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Abstract

This essay delves into the issue of Textual
Out-Of-Distribution (OOD) detection, which
refers to the capability of machine learning
models to recognize data samples that signifi-
cantly deviate from their training data distribu-
tion. In Natural Language Processing (NLP)
applications, Textual OOD detection is crit-
ical to ensuring the robustness and depend-
ability of production systems. This study in-
vestigates the effectiveness of various meth-
ods for OOD detection in NLP, utilizing a
transformer-based language model and differ-
ent datasets with varying degrees of similarity
to the training data. Our findings demonstrate
that both the Mahalanobis-based score utiliz-
ing the last layer representation and the Co-
sine Projection score utilizing the average la-
tent representation outperform the other scores
in terms of AUROC. However, the supervised
approach did not perform as well. Code is
available on github 1

1 Problem Framing

Increasing the use of black-box machine learning
models comes with various critical safety issues,
among which we can mention the Textual Out-
of-Distribution (OOD) detection [2]. The goal
of OOD detection is to identify instances that are
significantly different from the distribution of the
training data, which can be caused by various fac-
tors such as errors, noise, or deliberate attempts
to deceive the system [16, 17]. However, distin-
guishing OOD from in-distribution (ID) examples
is difficult for modern deep neural architectures
[6, 7, 11], as these models transform incoming
data into latent representations that make reliable
information extraction challenging. In the present
paper, we adress the issue of OOD detection on

1https://github.com/joevincentgaltie/
OOD_Detection_ENSAE.git

classifiers for textual data, we will more particu-
larly focus on models based on Transformer archi-
tectures [20].

The existing methods adressing the OOD detec-
tion issue can be categorized based on their po-
sitioning with respect to the network, including
those that use incoming data [10, 19], robust con-
straints during training [13], and post-processing
methods. The post-processing methods are con-
sidered the most promising because they do not
require retraining and can be used on any pre-
trained model. These methods include softmax-
based tools that compute a confidence score based
on predicted probabilities and threshold [12], pro-
jections of the pre-softmax layer [14], and the
Mahalanobis distance between a test sample and
the in-distribution law estimated through accessi-
ble training data points [15]. Other approaches
based on the concept of data depth have arisen to
overcome the drawbacks of distance-based scores,
such as using the Integrated Rank-Weighted depth
[4].

In this essay, we present an experimentation
on the performance of different OOD detection
techniques on a benchmark dataset of text clas-
sification tasks [5]. We first propose a sim-
plistic supervised method relying on a XGBoost
[3] model. We also evaluate the effective-
ness of various methods, including scores based
on Mahalanobis-distance computation and Cosine
Projection, in detecting OOD examples in both in-
domain and out-of-domain datasets. Our results
demonstrate the strengths and limitations of dif-
ferent approaches and provide insights for future
research on improving the reliability of OOD de-
tection in NLP tasks.

https://github.com/joevincentgaltie/OOD_Detection_ENSAE.git
https://github.com/joevincentgaltie/OOD_Detection_ENSAE.git


2 Experiments Protocol

In this section we will introduce the chosen bench-
mark, the pretrained encoders and the baseline
methods that we experimented in order to compare
the results.

2.1 Datasets selection
During the experiments, we are going to consider
three different datasets. The models will be trained
on one of the datasets, which will then correspond
to the in-distribution data. In this case, the three
datasets chosen are SST22, IMDB3 and RTE4.
SST2 (see Table 1) is a sentiment analysis dataset
that contains movie reviews with binary labels in-
dicating positive or negative sentiment. On the
other hand, IMDB (see Table 2) is also a sentiment
analysis dataset but it contains reviews of a wider
range of products, such as books, electronics, and
home appliances. RTE (see Table 3) consists of
pairs of sentences, where the task is to determine
whether one sentence entails, or contradicts with
respect to the other. In our case SST2 represents
the ID data. Since IMDB and RTE are not part of
the distribution on which the models were trained
on, it serves as the OOD datasets in this experi-
ment.

# of samples 67 349
Average sentence length 19.8

# of classes 2
Language English

Table 1: Features of the SST2 dataset.

# of samples 50 000
Average sentence length 231.73

# of classes 2
Language English

Table 2: Features of the IMDB dataset.

2.2 Pretrained model selection
The experiments regarding the scorers have been
done regarding a pretrained encoder. We apply the
various scorers on the BERT [9] model. The se-
lected model has been pretrained and fine-tuned on
SST2 dataset and will be used to extract features

2https://huggingface.co/datasets/sst2
3https://huggingface.co/datasets/imdb
4https://huggingface.co/datasets/SetFit/rte

# of samples 2 490
Average sentence length 68.6

# of classes 2
Language Multi.

Table 3: Features of the RTE dataset.

from the input text for both IN and OOD datasets.
We have chosen this model because it is among
the most widely used and effective model for NLP
tasks.

2.3 Simplistic supervised OOD Detection

Our supervised approach of the OOD detection
is simplistically framed. Using PyTorch and the
BERT [9] model already fine-tuned on the SST2
dataset, we iterated on batches of SST2 samples
in order to retrieve hidden states corresponding to
each of the 13 hidden layers.

For a batch of 8 sentences, we therefore have
for each layer 8 matrix of dimension T × d where
T is the number of tokens per sentences and d is
the embedding dimension.

We introduce the following notation:

• ∀b ∈ {1, ..., B} where B is the number of
batches

• ∀l ∈ {1, ..., L} where L is the number of lay-
ers (13)

• ∀xi,b for i ∈ [1, 8] , 8 being the size of the
batch

• H l=1
xi,b

= (hl=1
i,j ) ∈ MT×768

• x̄i,b = ( 1
13

∑13
l=1 h

l
1,1, ...,

1
13

∑13
l=1 h

l
1,768)

• XSST2 = (x̄1,1, ..., x̄8,1, x̄1,2, ...)

The same steps are processed for IMDB (out-
ds) and RTE (very-out) datasets.

We then concatenated XSST2 and XIMDB , and
XSST2 and XRTE , completed by labels, 0 if in-ds,
1 if out or very-out ds.

We apply a classification supervised algorithm.
In particular we applied a XGBoost [3], one of the
current most performant classification algorithm.

2.4 Self-supervised OOD Detection : Scorers

For our experiments we considered two different
methods:

https://huggingface.co/datasets/sst2
https://huggingface.co/datasets/imdb
https://huggingface.co/datasets/SetFit/rte


• The Mahalanobis based score [8]: this score
measures the distance between a given input
and the distribution of ID examples in the la-
tent space of a pretrained language model.
The Mahalanobis distance takes into account
the covariance matrix of the ID examples,
and thus can better capture the distribution of
the data than other distance metrics like Eu-
clidean distance or Cosine distance. It can be
computed as:

dMah(x) =
√
((f(x)− µ)TS−1(f(x)− µ))

where f(x) represents the latent representa-
tion for a given input example x, µ is the
mean of the ID training data, and S is the co-
variance matrix of the ID training data. In
our study we will consider the latent repre-
sentation to be either the vector of activations
in the last hidden layer of the neural network
and the average representation of all the lay-
ers.

• The Cosine Projection based score: this is a
commonly used metric to compare the simi-
larity between a given input and the distribu-
tion of ID examples using the Cosine similar-
ity. Given two vectors u and v, their Cosine
similarity score is defined as:

cosine sim(u, v) =
u · v

||u||||v||

More precisely, the cosine similarity score
can be used to compare the similarity be-
tween the latent representations of a given
text sample and the ID examples used dur-
ing the training of a language model. Specifi-
cally, given a test sample x and a set of ID ex-
amples Xin, we can compute the Cosine sim-
ilarity between the latent representation of x,
denoted as f(x), and the average latent rep-
resentation of the ID examples, denoted as
f(Xin):

cos score(x) = cosine sim(f(x), f(Xin))

Again, we will on one side consider only the
latent representation of the last layer, and on
the other side the average of the representa-
tions of each layer.

In both cases, a threshold is used to classify the
test sample as either ID or OOD. If the score is

below the threshold, the sample is classified as ID,
otherwise it is classified as OOD. The threshold
can be set using a validation set or a predefined
value.

We can also note that both methods require
access to ID training data to estimate the mean
and covariance matrix for the Mahalanobis-based
score, and the mean for the Cosine Projection
score.

2.5 Last vs average of every embedding layer

Following [4], we tested the scorer on the embed-
dings of the last layer and on the average embed-
ding of all hidden layers.
To proceed so is a way to distinguish whether the
intuition that more information comes from agre-
gating results of each layer.
Hence, for the second case, the input x is such that
x ∈ Rd=768 and x =

∑L
l=1 x

l
1 where xl1 ∈ Rd=768

corresponds to the l-th hidden state of the first to-
ken

2.6 Evaluation metrics

There exist several ways to measure the effective-
ness of an OOD method. Here will focus on the
Area Under the Receiver Operating Characteristic
curve (AUROC) metric [1], which is a commonly
used evaluation metric to assess the performance
of a model in distinguishing between ID and OOD
samples.

The ROC curve refers to a plot of the True Pos-
itive Rate (TPR) against the False Positive Rate
(FPR) for different threshold values. In the context
of OOD detection, the TPR represents the propor-
tion of correctly identified OOD samples, while
the FPR represents the proportion of incorrectly
identified ID samples as OOD.

AUROC corresponds to the area under the ROC
curve, ranging from 0.0 to 1.0. An AUROC score
of 1.0 indicates perfect performance, while a score
of 0.5 indicates random guessing. A score below
0.5 indicates poor performance, which means the
model is worse than random guessing.

3 Results

3.1 Simplisitic supervised approach

This approach did not give convincing results. In
fact, the XGBoost gave a too perfect accuracy for
classifying SST2 vs IMDB and SST2 vs RTE to
make this approach worth it.



After a deeper study of the results, this perfect
accuracy was induced by a dimension of the mean
embedding, the 135th, that was always negative
for SST2 and always positive for IMBD.

We did not figure out yet why this happened.
However it is worth noticing that this approach has
obvious limits :

• This supposes having access to numerous
diversed OOD sentences and implies a too
heavy labelling work on real issues.

3.2 Self-supervised approach
The experimentation performed on the methods
and datasets mentioned above enable to have some
insights regarding which scorers are the most
adapted taking into account the model used and
the datasets. We can for instance see in Figure
1 the distribution of the scorers for each dataset.
These graphs allow us to notice that the scorers
distributions of in-ds and (very) out-ds are more
clearly distinguishable for the Mahanalobis-based
scorer that uses the last layer, and the Cosine Pro-
jection scorer that uses the average latent represen-
tation.

We can draw the same observations if we look at
the AUROC given in the Figure 2. Again, the AU-
ROC is higher for the Mahanalobis-based scorer
that uses the last layer, and the Cosine Projection
scorer that uses the average latent representation
than for the other scores.

4 Discussion/Conclusion

4.1 Computational issues
To do this work we encountered several compu-
tational issues that impeded our progress. Unfor-
tunately, these issues caused delays in the project
timeline and impacted the scope of our experimen-
tation.

4.2 Elements to be further explored
With more time during this project, we would have
liked to bring the following experiments:

• It would have been interesting to test other
detectors, especially TRUSTED introduced
by [4].

• Also, as mentionned in [4], it is important to
test the different scorers on various models to
fully evaluate their performance. We would
have liked to carry out our experiments on the
DISTILBERT [18] model.

Figure 1: Scorers distribution on datasets
(in ds[SST2],out ds[IMDB],very out[RTE])

4.3 Pairing datasets as IN/OUT

The unsatisfying results obtained on last
layer scorers might come from the pairing of
SST2/IMDB as these are close semantic datasets
that requires high-end OOD detectors using
information of many hidden-layers and not only
the last one.

4.4 Conclusion

In conclusion, our experimentation focused on the
task of out-of-distribution (OOD) detection for
text classification. We used the SST2, IMDB
and RTE datasets to evaluate the performance
of different OOD detection methods, namely
Mahalanobis-based and Cosine Projection-based
scores. Our results showed that both Mahalanobis-
based and Cosine Projection-based scores are ef-
fective in OOD detection for text classification.
Specifically, the Mahalanobis-based score per-
formed best using only the last layer for the latent
representation, and the Cosine Projection-based
score performed best using the average latent rep-
resentation. However, our supervised approach



Figure 2: AUROC for each scorer.

did not perform as well as expected. Despite
some computational issues, our findings suggest
that OOD detection methods are promising for text
classification tasks and warrant further investiga-
tion.
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