
Differentiable Parsing And Visual Grounding of
Verbal Instructions for Object Placement

Zirui Zhao, Wee Sun Lee, and David Hsu
National University of Singapore

{ziruiz, leews, dyhsu}@comp.nus.edu.sg

Abstract: Grounding spatial relations in natural language for object placing could
have ambiguity and compositionality issues. To address the issues, we intro-
duce PARAGON, a PARsing And visual GrOuNding framework for language-
conditioned object placement. PARAGON leverages object-centric relational rep-
resentations for the visual grounding of natural language. It parses language
instructions into relations between objects and grounds those objects in vi-
sual scenes. A particle-based GNN then conducts relational reasoning between
grounded objects for placement generation. PARAGON encodes all of those pro-
cedures into neural networks for end-to-end training. Our approach inherently
integrates parsing-based methods into a probabilistic, data-driven framework. It is
data-efficient and generalizable for learning compositional instructions, robust to
noisy language inputs, and adapts to the uncertainty of ambiguous instructions.

1 Introduction

Put a plate to
the upper side
of a knife and
next to the
silver mug.

Figure 1. We aim to output placements based on visual and
linguistic inputs. The presence of multiple semantically iden-
tical objects and omitted distance information cause difficulty
for placement generation, and the compositional instructions
increase the data required for learning.

Human-robot-interaction tasks, such as
object placement, navigation, and as-
sembly, often require detailed descrip-
tions with spatial relations. Natural lan-
guage provides a rich and intuitive inter-
face for human-robot-interaction tasks [1].
Therefore, managing to learn and ground
language-described spatial relations en-
ables robots to assist us better. This re-
search focuses on object placement tasks
instructed by natural language. Humans
verbally instruct robots to pick up an object and put it to a specific place. The robot generates object
placements conditioned by language description and visual observation. However, spatial relations
in natural language can be ambiguous and compositional, causing issues in language grounding.
We focus on two types of ambiguity: positional ambiguity and referential ambiguity. Positional
ambiguity arises from the phenomenon that people tend to describe the directional relations without
the precise distance (e.g., “to the left side”). In addition, we usually need a reference object to
describe spatial relations (e.g., “next to the plate”). When placing an object next to reference objects,
the connection between the reference object and placement is indirect, causing it to be difficult to
learn object reference grounding and placement generation simultaneously. Furthermore, reference
expressions of objects can be ambiguous, resulting in a reference expression being grounded to
multiple semantically identical objects. It makes the distribution of correct placement multimodal.
We refer to this issue as referential ambiguity.
The compositional structure of language-described spatial relations comes from the compositional
nature of the visual scene and natural language. A complex scene contains multiple basic objects. To
describe the desired state of a complex scene, one can compose many simple sentences for referents
and their relations to form a complex language sentence (e.g., the instruction in Fig 1). This property
increases the data required for learning compositional language instructions.
To address the issues, we introduce PARAGON, a PARsing And visual GrOuNding framework for
language-conditioned object placement. The core idea behind PARAGON is to leverage structures

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.

in linguistic and visual inputs to extract object-centric relations for reasoning and placement gen-
eration, and encode those procedures in neural networks for end-to-end training. It learns to parse
language into relational triplets from the grammatical structure. The triplets consist of subject, rela-
tion, and object phrases, e.g., (“plate”, “upper side”, “knife”) in Fig 1. It then grounds the mentioned
objects to the regions in the visual scene. A graph formed by grounded triplets is fed into a GNN for
relational reasoning and generating placements. The GNN encodes a mean-field message passing
algorithm to minimize the reverse KL-Divergence for the target distribution. We further develop a
particle version of GNN to capture multimodal distributions.
PARAGON integrates parsing-based methods into a probabilistic, data-driven framework. It exhibits
robustness from its data-driven property, as well as generalizability and data-efficiency from pars-
ing. It adapts to the uncertainty of ambiguous instructions using particle-based probabilistic tech-
niques. The experiments show that PARAGON outperforms the state-of-the-art method in language-
conditioned object placement tasks in the presence of ambiguity and compositionality.

2 Related Work
Many works [2, 3, 4, 5, 6, 7, 8, 9, 10] developed solutions for language-instructed object manip-
ulations of robotic systems. Our research focuses on object placement instructed by language. In
contrast to picking [2, 3], which needs only a discriminative model to ground objects from reference
expressions, placing [4, 5, 6, 7, 8] requires a generative model conditioned on the relational con-
straints of object placement. Specifically, it requires capturing complex relations between objects in
natural language, grounding reference expression of objects, and generating placement that satisfies
the relational constraints in the instructions.
Parsing-based robot instruction following [4, 5, 7, 11, 12, 13, 14, 15] parse natural language into
formal representations using hand-crafted rules and grammatical structures. Those hand-crafted
rules are generalizable but not robust to noisy language [1]. Among these studies, those focusing on
placing [4, 5, 7] lack a decomposition mechanism for compositional instructions and assume per-
fect object grounding without considering referential ambiguity. Recently, [9, 10, 8] used sentence
embeddings to learn a language-condition policy for robot instruction following, which are not data-
efficient and hard to generalize to unseen compositional instructions. We follow [16] to integrate
parsing-based methods into the data-driven framework. It is robust, data-efficient, and generalizable
for learning compositional instructions.
PARAGON has a GNN for relational reasoning and placement generation, which encodes a mean-
field inference algorithm similar to [17]. Moreover, our GNN uses particles for message passing to
capture complex and multimodal distribution. The idea is to approximate a distribution as a set of
particles [18], which provides strong expressiveness for complex and multimodal distribution. It is
useful in robot perception [19, 20, 21], recurrent neural networks [22], and graphical models [23, 24].
Our approach employs this idea in GNN for particle-based message passing.

3 Overview
We focus on the language grounding for object placement in tabletop object manipulation tasks. In
this task, scenes are composed of a finite set of 3D objects on a 2D tabletop. Humans give natural
language ` ∈ L to guide the robot to pick an object and put it at the desired position x∗tgt. The
language instruction is denoted as a sequence ` = {ωl}1≤l≤L where ωl is a word, e.g., in Fig.6,
` = {ω1 = put, ω2 = a, . . .}. A language instruction should contain a target object expression
(e.g., “a plate”) to specify the object to pick and express at least one spatial relation (e.g., “next to a
silver mug”) for placement description. The robot needs to find the distribution of the target object’s
placement p(x∗tgt|`, z) conditioned on the language instruction ` and visual observation z.
We propose PARAGON to solve the problem. It extracts object-centric relations from linguistic
and visual inputs for relational reasoning and placement generation; it encodes those procedures in
neural networks for end-to-end training. The pipeline of PARAGON is in Fig 2. PARAGON first uses
the soft parsing module to convert language inputs “softly” into a set of relations, represented as
triplets. A grounding module then aligns the mentioned objects in triplets with objects in the visual
scenes. The triplets can form a graph by taking the objects as the nodes and relations as the edges.

2

<latexit sha1_base64="yU49LH8lcMqzAzm7fGvkD7Jb3xA=">AAAB83icbVBNSwMxFHxbv2r9qnr0EiyCp7JbinosePFYwbZCdynZNNuGZrMhyQrL0r/hxYMiXv0z3vw3Zts9aOtAYJh5jzeZUHKmjet+O5WNza3tnepubW//4PCofnzS10mqCO2RhCfqMcSaciZozzDD6aNUFMchp4Nwdlv4gyeqNEvEg8kkDWI8ESxiBBsr+X6MzTSM8mw+ao3qDbfpLoDWiVeSBpTojupf/jghaUyFIRxrPfRcaYIcK8MIp/Oan2oqMZnhCR1aKnBMdZAvMs/RhVXGKEqUfcKghfp7I8ex1lkc2skio171CvE/b5ia6CbImZCpoYIsD0UpRyZBRQFozBQlhmeWYKKYzYrIFCtMjK2pZkvwVr+8TvqtpnfV9O7bjU67rKMKZ3AOl+DBNXTgDrrQAwISnuEV3pzUeXHenY/laMUpd07hD5zPHystkbo=</latexit>y2

<latexit sha1_base64="RHTnbGZSmO+7nCHbqx+78ND+jaA=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZcFNy4r2Ad0hpJJM21okhmSjDAM/Q03LhRx68+482/MtLPQ1gOBwzn3ck9OmHCmjet+O5WNza3tnepubW//4PCofnzS03GqCO2SmMdqEGJNOZO0a5jhdJAoikXIaT+c3RV+/4kqzWL5aLKEBgJPJIsYwcZKvi+wmYZRns1H3qjecJvuAmideCVpQInOqP7lj2OSCioN4VjroecmJsixMoxwOq/5qaYJJjM8oUNLJRZUB/ki8xxdWGWMoljZJw1aqL83ciy0zkRoJ4uMetUrxP+8YWqi2yBnMkkNlWR5KEo5MjEqCkBjpigxPLMEE8VsVkSmWGFibE01W4K3+uV10rtqetdN76HVaLfKOqpwBudwCR7cQBvuoQNdIJDAM7zCm5M6L86787EcrTjlzin8gfP5Aympkbk=</latexit>y1

Object
Grounding …

NEXTTO

UPPER

Soft
Parsing

Object
Detector

Mean-field GNN<plate, UPPER, knife>

<plate, NEXTTO, mug>

…

“Put a plate to the
upper side of a

knife and next to
a silver mug.”

RELATION

…

mug

knife

…

mug

knife

…

…

<latexit sha1_base64="RHTnbGZSmO+7nCHbqx+78ND+jaA=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZcFNy4r2Ad0hpJJM21okhmSjDAM/Q03LhRx68+482/MtLPQ1gOBwzn3ck9OmHCmjet+O5WNza3tnepubW//4PCofnzS03GqCO2SmMdqEGJNOZO0a5jhdJAoikXIaT+c3RV+/4kqzWL5aLKEBgJPJIsYwcZKvi+wmYZRns1H3qjecJvuAmideCVpQInOqP7lj2OSCioN4VjroecmJsixMoxwOq/5qaYJJjM8oUNLJRZUB/ki8xxdWGWMoljZJw1aqL83ciy0zkRoJ4uMetUrxP+8YWqi2yBnMkkNlWR5KEo5MjEqCkBjpigxPLMEE8VsVkSmWGFibE01W4K3+uV10rtqetdN76HVaLfKOqpwBudwCR7cQBvuoQNdIJDAM7zCm5M6L86787EcrTjlzin8gfP5Aympkbk=</latexit>y1

<latexit sha1_base64="RHTnbGZSmO+7nCHbqx+78ND+jaA=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZcFNy4r2Ad0hpJJM21okhmSjDAM/Q03LhRx68+482/MtLPQ1gOBwzn3ck9OmHCmjet+O5WNza3tnepubW//4PCofnzS03GqCO2SmMdqEGJNOZO0a5jhdJAoikXIaT+c3RV+/4kqzWL5aLKEBgJPJIsYwcZKvi+wmYZRns1H3qjecJvuAmideCVpQInOqP7lj2OSCioN4VjroecmJsixMoxwOq/5qaYJJjM8oUNLJRZUB/ki8xxdWGWMoljZJw1aqL83ciy0zkRoJ4uMetUrxP+8YWqi2yBnMkkNlWR5KEo5MjEqCkBjpigxPLMEE8VsVkSmWGFibE01W4K3+uV10rtqetdN76HVaLfKOqpwBudwCR7cQBvuoQNdIJDAM7zCm5M6L86787EcrTjlzin8gfP5Aympkbk=</latexit>y1

<latexit sha1_base64="pekkc0YE1HcwG811m/TzQ0XSLtc=">AAAB/nicbVDLSsNAFJ3UV62vqLhyM1gEVyWRoi4LblxWsA9oQphMJ+3QyYOZG2kJAX/FjQtF3Pod7vwbJ20W2npg4HDOvdwzx08EV2BZ30ZlbX1jc6u6XdvZ3ds/MA+PuipOJWUdGotY9n2imOAR6wAHwfqJZCT0Bev5k9vC7z0yqXgcPcAsYW5IRhEPOCWgJc88cUICYz/IprnnAJtCFqaj3DPrVsOaA68SuyR1VKLtmV/OMKZpyCKggig1sK0E3IxI4FSwvOakiiWETsiIDTSNSMiUm83j5/hcK0McxFK/CPBc/b2RkVCpWejrySKsWvYK8T9vkEJw42Y8SlJgEV0cClKBIcZFF3jIJaMgZpoQKrnOiumYSEJBN1bTJdjLX14l3cuGfdWw75v1VrOso4pO0Rm6QDa6Ri10h9qogyjK0DN6RW/Gk/FivBsfi9GKUe4coz8wPn8AhRuWdA==</latexit>xmug

<latexit sha1_base64="QCJ2jdiXY4yDZW9rixXqs5cENeY=">AAACAHicbVBNS8NAEN3Ur1q/oh48eAkWwVNJpKjHghePFewHtKVstpN26WYTdifSEnLxr3jxoIhXf4Y3/42btgdtfTDweG+GmXl+LLhG1/22CmvrG5tbxe3Szu7e/oF9eNTUUaIYNFgkItX2qQbBJTSQo4B2rICGvoCWP77N/dYjKM0j+YDTGHohHUoecEbRSH37pBtSHPlBOsn6XYQJpmNjQ9a3y27FncFZJd6ClMkC9b791R1ELAlBIhNU647nxthLqULOBGSlbqIhpmxMh9AxVNIQdC+dPZA550YZOEGkTEl0ZurviZSGWk9D33Tm5+plLxf/8zoJBje9lMs4QZBsvihIhIORk6fhDLgChmJqCGWKm1sdNqKKMjSZlUwI3vLLq6R5WfGuKt59tVyrLuIoklNyRi6IR65JjdyROmkQRjLyTF7Jm/VkvVjv1se8tWAtZo7JH1ifPwq2l0w=</latexit>xknife

<latexit sha1_base64="YDiq0ISpgifa3UiZvY6lJfX5lm8=">AAACAnicbVBNS8NAEN34WetX1JN4CRZBPJREinosePFYwX5AE8tmO2mXbj7YnUhLKF78K148KOLVX+HNf+Om7UFbHww83pthZp6fCK7Qtr+NpeWV1bX1wkZxc2t7Z9fc22+oOJUM6iwWsWz5VIHgEdSRo4BWIoGGvoCmP7jO/eYDSMXj6A5HCXgh7UU84IyiljrmoRtS7PtBNhzfn3VchCFmiaAI445Zssv2BNYicWakRGaodcwvtxuzNIQImaBKtR07QS+jEjkTMC66qYKEsgHtQVvTiIagvGzywtg60UrXCmKpK0Jrov6eyGio1Cj0dWd+sJr3cvE/r51icOVlPEpShIhNFwWpsDC28jysLpfAUIw0oUxyfavF+lRShjq1og7BmX95kTTOy85F2bmtlKqVWRwFckSOySlxyCWpkhtSI3XCyCN5Jq/kzXgyXox342PaumTMZg7IHxifP0DAl/E=</latexit>

x⇤
plate

objects

<latexit sha1_base64="yU49LH8lcMqzAzm7fGvkD7Jb3xA=">AAAB83icbVBNSwMxFHxbv2r9qnr0EiyCp7JbinosePFYwbZCdynZNNuGZrMhyQrL0r/hxYMiXv0z3vw3Zts9aOtAYJh5jzeZUHKmjet+O5WNza3tnepubW//4PCofnzS10mqCO2RhCfqMcSaciZozzDD6aNUFMchp4Nwdlv4gyeqNEvEg8kkDWI8ESxiBBsr+X6MzTSM8mw+ao3qDbfpLoDWiVeSBpTojupf/jghaUyFIRxrPfRcaYIcK8MIp/Oan2oqMZnhCR1aKnBMdZAvMs/RhVXGKEqUfcKghfp7I8ex1lkc2skio171CvE/b5ia6CbImZCpoYIsD0UpRyZBRQFozBQlhmeWYKKYzYrIFCtMjK2pZkvwVr+8TvqtpnfV9O7bjU67rKMKZ3AOl+DBNXTgDrrQAwISnuEV3pzUeXHenY/laMUpd07hD5zPHystkbo=</latexit>y2

<latexit sha1_base64="yU49LH8lcMqzAzm7fGvkD7Jb3xA=">AAAB83icbVBNSwMxFHxbv2r9qnr0EiyCp7JbinosePFYwbZCdynZNNuGZrMhyQrL0r/hxYMiXv0z3vw3Zts9aOtAYJh5jzeZUHKmjet+O5WNza3tnepubW//4PCofnzS10mqCO2RhCfqMcSaciZozzDD6aNUFMchp4Nwdlv4gyeqNEvEg8kkDWI8ESxiBBsr+X6MzTSM8mw+ao3qDbfpLoDWiVeSBpTojupf/jghaUyFIRxrPfRcaYIcK8MIp/Oan2oqMZnhCR1aKnBMdZAvMs/RhVXGKEqUfcKghfp7I8ex1lkc2skio171CvE/b5ia6CbImZCpoYIsD0UpRyZBRQFozBQlhmeWYKKYzYrIFCtMjK2pZkvwVr+8TvqtpnfV9O7bjU67rKMKZ3AOl+DBNXTgDrrQAwISnuEV3pzUeXHenY/laMUpd07hD5zPHystkbo=</latexit>y2

<latexit sha1_base64="yNazu9OOfGBPARTIf22cmsk4Kig=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48V7Ae0oWy2k3bp7ibsboQS+he8eFDEq3/Im//GpM1BWx8MPN6bYWZeEAturOt+O6WNza3tnfJuZW//4PCoenzSMVGiGbZZJCLdC6hBwRW2LbcCe7FGKgOB3WB6l/vdJ9SGR+rRzmL0JR0rHnJGbS4NUIhhtebW3QXIOvEKUoMCrWH1azCKWCJRWSaoMX3Pja2fUm05EzivDBKDMWVTOsZ+RhWVaPx0ceucXGTKiISRzkpZslB/T6RUGjOTQdYpqZ2YVS8X//P6iQ1v/ZSrOLGo2HJRmAhiI5I/TkZcI7NilhHKNM9uJWxCNWU2i6eSheCtvrxOOld177ruPTRqzUYRRxnO4BwuwYMbaMI9tKANDCbwDK/w5kjnxXl3PpatJaeYOYU/cD5/AAsojjM=</latexit>

`

<latexit sha1_base64="yhHyBIIcsrqptUkyp+NPPc/Xbsc=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIqMuCG5cV7APboWTSTBuax5BkhDL0L9y4UMStf+POvzHTzkJbDwQO59xLzj1Rwpmxvv/tldbWNza3ytuVnd29/YPq4VHbqFQT2iKKK92NsKGcSdqyzHLaTTTFIuK0E01uc7/zRLVhSj7YaUJDgUeSxYxg66THvsB2HMWZmg2qNb/uz4FWSVCQGhRoDqpf/aEiqaDSEo6N6QV+YsMMa8sIp7NKPzU0wWSCR7TnqMSCmjCbJ56hM6cMUay0e9Kiufp7I8PCmKmI3GSe0Cx7ufif10ttfBNmTCappZIsPopTjqxC+floyDQllk8dwUQzlxWRMdaYWFdSxZUQLJ+8StoX9eCqHtxf1hqXRR1lOIFTOIcArqEBd9CEFhCQ8Ayv8OYZ78V79z4WoyWv2DmGP/A+fwDtTpEL</latexit>o
<latexit sha1_base64="lWgU/zjXOCdWq/m/Nx10hhn4fd8=">AAACFnicbVDLSgNBEJz1GeNr1aOXwSCoaNiVoB4DXjwqGA1kY5id9CaDsw9meiVh3a/w4q948aCIV/Hm3ziJETRa0FBUddPd5SdSaHScD2ticmp6ZrYwV5xfWFxatldWL3ScKg41HstY1X2mQYoIaihQQj1RwEJfwqV/fTzwL29AaRFH59hPoBmyTiQCwRkaqWXvJVteyLDrB1kvb3kIPcwSyRDyq51bD6Tcpd9+nG+37JJTdoagf4k7IiUywmnLfvfaMU9DiJBLpnXDdRJsZkyh4BLyopdqSBi/Zh1oGBqxEHQzG76V002jtGkQK1MR0qH6cyJjodb90DedgxP1uDcQ//MaKQZHzUxESYoQ8a9FQSopxnSQEW0LBRxl3xDGlTC3Ut5linE0SRZNCO74y3/JxX7ZPSi7Z5VStTKKo0DWyQbZIi45JFVyQk5JjXByRx7IE3m27q1H68V6/WqdsEYza+QXrLdPXCOgEA==</latexit>

p(x⇤
plate|`,o)

Figure 2. The overview of PARAGON. PARAGON uses soft parsing to represent language input as relations
between objects. The grounding module then aligns the stated objects to the object-centric regions in the visual
scene. An associated GNN conducts relational reasoning between grounded objects and outputs placement.
This framework is trained end-to-end without labels for parsing and visual grounding.
The resulting graph is fed into a GNN for relational reasoning and generating placements. The GNN
encodes a mean-field inference algorithm for a conditional random field depicting spatial relations in
triplets. PARAGON is trained end-to-end to achieve the best overall performance for object placing
without annotating parsing and object-grounding labels. See Appendix B for implementation details.

4 Soft Parsing

The soft parsing module is to extract spatial relations in complex language instructions for accurate
placement generation. The pipeline is in Fig 4. Dependency trees capture the relations between
words in natural language, which implicitly indicate the relations between the semantics those words
express [25, 26]. Thus, we use a data-driven approach to explore the underlying semantic relations
in the dependency tree for extracting relations represented as relational triplets. It takes linguistic
input and outputs relational triplets, where the triplets’ components are represented as embeddings.
We first introduce the core concepts of triplets and dependency tree, then demonstrate the algorithm.

4.1 Preliminaries

DEP

a

DET

a

DEP

the

ADP

to

ADP

of

NOUN

left

Prep

Det

Dobj

Pobj

Det

Prep

Det

Pobj

VERB

Place

NOUN

cup

NOUN

plate

Figure 3. Dependency parsing takes language sequence as the
input and outputs a tree structure. The blue blocks are depen-
dency tags, while the red ones are part-of-speech tags. A
part-of-speech tag categorizes words’ correspondence with a
particular part of speech, depending on the word’s definition
and context. Dependency tags mark two words relations in
grammar, represented as Universal Dependency Relations.

Triplets. A triplet consists of two enti-
ties and their relation, representing a bi-
nary relation. Triplet provides a formal
representation of knowledge expressed in
natural language, which is widely applied
in scene graph parsing [25], relation ex-
traction [27], and knowledge graph [28].
The underlying assumption of represent-
ing natural language as triplets is that nat-
ural language rarely has higher-order rela-
tions, as humans mostly use binary rela-
tions in natural language [29]. For spatial relations, two triplets can represent ternary relations (e.g.,
“between A and B” equals “the right of A and left of B” sometimes). As such, it is sufficient to
represent instructions as triplets for common object-placing purposes.

Language
Instruction

Dependency
Parser

Text
Encoder

GNN

MLP

Slot
Attention

Attention
<latexit sha1_base64="WfTIqXgPiVpvuCRGyIdyZFi5sHk=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9kOaUDbbTbt0dxN2N0IJ9U948aCIV3+ON/+NmzYHbX0w8Hhvhpl5YcKZNq777ZRWVtfWN8qbla3tnd296v5BW8epIrRFYh6rbog15UzSlmGG026iKBYhp51wfJP7nUeqNIvlvZkkNBB4KFnECDZWevCzpxz+tF+tuXV3BrRMvILUoECzX/3yBzFJBZWGcKx1z3MTE2RYGUY4nVb8VNMEkzEe0p6lEguqg2x28BSdWGWAoljZkgbN1N8TGRZaT0RoOwU2I73o5eJ/Xi810VWQMZmkhkoyXxSlHJkY5d+jAVOUGD6xBBPF7K2IjLDCxNiMKjYEb/HlZdI+q3sXde/uvNa4LuIowxEcwyl4cAkNuIUmtICAgGd4hTdHOS/Ou/Mxby05xcwh/IHz+QO0G5EA</latexit>{ }

W
eighted Sum

Subject

Object

Relation

<latexit sha1_base64="WfTIqXgPiVpvuCRGyIdyZFi5sHk=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9kOaUDbbTbt0dxN2N0IJ9U948aCIV3+ON/+NmzYHbX0w8Hhvhpl5YcKZNq777ZRWVtfWN8qbla3tnd296v5BW8epIrRFYh6rbog15UzSlmGG026iKBYhp51wfJP7nUeqNIvlvZkkNBB4KFnECDZWevCzpxz+tF+tuXV3BrRMvILUoECzX/3yBzFJBZWGcKx1z3MTE2RYGUY4nVb8VNMEkzEe0p6lEguqg2x28BSdWGWAoljZkgbN1N8TGRZaT0RoOwU2I73o5eJ/Xi810VWQMZmkhkoyXxSlHJkY5d+jAVOUGD6xBBPF7K2IjLDCxNiMKjYEb/HlZdI+q3sXde/uvNa4LuIowxEcwyl4cAkNuIUmtICAgGd4hTdHOS/Ou/Mxby05xcwh/IHz+QO0G5EA</latexit>{ }
<latexit sha1_base64="WfTIqXgPiVpvuCRGyIdyZFi5sHk=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9kOaUDbbTbt0dxN2N0IJ9U948aCIV3+ON/+NmzYHbX0w8Hhvhpl5YcKZNq777ZRWVtfWN8qbla3tnd296v5BW8epIrRFYh6rbog15UzSlmGG026iKBYhp51wfJP7nUeqNIvlvZkkNBB4KFnECDZWevCzpxz+tF+tuXV3BrRMvILUoECzX/3yBzFJBZWGcKx1z3MTE2RYGUY4nVb8VNMEkzEe0p6lEguqg2x28BSdWGWAoljZkgbN1N8TGRZaT0RoOwU2I73o5eJ/Xi810VWQMZmkhkoyXxSlHJkY5d+jAVOUGD6xBBPF7K2IjLDCxNiMKjYEb/HlZdI+q3sXde/uvNa4LuIowxEcwyl4cAkNuIUmtICAgGd4hTdHOS/Ou/Mxby05xcwh/IHz+QO0G5EA</latexit>{ }

Semantic Features

Dependency Tree

Put a plate to the upper
side of a knife and next to a

silver mug.

“put”, “a”, …, “mug”

<latexit sha1_base64="tZw9Fb6Q1oUeAttNcmwJ8mGBd0M=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cKthaaUDbbTbt0swm7E6GE+jO8eFDEq3/Gm//GbZuDtj4YeLw3w8y8MJXCoOt+O6WV1bX1jfJmZWt7Z3evun/QNkmmGW+xRCa6E1LDpVC8hQIl76Sa0ziU/CEc3Uz9h0eujUjUPY5THsR0oEQkGEUr+X7+VMCf9Ko1t+7OQJaJV5AaFGj2ql9+P2FZzBUySY3pem6KQU41Cib5pOJnhqeUjeiAdy1VNOYmyGc3T8iJVfokSrQthWSm/p7IaWzMOA5tZ0xxaBa9qfif180wugpyodIMuWLzRVEmCSZkGgDpC80ZyrEllGlhbyVsSDVlaGOq2BC8xZeXSfus7l3UvbvzWuO6iKMMR3AMp+DBJTTgFprQAgYpPMMrvDmZ8+K8Ox/z1pJTzBzCHzifP25nkpg=</latexit>{ }
Figure 4. The pipeline of soft parsing module.

Dependency Tree. A dependency tree
(shown in Fig. 3) is a universal structure
that examines the relationships between
words in a phrase to determine its gram-
matical structure [30]. It uses part-of-
speech tags to mark each word and depen-
dency tags to mark the relations between
two words. A part-of-speech tag [31] categorizes words’ correspondence with a particular part of
speech, depending on the word’s definition and context, such as in Fig. 3, “cup” is a “NOUN”.
Dependency tags mark two words relations in grammar, represented as Universal Dependency Re-
lations [32]. For example, in Fig. 3, the NOUN “cup” is the “direct object (Dobj)” of the VERB
“place”. Those relations are universal. A proper dependency tree relies on grammatically correct
instructions, whereas noisy language sentences may result in imperfect dependency trees. Thus, we
use the data-driven method to adapt to imperfect dependency trees.

3

4.2 Method

To make the parsing differentiable, the soft parsing module “softens” the triplet as the attention
to the words of linguistic inputs {aγ,l}1≤l≤L,

∑
l aγ,l = 1, γ ∈ {subj, obj, rel}. We compute

the embeddings of components in triplets by the attention-weighted sum of the word embeddings
ϕγ =

∑
l aγ,lfCLIP(ωl). The word embeddings are evaluated using pre-trained CLIP [33] fCLIP.

We use a GNN [34] to operate over the dependency tree from spaCy [35] to encode the structural
information into the node features. For the GNN, the part-of-speech tags are node features, and the
dependency tags are the edge attributes. Then, we feed the node features into three modules to eval-
uate each word’s weights to indicate how much this word contributes to the components in a triplet.
We use a single layer MLP to compute the attention of subject words {asubj,l}1≤l≤L. Slot attention
is a learnable module that can extract a set of task-dependent features called slots, which is used in
discovering multiple objects in a visual scene. To detect multiple spatial relations in compositional
instructions, we use slot attention module [36] to getN features and attentions {anobj,l}1≤n≤N,1≤l≤L
of object phrases, where N is the total number of triplets. We feed the features of object phrases
as the query, and structural features as the key and value of attention, into a multi-head attention
layer [37] to get the attention for corresponding relational phrases {anrel,l}1≤n≤N,1≤l≤L. We com-
pute the attention-weighted sum of word embeddings from pre-trained language models to get the
embeddings of N possible relational triplets, denoted as Ω = {〈ϕsubj, ϕ

n
rel, ϕ

n
obj〉}Nn=1.

Ideally, each triplet should contain information about single objects and their relations. However, we
discovered that the features of multiple objects and their relations could be entangled in one triplet.
As the disentangled triplets can provide more precise essential information and be more accurate in
recovering the sentence, we add sentence recovery to guide extracting disentangled triplets. We first
compute the embedding of each token using attention: ϕ̃l =

∑N
n=1

∑
i∈{rel,obj} a

n
i,lϕ

n
i + asubj,lϕsubj.

We then feed the embedding of tokens to an LSTM to produce the recovered word embeddings:
˜̀ = {ω̃l}Ll=1 = fLSTM({ϕ̃l}Ll=1). We minimize the L2 loss between generated sequence l and l̃ as
an auxiliary task to improve the soft parsing component.

5 Visual Grounding
After relation extraction, we ground the mentioned objects to the visual scenes and reason about
their spatial relations for placement generation. We align the visual features of objects and the
embeddings of their reference expressions into the same embedding space for object grounding. We
then represent relations in conditional random fields and encode them into GNNs for reasoning and
placement generation.

5.1 Object Reference Grounding

We align the object and subject phrase embeddings into the objects in the scene for visual grounding.
Given the visual inputs, we use a pre-trained object detector (Mask-RCNN [38] or SPACE [39])
to get object bounding boxes {ym}Mm=1 and encode their visual features {zm}Mm=1 using a pre-
trained CLIP [33]. We then project the object visual features zm and linguistic features in triplets
ϕi, ϕi ∈ {ϕsubj}∪{ϕnobj}Nn=1 into the same feature space via learnable projecting matrices Φ,Ψ. We
evaluate the cosine similarity dcos(·, ·) with a learnable scaling factor α between the visual and text
feature to get the grounding belief: bim = Softmaxm(α ·dcos(Φz>m,Ψϕ

>
i)). As such, the grounding

results of object i in the triplets is a set of object-centric regions with belief {(bim,ym)}Mm=1.

5.2 Relational Reasoning for Placement Generation

Spatial relations in Conditional Random Field. The triplets essentially build up a relational graph
G = (V, E) with objects as the nodes V and their spatial relations as the edges E . We use the
conditional random field (CRF) specified using G to represent the relations between positions of
the context and target objects in language instruction. The variable for the vertices X = {xi|xi ∈
R2}i∈V denotes the grounded position of each context object and the placement position of the target
object. We formulate the CRF as: p(X|z,Ω) ∝ ∏

(i,j)∈E ψij(xi,xj |rij)
∏
i∈V/{subj} φi(xi, z). ψij

describes the spatial relations between two objects based on the spatial relation rij ∈ {ϕnrel}Nn=1. φi
denotes the probability of the context object’s position conditioned on observation, except for the

4

target object (subj phrase). It is because the grounded position of the target object is only useful for
picking rather than placing. Mean-field variational inference approximates the CRF into a mean-
field p(X|z,Ω) ≈ q(X) =

∏
i∈V qi(xi) and optimizes the reversed KL divergence KL(q||p) to

converge to the multimodal distribution [40]. Mean-field q factorizes all the variables to simplify the
CRF for more efficient inference. The equation of Mean-field variational inference is: log qti(xi) =
ci + log φi(xi, z) +

∑
j∈N(i)

∫
X q

t−1
j (xj) logψij(xi,xj |rij)φj(xj , z)dxj = ci + mt

obs,i(xi) +∑
j∈N(i)m

t
ji(xi), where qti(xi) receives the messagemt

ji(xi) from its neighboring nodes j ∈ N(i)

and the message from observed node mt
obs,i(xi), forming a message passing algorithm for 1 ≤ t ≤

T . As such, the mean-field q(X) will iteratively converge to p(X|o,Ω).
Relational Reasoning in Mean-field GNN. To represent complex spatial distributions conditioned
on complex linguistic features, we follow [17] to map the spatial variables into high-dimensional
feature spaces and learn an approximate message-passing function between these variables. It forms
a GNN to conduct reasoning on the conditional random field by approximating the mean-field mes-
sage passing algorithm. To handle multimodal output distributions better, we develop a method
based on [22] to represent the factor of mean-field qi as particles {(hti,k, wti,k)} in message passing,
where each particle encodes the position of the corresponding object.
The GNN module takes the embeddings of spatial relations rij = ϕnrel as the edge attributes to
compute the message. We initialize the particles according to a normal distribution with uniform
weights: h0

i,k ∼ N (0, I), w0
i,k = 1/K. In message passing, we uses a message network fψ to output

new message by the previous inputs ht−1
j,k and edge attributes rij : mt

ji,k = fψ(ht−1
j,k , rij). We then

computes the embedding of observation by deepset [41]: mt
obs,j = fφ(

∑M
m=1 b

j
mfpos(ym)), where

fφ and fpos are MLPs. Following the form of mean-field inference, we compute the weights of the
message wtji,k by the weights of particles and scores from observations computed by a weighting
MLP gφ: wtji,k = ηwt−1

j,k log gφ(ht−1
j,k ,m

t
obs,j).

Then, we aggregate the message from neighboring nodes and observations to compute the node
features and beliefs. First, we sum up the messages and computes the new particles by an aggregate
MLP fu: hti,k = fu(

∑
j∈N(i)m

t
ji,k + mt

obs,i). We follow the mean-field inference to evaluate
new particle weights by reweighting MLP gφ: logwti,k = c+ log gφ(hti,k,m

t
obs,i) +

∑
j∈N(i) w

t
ji,k.

Next, we use resampling to avoid particle degeneracy problems. Particle degeneracy refers to the
weights of all but one particle being close to zero, resulting in extremely high variance. We resample
after each iteration step to build a new set of particles with new weights: {(h′ti,k, w′ti,k)}Kk=1 =

SoftResamp({(hti,k, wti,k)}Kk=1). However, this operation is not differentiable. Soft resampling [22]
makes this process differentiable via sampling from a mixture of distribution q(j) = αwj + (1 −
α) 1

K , and the new weights are evaluated using importance sampling, resulting in new belief: w′k =
wj

(αwj+(1−α)(1/K)) . When α > 0, soft resampling produces non-zero gradients for backpropagation.
We take α = 0.5 in training and α = 1.0 in inference. When t = T , we decode the node features to
get the final predictions of the target placement x∗i,k = πdec(h

′T
i,k) and the weights w∗i,k = w′Ti,k.

6 End-to-end Training
We train the framework end-to-end by minimizing two objectives. One is the negative log-likelihood
of dataset X̄ : Jl =

∑
x̄∈X̄ − log

∑
k w
∗
kN (x̄;x∗k,Σ), where x̄ ∈ X̄ is the labeled placement and the

likelihood is a mixture of Gaussian represented by particles of target object {(x∗k, w∗k)}Kk=1. We also
minimize the auxiliary loss for improving soft parsing: Js =

∑
`∈X̄ ||` − ˜̀||2 =

∑
`∈X̄

∑
l(ωl −

ω̃l)
2. As such, the final objective is: J = Jl + λJs, where λ is a hyper-parameter.

7 Experiments
7.1 Experimental Setup

Tabletop Dataset. The tabletop dataset, as shown in Fig. 5, consists of 30K visually realistic scenes
generated by PyBullet [42] and NVISII [43]. The objects are sampled from 48 objects with various
shapes and colors. The images contain random lighting conditions, light reflections, and partial oc-
clusions, reflecting the challenging language grounding in the real world. We use Mask-RCNN [38]

5

(a) (b)

Figure 5. Images in the Tabletop dataset. The dataset contains more than 40 objects shown in (a) with randomly
sampled materials and colors under random lighting conditions. The scenes shown in (b) are visually realistic
and reflect the challenges in the real world.

"place a spoon to the
lower left of a yellow

plate"

"place a fork to the left of
a red cup and to the

upper side of a silver cup"

"place a cup to the right
of a plate and to the
upper left of a fork"

"place a knife to the right
of a red cup and below a

plate"

"place a fork to the right
of a cup"

(a) (b) (f)(e)(c) (d) (g) (h)

"place a spoon to the upper
right of a fork and to the

upper left of a plate"

<latexit sha1_base64="L8h3BxMXGaEHBjk3QpGzLtmB/lo=">AAAB+XicbVBNS8NAEJ34WetX1KOXxSJ4KomIeix60GMF+wFtKJvttl262YTdSbGE/hMvHhTx6j/x5r9x2+agrQ8GHu/NMDMvTKQw6Hnfzsrq2vrGZmGruL2zu7fvHhzWTZxqxmsslrFuhtRwKRSvoUDJm4nmNAolb4TD26nfGHFtRKwecZzwIKJ9JXqCUbRSx3XbyJ/QsKxKNb2L1aTjlryyNwNZJn5OSpCj2nG/2t2YpRFXyCQ1puV7CQYZ1SiY5JNiOzU8oWxI+7xlqaIRN0E2u3xCTq3SJb1Y21JIZurviYxGxoyj0HZGFAdm0ZuK/3mtFHvXQSZUkiJXbL6ol0qCMZnGQLpCc4ZybAllWthbCRvYCBjasIo2BH/x5WVSPy/7l2X/4aJUucnjKMAxnMAZ+HAFFbiHKtSAwQie4RXenMx5cd6dj3nripPPHMEfOJ8/A5GT6A==</latexit>

P
a
r
a
G

o
n

<latexit sha1_base64="KJGMbJKRbTMpCNL8uXboJbiHTp0=">AAAB9XicbVBNSwMxEM3Wr1q/qh69BIvgqeyKqMdiLwoeKtgPaNeSTbNtaDZZklm1LP0fXjwo4tX/4s1/Y9ruQVsfDDzem2FmXhALbsB1v53c0vLK6lp+vbCxubW9U9zdaxiVaMrqVAmlWwExTHDJ6sBBsFasGYkCwZrBsDrxmw9MG67kHYxi5kekL3nIKQEr3XeAPUFavbmuKQ3jbrHklt0p8CLxMlJCGWrd4lenp2gSMQlUEGPanhuDnxINnAo2LnQSw2JCh6TP2pZKEjHjp9Orx/jIKj0cKm1LAp6qvydSEhkzigLbGREYmHlvIv7ntRMIL/yUyzgBJulsUZgIDApPIsA9rhkFMbKEUM3trZgOiCYUbFAFG4I3//IiaZyUvbOyd3taqlxmceTRATpEx8hD56iCrlAN1RFFGj2jV/TmPDovzrvzMWvNOdnMPvoD5/MHrm2Sog==</latexit>

C
L
IP

ort

Seen spatial relations Unseen compositions of spatial relations

"place a white cup to the
lower left of a red cup
and to the right of a

napkin cloth"

”place a fork to the
lower left of a napkin

cloth and the right side
of a red cup"

Figure 6. Demo of placement generation by PARAGON and CLIPort in an unseen visual scene. The green dots
in the first row of images are the weighted particles of placement generated by PARAGON. The green dots in the
second row are argmax of placement affordance generated by CLIPort. There are demos of instructions with
one spatial relation (a), seen compositions of spatial relations (b, c), unseen compositions of spatial relations
(d, e, f, g, h), and ambiguous case (a). The results show that PARAGON can reason complex spatial relations for
suitable placements and exhibits a sense of generalizability to unseen compositions. CLIPort hardly generates
correct placement for unseen compositional instructions, indicating its poor compositional generalizability.

for object detection. We also select three tasks in CLIPort’s benchmark: placing objects inside a
bowl or a box to test object reference grounding without positional ambiguity involved. Due to the
lack of bounding box labels, we use the unsupervised object detector SPACE [39] for CLIPort’s
tasks. Other tasks of CLIPort’s dataset focus on assembly or deformable object manipulation. They
are not in the scope of our research.
We prepare human-labeled instructions to test the model with natural requests using human-
provided natural language. Human-labeled instructions are from bit.ly/TableSetData. However,
collecting enough human-labeled data is expensive, while synthesized data is easily generated.
Hence, we use synthesized structured language instructions to train the models and fine-tune the
model using human-labeled data. The training dataset of structured language instructions contains
20K instructions with single spatial relations and 20K with compositions of multiple spatial rela-
tions. Our testing dataset contains 15K instructions, including instructions with unseen compositions
of seen spatial relations. We also have instructions containing ambiguous reference expressions, i.e.,
multiple objects are semantically identical to a reference expression. We prepare 9K human-labeled
language instructions, where 7K instructions are for training, and the remaining 2K instructions are
for testing. The human-labeled instructions are pre-collected from Mechanical Turk. We use image
pairs to show the scene before and after an object is moved and let humans provide language requests
for such object placement. The details of the dataset can be viewed at section A in the appendix.
Evaluation Metric. We evaluate the success rate of object placement, repeated 5 times. The suc-
cessful placements should satisfy all the spatial constraints given in the language instructions. The
placement should not be too far away from the reference objects with a threshold of 0.4 meters,
which is approximated from the human-labeled dataset. The evaluated models are trained for 300K
steps with a batch size of 1.

7.2 Results

We assess the performance of object placement by synthesized structured language instructions as
well as human-labeled instructions, and compare our performance with CLIPort [8]. CLIPort has

6

https://bit.ly/TableSetData

a fully convolutional design with a two-stream architecture that handles spatial and semantic infor-
mation. We first use three tasks from CLIPort’s benchmark to test the models in grounding referred
objects with referential ambiguity. We then use the Tabletop dataset to test language grounding with
the presence of referential ambiguity, positional ambiguity, compositionality, as well as human-
labeled noisy instructions.

Table 1. Results on CLIPort’s Dataset: Success Rate (%)

Tasks packing-shapes packing-google-objects put-blocks-in-bowls

CLIPort [8] 99.8 94.6 99.4
PARAGON 98.3 97.3 99.2

Object Reference Grounding. In
CLIPort’s benchmark, spatial rela-
tions are simple as the placements are
always inside a specific object. As
such, learning placement generation
equals learning object grounding. In these tasks, packing-shapes requires object grounding with-
out referential ambiguity, packing-google-objects contains referential ambiguity for target objects,
and put-blocks-in-bowls involves referential ambiguity for context objects. Table 1 reveals that both
CLIPort and PARAGON have good performance in object grounding even with referential ambiguity.

Place the red cup on a
plate

place a cup to the lower
side and left of a plate

Place a white cup below
a square plate

Place a spoon to the
upper right of a cup

Figure 7. Grounding instructions with referential ambiguity results
in a multimodal distribution of object placement. We use particle-
based GNN to capture the multimodality to adapt to referential am-
biguity.

Table 2. Results on Tabletop Dataset: Success Rate (%)
% of

Training
Data

Scene No Ref ambiguity With Ref Ambiguity

Relation Type Single Comp Comp* Single Comp Comp*

100% CLIPort [8] 73.2 69.1 59.5 71.4 68.2 51.7
PARAGON 93.5 92.1 90.2 93.3 91.6 89.4

10% CLIPort 57.2 46.3 36.1 51.0 44.3 33.2
PARAGON 89.7 88.2 88.0 89.9 87.6 87.3

2% CLIPort 39.7 29.1 29.5 33.9 28.5 22.9
PARAGON 86.0 69.4 64.1 85.1 67.9 65.2

Object Placing with Ambiguity.
The Tabletop dataset involves plac-
ing the object next to a context object,
causing positional ambiguity. As the
placement is not inside a specific
object, object grounding no longer
equals object placement. Table 2 sug-
gests that PARAGON has a better per-
formance with positional ambiguity.
CLIPort uses convolutional architec-
ture, which can capture strong local
correlations. This inductive bias is
useful if the placement is inside an
object. However, positional ambigu-
ity is only in weak agreement with
the inductive bias as pixels far away
can also be closely related, compro-
mising the performance of CLIPort.
PARAGON has an encoded graphical
model for the spatial relations between objects to generate placement. It learns a distribution of
the usual distance for placement from data and naturally adapts to positional ambiguity. We also
test the performance of object placement with referential ambiguity (With Ref Ambiguity in Table
2), in which the scenes contain a few semantically identical objects. Referential ambiguity makes
the correct placement non-unique, resulting in a multimodal distribution of correct placement. As
shown in Table 2, PARAGON has a good performance with referential ambiguity. The core idea is to
represent a distribution as a set of particles to capture multimodality and employ this idea in GNN
for placement generation. Fig. 7 demonstrates that the GNN outputs a multimodal distribution when
there is referential ambiguity.

Table 3. Human Instructions Results: Success Rate (%)

Fine-Tuned Not Fine-Tuned

Method PARAGON CLIPort PARAGON CLIPort

Success Rate 81.9 72.5 70.4 61.3

Compositionality. Table 2 also reports the re-
sults on instructions with seen and unseen com-
positions of seen spatial relations (Comp and
Comp* in Table 2, respectively), as well as the
performance of the models trained with 2% and
10% of the training data. The composition substantially increases the complexity of language com-
prehension and the data required for training. Table 2 shows that PARAGON is data-efficient in
learning structured compositional instructions and can generalize to instructions with unseen com-
positions. It converts a complex language into a set of simple, structured relations represented as
triplets to reduce complexity. Our approach operates on the grammatical structure of natural lan-
guage that is generalizable to different semantic meanings. CLIPort uses single embeddings to

7

“memorize” seen compositions. It has poorer generalization in the presence of composition when
training data is limited and does not generalize well to unseen compositions.
Human-labeled Instructions. We use human-labeled instructions to test natural human requests
in noisy natural language. The instructions in this testing dataset may not be grammatically correct
and contain unseen, noisy expressions for objects and spatial relations. The results are shown in
Table 3, where Fine-Tuned means the models are fine-tuned by the human-labeled dataset, and Not
Fine-Tuned models are trained only on structured instructions. The results show that PARAGON
performs better on human-labeled instructions. PARAGON is data-driven and optimizes all the mod-
ules to adapt to imperfect, noisy linguistic data and extract useful relational information. PARAGON
extracts relations from grammatical structures of instructions, which is highly generalizable and
helps tackle unseen expressions. CLIPort is also data-driven but represents instructions as single
embeddings that do not generalize well to unseen, noisy language expressions.

Table 4. Ablation Study: Success Rate (%)

% of
Training

Data

Scene No Ref ambiguity With Ref Ambiguity

Relation Type Single Comp Comp* Single Comp Comp*

100%

PARAGON 93.5 92.1 90.2 93.3 91.6 89.4
No Soft Parsing 73.3 69.4 33.1 80.3 71.0 36.6

No Particle 93.1 92.3 90.5 88.3 87.4 84.1
No Resampling 93.2 92.0 81.2 86.3 90.7 78.9

PARAGON(ViT+Bert) 91.1 92.0 88.3 90.8 91.4 89.9

10% PARAGON 89.7 88.2 88.0 89.9 87.6 87.3
PARAGON(ViT+Bert) 88.4 86.0 85.2 87.7 86.5 85.4

2% PARAGON 86.0 69.4 64.1 85.1 67.9 65.2
PARAGON(ViT+Bert) 70.1 65.3 58.6 69.8 61.1 52.7

Ablation Study. We conduct an ab-
lation study to assess each module’s
contribution in PARAGON. We de-
sign a variation of PARAGON without
soft parsing, using single embeddings
of language instructions to ground
objects and represent relations. We
also assess a version of PARAGON
that uses a mean-field message pass-
ing neural network [17] without the
use of particles, and test PARAGON
without resampling. PARAGON uses pretrained CLIP to encode text and visual inputs for object
reference grounding. To test the impact of using pre-trained models that are trained separately for
vision and language, we replace CLIP in PARAGON with Visual Transformer [44] and BERT [45].
We report ablation study results in Table 4. The results for No Soft Parsing demonstrate that soft
parsing is essential in learning compositional instructions. It converts complex language sentences
into simple phrases for objects and relations. The embeddings of those phrases have more straight-
forward semantic meanings than the entire sentence and are much easier for them to be grounded in
the visual scene. As shown in the row of No Particle, using GNN without particles cannot capture
multimodal distribution when referential ambiguity occurs and compromise the performance. The
results in No Resampling indicate that resampling is helpful because particle degeneracy can oc-
cur without resampling, compromising the performance of capturing multimodal distributions with
referential ambiguity. The last 4 rows in Table 4 show that PARAGON requires fewer data to ob-
tain good results using pre-trained CLIP than pre-trained ViT+Bert. CLIP is pre-trained by a large
dataset of image-caption pairs and is better for aligning language with visual features.

8 Conclusion and Limitation
PARAGON leverages object-centric representation for visual grounding of natural language. It in-
tegrates parsing into a probabilistic, data-driven framework for language-conditioned object place-
ment. It tries to break the lines between parsing-based and embedding-based methods for language
grounding, as well as combine the strength of rule-based and data-driven approaches. PARAGON
reduces the complexity of embedding-based grounding by parsing complex sentences into simple
structures, and learns generalizable parsing rules from data for robustness. Those combinations are
beneficial and would facilitate future research. Our experiments reflect the difficulties of language
grounding in real situations to show PARAGON’s potential for real-world application.
PARAGON is limited by 2D object representations to ground 3D spatial relations situated by the 3D
shape of objects, such as “lean”. It also limits us to ground rotation instructions conditioned on
the shape of objects, such as “rotate the fork to make it point to an apple”. Leveraging 3D object
representations would empower stronger language grounding skills and facilitate future research.

8

Acknowledgments

This research is supported in part by the National Research Foundation (NRF), Singapore and DSO
National Laboratories under the AI Singapore Program (AISG Award No. AISG2-RP-2020-016)
and the Agency of Science, Technology and Research, Singapore, under the National Robotics Pro-
gram (Grant No. 192 25 00054).

References
[1] S. Tellex, N. Gopalan, H. Kress-Gazit, and C. Matuszek. Robots that use language. Annual

Review of Control, Robotics, and Autonomous Systems, 3(1), 2020.

[2] M. Shridhar and D. Hsu. Interactive visual grounding of referring expressions for human-robot
interaction. arXiv preprint arXiv:1806.03831, 2018.

[3] M. Shridhar, D. Mittal, and D. Hsu. Ingress: Interactive visual grounding of referring expres-
sions. The International Journal of Robotics Research, 39(2-3):217–232, 2020.

[4] O. Mees, A. Emek, J. Vertens, and W. Burgard. Learning object placements for relational
instructions by hallucinating scene representations. In 2020 IEEE International Conference on
Robotics and Automation (ICRA), pages 94–100. IEEE, 2020.

[5] O. Mees and W. Burgard. Composing pick-and-place tasks by grounding language. In Inter-
national Symposium on Experimental Robotics, pages 491–501. Springer, 2020.

[6] W. Liu, C. Paxton, T. Hermans, and D. Fox. Structformer: Learning spatial structure for
language-guided semantic rearrangement of novel objects. arXiv preprint arXiv:2110.10189,
2021.

[7] R. Kartmann, D. Liu, and T. Asfour. Semantic scene manipulation based on 3d spatial ob-
ject relations and language instructions. In 2020 IEEE-RAS 20th International Conference on
Humanoid Robots (Humanoids), pages 306–313. IEEE, 2021.

[8] M. Shridhar, L. Manuelli, and D. Fox. Cliport: What and where pathways for robotic manipu-
lation. In Proceedings of the 5th Conference on Robot Learning (CoRL), 2021.

[9] S. Stepputtis, J. Campbell, M. Phielipp, S. Lee, C. Baral, and H. Ben Amor. Language-
conditioned imitation learning for robot manipulation tasks. Advances in Neural Information
Processing Systems, 33, 2020.

[10] C. Lynch and P. Sermanet. Language conditioned imitation learning over unstructured data.
Proceedings of Robotics: Science and Systems. doi, 10, 2021.

[11] V. Raman, C. Lignos, C. Finucane, K. C. Lee, M. P. Marcus, and H. Kress-Gazit. Sorry dave,
i’m afraid i can’t do that: Explaining unachievable robot tasks using natural language. In
Robotics: Science and Systems, pages 2–1. Citeseer, 2013.

[12] A. Boteanu, T. Howard, J. Arkin, and H. Kress-Gazit. A model for verifiable grounding and ex-
ecution of complex natural language instructions. In 2016 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 2649–2654. IEEE, 2016.

[13] T. M. Howard, S. Tellex, and N. Roy. A natural language planner interface for mobile manip-
ulators. In 2014 IEEE International Conference on Robotics and Automation (ICRA), pages
6652–6659. IEEE, 2014.

[14] A. Boteanu, J. Arkin, S. Patki, T. Howard, and H. Kress-Gazit. Robot-initiated specification
repair through grounded language interaction. arXiv preprint arXiv:1710.01417, 2017.

[15] H. Kress-Gazit, M. Lahijanian, and V. Raman. Synthesis for robots: Guarantees and feedback
for robot behavior. Annual Review of Control, Robotics, and Autonomous Systems, 1:211–236,
2018.

9

[16] P. Karkus, X. Ma, D. Hsu, L. P. Kaelbling, W. S. Lee, and T. Lozano-Pérez. Differentiable
algorithm networks for composable robot learning. arXiv preprint arXiv:1905.11602, 2019.

[17] H. Dai, B. Dai, and L. Song. Discriminative embeddings of latent variable models for struc-
tured data. In International conference on machine learning, pages 2702–2711. PMLR, 2016.

[18] J. Dauwels, S. Korl, and H.-A. Loeliger. Particle methods as message passing. In 2006 IEEE
International Symposium on Information Theory, pages 2052–2056. IEEE, 2006.

[19] F. Gustafsson. Particle filter theory and practice with positioning applications. IEEE Aerospace
and Electronic Systems Magazine, 25(7):53–82, 2010.

[20] P. Karkus, D. Hsu, and W. S. Lee. Particle filter networks with application to visual localization.
In Conference on robot learning, pages 169–178. PMLR, 2018.

[21] M. Zhu, K. Murphy, and R. Jonschkowski. Towards differentiable resampling. arXiv preprint
arXiv:2004.11938, 2020.

[22] X. Ma, P. Karkus, D. Hsu, and W. S. Lee. Particle filter recurrent neural networks. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 34, pages 5101–5108, 2020.

[23] E. B. Sudderth, A. T. Ihler, W. T. Freeman, and A. S. Willsky. Nonparametric belief propaga-
tion. In Proceedings of the 2003 IEEE computer society conference on Computer vision and
pattern recognition, pages 605–612, 2003.

[24] X. Su, W. S. Lee, and Z. Zhang. Multiplicative gaussian particle filter. In International Con-
ference on Artificial Intelligence and Statistics, pages 56–65. PMLR, 2020.

[25] S. Schuster, R. Krishna, A. Chang, L. Fei-Fei, and C. D. Manning. Generating semantically
precise scene graphs from textual descriptions for improved image retrieval. In Proceedings of
the fourth workshop on vision and language, pages 70–80, 2015.

[26] Y.-S. Wang, C. Liu, X. Zeng, and A. Yuille. Scene graph parsing as dependency parsing. arXiv
preprint arXiv:1803.09189, 2018.

[27] Z. Guo, Y. Zhang, and W. Lu. Attention guided graph convolutional networks for relation
extraction. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pages 241–251, 2019.

[28] Q. Wang, Z. Mao, B. Wang, and L. Guo. Knowledge graph embedding: A survey of approaches
and applications. IEEE Transactions on Knowledge and Data Engineering, 29(12):2724–2743,
2017.

[29] A. Rubinstein. Why are certain properties of binary relations relatively more common in
natural language? Econometrica: Journal of the Econometric Society, pages 343–355, 1996.

[30] S. Kübler, R. McDonald, and J. Nivre. Dependency parsing. Synthesis lectures on human
language technologies, 1(1):1–127, 2009.

[31] S. Petrov, D. Das, and R. McDonald. A universal part-of-speech tagset. arXiv preprint
arXiv:1104.2086, 2011.

[32] R. McDonald, J. Nivre, Y. Quirmbach-Brundage, Y. Goldberg, D. Das, K. Ganchev, K. Hall,
S. Petrov, H. Zhang, O. Täckström, et al. Universal dependency annotation for multilingual
parsing. In Proceedings of the 51st Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 92–97, 2013.

[33] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervi-
sion. In International Conference on Machine Learning, pages 8748–8763. PMLR, 2021.

10

[34] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message passing
for quantum chemistry. In International conference on machine learning, pages 1263–1272.
PMLR, 2017.

[35] M. Honnibal and I. Montani. spaCy 2: Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremental parsing. To appear, 2017.

[36] F. Locatello, D. Weissenborn, T. Unterthiner, A. Mahendran, G. Heigold, J. Uszkoreit,
A. Dosovitskiy, and T. Kipf. Object-centric learning with slot attention. Advances in Neu-
ral Information Processing Systems, 33:11525–11538, 2020.

[37] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polo-
sukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

[38] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. In 2017 IEEE International
Conference on Computer Vision (ICCV), pages 2980–2988, 2017. doi:10.1109/ICCV.2017.
322.

[39] Z. Lin, Y.-F. Wu, S. V. Peri, W. Sun, G. Singh, F. Deng, J. Jiang, and S. Ahn. Space: Un-
supervised object-oriented scene representation via spatial attention and decomposition. In
International Conference on Learning Representations, 2020. URL https://openreview.

net/forum?id=rkl03ySYDH.

[40] C. M. Bishop and N. M. Nasrabadi. Pattern recognition and machine learning, volume 4.
Springer, 2006.

[41] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and A. J. Smola. Deep
sets. Advances in neural information processing systems, 30, 2017.

[42] E. Coumans and Y. Bai. Pybullet, a python module for physics simulation for games, robotics
and machine learning. http://pybullet.org, 2016–2021.

[43] N. Morrical, J. Tremblay, Y. Lin, S. Tyree, S. Birchfield, V. Pascucci, and I. Wald. Nvisii: A
scriptable tool for photorealistic image generation. arXiv preprint arXiv:2105.13962, 2021.

[44] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. De-
hghani, M. Minderer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Transform-
ers for image recognition at scale. In International Conference on Learning Representations,
2020.

[45] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

11

http://dx.doi.org/10.1109/ICCV.2017.322
http://dx.doi.org/10.1109/ICCV.2017.322
https://openreview.net/forum?id=rkl03ySYDH
https://openreview.net/forum?id=rkl03ySYDH
http://pybullet.org

A Tabletop Dataset
We extend the dataset from bit.ly/TableSetData with randomly sampled objects and generate
placement from several sampled spatial relations. The dataset will be released in our website at
bit.ly/ParaGonProj.

A.1 Objects

We sample 50 dining objects with different classes, colors, and shapes, including forks, knives,
spoons, plates, wine cups, water cups, and napkin cloths. The visualization of objects is in Fig. 5
(a).

A.2 Language Expressions

Our dataset draws samples from commonly used spatial relations with various language expressions.
The spatial relations includes left, right, front, behind, on top of, and their compositions. We also
have ternary spatial relation “between”. The language expressions for each spatial relations are
illustrated in Table 5.

Table 5. Spatial relations and their language expressions in Tabletop Dataset.

Spatial Relations Language Expressions Spatial Relations Language Expressions

Left
“to the left of”
“to the left side of”
“to the left hand side of”

Front Right

“to the lower right of”
“to the lower right side of”
“to the lower right corner of”
“to the front right of”

Right
“to the right of”
“to the right side of”
“to the right hand side of”

Behind Left
“to the upper left of”
“to the upper left side of”
“to the upper left corner of”

Front “in front of”
“to the lower side of” Behind Right

“to the upper right of”
“to the upper right side of”
“to the upper right corner of”

Behind “behind”
“to the upper side of” on top of

“on”
“above”
“on top of”
“on the center of”

Front Left

“to the lower left of”
“to the lower left side of”
“to the lower left corner of”
“to the front left of”

A.3 Data Generation

A.3.1 Instruction Generation

We generate the instructions according to language templates. The template for tasks with single
spatial relation is illustrated below:

[verb phrase] + [subject phrase] (1)
+ [spatial relation phrase] + [object phrase]. (2)

If the language instruction contains compositional spatial relations, the template is:
[verb phrase] + [subject phrase] (3)

+[spatial relation phrase 1] + [object phrase 1] (4)
+“and” + [spatial relation prhase 2] + [object phrase 2]. (5)

The spatial relations are sampled from Table 5, and the subject phrases and object phrases are sam-
pled according to the object class, object colors, and shapes, such as “yellow square plate”. We
sample the verb phrases uniformly as random from “put”, “place”, and “move”.

12

https://bit.ly/TableSetData
https://bit.ly/ParaGonProj

(a) (b)

Figure 8. Expert demonstration generation. The demonstration is sampled from a truncated Gaussian dis-
tribution. Case (a) illustrates a distribution of “left-hand side”, where the highlighted area indicates a high
probability. We truncate areas that derive from the left side and are too close to the reference object. Case (b)
illustrates the composition of spatial relations “left-hand side” and “upper side”, where the conjunction of both
directions truncates the distribution.

(a) (b) (c) (d)

Figure 9. Raw observations captured by cameras in Tabletop Dataset.
A.3.2 Image Generation

• Camera Setup. We use four cameras to capture the visual observation. Similar to the
Raven simulator, there are three RGB-D cameras with resolutions of 640 × 480 that are
placed on the rectangular table’s top, left, and right, pointing towards the center (see (b),
(c), and (d) in Figure 9). We also have an RGB camera with a resolution of 640 × 640
placed at the top of the table (see (a) in Figure 9 for the example picture).

• Rendering. We use NVISII as the rendering interface to get the photorealistic pictures of
the visual scene. We randomly sample the position of the lights and their colors to add
difficulties. In addition, due to the random lighting conditions, the visual scenes contain
various light reflections, hampering the visual grounding of natural language.

A.3.3 Expert Demonstration.

We provide a handcrafted policy for expert demonstration in placement generation. According to
the ground truth position of objects in the simulator, we sample from a handcrafted Gaussian distri-
bution with a specific direction as the placement generation policy. Specifically, the demonstration
is sampled from a truncated Gaussian distribution. There are two examples shown in Fig. 8. In this
figure, case (a) illustrates a distribution of “left-hand side”, where the highlighted area indicates a
high probability of placement. We truncate areas that derive from the left side and are too close to the
reference object. Case (b) illustrates the composition of spatial relations “left-hand side” and “upper
side”, where the conjunction of both directions truncates the distribution. The mean of the Gaussian
distribution is located at the intersection of the central axes of the spatial relations. We also use
axis-aligned bounding boxes (AABB) of the target object and context objects to detect intersections
and avoid object collision after generating the placement.

13

A.4 Evaluation Critera

We evaluate the success rate of the object placing by examining whether the placement satisfies the
spatial relational constraints in the natural language instructions. Specifically, we assess whether
the generated particle is located at the truncated regions. For CLIPort, we take the argmax to get
the generated placement. As ParaGon generates a set of particles as the samples of a placement
distribution, we randomly sample from the particles ten times to evaluate the success rate.

B Implementation and Training Details

Algorithm 1 Soft Parsing

Input: Instruction ` = {ωl}Ll=1, Text encoder fCLIP(·) : ω → RDword , K
Output: Triplets: {(ϕsubj, ϕ

(n)
obj , ϕ

(n)
rel)}Nn=1, Recovered instruction: ˜̀

1: τ ← DepParser(`)
2: {~l}Ll=1 ← GNN(τ)
3: {asubj,l}l≤L ← SoftMax(MLP({~l}Ll=1))
4: {anobj,l}n≤N,l≤L ← SlotAttn({~l}Ll=1)

5: ~nobj ←
∑
l a
n
obj,l~l

6: {anobj,l}n≤N,l≤L ← MHAttn({~nobj}Nn=1, {~l}Ll=1, {~l}Ll=1)

7: ϕsubj ←
∑
l asubj,lfCLIP(ωl)

8: ϕnγ ←
∑
l a
n
γ,lfCLIP(ωl), γ ∈ {obj, rel}

9: ϕ̃l =
∑N
n=1

∑
i∈{rel,obj} a

n
i,lϕ

n
i + asubj,lϕsubj.

10: ˜̀= LSTM({ϕ̃l}Ll=1)

B.1 Soft Parsing

We illustrate the implementation details of the soft parsing module. The algorithm is shown in
Algorithm 3.

B.1.1 Structural Prior from Dependency Parsing

We use spaCy dependency parser with transformer backend to get the dependency tree of a given
sentence. We use embeddings v ∈ RDembed to represent the part-of-speech (POS) tag and dependency
(DEP) tag in the dependency tree. The message passing neural network uses MLP as the functions
fm : RDembed × RDembed × RDembed → RDembed and fu : RDembed × RDembed → RDembed . The POS tags
are used as the initial node features and the DEP tags are the edge attributes. During the message
passing, the node features and edge attributes are concatenated as the input of fm and fu. Thus, the
structural prior from the dependency tree is encoded in the output structural features of the message-
passing neural network. In addition, the structure lacks the order of position of the tokens in the
sentence. We use cosine positional encoding added in the output structural embeddings to encode
the position of tokens in the sentence.

B.1.2 Relation Extraction

The output structural features ~l from the message-passing neural network are used for relation
extraction. We use attention to evaluate the normalized score of each token in the sentence from
message passing for its contribution to the components in relational triplets. We use a single-layer
MLP with softmax to compute the normalized score of each token contributing to the subject phrase.
To discover potential object phrases, we use slot attention [36] from visual object discovery for
unsupervised object phrase discovery. The slot attention algorithm is illustrated in Algorithm 2.
After discovering the object phrases, we use a multi-head attention module to evaluate the relational
phrases conditioned on the corresponding object phrases. The object structure embeddings from
slot attention are used as the query, and the structural features from message passing as the key and
value. After we compute the weights of each token in the sentence for the subject phrase, object
phrase, and relational phrase, we use the expected embedding to represent the word embeddings for

14

the phrases in triplets. We use CLIP as the encoder to compute the word embeddings of tokens in
the sentence.

B.1.3 Hyper-parameters

The dimension of embedding is Dembed = 64, and the layer number of message passing neural
network is 4. We use 3 iteration for slot attention, with slot number Nslot = 4, hidden dimension
Dslots = 128 and ε = 1 × 10−8. As for the multi-head attention module for relational phrase
discovery, the number of heads is eight, and the embedding dimension is 64. Language encoder φ(·)
is trained CLIP (ViT-32/B), in which the word embedding dimension is Dword = 512.

Algorithm 2 Slot Attention

Input: inputs ∈ RN×Dinputs , slots ∼ N (µ, diag(σ)) ∈ RK×Dslots

Layer params: k, q, v : linear projections for attention; GRU; MLP; LayerNorm(×3)
1: inputs← LayerNorm(inputs)
2: for t = 0, . . . , T do
3: slots prev← slots
4: slots← LayerNorm(slots)
5: attn← SoftMax(1√

D
k(inputs)q(slots)>, axis = slots)

6: Updates←WeightedMean(weights = attn + ε, values = v(inputs))
7: slots← GRU(state = slots prev, inputs = updates)
8: slots← slots + MLP(LayerNorm(slots))
9: end for

Output: slots

B.2 Particle Mean-field GNN

The pseudo-code of particle mean-field GNN is illustrated in Algorithm 3.

B.2.1 Functions in Particle Mean-field GNN

For the observation, we use masks of bounding boxes to represent the object positions and shapes
in the observed image. We use a simple CNN model fpos : RWpos×Hpos → RDpmpnn to encode the
positional feature of the bounding boxes detected in the scene. We then use an MLP to project the
positional feature into embeddings. The particle proposal network fψ : RDpmpnn ×RDpmpnn → RDpmpnn

and aggregation network fu : RDpmpnn → RDpmpnn are all single-layer MLP. The reweighting function
of observation model gφ : RDpmpnn × RDpmpnn → R is also a MLP.

B.2.2 Hyper-parameters

The layer number of particle-based mean-field GNN is T = 8. In message passing, we use embed-
dings with dimension Dpmpnn = 128. In soft resampling, we use α = 0.5 for training and α = 1.0
for inference. For visual grounding, the visual encoder is pre-trained CLIP (ViT-32/B).

B.3 Training

We conduct supervised learning to train the model end-to-end. There are two compo-
nents to the training objective. One is the negative log-likelihood of dataset X̄ : Jl =∑

x̄∈X̄ − log
∑
k w
∗
kN (x̄;x∗k,Σ), where x̄ ∈ X̄ is the labeled placement and the likelihood is a mix-

ture of Gaussian represented by each output particle of target object {(x∗k, w∗k)}Kk=1. We also mini-
mize the auxiliary loss for improving soft parsing: Js =

∑
`∈X̄ ||` − ˜̀||2 =

∑
`∈X̄

∑
l(ωl − ω̃l)2.

As such, the final objective is: J = Jl + λJs, where λ is a hyper-parameter. The hyper-parameter
λ = 10.0. For target object grounding, we use cross-entropy loss, where the labels for the loss
function are the closest bounding box to the ground truth object position.
For training, we use Adam optimizer, and the learning rate is 1×10−4. We train the model for 200K
steps when the data is more significant than 1000 and 50K when trained by 300.

15

Algorithm 3 Particle Mean-field GNN

Input: Number of layer T , number of particles K, detected object bounding boxes B =
{(zm,xm)}Mm=1, relational graph G = (V, E), edge attributes (spatial relation embeddings)
rij

1: h(0)
i,k ∼ N (0, 1), w

(0)
i,k ← 1/K, t← 0 {Initialization}

2: for t < T do
3: for (i, j) ∈ E do {Message Computing}
4: mt

ji,k = fψ(ht−1
j,k , rij)

5: mt
obs,j = fφ(

∑M
m=1 b

j
mfpos(ym))

6: wtji,k = ηwt−1
j,k log gφ(ht−1

j,k ,m
t
obs,j)

7: end for
8: for i ∈ V do {Message Aggregation}
9: hti,k = fu(

∑
j∈N(i)m

t
ji,k +mt

obs,i)

10: logwti,k = c+ log gφ(hti,k,m
t
obs,i) +

∑
j∈N(i) w

t
ji,k

11: {(h′ti,k, w′ti,k)}Kk=1 ← SoftResam({(hti,k, wti,k)}Kk=1)
12: end for
13: t← t+ 1
14: end for
15: x∗i,k = πdec(h

′T
i,k),∀k ≤ K {Decode Placement}

Output: {(x∗i,k, w′Ti,k)}Kk=1

B.4 Baseline Implementation

B.4.1 No Soft Parsing

This baseline model directly uses the embedding of the entire instruction sentence instead of the
embeddings from triplets for object grounding and message passing in step 4 of Algorithm 3.

B.4.2 No Particle

This baseline model does not have particles in the message passing, and the initially hidden features
in step 1 of Algorithm 3 are vectors with zero values. It also does not have step 11 for soft parsing.

B.4.3 No Resampling

The third baseline is built without soft resampling in step 11 of Algorithm 3.

B.4.4 PARAGON(ViT + Bert)

This baseline model uses the ImageNet-pretrained ViT 32/B model for visual encoding and the
pretrained Bert model for text encoding in visual grounding, representing the edge attribute rij .

16

	Introduction
	Related Work
	Overview
	Soft Parsing
	Preliminaries
	Method

	Visual Grounding
	Object Reference Grounding
	Relational Reasoning for Placement Generation

	End-to-end Training
	Experiments
	Experimental Setup
	Results

	Conclusion and Limitation
	Tabletop Dataset
	Objects
	Language Expressions
	Data Generation
	Instruction Generation
	Image Generation
	Expert Demonstration.

	Evaluation Critera

	Implementation and Training Details
	Soft Parsing
	Structural Prior from Dependency Parsing
	Relation Extraction
	Hyper-parameters

	Particle Mean-field GNN
	Functions in Particle Mean-field GNN
	Hyper-parameters

	Training
	Baseline Implementation
	No Soft Parsing
	No Particle
	No Resampling
	ParaGon(ViT + Bert)

