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Abstract: Grounding spatial relations in natural language for object placing could
have ambiguity and compositionality issues. To address the issues, we intro-
duce PARAGON, a PARsing And visual GrOuNding framework for language-
conditioned object placement. PARAGON leverages object-centric relational rep-
resentations for the visual grounding of natural language. It parses language
instructions into relations between objects and grounds those objects in vi-
sual scenes. A particle-based GNN then conducts relational reasoning between
grounded objects for placement generation. PARAGON encodes all of those pro-
cedures into neural networks for end-to-end training. Our approach inherently
integrates parsing-based methods into a probabilistic, data-driven framework. It is
data-efficient and generalizable for learning compositional instructions, robust to
noisy language inputs, and adapts to the uncertainty of ambiguous instructions.

1 Introduction

Human-robot-interaction tasks, such as
object placement, navigation, and as-
sembly, often require detailed descrip-
tions with spatial relations. Natural lan-
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guage provides a rich and intuitive inter- the upper side

of a knife and

next to the

face for human-robot-interaction tasks [1]. silver mug.

Therefore, man.aglng to %earn an‘,i ground Figure 1. We aim to output placements based on visual and
language-described spatial relations en- jinguistic inputs. The presence of multiple semantically iden-
ables robots to assist us better. This re- tical objects and omitted distance information cause difficulty
search focuses on object placement tasks for placement generation, and the compositional instructions
instructed by natural language. Humans increase the data required for learning.

verbally instruct robots to pick up an object and put it to a specific place. The robot generates object
placements conditioned by language description and visual observation. However, spatial relations
in natural language can be ambiguous and compositional, causing issues in language grounding.

We focus on two types of ambiguity: positional ambiguity and referential ambiguity. Positional
ambiguity arises from the phenomenon that people tend to describe the directional relations without
the precise distance (e.g., “to the left side”). In addition, we usually need a reference object to
describe spatial relations (e.g., “next to the plate”). When placing an object next to reference objects,
the connection between the reference object and placement is indirect, causing it to be difficult to
learn object reference grounding and placement generation simultaneously. Furthermore, reference
expressions of objects can be ambiguous, resulting in a reference expression being grounded to
multiple semantically identical objects. It makes the distribution of correct placement multimodal.
We refer to this issue as referential ambiguity.

The compositional structure of language-described spatial relations comes from the compositional
nature of the visual scene and natural language. A complex scene contains multiple basic objects. To
describe the desired state of a complex scene, one can compose many simple sentences for referents
and their relations to form a complex language sentence (e.g., the instruction in Fig 1). This property
increases the data required for learning compositional language instructions.

To address the issues, we introduce PARAGON, a PARsing And visual GrOuNding framework for
language-conditioned object placement. The core idea behind PARAGON is to leverage structures
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in linguistic and visual inputs to extract object-centric relations for reasoning and placement gen-
eration, and encode those procedures in neural networks for end-to-end training. It learns to parse
language into relational triplets from the grammatical structure. The triplets consist of subject, rela-
tion, and object phrases, e.g., (“plate”, “upper side”, “knife”) in Fig 1. It then grounds the mentioned
objects to the regions in the visual scene. A graph formed by grounded triplets is fed into a GNN for
relational reasoning and generating placements. The GNN encodes a mean-field message passing
algorithm to minimize the reverse KL-Divergence for the target distribution. We further develop a

particle version of GNN to capture multimodal distributions.

PARAGON integrates parsing-based methods into a probabilistic, data-driven framework. It exhibits
robustness from its data-driven property, as well as generalizability and data-efficiency from pars-
ing. It adapts to the uncertainty of ambiguous instructions using particle-based probabilistic tech-
niques. The experiments show that PARAGON outperforms the state-of-the-art method in language-
conditioned object placement tasks in the presence of ambiguity and compositionality.

2 Related Work

Many works [2, 3, 4, 5, 6, 7, 8, 9, 10] developed solutions for language-instructed object manip-
ulations of robotic systems. Our research focuses on object placement instructed by language. In
contrast to picking [2, 3], which needs only a discriminative model to ground objects from reference
expressions, placing [4, 5, 6, 7, 8] requires a generative model conditioned on the relational con-
straints of object placement. Specifically, it requires capturing complex relations between objects in
natural language, grounding reference expression of objects, and generating placement that satisfies
the relational constraints in the instructions.

Parsing-based robot instruction following [4, 5, 7, 11, 12, 13, 14, 15] parse natural language into
formal representations using hand-crafted rules and grammatical structures. Those hand-crafted
rules are generalizable but not robust to noisy language [1]. Among these studies, those focusing on
placing [4, 5, 7] lack a decomposition mechanism for compositional instructions and assume per-
fect object grounding without considering referential ambiguity. Recently, [9, 10, 8] used sentence
embeddings to learn a language-condition policy for robot instruction following, which are not data-
efficient and hard to generalize to unseen compositional instructions. We follow [16] to integrate
parsing-based methods into the data-driven framework. It is robust, data-efficient, and generalizable
for learning compositional instructions.

PARAGON has a GNN for relational reasoning and placement generation, which encodes a mean-
field inference algorithm similar to [17]. Moreover, our GNN uses particles for message passing to
capture complex and multimodal distribution. The idea is to approximate a distribution as a set of
particles [18], which provides strong expressiveness for complex and multimodal distribution. It is
useful in robot perception [19, 20, 21], recurrent neural networks [22], and graphical models [23, 24].
Our approach employs this idea in GNN for particle-based message passing.

3 Overview

We focus on the language grounding for object placement in tabletop object manipulation tasks. In
this task, scenes are composed of a finite set of 3D objects on a 2D tabletop. Humans give natural
language ¢ € L to guide the robot to pick an object and put it at the desired position x;,. The
language instruction is denoted as a sequence ¢ = {w; }1<;<, Where w; is a word, e.g., in Fig.6,
¢ = {w; = put,wy = a,...}. A language instruction should contain a target object expression
(e.g., “a plate”) to specify the object to pick and express at least one spatial relation (e.g., “next to a
silver mug”) for placement description. The robot needs to find the distribution of the target object’s
placement p(x;y|¢,z) conditioned on the language instruction £ and visual observation z.

We propose PARAGON to solve the problem. It extracts object-centric relations from linguistic
and visual inputs for relational reasoning and placement generation; it encodes those procedures in
neural networks for end-to-end training. The pipeline of PARAGON is in Fig 2. PARAGON first uses
the soft parsing module to convert language inputs “softly” into a set of relations, represented as
triplets. A grounding module then aligns the mentioned objects in triplets with objects in the visual
scenes. The triplets can form a graph by taking the objects as the nodes and relations as the edges.
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Figure 2. The overview of PARAGON. PARAGON uses soft parsing to represent language input as relations
between objects. The grounding module then aligns the stated objects to the object-centric regions in the visual
scene. An associated GNN conducts relational reasoning between grounded objects and outputs placement.
This framework is trained end-to-end without labels for parsing and visual grounding.

The resulting graph is fed into a GNN for relational reasoning and generating placements. The GNN
encodes a mean-field inference algorithm for a conditional random field depicting spatial relations in
triplets. PARAGON is trained end-to-end to achieve the best overall performance for object placing
without annotating parsing and object-grounding labels. See Appendix B for implementation details.

4 Soft Parsing

The soft parsing module is to extract spatial relations in complex language instructions for accurate
placement generation. The pipeline is in Fig 4. Dependency trees capture the relations between
words in natural language, which implicitly indicate the relations between the semantics those words
express [25, 26]. Thus, we use a data-driven approach to explore the underlying semantic relations
in the dependency tree for extracting relations represented as relational triplets. It takes linguistic
input and outputs relational triplets, where the triplets’ components are represented as embeddings.
We first introduce the core concepts of triplets and dependency tree, then demonstrate the algorithm.

4.1 Preliminaries

Triplets. A triplet consists of two enti- -

ties and their relation, representing a bi- Dby Prop

nary relation. Triplet provides a formal m ﬂ»ﬂ\ﬂ/ ﬂ\
representation of knowledge expressed in Place a cup to the left of  a plte

natural language, which is widely applied D E D ED &

in scene graph parsing [25], relation ex- Figure 3. Dependency parsing takes language sequence as the
traction [27], and knowledge graph [28] input and outputs a tree structure. The blue blocks are depen-

Th derlvi . ; dency tags, while the red ones are part-of-speech tags. A
¢ underlying assumption of represent- part-of-speech tag categorizes words’ correspondence with a

ing natural language as triplets is that nat-  particular part of speech, depending on the word’s definition
ural language rarely has higher-order rela- and context. Dependency tags mark two words relations in
tions, as humans mostly use binary rela- grammar, represented as Universal Dependency Relations.
tions in natural language [29]. For spatial relations, two triplets can represent ternary relations (e.g.,
“between A and B” equals “the right of A and left of B” sometimes). As such, it is sufficient to
represent instructions as triplets for common object-placing purposes.

Dependency Tree. A dependency tree

Dependency Tree

(shown in Fig. 3) is a universal structure § Subject
. . . Lai D d Slot =
that examines the relationships between  insyustion g }
. . . [ jec
words in a phrase to determine its gram- s e I‘_'Anenm 5 {@

Relation

matical structure [30]. It uses part-of-

speech tags to mark each word and depen- {p'“g{_
dency tags to mark the relations between Figure 4. The pipeline of soft parsing module.

two words. A part-of-speech tag [31] categorizes words’ correspondence with a particular part of
speech, depending on the word’s definition and context, such as in Fig. 3, “cup” is a “NOUN”.
Dependency tags mark two words relations in grammar, represented as Universal Dependency Re-
lations [32]. For example, in Fig. 3, the NOUN “cup” is the “direct object (Dobj)” of the VERB
“place”. Those relations are universal. A proper dependency tree relies on grammatically correct
instructions, whereas noisy language sentences may result in imperfect dependency trees. Thus, we
use the data-driven method to adapt to imperfect dependency trees.

Semantic Features



4.2 Method

To make the parsing differentiable, the soft parsing module “softens” the triplet as the attention
to the words of linguistic inputs {a,;}i<i<r,> ;a4 = 1,7 € {subj,obj,rel}. We compute
the embeddings of components in triplets by the attention-weighted sum of the word embeddings
0y = >, ay1feup(wy). The word embeddings are evaluated using pre-trained CLIP [33] fcpp.
We use a GNN [34] to operate over the dependency tree from spaCy [35] to encode the structural
information into the node features. For the GNN, the part-of-speech tags are node features, and the
dependency tags are the edge attributes. Then, we feed the node features into three modules to eval-
uate each word’s weights to indicate how much this word contributes to the components in a triplet.
We use a single layer MLP to compute the attention of subject words {asubL l}1§ 1< 1. Slot attention
is a learnable module that can extract a set of task-dependent features called slots, which is used in
discovering multiple objects in a visual scene. To detect multiple spatial relations in compositional
instructions, we use slot attention module [36] to get IV features and attentions {ag, ; }1<n<n,1<i<L
of object phrases, where N is the total number of triplets. We feed the features of object phrases
as the query, and structural features as the key and value of attention, into a multi-head attention
layer [37] to get the attention for corresponding relational phrases {afelv l}1§ﬂ§ N,1<i<r. We com-
pute the attention-weighted sum of word embeddings from pre-trained language models to get the
embeddings of N possible relational triplets, denoted as Q = {{subj, Pias Pobi) Ine1-

Ideally, each triplet should contain information about single objects and their relations. However, we
discovered that the features of multiple objects and their relations could be entangled in one triplet.
As the disentangled triplets can provide more precise essential information and be more accurate in
recovering the sentence, we add sentence recovery to guide extracting disentangled triplets. We first
compute the embedding of each token using attention: ¢; = Ziv:l Dic {rel,obj} a;' 197 + Gsubj, 1 Psubj-
We then feed the embedding of tokens to an LSTM to produce the recovered word embeddings:
¢ = {0}, = fusrm({@i}E,). We minimize the L2 loss between generated sequence [ and [ as
an auxiliary task to improve the soft parsing component.

S Visual Grounding

After relation extraction, we ground the mentioned objects to the visual scenes and reason about
their spatial relations for placement generation. We align the visual features of objects and the
embeddings of their reference expressions into the same embedding space for object grounding. We
then represent relations in conditional random fields and encode them into GNNs for reasoning and
placement generation.

5.1 Object Reference Grounding

We align the object and subject phrase embeddings into the objects in the scene for visual grounding.
Given the visual inputs, we use a pre-trained object detector (Mask-RCNN [38] or SPACE [39])
to get object bounding boxes {y.,}}_, and encode their visual features {z,, }*’_, using a pre-
trained CLIP [33]. We then project the object visual features z,, and linguistic features in triplets
i, i € {@sunj}U {gog,')j }N_| into the same feature space via learnable projecting matrices ®, ¥'. We
evaluate the cosine similarity d.os (-, -) with a learnable scaling factor « between the visual and text
feature to get the grounding belief: b%, = Softmax,, (- deos(®z,),, Ui, )). As such, the grounding
results of object 7 in the triplets is a set of object-centric regions with belief {(b% ,y,.)} _,.

5.2 Relational Reasoning for Placement Generation

Spatial relations in Conditional Random Field. The triplets essentially build up a relational graph
G = (V,&) with objects as the nodes V and their spatial relations as the edges £. We use the
conditional random field (CRF) specified using G to represent the relations between positions of
the context and target objects in language instruction. The variable for the vertices X = {x;|x; €
R?},;cy denotes the grounded position of each context object and the placement position of the target
object. We formulate the CRF as: p(X|z, Q) o [; ;yee i (%0, % [7i5) [Licy /(sunjy @i (%3, 2)- ¥ij
describes the spatial relations between two objects based on the spatial relation r;; € {¢™}_,. ¢;
denotes the probability of the context object’s position conditioned on observation, except for the



target object (subj phrase). It is because the grounded position of the target object is only useful for
picking rather than placing. Mean-field variational inference approximates the CRF into a mean-
field p(X|z, Q) ~ ¢(X) = [;cy ¢i(x:) and optimizes the reversed KL divergence KL(q||p) to
converge to the multimodal distribution [40]. Mean-field ¢ factorizes all the variables to simplify the
CREF for more efficient inference. The equation of Mean-field variational inference is: log ¢} (x;) =
ci + log di(xi,2) + 2wy Jao @ () Log iy (xi, X5 |rig ) b (x5, 2)dx; = i + mbyg (xi) +
> jen () My (X:), where g (x;) receives the message m; (x;) from its neighboring nodes j € N (i)
and the message from observed node mf)bm(xi), forming a message passing algorithm for 1 < ¢ <
T. As such, the mean-field ¢(X) will iteratively converge to p(X|o, Q).

Relational Reasoning in Mean-field GNN. To represent complex spatial distributions conditioned
on complex linguistic features, we follow [17] to map the spatial variables into high-dimensional
feature spaces and learn an approximate message-passing function between these variables. It forms
a GNN to conduct reasoning on the conditional random field by approximating the mean-field mes-
sage passing algorithm. To handle multimodal output distributions better, we develop a method
based on [22] to represent the factor of mean-field g; as particles {(hi k> wfy )} in message passing,
where each particle encodes the position of the corresponding object.

The GNN module takes the embeddings of spatial relations r;; = g, as the edge attributes to
compute the message. We initialize the particles according to a normal distribution with uniform
weights: h?’k ~ N(0,1), wgk = 1/K. In message passing, we uses a message network fy, to output
new message by the previous inputs h;;cl and edge attributes r;;: mzl k= fw(héfkl, ri;). We then
computes the embedding of observation by deepset [41]: m}, ; = f¢(zn]\f:1 b, fpos(¥m)), where
fo and fpos are MLPs. Following the form of mean-field inference, we compute the weights of the
message w“;t . Dy the weights of particles and scores from observations computed by a weighting
MLP g,: ka = nwi‘kl log g¢(h;;€1, Mg 5)-

Then, we aggregate the message from neighboring nodes and observations to compute the node
features and beliefs. First, we sum up the messages and computes the new particles by an aggregate
MLP f,: hfk = fuXje N(4) mh; p + mébs’i). We follow the mean-field inference to evaluate
new particle weights by reweighting MLP g,: log w; ;, = ¢ +10g g (hf 1, My, ;) + 2 e Ny Whike
Next, we use resampling to avoid particle degeneracy problems. Particle degeneracy refers to the
weights of all but one particle being close to zero, resulting in extremely high variance. We resample
after each iteration step to build a new set of particles with new weights: {(h’,, wgfk)}szl =
SoftResamp({ (k! ;,, w! )}/, ). However, this operation is not differentiable. Soft resampling [22]
makes this process differentiable via sampling from a mixture of distribution ¢(j) = aw; + (1 —
a)%, and the new weights are evaluated using importance sampling, resulting in new belief: w), =

w.

W]&)(l/f{))' When o > 0, soft resampling produces non-zero gradients for backpropagation.

We take o = 0.5 in training and o = 1.0 in inference. When ¢ = T, we decode the node features to

get the final predictions of the target placement X} , = 7qec(h}%,) and the weights w} , = w/’ .

6 End-to-end Training

We train the framework end-to-end by minimizing two objectives. One is the negative log-likelihood
of dataset X: J; = .5 — log >, wiN(X;x}, ¥), where X € X is the labeled placement and the
likelihood is a mixture of Gaussian represented by particles of target object { (x}, w; )} . We also
minimize the auxiliary loss for improving soft parsing: Js = > ,c % || — 0 = D ovex 2w —
djl)z. As such, the final objective is: J = J; + AJs, where )\ is a hyper-parameter.

7 Experiments
7.1 Experimental Setup

Tabletop Dataset. The tabletop dataset, as shown in Fig. 5, consists of 30K visually realistic scenes
generated by PyBullet [42] and NVISII [43]. The objects are sampled from 48 objects with various
shapes and colors. The images contain random lighting conditions, light reflections, and partial oc-
clusions, reflecting the challenging language grounding in the real world. We use Mask-RCNN [38]



(@ (b)
Figure 5. Images in the Tabletop dataset. The dataset contains more than 40 objects shown in (a) with randomly
sampled materials and colors under random lighting conditions. The scenes shown in (b) are visually realistic
and reflect the challenges in the real world.
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Figure 6. Demo of placement generation by PARAGON and CLIPort in an unseen visual scene. The green dots
in the first row of images are the weighted particles of placement generated by PARAGON. The green dots in the
second row are arg max of placement affordance generated by CLIPort. There are demos of instructions with
one spatial relation (a), seen compositions of spatial relations (b, ¢), unseen compositions of spatial relations
(d, e, f, g, h), and ambiguous case (a). The results show that PARAGON can reason complex spatial relations for
suitable placements and exhibits a sense of generalizability to unseen compositions. CLIPort hardly generates
correct placement for unseen compositional instructions, indicating its poor compositional generalizability.
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for object detection. We also select three tasks in CLIPort’s benchmark: placing objects inside a
bowl or a box to test object reference grounding without positional ambiguity involved. Due to the
lack of bounding box labels, we use the unsupervised object detector SPACE [39] for CLIPort’s
tasks. Other tasks of CLIPort’s dataset focus on assembly or deformable object manipulation. They
are not in the scope of our research.

We prepare human-labeled instructions to test the model with natural requests using human-
provided natural language. Human-labeled instructions are from bit.ly/TableSetData. However,
collecting enough human-labeled data is expensive, while synthesized data is easily generated.
Hence, we use synthesized structured language instructions to train the models and fine-tune the
model using human-labeled data. The training dataset of structured language instructions contains
20K instructions with single spatial relations and 20K with compositions of multiple spatial rela-
tions. Our testing dataset contains 15K instructions, including instructions with unseen compositions
of seen spatial relations. We also have instructions containing ambiguous reference expressions, i.e.,
multiple objects are semantically identical to a reference expression. We prepare 9K human-labeled
language instructions, where 7K instructions are for training, and the remaining 2K instructions are
for testing. The human-labeled instructions are pre-collected from Mechanical Turk. We use image
pairs to show the scene before and after an object is moved and let humans provide language requests
for such object placement. The details of the dataset can be viewed at section A in the appendix.

Evaluation Metric. We evaluate the success rate of object placement, repeated 5 times. The suc-
cessful placements should satisfy all the spatial constraints given in the language instructions. The
placement should not be too far away from the reference objects with a threshold of 0.4 meters,
which is approximated from the human-labeled dataset. The evaluated models are trained for 300K
steps with a batch size of 1.

7.2 Results

We assess the performance of object placement by synthesized structured language instructions as
well as human-labeled instructions, and compare our performance with CLIPort [8]. CLIPort has
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a fully convolutional design with a two-stream architecture that handles spatial and semantic infor-
mation. We first use three tasks from CLIPort’s benchmark to test the models in grounding referred
objects with referential ambiguity. We then use the Tabletop dataset to test language grounding with
the presence of referential ambiguity, positional ambiguity, compositionality, as well as human-
labeled noisy instructions.

Object Reference Grounding. In Table 1. Results on CLIPort’s Dataset: Success Rate (%)

CLIPort’s benchmark, spatial rela-
tions are simple as the placements are Tasks packing-shapes  packing-google-objects  put-blocks-in-bowls
always inside a specific object. As  CLIPort[8] 99.8 94.6 99.4

such, learning placement generation PARAGON %3 73 »2
equals learning object grounding. In these tasks, packing-shapes requires object grounding with-
out referential ambiguity, packing-google-objects contains referential ambiguity for target objects,
and put-blocks-in-bowls involves referential ambiguity for context objects. Table 1 reveals that both
CLIPort and PARAGON have good performance in object grounding even with referential ambiguity.
Object Placing with Ambiguity.
The Tabletop dataset involves plac-
ing the object next to a context object,
causing positional ambiguity. As the
placement is not inside a specific
object, object grounding no longer Piacetheredcupona place acupto the lower Place awhite cup below  Place a spoon to the

. plate side and left of a plate a square plate upper right of a cup
equals object placement. Table 2 sug- Figure 7. Grounding instructions with referential ambiguity results
gests that PARAGON has a better per- i, ultimodal distribution of object placement. We use particle-

formance with positional ambiguity. based GNN to capture the multimodality to adapt to referential am-
CLIPort uses convolutional architec- biguity.

ture, which can capture strong local Table 2. Results on Tabletop Dataset: Success Rate (%)
correlations. This inductive bias is % of

1 1S insi Trainin,
use.:ful if the placeme.n.t 18 IHSIde_ an Datag Relation Type Single Comp Comp* Single Comp Comp*
object. However, positional ambigu-

Scene No Ref ambiguity With Ref Ambiguity

L . > 100% CLIPort [8] 732 691 595 714 682 517
ity is only in weak agreement with ‘ PARAGON 935 921 902 933 916 894
the inductive bias as pixels far away 0% CLIPort 572 463 361 510 443 332
can also be Closely related, compro- PARAGON 89.7 882 88.0 899 87.6 873
mising the performance of CLIPort. 2% CLIPort 397 291 295 339 285 229

. PARAG 86.0 694 641 851 679 652
PARAGON has an encoded graphical ARATOR

model for the spatial relations between objects to generate placement. It learns a distribution of
the usual distance for placement from data and naturally adapts to positional ambiguity. We also
test the performance of object placement with referential ambiguity (With Ref Ambiguity in Table
2), in which the scenes contain a few semantically identical objects. Referential ambiguity makes
the correct placement non-unique, resulting in a multimodal distribution of correct placement. As
shown in Table 2, PARAGON has a good performance with referential ambiguity. The core idea is to
represent a distribution as a set of particles to capture multimodality and employ this idea in GNN
for placement generation. Fig. 7 demonstrates that the GNN outputs a multimodal distribution when
there is referential ambiguity.

Compositionality. Table 2 also reports the re- 7,5/, 3. Human Instructions Results: Success Rate (%)

sults on instructions with seen and unseen com-

. . . Fine-Tuned Not Fine-Tuned
positions of seen spatial relations (Comp and
C o . Method PARAGON CLIPort PARAGON CLIPort
omp* in Table 2, respectively), as well as the
Success Rate 81.9 72.5 70.4 61.3

performance of the models trained with 2% and

10% of the training data. The composition substantially increases the complexity of language com-
prehension and the data required for training. Table 2 shows that PARAGON is data-efficient in
learning structured compositional instructions and can generalize to instructions with unseen com-
positions. It converts a complex language into a set of simple, structured relations represented as
triplets to reduce complexity. Our approach operates on the grammatical structure of natural lan-
guage that is generalizable to different semantic meanings. CLIPort uses single embeddings to



“memorize” seen compositions. It has poorer generalization in the presence of composition when
training data is limited and does not generalize well to unseen compositions.

Human-labeled Instructions. We use human-labeled instructions to test natural human requests
in noisy natural language. The instructions in this testing dataset may not be grammatically correct
and contain unseen, noisy expressions for objects and spatial relations. The results are shown in
Table 3, where Fine-Tuned means the models are fine-tuned by the human-labeled dataset, and Not
Fine-Tuned models are trained only on structured instructions. The results show that PARAGON
performs better on human-labeled instructions. PARAGON is data-driven and optimizes all the mod-
ules to adapt to imperfect, noisy linguistic data and extract useful relational information. PARAGON
extracts relations from grammatical structures of instructions, which is highly generalizable and
helps tackle unseen expressions. CLIPort is also data-driven but represents instructions as single
embeddings that do not generalize well to unseen, noisy language expressions.

Ablation Study. We conduct an ab- Table 4. Ablation Study: Success Rate (%)
latlon. Stl{dy t.O assess each module’s % of Scene No Ref ambiguity With Ref Ambiguity
contribution in PARAGON. We de-  Training

Relation Type Single Comp Comp* Single Comp Comp*

. . . Dat yp g p p* Sing p p
sign a variation of PARAGON without = G 55 921 902 o33 ore 54
. . . . 'ARAGON . . N .. . K
soft parsing, using single embeddings No Soft Parsing 733 694 331 803 710 366
of ]anguage instructions to ground 100% No Partlcl? 93.1 92.3 90.5 88.3 87.4 84.1
bi d lati Wi No Resampling 932 920 812 86.3 90.7 789
objects and represent relations. We PARAGON(ViT+Bert) 91.1 920 883 908 914 899
also assess a version of PARAGON 10% PARAGON 807 882 880 899 87.6 873
that uses a mean-field message pass- ®  PARAGON(ViT+Bert) 884 860 852 877 865 854
ing neural network [17] without the 2% PARAGON 860 694 641 851 679 652
PARAGON(ViT+Bert) 70.1 653 586 698 61.1 527

use of particles, and test PARAGON
without resampling. PARAGON uses pretrained CLIP to encode text and visual inputs for object
reference grounding. To test the impact of using pre-trained models that are trained separately for
vision and language, we replace CLIP in PARAGON with Visual Transformer [44] and BERT [45].

We report ablation study results in Table 4. The results for No Soft Parsing demonstrate that soft
parsing is essential in learning compositional instructions. It converts complex language sentences
into simple phrases for objects and relations. The embeddings of those phrases have more straight-
forward semantic meanings than the entire sentence and are much easier for them to be grounded in
the visual scene. As shown in the row of No Particle, using GNN without particles cannot capture
multimodal distribution when referential ambiguity occurs and compromise the performance. The
results in No Resampling indicate that resampling is helpful because particle degeneracy can oc-
cur without resampling, compromising the performance of capturing multimodal distributions with
referential ambiguity. The last 4 rows in Table 4 show that PARAGON requires fewer data to ob-
tain good results using pre-trained CLIP than pre-trained ViT+Bert. CLIP is pre-trained by a large
dataset of image-caption pairs and is better for aligning language with visual features.

8 Conclusion and Limitation

PARAGON leverages object-centric representation for visual grounding of natural language. It in-
tegrates parsing into a probabilistic, data-driven framework for language-conditioned object place-
ment. It tries to break the lines between parsing-based and embedding-based methods for language
grounding, as well as combine the strength of rule-based and data-driven approaches. PARAGON
reduces the complexity of embedding-based grounding by parsing complex sentences into simple
structures, and learns generalizable parsing rules from data for robustness. Those combinations are
beneficial and would facilitate future research. Our experiments reflect the difficulties of language
grounding in real situations to show PARAGON’s potential for real-world application.

PARAGON is limited by 2D object representations to ground 3D spatial relations situated by the 3D
shape of objects, such as “lean”. It also limits us to ground rotation instructions conditioned on
the shape of objects, such as “rotate the fork to make it point to an apple”. Leveraging 3D object
representations would empower stronger language grounding skills and facilitate future research.
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A Tabletop Dataset

We extend the dataset from bit.ly/TableSetData with randomly sampled objects and generate
placement from several sampled spatial relations. The dataset will be released in our website at
bit.ly/ParaGonProj.

A.1 Objects

We sample 50 dining objects with different classes, colors, and shapes, including forks, knives,
spoons, plates, wine cups, water cups, and napkin cloths. The visualization of objects is in Fig. 5
(a).

A.2 Language Expressions

Our dataset draws samples from commonly used spatial relations with various language expressions.
The spatial relations includes left, right, front, behind, on top of, and their compositions. We also

have ternary spatial relation “between”. The language expressions for each spatial relations are
illustrated in Table 5.

Table 5. Spatial relations and their language expressions in Tabletop Dataset.

Spatial Relations Language Expressions Spatial Relations Language Expressions

“to the lower right of”

“to the lower right side of”
“to the lower right corner of”
“to the front right of”

“to the left of”
Left “to the left side of” Front Right
“to the left hand side of”

“to the right of” “to the upper left of”

Right “to the right side of” Behind Left “to the upper left side of”
“to the right hand side of” “to the upper left corner of”
“in front of”” to the upper right of

Front “to the lower side of” Behind Right “to the upper r}ght side of .
to the upper right corner of’

Aéon7?
. “behind” “above”
Behind “to the upper side of” on top of “on top of”

“on the center of”

“to the lower left of”

“to the lower left side of”
“to the lower left corner of”
“to the front left of”

Front Left

A.3 Data Generation
A.3.1 Instruction Generation

We generate the instructions according to language templates. The template for tasks with single
spatial relation is illustrated below:

[verb phrase] + [subject phrase] (D)
+ [spatial relation phrase] + [object phrase]. 2)
If the language instruction contains compositional spatial relations, the template is:
[verb phrase] + [subject phrase] 3)
+[spatial relation phrase 1] + [object phrase 1] “4)
+“and” + [spatial relation prhase 2] + [object phrase 2]. 5)

The spatial relations are sampled from Table 5, and the subject phrases and object phrases are sam-
pled according to the object class, object colors, and shapes, such as “yellow square plate”. We

CEINT3

sample the verb phrases uniformly as random from “put”, “place”, and “move”.
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(@ (b)

Figure 8. Expert demonstration generation. The demonstration is sampled from a truncated Gaussian dis-
tribution. Case (a) illustrates a distribution of “left-hand side”, where the highlighted area indicates a high
probability. We truncate areas that derive from the left side and are too close to the reference object. Case (b)
illustrates the composition of spatial relations “left-hand side” and “upper side”, where the conjunction of both
directions truncates the distribution.

@ (b) © (d)
Figure 9. Raw observations captured by cameras in Tabletop Dataset.

A.3.2 Image Generation

* Camera Setup. We use four cameras to capture the visual observation. Similar to the
Raven simulator, there are three RGB-D cameras with resolutions of 640 x 480 that are
placed on the rectangular table’s top, left, and right, pointing towards the center (see (b),
(c), and (d) in Figure 9). We also have an RGB camera with a resolution of 640 x 640
placed at the top of the table (see (a) in Figure 9 for the example picture).

* Rendering. We use NVISII as the rendering interface to get the photorealistic pictures of
the visual scene. We randomly sample the position of the lights and their colors to add
difficulties. In addition, due to the random lighting conditions, the visual scenes contain
various light reflections, hampering the visual grounding of natural language.

A.3.3 Expert Demonstration.

We provide a handcrafted policy for expert demonstration in placement generation. According to
the ground truth position of objects in the simulator, we sample from a handcrafted Gaussian distri-
bution with a specific direction as the placement generation policy. Specifically, the demonstration
is sampled from a truncated Gaussian distribution. There are two examples shown in Fig. 8. In this
figure, case (a) illustrates a distribution of “left-hand side”, where the highlighted area indicates a
high probability of placement. We truncate areas that derive from the left side and are too close to the
reference object. Case (b) illustrates the composition of spatial relations “left-hand side” and “upper
side”, where the conjunction of both directions truncates the distribution. The mean of the Gaussian
distribution is located at the intersection of the central axes of the spatial relations. We also use
axis-aligned bounding boxes (AABB) of the target object and context objects to detect intersections
and avoid object collision after generating the placement.
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A.4 Evaluation Critera

We evaluate the success rate of the object placing by examining whether the placement satisfies the
spatial relational constraints in the natural language instructions. Specifically, we assess whether
the generated particle is located at the truncated regions. For CLIPort, we take the argmax to get
the generated placement. As ParaGon generates a set of particles as the samples of a placement
distribution, we randomly sample from the particles ten times to evaluate the success rate.

B Implementation and Training Details

Algorithm 1 Soft Parsing

Input: Instruction ¢ = {w;}£ |, Text encoder fcrp(+) : w — RPwu| K
Output: Triplets: {(¢sub;, 90(():]')7 eI,
: 7 < DepParser({)
{hl}{;l < GNN(7)
{asunj,i hi<r < SoftMax(MLP({f} ;)
{al 1 Yn<ni<r < SlotAttn({7y}{))
obj 2 Aobi 1T
{agy 1 n<ni<r < MHAtn({fg; et Aoy {ldey)
Psubj — Zl’asubj,lfCLIP(wl) .
@Y < > al feup(wi), v € {obj,rel}
= N n n
PU= Donmt Die frel,obi) GaPi T+ subj,iPsubi-
¢ =LSTM({@1}/-,)

Recovered instruction: ¢

e A A S e

_
e

B.1 Soft Parsing

We illustrate the implementation details of the soft parsing module. The algorithm is shown in
Algorithm 3.

B.1.1 Structural Prior from Dependency Parsing

We use spaCy dependency parser with transformer backend to get the dependency tree of a given
sentence. We use embeddings v € RPem to represent the part-of-speech (POS) tag and dependency
(DEP) tag in the dependency tree. The message passing neural network uses MLP as the functions
fm - RDembed ¢ R Dembed v RDembed _y R Dembed gnd fu: RDembed ¢ RDembed _y RDembed . The POS tags
are used as the initial node features and the DEP tags are the edge attributes. During the message
passing, the node features and edge attributes are concatenated as the input of f,,, and f,. Thus, the
structural prior from the dependency tree is encoded in the output structural features of the message-
passing neural network. In addition, the structure lacks the order of position of the tokens in the
sentence. We use cosine positional encoding added in the output structural embeddings to encode
the position of tokens in the sentence.

B.1.2 Relation Extraction

The output structural features h; from the message-passing neural network are used for relation
extraction. We use attention to evaluate the normalized score of each token in the sentence from
message passing for its contribution to the components in relational triplets. We use a single-layer
MLP with softmax to compute the normalized score of each token contributing to the subject phrase.
To discover potential object phrases, we use slot attention [36] from visual object discovery for
unsupervised object phrase discovery. The slot attention algorithm is illustrated in Algorithm 2.
After discovering the object phrases, we use a multi-head attention module to evaluate the relational
phrases conditioned on the corresponding object phrases. The object structure embeddings from
slot attention are used as the query, and the structural features from message passing as the key and
value. After we compute the weights of each token in the sentence for the subject phrase, object
phrase, and relational phrase, we use the expected embedding to represent the word embeddings for
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the phrases in triplets. We use CLIP as the encoder to compute the word embeddings of tokens in
the sentence.

B.1.3 Hyper-parameters

The dimension of embedding is Demped = 64, and the layer number of message passing neural
network is 4. We use 3 iteration for slot attention, with slot number Ny, = 4, hidden dimension
Dgos = 128 and € = 1 x 1078, As for the multi-head attention module for relational phrase
discovery, the number of heads is eight, and the embedding dimension is 64. Language encoder ¢(-)
is trained CLIP (ViT-32/B), in which the word embedding dimension is Dyqg = 512.

Algorithm 2 Slot Attention

Input: inputs € RY*DPiwus glots ~ N'(p, diag(c)) € RE > Drios

Layer params: k, g, v : linear projections for attention; GRU; MLP; LayerNorm(x 3)
1: inputs <— LayerNorm(inputs)
2: fort=0,...,7T do
3:  slots_prev + slots

slots < LayerNorm(slots)

attn «— SoftMax(%k(inputs)q(slots)—r, axis = slots)

Updates < WeightedMean(weights = attn + ¢, values = v(inputs))
slots «— GRU(state = slots_prev, inputs = updates)

8:  slots < slots + MLP(LayerNorm(slots))

9: end for
Output: slots

AN A

B.2 Particle Mean-field GNN
The pseudo-code of particle mean-field GNN is illustrated in Algorithm 3.

B.2.1 Functions in Particle Mean-field GNN

For the observation, we use masks of bounding boxes to represent the object positions and shapes
in the observed image. We use a simple CNN model fpos : RWresX s — RPmem {0 encode the
positional feature of the bounding boxes detected in the scene. We then use an MLP to project the
positional feature into embeddings. The particle proposal network f, : RPwmm x R Dompmn —y R Dpmpn
and aggregation network f,, : RPmm — RPpmem are all single-layer MLP. The reweighting function
of observation model g, : RPwmm x RDwmm — R s also a MLP.

B.2.2 Hyper-parameters

The layer number of particle-based mean-field GNN is 7' = 8. In message passing, we use embed-
dings with dimension Dympnn = 128. In soft resampling, we use o = 0.5 for training and o = 1.0
for inference. For visual grounding, the visual encoder is pre-trained CLIP (ViT-32/B).

B.3 Training

We conduct supervised learning to train the model end-to-end. There are two compo-
nents to the training objective. One is the negative log-likelihood of dataset X: 7, =
Y sex —log >, wiN(x;x5, ¥), where X € X is the labeled placement and the likelihood is a mix-
ture of Gaussian represented by each output particle of target object {(x}, w})}=_,. We also mini-
mize the auxiliary loss for improving soft parsing: J, = >, ¢ |[£ — 02 = Svew 2w — )2
As such, the final objective is: J = J; + AJs, where X is a hyper-parameter. The hyper-parameter
A = 10.0. For target object grounding, we use cross-entropy loss, where the labels for the loss
function are the closest bounding box to the ground truth object position.

For training, we use Adam optimizer, and the learning rate is 1 x 10~%. We train the model for 200K
steps when the data is more significant than 1000 and 50K when trained by 300.
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Algorithm 3 Particle Mean-field GNN

Input: Number of layer T, number of particles K, detected object bounding boxes B =
{(Zm, Xm ) }M_,, relational graph G = (V, ), edge attributes (spatial relation embeddings)

Tij

1 B~ N(0,1), w)) « 1/K, t <0 {Initialization}
2: fort < T do

3: for (i,j) € £Edo {Message Computing}
4 mb; = fe(ht i)

Mo

5: mibs,j = fo (X m=1 U fros(Ym))

6: wélk = nwé}cl log g¢(h,§;€1, My ;)

7:  end for

8: foriecVdo {Message Aggregation}
9: Wiy = Jujene M o+ My 1)
10: log wfk =c+log 9¢(h§,kvmibs,i) + ZjEN(i) w?zk
e {(h )M,  SoftResam({(AL . ut )X )

12:  end for

13: t+t+1

14: end for

15: 2} ) = Taee(WY), Yk < K {Decode Placement}

Output: {(];, wi}) ey

B.4 Baseline Implementation
B.4.1 No Soft Parsing

This baseline model directly uses the embedding of the entire instruction sentence instead of the
embeddings from triplets for object grounding and message passing in step 4 of Algorithm 3.

B.4.2 No Particle

This baseline model does not have particles in the message passing, and the initially hidden features
in step 1 of Algorithm 3 are vectors with zero values. It also does not have step 11 for soft parsing.

B.4.3 No Resampling
The third baseline is built without soft resampling in step 11 of Algorithm 3.

B.4.4 PARAGON(VIT + Bert)

This baseline model uses the ImageNet-pretrained ViT 32/B model for visual encoding and the
pretrained Bert model for text encoding in visual grounding, representing the edge attribute 7;;.
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