe
that Flat-LoRA (all) indeed improves performance, though the improvement is not as large as Flat-
LoRA (Linear) over LoRA.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table A1: Results on CIFAR-10/100 with CLIP ViT-B/32.

Method CIFAR-10 CIFAR-100

LoRA 97.90±0.02 87.74±0.13

Flat-LoRA (linear) 98.09±0.04 88.64±0.23

Flat-LoRA (all) 98.13±0.03 88.76±0.19

B COMPARISON WITH OTHER SAM’S VARIANTS

We further compare Flat-LoRA and LoRA with two SAM’s variants, ASAM and GSAM. From
the results in Table B2, we observe that optimizing the sharpness over the full parameter space W
generally provides better performance than on the LoRA space A and B.

Table B2: Comparison with other SAM’s variants.

T5-base Flat Space CoLA MRPC Extra Memory Time

LoRA - 82.87±0.59 88.03±0.14 - 1x
LoRA+ASAM A, B 82.56±0.34 88.09±0.27 O((m+ n)× r) 2x
LoRA+ASAM W 83.38±0.25 88.90±0.54 O(m× n) 2x
LoRA+GSAM A, B 82.71±0.15 87.71±0.23 O((m+ n)× r) 2x
LoRA+GSAM W 83.77±0.45 89.02±0.24 O(m× n) 2x
Flat-LoRA A, B 83.19±0.70 88.81±0.51 O(m+ r) 1x
Flat-LoRA W 83.61±0.38 89.59±0.37 O(m) 1x

C RESULTS ON SUPERGLUE

To further evaluate the effectiveness of our approach, we experiment on more challenging Super-
GlUE datasets (Wang et al., 2019a) with T5-base. The training settings remain the same as described
in Section 4.1. From the results in Table C3, we observe that Flat-LoRA significantly outperforms
LoRA, achieving an average improvement of 1.45% over LoRA.

Table C3: Results (%) on fine-tuning T5-base with a subset of SuperGLUE datasets.

Datasets BoolQ CB COPA RTE WIC Avg

Full FT 71.19±0.34 92.86±0.13 66.00±1.41 84.84±0.28 70.38±0.36 77.05

LoRA 71.61±0.41 92.85±0.46 63.67±0.47 83.03±0.26 67.95±0.08 75.82
Flat-LoRA 72.62±0.78 93.75±0.10 67.00±0.82 84.48±0.23 68.50±0.15 77.27

D MEMORY COST

We report the memory usage for fine-tuning GSM8K datasets using Llama 2-7B model. The exper-
iments are conducted with BF16 mixed-precision training and a micro-batch size of 2, running on
an NVIDIA GeForce RTX 4090 GPU. We implement based on our default random seed approach.
From the results in Table D4, we observe that Flat-LoRA brings very little additional memory cost
compared to LoRA, confirming its effectiveness on maintaining memory efficiency.

E ABLATION ON THE VARIANCE MAGNITUDE

To evaluate the impact of perturbation variance, we vary σ2 on fine-tuning CIFAR-10/100 with CLIP
ViT-B/32. From the results in Table E5, we find that the optimal results are achieved when σ2 is
0.10 or 0.15.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table D4: Comparison on memory usage.

Method Memory

LoRA 23.49GB
Flat-LoRA 23.61GB

Table E5: Performance results on CIFAR-10 and CIFAR-100 with different σ2 values.

σ2 0.01 0.05 0.10 0.15 0.20

CIFAR-10 97.92 98.02 98.05 98.09 97.74
CIFAR-100 88.14 88.37 88.65 88.64 88.06

F RESULTS ON THE CORRUPTION DATASETS

For the corrpution datasets, we fine-tune CLIP ViT-B/32 on CIFAR-100 and test the model on OOD
CIFAR-100-C datasets. We report the results across different corruption levels (from 1 to 5). As
shown in Table F6, we observe that Flat-LoRA outperforms LoRA more as the corruption level
increases. This shows that a flatter local optimum could enhance out-of-domain generalization.

Table F6: Performance comparison of LoRA and Flat-LoRA across different corruption levels. Val-
ues in parentheses indicate the improvements of Flat-LoRA over LoRA.

Corruption Level 1 2 3 4 5

LoRA 77.51 71.20 65.10 58.50 48.28
Flat-LoRA 78.89 (+1.38) 73.47 (+2.27) 67.93 (+2.83) 61.54 (+3.04) 51.84 (+3.56)

G RESULTS ON SQUAD, XSUM AND CNN/DAILYMAIL

We then conduct experiments on SQuAD (Rajpurkar et al., 2016), XSum (Narayan et al., 2018)
and CNN/Dailymail (See et al., 2017) datasets using T5-base model. The training settings remain
consistent with those described in Section 4.1 of the paper, except that we adopt 3 training epochs.
From the results in Table G7, we observe that Flat-LoRA consisitently outperforms LoRA, but the
improvement is relatively small. We hypothesize that flatness may not be particularly beneficial for
tasks like summarization and question answering but may confer greater advantages for tasks such
as mathematics and code-related problems. Moreover, the improvements brought by Flat-LoRA
require minimal additional memory and computation cost.

Table G7: Performance comparison between LoRA and Flat-LoRA on different datasets.

SQuAD XSum CNN/DailyMail
Metric EM/F1 Rouge1/2/L Rouge1/2/L

LoRA 81.59/89.67 34.64/12.36/28.12 24.78/12.13/20.51
Flat-LoRA 81.71/89.84 34.88/12.64/28.31 24.94/12.26/20.66

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

H RESULTS OF MATTHEWS CORRELATION COEFFICIENT ON COLA

In Table 5, we follow the experimental setup of LoRA-GA (Wang et al., 2024), where reports the
accuracy metric for CoLA dataset. Here, we evaluate Flat-LoRA using the Matthews Correlation
Coefficient (Mcc) metric in Table H8. As shown, again, Flat-LoRA consistently outperforms other
methods under the correct Mcc metric.

Table H8: Performance comparison on CoLA dataset.

Method Acc Mcc

LoRA 82.87±0.22 59.74±1.20

AdaLoRA 82.58±0.56 59.53±0.87

DyLoRA 82.98±0.34 59.94±1.32

Flat-LoRA 83.61±0.38 61.13±1.13

17

	Introduction
	Related Work
	Flat Minima and Generalization
	Low-rank Adaption and Variants

	Method
	LoRA: Low-Rank Adaption
	LoRA with a Flat Landscape
	Effective Random Perturbation Generation

	Experiments
	Experiments on Natural Language Understanding
	Experiments on Image Classification
	Results on Llama-2
	Results on Stable Diffusion
	Comparison with Other Methods
	Ablation studies and discussion

	Conclusion
	Extending Perturbation to All Layers
	Comparison with other SAM's variants
	Results on SuperGLUE
	Memory Cost
	Ablation on the Variance Magnitude
	Results on the Corruption datasets
	Results on SQuAD, XSum and CNN/Dailymail
	Results of Matthews Correlation Coefficient on CoLA

