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ABSTRACT

The rapid expansion of material science databases enables the training of pre-
dictive machine learning models that deliver fast, accurate estimates of materials
properties, as well as generative models that explore the vast combinatorial space
of material candidates. Initiatives like the Materials Project (Jain et al., 2013;
2020), OQMD (Saal et al., 2013), and Alexandria (Schmidt et al., 2021; 2024)
have greatly expanded the scope of computational materials science and fueled
progress in the materials science community. However, they also introduced chal-
lenges related to duplication, data integration, and interoperability which compli-
cates efforts to develop scalable machine learning models. To address these chal-
lenges, we introduce LeMat-Bulk, a unified dataset combining Density Functional
Theory (DFT) calculations from the Materials Project, OQMD, and Alexandria.
This dataset encompasses over 5.3 million materials across three DFT function-
als, including the largest repository of PBESol and SCAN functional calculations
(∼500k). Our methodology standardizes DFT calculations across databases with
varying parameters, resolving inconsistencies and enhancing cross-compatibility.
Besides, we propose and benchmark a hashing function (BAWL) built on Ongari
et al. (2022) that generates identifiers for crystalline inorganic materials by cap-
turing their structural and compositional properties1.

1 INTRODUCTION

The discovery of new materials has the potential to drive major advances in battery technology, semi-
conductor manufacturing, and catalytic processes, to name a few (Zitnick et al., 2020). However,
the chemical space has been theorized to span potentially 1060 (Lipinski et al., 1997) materials, thus
exploring it remains a critical challenge, especially when relying on human intuition and manual lab
experiments.

Developing methods capable of performing high-throughput screening of the material space is es-
sential to speed up discovery. In this perspective, Machine Learning (ML) models have been in-
creasingly used to approximate Density Functional Theory (DFT) computations (Kohn et al., 1996),
while being orders of magnitude faster. Geometric Graph Neural Networks (GNNs) (Schütt et al.,
2017; Liao et al., 2023; Duval et al., 2023), in particular, are very effective at predicting materials’
properties because they can create atomic representations encoding both spatial configurations and
atomic properties. However, despite being significantly cheaper than DFT, ML models are still not
fast enough to exhaustively screen the vast space of candidate materials. A more effective approach
may lie in generative models that can efficiently explore promising regions of this space, rather
than attempt to screen it in its entirety. Progress in developing high-quality ML models—whether
for property prediction or generative tasks—has been hindered by the fragmentation of available
datasets.

1Code available at https://github.com/LeMaterial/lematerial-fetcher and https:
//github.com/LeMaterial/lematerial-hasher
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While large-scale quantum materials databases already exist, and recent efforts have aimed to im-
prove interoperability between them (Andersen et al., 2021; Vita et al., 2023), their practical in-
tegration remains challenging. Instead of consolidating and reusing existing results from sources,
initiatives have repeated density functional theory (DFT) computations on similar or identical struc-
tures (Schmidt et al., 2021; Shoghi et al., 2023)—resulting in unnecessary duplication of compu-
tational effort. These databases are further limited by integration issues (e.g., inconsistent formats,
mismatched field definitions, and incompatible calculation settings), compositional biases, and a
constrained scope (Sommer et al., 2025). Compounding these problems is a lack of standardized
identifiers linking equivalent or related materials across databases. This fragmented and inefficient
landscape impedes researchers in AI4Science and materials informatics from fully capitalizing on
the available data (Hegde et al., 2023).

To address some of these challenges, we introduce LeMat-Bulk, a unified materials dataset based
on the Materials Project (Jain et al., 2013; 2020), OQMD (Saal et al., 2013) and Alexandria
(Schmidt et al., 2021; 2024) databases while ensuring compatibility of DFT parameters (e.g.,
pseudo-potentials, Hubbard U parameters, spin polarization, DFT functional) and removing incon-
sistent data points. LeMat-Bulk is a dataset built with consistent property names across materials
ensuring compatibility between entries. It acts as a unified and well formatted way for researchers
to train large foundation models and to explore the chemical space with higher resolution. We also
identify and remove duplicates, a crucial step to mitigate database redundancy, which can introduce
biases and inefficiencies. To do so, we propose a modification of a hashing method by Ongari et al.
(2022), which we name BAWL (Bonding Algorithm Weisfeiler-Lehman) to generate a unique identi-
fier for each material structure, identifying over 340k duplicate structures. We further validate 81%
of these duplicates-computed with the same DFT functional-have an energy difference below 0.25
eV/atom, which is common to estimate metastability (Aykol et al., 2018). We benchmark our hash-
ing approach against alternative de-duplication methods to demonstrate its effectiveness on random
perturbations and disordered structure identification.
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Figure 1: Illustration of our BAWL hashing method.

2 RELATED WORK

The design of generative models for inorganic materials increasingly highlights the importance of
well-defined measures for novelty and diversity of the candidates generated (Merchant et al., 2023).
Currently, various methods exist for detecting duplicate materials. Pymatgen’s StructureMatcher
(Ong et al., 2013) compares structures by normalizing them, checking if the lattices can be trans-
formed into each other, and comparing the sites by sorting them and permuting them to allow for
optimal matching. Although it is widely used in the materials science community, it struggles with
disordered structures and scales quadratically with the number of materials to compare (without any
composition-based filtering). Other approaches for comparing crystals include, but are not limited
to, SLICES (Xiao et al., 2023) which uses a graph-based approach to encode the geometric con-
figuration, and CLOUD (Xu et al., 2024) which uses a clustering algorithm. Vectorizing structures
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such as PDD (Widdowson & Kurlin, 2022) or using GNNs to compare structures (Yang et al., 2022)
are also common approaches. However, benchmarks of how these methods perform against affine
transformations which respect symmetry and noise lack, limiting their general applicability.

3 METHOD

We introduce LeMat-Bulk, a dataset which encompasses over 5.3 million materials across three DFT
functionals, including the largest repository of PBESol and SCAN functional calculations (∼500k).

Dataset. To ensure a consistent and high-quality dataset for machine learning applications, we
standardize functionals, pseudopotentials, Hubbard U corrections, and spin-polarization settings
across all entries. These parameters play a critical role in first-principles calculations and greatly
affect thermodynamic and other material properties computed. Calculations that did not meet these
unified criteria were excluded to remove incompatibility in these parameters. We then harmonize
structural data using the OPTIMADE specification (Andersen et al., 2021) and standardize prop-
erty names across the various databases. To ensure consistency and completeness across datasets,
we also compute Bader charges for over 53,000 materials in the Materials Project, thereby adding
charge information to a level comparable with that available in OQMD and Alexandria. Notably,
combining all these datasets, reduces biases of any single database.

Hasher. To systematically identify and remove duplicate materials, we introduce a hashing pro-
cedure that generates unique identifiers (fingerprints) for each structure built on top of Ongari et al.
(2022). First, the ECoN (Effective Coordination Number) bonding algorithm (Hoppe, 1979) con-
structs a bonded graph of the material’s most primitive unit cell including the species encoded in
the node. We then apply the Weisfeiler-Lehman (WL) graph isomorphism hash (Shervashidze et al.,
2011) to capture each graph’s structural features. To further distinguish among materials with sim-
ilar topologies, we incorporate both the space group number-identified using Spglib (Togo et al.,
2018)—and the reduced composition into the final fingerprint. By concatenating these elements
with the WL hash, we obtain a comprehensive identifier that is used to flag duplicates. In Sec-
tion 4, we compare the performance of this full fingerprint—and a shortened version (Short-BAWL)
which omits the space group number—against other existing methods. We illustrate this process in
Figure 1. The full BAWL hash is used to deduplicate the dataset.

4 EXPERIMENTS

In this section, we evaluate the effectiveness of our hashing function on the LeMat-Bulk dataset
and compare its performance against several established methods, including Pymatgen’s Structure-
Matcher (Ong et al., 2013), SLICES (Xiao et al., 2023), and CLOUD (Xu et al., 2024). In addition to
these conventional approaches, we explore GNN-based similarity metrics, called EqV2-sim, for de-
tecting and confirming duplicate structures by leveraging an EquiformerV2 model (Liao et al., 2023)
trained on OMAT24 (Barroso-Luque et al., 2024) and computing cosine similarity metrics between
embedding pairs. More details are provided in the Appendix A.2. Our analysis focuses on three
main aspects: robustness to structural perturbations, robustness under symmetry and translation op-
erations, and handling disordered structures. Computational efficiency is reported in Appendix A.5.

Robustness to Structural Perturbations. We first investigate how these algorithms react to small
distortions in atomic positions and lattice parameters. 100 structures were randomly selected from
the LeMat-Bulk dataset and transformed. The success rate of each method in matching the original
structure with its perturbed counterpart is shown in Figure 2. Different methods exhibit varying
sensitivity to Gaussian noise on fractional coordinates, with BAWL and Pymatgen maintaining high
identification rates at larger perturbations with StructureMatcher being less sensitive, while others
show increased sensitivity to lower levels of noise. Similarly, under lattice vector noise (Figure 2b),
we find that Short-BAWL has the least sensitivity, even under high noise to lattice vectors. Pymatgen
falls between both BAWL-based methods in terms of sensitivity. The discrepancies demonstrated
between BAWL and Short-BAWL are due the symmetry identification in SPGLIB.
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Robustness to Lattice Translation and Symmetry Operations A fingerprint method should be
invariant under symmetry operations of the lattice and translations. In our comparison of fingerprint
method we found that both BAWL and Short-BAWL respected all translation and symmetry opera-
tions. SLICES had a lower success rate for smaller noise. All of the hashing method different from
BAWL (i.e. CLOUD, SLICES and PDD) are way less robust to site translations (Appendix A.3).

Disordered Structures. Disordered or partially occupied sites are often encountered in real-world
materials. Our results (Table 1 detailed in Appendix A.4) highlight that while some methods, such
as PDD, maintain moderate accuracy in recognizing similar disordered structures, other approaches
like Pymatgen and SLICES fail to generalize to these cases. Short-BAWL shows improved perfor-
mance over its full version, due to symmetry-detection issues from Spglib.

BAWL Short-BAWL EqV2-sim PDD Pymatgen CLOUD SLICES
Disordered Structure 0.14 ± 0.18 0.30 ± 0.33 0.61 ± 0.38 0.56 ± 0.46 0.00 ± 0.01 0.46 ± 0.33 0.00 ± 0.00

Table 1: Comparison of different methods matching pairs of disordered structures. The success rate
is reported on all the combinations of pairwise similarity for different chemical formulas. We then
aggregate these results over all chemical formulas and report the mean success rate and standard
deviation in the second row (Disordered Structures). We also tested the success rate for correctly
disctriminating between random pairs of chemically different materials which all models succeeded
in. More details in Table 3.
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Figure 2: Success rate of structure identification methods under different different perturbations.
On the left, we show the performance of each method under Gaussian noise added to the atomic
positions. The noise is sampled per atom from a normal distribution with a mean of 0 and a standard
deviation σ. On the right, we show the performance under lattice strain from a Gaussian distribution
with a mean of 0 and a standard deviation σ applied independently to each lattice vector.

5 CONCLUSION

The unification of materials science datasets is crucial for advancing AI-driven materials discov-
ery. LeMat-Bulk represents a step toward this goal by integrating large-scale DFT databases while
addressing duplication and parameter inconsistencies issues. The applications for such a dataset
include—but are not limited to—computing more accurate energies above the convex hull by gener-
ating more reliable phase diagrams, and providing a larger coherent source of data for training ML
and generative models.

The proposed full BAWL hashing method offers an efficient solution for identifying duplicate struc-
tures, used to significantly improve data integrity across different sources in LeMat-Bulk. Using
the full BAWL fingerprint, we created a separate LeMat-Bulk Unique with the lowest energy ma-
terial among duplicates. For generative models, such a hashing function can be relevant to define
improved novelty and diversity metrics.
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Future work should explore extending this approach to additional datasets, by including other types
of materials data such as trajectories or specialized datasets from catalysis for example. Refin-
ing hashing techniques for enhanced accuracy, and further benchmarking against alternative de-
duplication strategies to create a standardized benchmark are necessary steps for improving genera-
tive models and property prediction in materials science.
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