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ABSTRACT

Modern monocular visual odometry methods typically combine pre-trained deep
learning components with optimization modules, resulting in complex pipelines
that rely heavily on camera calibration and hyperparameter tuning, and often
struggle in unseen real-world scenarios. Recent large-scale 3D models trained on
massive amounts of multi-modal data have partially alleviated these challenges,
providing generalizable dense reconstruction and camera pose estimation. Still,
they remain limited in handling long videos and providing accurate per-frame
estimates, which are required for visual odometry. In this work, we demonstrate
that monocular visual odometry can be addressed effectively in an end-to-end
manner, thereby eliminating the need for handcrafted components such as bundle
adjustment, feature matching, camera calibration, or dense 3D reconstruction. We
introduce VoT, short for Visual odometry Transformer, which processes sequences
of monocular frames by extracting features and modeling global relationships
through temporal and spatial attention. Unlike prior methods, VoT directly predicts
camera motion without estimating dense geometry and relies solely on camera
poses for supervision. The framework is modular and flexible, allowing seamless in-
tegration of various pre-trained encoders as feature extractors. Experimental results
demonstrate that VoT scales effectively with larger datasets, benefits substantially
from stronger pre-trained backbones, generalizes across diverse camera motions
and calibration settings, and outperforms traditional methods while running more
than 3× faster. The code will be released.

1 INTRODUCTION

The goal of monocular visual odometry is to estimate a camera’s position and orientation from
a sequence of video frames (Cadena et al., 2016). In recent years, monocular visual odometry
has gained increasing attention across various fields, including augmented reality, virtual reality,
autonomous driving, and robotics. This growing interest is particularly notable when compared to
systems that rely on stereo vision (Wang et al., 2017a; Engel et al., 2014) or multimodal inputs, such
as visual-inertial odometry (Von Stumberg et al., 2018; Forster et al., 2015). Although monocular
setups present greater challenges, their simplicity in deployment enables even broader applicability
in real-world scenarios. Therefore, this paper focuses on monocular visual odometry using neural
network-based approaches.

There has been rapid progress in monocular visual odometry over a short period, highlighting the
potential of learning-based approaches. The dominant approach brought by this progress utilizes
learnable features as well as differentiable optimization layers within deep learning frameworks (Chen
et al., 2024; Teed et al., 2023). These designs improve convergence and robustness in real-world
conditions. However, their performance critically relies on postprocessing techniques such as bundle
adjustment or feature matching to refine the estimates of camera poses. The use of such traditional
‘feature-engineered’ components introduces hand-crafted elements and task-specific hyperparameters
to incorporate prior domain knowledge. While proven effective, these practices limit the scaling
behavior of models as they do not fully exploit the end-to-end nature of deep learning systems (Tay
et al., 2023). Additionally, auxiliary supervision (e.g., by dense optical flow) is often used to
support training, further increasing system complexity and limiting training data. Motivated by these
limitations, we propose a direct ‘end-to-end’ pose regression approach that eliminates hand-crafted
modules and auxiliary tasks.
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Our method draws inspiration from recent successes in end-to-end structured prediction tasks, such
as machine translation (Vaswani et al., 2017), image recognition (Dosovitskiy et al., 2021), and object
detection (Carion et al., 2020). By learning a mapping directly from video input to camera poses, the
model becomes less dependent on predefined priors and can better capture complex temporal and
spatial relationships. This design choice aligns with recent evidence (Nguyen et al., 2025) suggesting
that reducing inductive bias enables models to generalize more effectively from data. Indeed, recent
breakthroughs in image recognition (Dosovitskiy et al., 2021), 2D/3D object detection (Carion et al.,
2020; Nguyen et al., 2022), and 3D reconstruction (Wang et al., 2025a; Leroy et al., 2024) increasingly
adopt Transformer-based architectures for learning representations with large-scale datasets. We
hypothesize that an end-to-end visual odometry framework with a transformer is a key enabler for
scalability, leading to improved robustness and accuracy.

In this paper, we introduce the Visual odometry Transformer (VoT), a fully end-to-end framework for
monocular visual odometry. Our approach formulates visual odometry as a direct pose prediction task,
using a transformer-based encoder-decoder architecture. The encoder is initialized with a pre-trained
backbone, while the decoder employs both temporal and spatial attention to model interactions across
frames. This design implicitly captures motion-specific properties, such as feature matching, without
requiring explicit supervision or auxiliary modules.

In our framework, the VoT predicts the sequence of relative camera poses in a single forward pass
and is trained end-to-end using loss functions for both translation and rotation. To ensure the validity
of rotation predictions, we project them onto the SO(3) manifold and employ a loss function that
computes the shortest distance between the predicted and ground-truth rotation matrices. Impor-
tantly, our implementation avoids any custom CUDA operations or non-standard layers, improving
reproducibility and compatibility with common deep learning frameworks.

We train and evaluate VoT on several large-scale indoor and outdoor datasets where our method
achieves competitive accuracy across all metrics. In addition, VoT shows strong scaling behavior
and can generalize to unseen datasets. We find that spatial-temporal attention enables the model to
implicitly learn global feature interactions, supporting our hypothesis that an end-to-end design trained
on extensive data can outperform systems that rely heavily on hand-crafted priors and post-processing.
Notably, VoT with the end-to-end design runs more than 3× faster than its counterparts.

2 RELATED WORK

Visual odometry. Visual odometry systems estimate the position and orientation of a camera using
video input. Unlike SLAM which corrects errors via loop closure (Cadena et al., 2016; Campos et al.,
2021; Yugay et al., 2024), these systems tend to accumulate camera tracking errors (drift). Many
different modalities of visual odometry have been explored by past work, including visual-inertial
odometry (Forster et al., 2015; Von Stumberg et al., 2018) and stereo visual odometry (Engel et al.,
2014; Wang et al., 2017a). Here, we focus on the monocular case, where the only input is a monocular
video stream. Traditional monocular visual odometry methods (Engel et al., 2014; 2018; Campos
et al., 2021) are sensitive to illumination and rolling shutter artifacts, and more importantly, cannot
adequately estimate the scale of the scene. To overcome these limitations, VoT leverages a large
pre-trained encoder and extensive training data for robust generalization.

Deep monocular visual odometry. Deep learning has advanced monocular visual odometry in both
supervised (Wang et al., 2017b; 2020; Teed & Deng, 2020a; Teed et al., 2023) and unsupervised (Yin
& Shi, 2018; Ranjan et al., 2019; Sharma & Ventura, 2019; Li et al., 2020) settings. DeepVO (Wang
et al., 2017b) uses recurrent networks for temporal modeling, while SfMLearner (Sharma & Ventura,
2019) jointly learns depth and motion without labels. DPVO (Teed et al., 2023), inspired by
RAFT (Teed & Deng, 2020b), combines flow, confidence, and geometry with iterative GRU updates,
while LeapVO (Chen et al., 2024) increases robustness in dynamic scenes via keypoints.

Prior work introduced TSFormer (Françani & Maximo, 2025), which predicts camera poses directly
from video sequences using an end-to-end approach. However, its performance remains below that
of hand-crafted methods (Teed et al., 2023; Chen et al., 2024) due to architecture, small training
dataset, and rotation representation. Existing methods generalize poorly because they rely on small,
hard-to-scale architectures, complex hand-crafted components, and often require camera parameters,
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limiting real-world use. By comparison, VoT uses a scalable end-to-end design that works without
camera parameters, enabling deployment across diverse scenarios.

Large 3D models. A trend in 3D vision is the development of large-scale models that jointly
estimate camera poses and dense geometry (Wang & Agapito, 2025; Wang et al., 2025a;b), or learn
versatile representations for downstream tasks (Wang et al., 2024; Leroy et al., 2024). These models
are increasingly viewed as foundational, yet they suffer from drift on long video sequences and
produce scale-ambiguous poses requiring calibration. In contrast, VoT focuses solely on camera pose
estimation, showing improved accuracy and less drift. Moreover, our model is significantly faster.

Video transformers. Since their introduction in machine translation (Vaswani et al., 2017), transform-
ers have become the dominant architecture in NLP (Devlin et al., 2019; OpenAI, 2023) and vision
(He et al., 2022; Oquab et al., 2024). Central to this framework, self-attention aggregates information
across entire sequences, but its quadratic complexity makes direct application to videos inefficient. To
mitigate this, prior work has proposed factorizing 3D attention into spatial and temporal components
(Zhang et al., 2021) or employing efficient variants such as divided space-time, sparse local-global,
and axial attention (Bertasius et al., 2021; Arnab et al., 2021; Zhao et al., 2022). In this work, we
adopt the principle of efficient video learning by decoupling self-attention into separate temporal and
spatial attention components.

3 METHOD

In this section, we describe the architecture of VoT; see Fig. 1 for its overview. It consists of
three main components: a pre-trained encoder to extract a compact representation of each frame, a
transformer-based decoder, and a small feed-forward network that makes the final pose predictions.

Unlike previous methods such as DVPO (Teed et al., 2023) or LeapVO (Chen et al., 2024), VoT can
be implemented in any deep learning framework, thanks to its streamlined architecture. Following
the spirit of end-to-end frameworks (Carion et al., 2020), our inference code can be written purely
in PyTorch, without additional complexities. We believe that the simplicity and accessibility of our
approach will encourage further participation from the research community.

3.1 ARCHITECTURE

Pre-trained encoder. We utilize pre-trained networks commonly employed in previous studies
(Wang et al., 2024; 2025b) for encoding and extracting features from video frames. As the Vision
Transformer (ViT) (Dosovitskiy et al., 2021) has become the dominant architecture in computer
vision, our pre-trained encoders are based on ViT. Specifically, we denote the sequence of input
video frames as V ∈ RT×H×W×3, where T is the number of frames in the video and H,W denote
the resolution of each frame. Each input image is then tokenized into (h · w) non-overlapping
patches with h=H

p , w=
W
p and p as patch size. These tokens are processed through a series of ViT

layers, producing image features F ∈ RT×(h·w)×d, where d is the hidden dimension of the ViT. The

Figure 1: VoT architecture. Given multiple input frames, a frozen image encoder extracts per-image token
embeddings. Camera embeddings are then concatenated to aggregate the information for camera pose estimation.
The embeddings are decoded by L repeating decoder blocks with temporal and spatial attention modules. The
rotations are projected onto the SO(3) manifold to ensure valid relative rotations.
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ViT layer follows the standard architecture, consisting of a multi-head self-attention module and a
feed-forward network. Since the transformer architecture is permutation-invariant, we augment it
with sinusoidal position encodings (Vaswani et al., 2017).

Time-space decoder. The decoder consists of a stack of L identical layers, each containing three sub-
layers. The first sub-layer is a multi-head temporal attention module, followed by a multi-head spatial
attention module, and the final sub-layer is a feed-forward network. Unlike standard transformer
layers that only use self-attention, the interleaving of temporal and spatial attention within the decoder
layers enables each feature in a single frame to efficiently capture long-range dependencies with other
features. This ability to learn long-context information effectively is crucial when processing a large
number of frames. As we demonstrate in our experiments, using a larger number of frames is key to
achieving accurate camera pose predictions. To summarize the information in each frame, we use
camera embeddings, which are learnable embeddings in spatial attention sub-layers.

We start by concatenating a camera embedding to each of the image features, resulting in input
features to the decoder F0=[ce, F ] ∈ RT×(h·w+1)×d where ce ∈ RT×1×d indicate the camera
embeddings. We denote the inputs to the (n + 1)th decoder layer by Fn ∈ RT×(h·w+1)×d. The
(n + 1)th decoder layer then outputs Fn+1 ∈ RT×(h·w+1)×d of the same size. Specifically, the
temporal attention performs the scaled dot-product attention in the i-th head along the temporal
dimension as1:

Q̂ = K̂ = V̂ = F [:, 1:, :]⊤; ∈ R(h·w)×T×d (1)

ˆheadi = Attention(Q̂W Q̂
i , K̂W K̂

i , V̂ W V̂
i ), ∈ R(h·w)×T×dh (2)

where W Q̂
i ,W K̂

i ,W V̂
i ∈ Rd×dh are the learned projection matrices for query, key, and value. Here,

we omit the layer index by treating Fn = F .

Note that we omit the camera embedding during the temporal attention computation since attention
computation over learnable camera embeddings is redundant. The multi-head temporal attention
aggregates ˆhead{1...h} together and then concatenates the camera embedding.

F̂ = Concat( ˆheadi, ..., ˆheadh)
⊤W Ô, ∈ RT×(h·w)×d (3)

TemporalAttention(Q̂, K̂, V̂ ) = [F [:,:1,:], F̂ ], ∈ RT×(h·w+1)×d (4)

where W Ô
i ∈ Rdh×d is the output projection and F [:,:1,:] ∈ RT×1×d indicates the camera embed-

dings copied from F .

Following the temporal attention, we apply the spatial attention along the spatial dimension, including
the camera embedding as:

Q̄ = K̄ = V̄ = F̂ ∈ RT×(h·w+1)×dh (5)

¯headi = Attention(Q̄W Q̄
i , K̄W K̄

i , V̄ W V̄
i ) ∈ RT×(h·w+1)×dh (6)

where W Q̄
i ,W K̄

i ,W V̄
i ∈ Rd×dh are the learned projection matrices for query, key, and value.

Similarly, the multi-head spatial attention aggregates ¯head{1...h} together.

SpatialAttention(Q̄, K̄, V̄ ) = Concat( ¯headi, ..., ¯headh)W
Ō ∈ RT×(h·w+1)×d (7)

where W Ō
i ∈ Rdh×d is the output projection.

At the end, the camera embedding, e ∈ RT×d, will be used to predict the camera poses for each
frame.

3.2 CAMERA POSES PREDICTION

To regress the relative camera poses, the regression head takes a camera embedding from each frame
as its input. A single linear layer then projects the embeddings to the rotation FR ∈ R(T−1)×9 and

1The notation [:, 1:, : ] indicates the submatrix that removes the first column, as in Numpy.
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Figure 2: Attention maps from the VoT decoder. Each row shows an original image with a selected query (red
square), followed by attention maps from the four subsequent frames. To estimate relative camera pose, VoT
attends to the related image regions, resembling the behavior of classical keypoint-based odometry methods.

translation Ft ∈ R(T−1)×3 vectors. Rotation vectors are projected to the closest valid rotation matrix
by solving the special orthogonal Procrustes (Brégier, 2021) problem:

Procrustes(FR) = argminR̂∈SO(3)∥R̂− FR∥2F .

The optimization problem is solved via singular value decomposition of FR following Umeyama
(1991). Ft ∈ R(T−1)×3 is used as a translation prediction directly.

Decoding losses. The rotation loss, denoted as Lrotation(R, R̂), is the geodesic loss between the
predicted rotation R̂ and the ground-truth rotation R, defined as

Lrotation(R, R̂) = cos−1

(
Tr(R⊤R̂)− 1

2

)
, (8)

and the translation loss, denoted as Ltranslation, is the L1 loss between the predicted translation t̂ and
the ground-truth translation t:

Ltranslation(t, t̂) = ∥t− t̂∥1. (9)

The final loss for VoT training is a weighted loss between the rotation and translation losses:

L = λ · Lrotation + γ · Ltranslation. (10)

4 EXPERIMENTS

Datasets. Our primary training leverages ARKitScenes (Baruch et al., 2021), a large-scale dataset,
providing rich and diverse indoor scenes. We further incorporate ScanNet (Dai et al., 2017) to broaden
indoor coverage and KITTI (Geiger et al., 2012) to expose the model to outdoor pose distributions.
Out-of-distribution performance is evaluated on TUM_RGBD (Sturm et al., 2012) which is not
included in the training set.

ARKitScenes (Baruch et al., 2021) is a large-scale indoor dataset collected with LiDAR-equipped
mobile devices, comprising over 5,000 sequences from 1,661 environments and totaling more than 11
million frames, making it one of the most comprehensive resources for indoor 3D scene understanding.
To complement it, ScanNet (Dai et al., 2017) provides over 2 million frames across 1,613 scenes. For
outdoor settings, KITTI (Geiger et al., 2012) offers RGB images and ground-truth poses collected
with GPS and LIDAR. Finally, TUM_RGBD (Sturm et al., 2012) features indoor recordings with
motion-capture ground truth. The datasets exhibit variation in camera calibration, poses, image
resolution, as well as real-world artifacts such as rolling shutter, motion blur, and lighting variation.

A note on alignment. While most existing methods report evaluation metrics after applying rigid
alignment and scale correction to the predicted trajectory, we believe this practice can be misleading

5
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Method w/o Bundle w/o Camera ATE ARE RTE RRE
Adjustment Parameters [m] ↓ [deg] ↓ [m] ↓ [deg] ↓

ORB-SLAM3 (Campos et al., 2021) ✗ ✗ 2.58 111.58 0.17 4.01
DPVO (Teed et al., 2023) ✗ ✗ 5.48 18.68 0.04 0.48
LeapVO (Chen et al., 2024) ✗ ✗ 28.31 49.25 0.62 1.09
TSFormer (Françani & Maximo, 2025) ✓ ✓ 285.22 97.53 0.52 0.62
CUT3R (Wang & Agapito, 2025) ✓ ✓ 2.42 97.70 0.12 4.86
VGGT (Wang et al., 2025a) ✓ ✓ 2.94 92.37 0.15 4.81
Mast3r-SLAM-VO (Murai et al., 2025) ✓ ✓ 0.60 14.40 0.36 17.90
VoT (Ours) ✓ ✓ 0.41 10.10 0.04 0.25

Methods are evaluated using all frames of the test split without alignment to the ground-truth.

Table 1: Pose estimation metrics on ARKitScenes indoor settings. VoT shows superior performance across all
metrics without relying on post-optimization and camera parameters.

for real-world applications, where ground-truth trajectories are unavailable for alignment. Although
early approaches relied on this convention due to the inability to robustly estimate the scale of a
scene, the assumption is less justified in the context of modern large-scale 3D models. Therefore, all
experimental results are based on unaligned predictions.

We evaluate visual odometry using Absolute Translation Error (ATE) and Absolute Rotation Error
(ARE) (Teed et al., 2023; Chen et al., 2024). ATE is the RMSE of translation between estimated and
ground-truth trajectories, while ARE is the RMSE of angular orientation differences. In addition,
we report Relative Translation Error (RTE) and Relative Rotation Error (RRE), which measure the
drift in translation and rotation over unit trajectory segments. In the tables, results are color-coded to
indicate ranking: best, second-best, and third-best.

Baselines. We compare our method against state-of-the-art visual odometry models (Teed et al., 2023;
Chen et al., 2024). For DPVO (Teed et al., 2023), results are averaged over three runs with different
random seeds to account for variability. We further benchmark against recent large-scale 3D models
that directly predict camera poses (Wang et al., 2025a; Wang & Agapito, 2025). Because these models
cannot process long video sequences in a single pass, inputs are split into temporally continuous
chunks, with maximum lengths of 30 and 90 frames on our GPUs, respectively; the predicted poses
are then concatenated to form the full trajectory. We also compare with a classical (Campos et al.,
2021) and a state-of-the-art (Murai et al., 2025) monocular SLAM systems, both using only RGB
input. For fairness, loop closure is disabled during evaluation. Finally, we include a recent end-to-end
visual odometry model (Françani & Maximo, 2025) in our comparisons.

Implementation details. We use a frozen CroCo (Weinzaepfel et al., 2022) backbone trained within
the DUST3R (Wang et al., 2024) framework, consisting of 300 million parameters. We employ 12
alternating time-space attention blocks, totalling 200 million parameters, for the decoder. Our model
is trained with the AdamW (Loshchilov & Hutter, 2019) optimizer for 300 epochs. We adopt a cosine
learning rate schedule with an initial learning rate of 0.00001 and a warmup phase of 30 epochs. Our
model takes 12 input views, sampled at intervals of 3 frames. Input frames are resized to a resolution
of 224×224. Training runs on 12 NVIDIA RTX H100 GPUs for 5 days.

4.1 VISUAL ODOMETRY RESULTS

VoT is competitive without bells and whistles. As shown in Tabs. 1 to 3, VoT achieves competitive
performance on both indoor and outdoor datasets, despite not relying on hand-crafted components.
This is particularly notable in real-world settings, where unaligned trajectory metrics are more
realistic due to the lack of ground-truth poses.

Large 3D models such as CUT3R (Wang & Agapito, 2025) and VGGT (Wang et al., 2025a), although
trained on diverse multi-task 3D datasets - including both ScanNet and ARKitScenes - fail to
generalize effectively. CUT3R and VGGT exhibit substantial drift in long sequences, while Mast3r-
SLAM-VO (Murai et al., 2025) suffers from scale ambiguity and sparse predictions, resulting in
degraded ATE and failure on the KITTI dataset.
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Method w/o Bundle w/o Camera ATE ARE RTE RRE
Adjustment Parameters [m] ↓ [deg] ↓ [m] ↓ [deg] ↓

ORB-SLAM3 (Campos et al., 2021) ✗ ✗ 1.91 100.42 0.04 3.75
LeapVO (Chen et al., 2024) ✗ ✗ 10.84 43.60 0.09 0.43
DPVO (Teed et al., 2023) ✗ ✗ 1.75 5.91 0.02 0.34
TSFormer (Françani & Maximo, 2025) ✓ ✓ 285.22 97.53 0.52 0.62
CUT3R (Wang & Agapito, 2025) ✓ ✓ 4.85 135.52 0.02 0.65
VGGT (Wang et al., 2025a) ✓ ✓ 1.56 31.73 0.06 1.42
Mast3r-SLAM-VO (Murai et al., 2025) ✓ ✓ 0.99 8.40 0.58 6.96
VoT (Ours) ✓ ✓ 0.32 7.67 0.01 0.34

Methods are evaluated using all frames of the test split without alignment to the ground-truth.

Table 2: Pose estimation metrics on ScanNet indoor settings. VoT shows competitive performance without
relying on bundle adjustment or requiring camera parameters. Moreover, our method accurately predicts absolute
poses, as demonstrated by the low ATE.

Method w/o Bundle w/o Camera ATE ARE RTE RRE
Adjustment Parameters [m] ↓ [deg] ↓ [m] ↓ [deg] ↓

ORB-SLAM3 (Campos et al., 2021) ✗ ✗ 217.06 51.23 1.05 1.20
DPVO (Teed et al., 2023) ✗ ✗ 194.55 0.94 0.85 0.06
LeapVO (Chen et al., 2024) ✗ ✗ 211.80 39.78 0.94 0.96
TSFormer (Françani & Maximo, 2025) ✓ ✓ 82.05 22.84 0.23 0.24
CUT3R (Wang & Agapito, 2025) ✓ ✓ 112.36 22.07 0.71 0.58
VGGT (Wang et al., 2025a) ✓ ✓ 205.67 16.32 2.13 0.25
Mast3r-SLAM-VO (Murai et al., 2025) ✓ ✓ – – – –
VoT (Ours) ✓ ✓ 58.03 11.69 0.61 0.22

Methods are evaluated using all frames of the test split without alignment to the ground-truth.

Table 3: Pose estimation metrics on KITTI outdoor settings. VoT is capable of modeling very different
outdoor camera pose distribution, showing competitive performance compared to counterparts. "–" indicates the
failure of a method.

Among odometry-specific methods, VoT exhibits strong generalization across datasets. In con-
trast, LeapVO (Chen et al., 2024), trained solely on synthetic data, struggles on real-world videos.
DPVO (Teed et al., 2023) achieves competitive results on ScanNet but deteriorates on ARKitScenes
and KITTI, particularly in scale estimation (ATE), limiting its applicability in the wild. ORB-
SLAM3 (Campos et al., 2021) fails to reliably estimate scale, leading to poor performance even with
loop closure and bundle adjustment enabled. TSFormer (Françani & Maximo, 2025), trained on
a small dataset (i.e., KITTI (Dosovitskiy et al., 2021)), without strong encoders or robust rotation
representations, fails to predict accurate trajectories.

Method w/o Bundle w/o Camera ATE ARE RTE RRE
Adjustment Parameters [m] ↓ [deg] ↓ [m] ↓ [deg] ↓

ORB-SLAM3 (Campos et al., 2021) ✗ ✗ 1.65 76.14 3.16 0.03
DPVO (Teed et al., 2023) ✗ ✗ 0.94 3.02 0.07 0.44
LeapVO (Chen et al., 2024) ✗ ✗ 1.06 7.36 0.03 0.56
TSFormer (Françani & Maximo, 2025) ✓ ✓ 135.49 84.29 0.60 2.78
CUT3R (Wang & Agapito, 2025) ✓ ✓ 0.87 29.40 0.14 1.41
VGGT (Wang et al., 2025a) ✓ ✓ 1.77 31.66 0.08 1.82
Mast3r-SLAM-VO (Murai et al., 2025) ✓ ✓ 2.31 145.22 0.08 2.02
VoT (Ours) ✓ ✓ 0.74 28.95 0.02 2.55

Methods are evaluated using all frames of the test split without alignment to the ground-truth.

Table 4: Pose estimation metrics on TUM_RGBD out-of-distribution setting. While optimization-based
methods shows strong performance in terms of ARE, VoT is capable of generalizing to unseen data and camera
parameters and shows superior performance in ATE and RTE.
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4.2 ABLATION STUDIES

We conduct ablation studies to assess key design choices and analyze scaling trends with respect to
model capacity and dataset size. For architectural ablations (e.g., attention mechanisms, backbone,
and rotation representation), we use two input views with a stride of 10 and train for 150 epochs. For
scaling experiments (e.g., varying dataset size), models are trained to convergence for 300 epochs to
accurately reflect scalability. All ablations are evaluated on the ScanNet (Dai et al., 2017) dataset.

VoT generalizes to unseen datasets and camera parameters. Tab. 4 illustrates how VoT performs
on the dataset not seen during training. Moreover, the camera parameters on the dataset are drastically
different from the ones in the training set.
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Figure 3: Scaling behavior of VoT. As the model scales in (a) training data (proportion of ARKitScenes data
added to ScanNet) and (b) model capacity (number of decoder layers), absolute translation and rotation errors
decrease. This suggests that VoT exhibits robust scaling behavior.

VoT exhibits robust scaling behavior. Fig. 3 illustrates how VoT scales with respect to training
data size and model capacity. VoT shows consistent performance improvements with both increased
training data and a larger number of trainable parameters. Due to computational limits, we cap the
number of decoder layers at 12. We analyze the scaling behavior with respect to encoder size and
number of input views in the Supplementary Material.

Method ATE[m] ↓ ARE[deg] ↓ RTE[m] ↓ RRE[deg] ↓
MAE 1.26 28.30 0.08 2.22
DinoV2 1.05 31.52 0.07 2.09
CroCoV2 1.02 32.58 0.07 2.46
CroCoV2* 0.55 15.09 0.04 1.25

Table 5: Backbone ablation. * denotes the model trained within the Dust3r (Wang et al., 2024) framework
with 3D supervision. The results highlight the critical role of training data in determining feature extractor
performance, with geometry-focused 3D supervision yielding better results across all metrics.

Pre-training data is the key determinant of backbone performance. We compare features
extracted from various pre-trained backbones in Tab. 5. While DINOv2 (Oquab et al., 2024) and
CroCoV2 (Weinzaepfel et al., 2022) yield comparable results, the CroCoV2 encoder trained within the
Dust3R (Wang et al., 2024) framework that uses geometry-focused 3D data - achieves substantially
better performance (i.e., approximately 2× lower error across all metrics). These results suggest
that the quality and relevance of pre-training data, rather than backbone architecture, are critical for
learning effective features in visual odometry.

Attention Type ATE[m] ↓ ARE[deg] ↓ RTE[m] ↓ RRE[deg] ↓ GFLOPs ↓
Full Attention 1.57 60.24 0.09 4.04 380
Time-Space Attention 1.27 35.68 0.08 2.22 163

Table 6: Ablation of attention mechanisms. Time-space attention outperforms full attention while being
considerably more efficient. We attribute this to its ability to capture temporal changes by linking spatially
corresponding patches across frames.
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Rotation Rep. ATE[m] ↓ ARE[deg] ↓ RTE[m] ↓ RRE[deg] ↓
Euler Angles 0.78 20.64 0.05 1.47
Quaternion 0.68 18.92 0.05 1.44
Plucker Rays (Zhang et al., 2024) 0.66 16.11 0.05 1.48
Rotation Matrix 0.55 15.09 0.04 1.25

Table 7: Ablation of rotation representations. Projecting predictions onto the nearest valid rotation matrix
under the Frobenius norm yields the best performance.

Time-space attention achieves superior performance with lower computational cost. Tab. 6
compares full self-attention and time-space attention. Time-space attention not only reduces compu-
tational cost but also consistently improves accuracy. We attribute this to its matching-like spatial
mechanism (see Fig. 2), where patches at corresponding locations across frames exchange temporal
information, enhancing motion-aware feature encoding.

SO(3) projection enhances rotation accuracy. In Tab. 7, we evaluate different rotation represen-
tations. Projecting outputs onto the nearest valid rotation matrix on the SO(3) manifold using the
Frobenius norm consistently yields the best results, highlighting its suitability for our formulation.
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Figure 4: Runtime analysis. VoT demon-
strates a considerable speedup compared
to other methods, including large 3D mod-
els like VGGT (Wang et al., 2025a) and
odometry methods such as DPVO (Teed
et al., 2023). Different from end-to-end TS-
Former (Françani & Maximo, 2025), VoT
does not do overlapping relative pose aver-
aging making inference significantly faster.
All methods are profiled using the same ma-
chine with an NVIDIA L4.

VoT delivers real-time prediction. To compare the speed between approaches, we measure their
runtime on ScanNet (Dai et al., 2017) scene0000_00 using the same environment. As shown in
Fig. 4, VoT achieves a considerably faster runtime, approximately 3× speedup, compared to existing
methods. This efficiency stems from its compact, end-to-end architecture, in contrast to larger 3D
models. Moreover, unlike LeapVO, DPVO, and Mast3R-SLAM-VO, VoT does not rely on additional
processing steps or bundle adjustment, contributing to both its speed and strong performance.

Limitations and future work. We do not claim VoT can generalize to all videos. Since it is trained
on static environments, performance may be limited in dynamic settings. Future improvements could
come from scaling to more diverse datasets collected with different devices and careful calibration,
as well as expanding coverage to a wider variety of scenes. Employing systematic data curation and
incorporating larger models or advanced pre-trained components are also promising directions that
could enhance both generalization and overall performance.

5 CONCLUSION

We presented VoT, an end-to-end method for visual odometry systems based on transformers for
direct relative pose prediction. The approach achieves strong results compared to modern state-of-
the-art odometry pipelines and large 3D models on the challenging indoor and outdoor datasets.
VoT has a flexible architecture easily extensible to various backbones, with competitive results.
Importantly, it can generalize to out-of-distribution camera parameters and image data. It exhibits
strong scaling behavior, indicating that its performance could be further enhanced with sufficient data
and computational resources. Finally, it is considerably faster than the baselines, being more compact
than large 3D models, and, unlike other odometry systems, it does not require test-time optimization.
We anticipate that future work will further advance end-to-end odometry systems, extending their
scalability to a broader range of domains.
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A APPENDIX

We present further ablation studies and visual examples. Specifically, we test how well VoT scales
with different backbone sizes and numbers of input views. We also compare the trajectories predicted
by VoT to those from baseline methods, demonstrating the effectiveness of our model.

Performance of VoT with number of input views. Figure 5 illustrates how VoT, trained on the full
dataset, scales with the number of input views. While the performance plateaus in terms of absolute
metrics, it consistently improves in relative metrics. Due to computational constraints, the number of
input views in our experiments is limited to a maximum of 12.
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Figure 5: Performance of VoT with number of input views on ScanNet (Dai et al., 2017) dataset. As the
number of input views increases, absolute translation and rotation errors initially decrease before plateauing. In
contrast, relative metrics continue to improve steadily, highlighting the potential of VoT when using a long-range
input sequence of views.

Performance of VoT with backbone size. In Fig. 6, we show how the performance of VoT varies
with the size of the backbone. Since CroCO (Weinzaepfel et al., 2022) is only available in a single size,
we perform ablation using Dino-V2 (Oquab et al., 2024) backbones. We observe that performance
improves as the size of the backbone is increased. Due to computational limits, we cap the backbone
size at DinoV2 (Oquab et al., 2024) large.
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Figure 6: Performance of VoT with backbone size on ScanNet (Dai et al., 2017) dataset. As the number of
backbone parameters increases, the model’s performance improves.

Datasets. ScanNet Dai et al. (2017) is an extensive RGB-D corpus designed for 3D scene under-
standing in indoor environments, containing over 2 million RGB-D frames from 1,613 unique scenes.
Some sequences contain invalid camera poses; in such cases, we use all frames up to the first invalid
pose, filtering out 20% of the frames. Additionally, unrealistic jumps in camera trajectories, such
as translations spanning several meters between consecutive frames, may occur. To mitigate this,
frames with translation magnitudes exceeding 1.5 meters are excluded during training. Our method is
evaluated on the entire test split of ScanNet, comprising 98 complete video sequences, using only
RGB input. We train our method on KITTI Geiger et al. (2012) by putting 70% of the publicly
available data in the training set, and the rest as a hold-out set for testing.

Qualitative Results. In Fig. 7, we compare several visual odometry methods on representative scenes
from the ScanNet (Dai et al., 2017) test set. Each method is evaluated on the entire video sequence
using its default settings. All trajectories are visualized without alignment to the ground-truth poses
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to reflect real-world deployment conditions better. VoT consistently demonstrates accurate and robust
camera pose estimation across all evaluated scenes.
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Figure 7: Qualitative comparisons. Each column shows a method, each row a different scene from the
ScanNet (Dai et al., 2017) test set. We evaluate all methods on the whole trajectory without aligning predictions
to ground truth, reflecting realistic deployment conditions. LeapVO and DPVO fail to recover scale, while
CUT3R and VGGT exhibit significant drift. Mast3r-SLAM-VO estimates poses only at sparse keyframes. VoT
consistently achieves robust and accurate reconstructions across diverse scenarios.
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