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ABSTRACT

Empowerment, a measure of an agent’s ability to control its environment, has been
proposed as a universal goal-agnostic objective for motivating assistive behavior
in Al agents. While multi-human settings like homes and hospitals are promising
for Al assistance, prior work on empowerment-based assistance assumes that the
agent assists one human in isolation. We show that assistive agents optimizing for
one human’s empowerment can significantly reduce another human’s environmen-
tal influence and rewards—a phenomenon we formalize as “disempowerment.”
We characterize when disempowerment occurs in multi-agent environments and
show that naive approaches do not fully solve this problem. Our work reveals
a broader challenge for the Al alignment community: goal-agnostic objectives
that seem aligned in single-agent settings can become misaligned in multi-agent
contexts.

1 INTRODUCTION

Building aligned agents capable of helping people when their goals are uncertain remains an open
problem. A common approach is for an assistant to model a person’s goal or reward function and
then take actions to maximize that reward for them (Hadfield-Menell et al., 2016} |Leike et al., 2018}
Pérez-D’ Arpino & Shah, [2015). However, in practice, inferred reward functions are often misiden-
tified, and optimizing even a slightly inaccurate reward function can lead to negative consequences
and unsafe behavior (Hong et al.| 2023} Freedman et al., [2021; Zhuang & Hadfield-Menell, 2020;
Tien et al.,[2022).

An alternative approach to creating helpful agents is to train them to empower humans in an open-
ended way. Indeed, recent work has shown that agents that optimize for increasing the empowerment
of others (Du et al., [2020; Myers et al., [2024) or their optionality (Franzmeyer et al.| |2022) yield
helpful assistants. Furthermore, this class of promising techniques is relatively robust to misspecifi-
cation because they sidestep the problem of goal inference.

However, across these lines of work, researchers assume a dyadic interaction between two agents:
an assistive agent and a simulated human user (Newman et al., 2022). This assumption limits the
usefulness of agents for assistance. The real world is fundamentally multi-agent. Promising domains
for deploying robots and Al agents that help people, such as homes and hospitals, include multiple
people aside from the intended users. For instance, in a hospital setting, a robot may have one
target of assistance (e.g., a nurse), but it interacts with other people (e.g., patients and other staff).
Henry Evans, a quadriplegic user and researcher of assistive robots has said, “No matter how much
assistance a device provides to a [adult] patient, it will not be used regularly unless [...] it makes the
caregiver’s life a lot easier” (Ranganenti et al.,|2024). This requires that Al agents and robots be well
aligned in multi-human settings, even if there is only one primary user.

Here, we show that alignment issues arise when empowerment-based assistance is applied to
general-sum multi-agent environments. When an assistive agent aims to empower one person’s
empowerment, it may inadvertently disempower another person. We show that this alignment prob-
lem need not emerge from any malicious intent. An Al agent that inadvertently disempowers others
could lead to “gradual disempowerment,” where human agency erodes over time (Hammond et al.,
2025}, Kulveit et al., [2025). We introduce Disempower-Grid, a new set of multi-agent assistance
gridworld environments for studying multi-agent disempowerment (Figure[T). Across Disempower-
Grid, we empirically show evidence for disempowerment across a wide variety of empowerment
and optionality-based assistance measures. Furthermore, we qualitatively characterize when disem-
powerment happens and when it is avoided. Finally, we attempt to mitigate disempowerment with
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Figure 1: Left: Example from our benchmark Disempower-Grid. The assistant aims to empower the
user through a goal-agnostic objective. Differing assistance strategies may influence the optionality
of a bystander (green). The left shows an example where the assistant enables both the user and the
bystander to reach more states, including the goal. The right shows an example where the assistant
inhibits the bystander while helping the user. Right: Sample trajectory showing that four goal-
agnostic objectives used for training an assistive RL agent all increase the user’s influence/choice
while decreasing it for the bystander. See main text for goal-agnostic objective details.

an assistant that maximizes the joint empowerment of both agents. We find that while joint em-
powerment partially mitigates disempowerment, the assistant still disempowers one of the human
agents in ~50% of the scenarios. Safe multi-agent assistance remains an important challenge for Al
alignment.

The main contributions of this work are:

1. We empirically show that assistants trained across four different goal-agnostic objectives
disempower bystanders in multi-agent settings, across diverse environment dynamics, as-
sistant action spaces, and goals.

2. We contribute Disempower-Grid: a suite of gridworlds and implementations of goal-
agnostic objectives for assistance that, unlike prior work, include bystanders who are not
the targets of assistance.

3. We show that naively including the bystander in the assistance objective only partially
mitigates disesmpowerment. This highlights an important challenge for alignment in real-
life scenarios where Al agents assist a human in the presence of others.

2 RELATED WORK
We combine key ideas from goal-agnostic objectives and connect them to assistance and Al safety.

Goal-Agnostic Assistance: Empowerment, Choice, and Power Our work builds on key ideas
from reinforcement learning and control that aim to measure an agent’s control and capability in an
environment. Empowerment, defined as the maximum mutual information between an agent’s action
and its future states, is a goal-agnostic measure of capability (Klyubin et al., [2005bja). An agent’s
effective empowerment (the mutual information, not the maximum of the mutual information) has
been used as an intrinsic motivation for reinforcement learning agents, and shown to enhance their
learning and exploration across domains (Brandle et al., 2023} |Baddam et al., [2025; [Lidayan et al.,
2025)). It has also been applied to improve agent coordination in multi-agent settings (van der Hei-
den et al., |2020; Kim et al.| [2023; |Guckelsberger et al., [2016)). Intuitively, effective empowerment
measures an agent’s potential to navigate efficiently through a state space. Agents with greater mas-
tery and control over their environment or those that can access a larger fraction of available states
will have higher effective empowerment. For example, if two agents are locked in two separate
rooms, the agent with a key to get out would have higher effective empowerment than the one with-
out, since the agent with a key would also be able to access states beyond the locked room. Finally,
Turner & Tadepalli| (2022)) demonstrates that reinforcement learning-based agents are power-seeking
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(as measured by increases in optionality), suggesting that the majority of reward functions reward
maximizing future choices (Turner et al., | 2023).

Recent work uses approximations of effective empowerment as an objective for assistance. Impor-
tantly, these models can help human users without needing to model their goals (Du et al., 2020;
Myers et al.l |2024). The appeal is intuitive: by maximizing a human’s empowerment, an agent
should help them achieve as many possible states in the future without needing to explicitly infer
those goals. Because calculating empowerment is computationally intractable in high-dimensional
environments, several approximations have been developed to scale it (Mohamed & Rezende; Myers
et al., 2024} Jung et al., 2012). Franzmeyer et al|(2022) develop an assistive agent that optimizes
the number of choices available to another agent. They develop multiple estimators for choice and
show that the resulting agent acts prosocially across multiple contexts without access to external
rewards. They demonstrate these results in environments where the assistive agent’s action space is
limited to moving around the environment, without influencing the layout. Compared to empower-
ment, choice is simpler to compute because it only depends on the agent’s states (although a state
transition matrix must also be estimated). However, prior work, on goal-agnostic assistance through
empowerment (Du et al., |2020; Myers et al.l 2024)) or choice (Franzmeyer et al.| 2022) focus on
dyadic interactions between an assistant and a simulated human user, or assume that the user and
bystanders are adversaries. They do not measure the impact of these assistance objectives on other
agents in the environment.

Side Effects There is a rich literature on studying the unintended side effects of Al action and
assistance (Amodei et al., 2016; Krakovna et al., 2019; Turner et al., 2020; [Krakovna et al., 2020).
Most related to our work, [Krakovna et al.| (2020) develops a method to encourage agents to leave
environments intact by incentivizing them to consider the reward a future agent would achieve in
that same environment. While this setup does involve thinking about a disadvantaged third-party,
the agents are not directly interacting with each other and there is no assistant.

3 RESEARCH QUESTIONS

RQ1: Under what conditions do assistants optimizing for one human’s influence/choice sys-
tematically harm other humans in multi-human environments? We hypothesize that disem-
powerment occurs systematically across different assistant capabilities, environmental constraints,
and human goals, suggesting this is a fundamental property of empowerment-based assistance in
multi-agent settings, rather than an artifact of specific experimental conditions.

RQ2: What environmental factors determine when bystander disesmpowerment occurs versus
when it can be avoided? We hypothesize that bystander disempowerment mainly occurs when the
bystander encounters limited resources that can be influenced by the assistant, even if the payoffs
for the humans are not zero-sum. Examples of this from our gridworlds are spatial bottlenecks in
the environment that can be blocked by the assistant moving a box. This distinction shows how
goal-agnostic objectives highly depend on the interaction between the environmental layout and its
dynamics, without necessarily aligning with the underlying rewards.

RQ3: Can multi-agent extensions of empowerment objectives mitigate disempowerment? We
hypothesize that naively adding the bystander’s empowerment to the objective will not fully address
the problem of disempowerment and that disempowerment remains an open research problem.

4 METHODS

Preliminaries The reinforcement learning setting of an assistant agent (A) with two human
agents (H) is formulated as a Multi-agent Markov Decision Process (MMDP), defined by
(S,Qm,904,Ay, A, Aa, P, Ry, Rp, ). The (simulated) humans are partitioned into two disjoint
sets: a user (U) and a bystander (B). S represents the full environment state space, {2y is the ob-
servation function for the humans, €2 4 is the observation function for the assistant, A is the action
space of the user, Ap is the action space of the bystander, A 4 is the action space of the assistant,
P is an unknown state transition function, Ry; is the reward function for the user, Rp is the reward
function for the bystander, and v € [0,1) is the discount factor. Finally, 7y, w5, and w4 are the
policies for the three agents.
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Figure 2: Example grids from Disempower-Grid for the conditions used in our experiments. The
user (green) and the bystander (purple) are both rewarded for reaching the star after touching the key.
The task is not competitive, and both agents can occupy the star square simultaneously. The user and
bystander move in cardinal directions, cannot move through each other, and cannot move the blocks
(orange) or the walls (black). When the assistant is embodied (left two grids; robot), the assistant
can move in cardinal directions and can move adjacent blocks (push or push & pull depending on
the condition). The user and bystander cannot move through the assistant when embodied. When
the assistant is non-embodied, it can move any of the blocks (Move Any) or freeze the bystander in
place for 4 timesteps (Move Any and Freeze). In every environment, there is a flag that allows a box
to be moved by the assistant over a position containing a goal. This is set to false in every example
grid we provide, except for the Move Any and Freeze example.

In our environments, Ry (s;) = 1 if the user reaches its assigned goal gy € S, 0 otherwise.
Rp(s;) = 1 if the bystander reaches its assigned goal gg € S, 0 otherwise. The user and by-
stander may be assigned to the same goal or different goals. Regardless, the reward each agent
receives is fully independent of that of the other agent. The state to observation mapping function
differs between the human and assistant. 2z includes the goals pursued by the user and bystander,
while €2 4 does not, i.e., the assistant has no knowledge of the user or bystander’s goal.

At time ¢, the humans (user and bystander) observe th € Qpg(st), and the assistant observes

wit € Qa(se). Action selection happens simultaneously. The user selects action al ~ 7/ (+|wf),

the bystander selects action a® ~ 7 (-|wf), and the assistant selects action ai* ~ 4 (-|w;

First, myy and 7p are trained simultaneously using PPO, using separate actor and critic networks.
During the training of the user and bystander policies, the assistant selects actions according to a
random policy 77*"4°m4 (qU|wA). The assistant is included in this phase of training so that the
user and bystander agents can learn the dynamics of the environment with the assistant present.
We decided to use a random policy so that the user and bystander’s policies are not biased by an
intentionally helpful or unhelpful assistant and experience a wide range of possible states from
random exploration.

After my and mp have converged they are frozen and 74 is trained using PPO with one of the goal-
agnostic assistance rewards (see below). During this phase, the user and bystander act according
to their fixed policies 7{; and 7}, respectively. This models an assistant learning its policy while
interacting with capable humans that have seen many possible states. The assistant maximizes the
expected sum of discounted rewards E[>", 7' R 4], where R4 is equal to a goal-agnostic objective
O(+). O will be replaced with one of four goal-agnostic objectives introduced in Equations
[l Thus, the assistant’s optimal policy is one that maximizes the future discounted goal-agnostic
objective of the user:

4 = argmax,., > ~7'O(). (1)
t=0

4.1 GOAL-AGNOSTIC ASSISTANCE OBJECTIVES

This section introduces four goal-agnostic objectives O(+) that we use to train assistants.

Empowerment: To compute the potential ability of an agent to affect future states using its actions,
Klyubin et al.[(2005b) defines the empowerment of a state s; as the maximum mutual information
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between the action sequence and future states after horizon 7" timesteps:

E(s) = H(lzlmx) I(Ar; Stls), (2)
p(als

where p(als) is the probability distribution over actions given the state, () is the mutual informa-
tion between an action sequence of size 1" sampled from the action space Ar and the states after
horizon 7' timesteps, conditioned on the input state.

We translate this equation into our multi-agent setting, in which an assistant is calculating the user’s
effective empowerment £ U which is the mutual information between the user’s actions and its
future states computed under the user’s policy, rather than the maximum possible mutual information
(Myers et al., [2024). The action sequence Ay under consideration are of the user’s actions. Thus,
Equation[2]can be transformed for use by the reinforcement learning assistant in our setting as such:

EY(s) = I(AT; ST|s, mv). 3)

However, because the assistant does not know 77, it cannot exactly compute effective empower-
ment. Instead, we calculate an approximation of effective empowerment by assuming that the user’s
policy is random and conducting sparse sampling of the action sequences (Salge et al., 2014)). This
is a worst-case assumption for when the user’s policy is unknown or only known probabilistically.
It is also more robust for cases where the user’s behavior is unpredictable to the assistant and the
noise model is unknown (Du et al., 2020; |Salge et al., [2014). As a result of this assumption, this
calculation acts as a lower bound on true effective empowerment because the entropy of the user’s
actions is maximized under the uniform policy:

gU(s) = I(Ag; S¥|57 T U witorm ) “4)
o= 1/|A|. We calculate £V (s) by sampling multiple forward rollouts under the uni-

form user policy. This approximation of effective empowerment is labeled as empowerment in future
figures and analyses.

where ;s

AvE Proxy: Du et al.|(2020) introduced an efficient proxy for empowerment based on the variance
of the user’s states at the end of trajectory rollouts. We include this proxy as an additional way to
estimate effective empowerment:

AVE(S) = VGT(S¥|S7 7rUuniform)7 (5)

where S¥ are the user’s final states after horizon T steps. This proxy is also computed through
sampling forward rollouts, with the assumption that the user’s policy is uniformly random. The
proxy is calculated as the variance of the final states of the rollouts. Intuitively, this means that if the
final states are highly dissimilar in their features, then the value of the AVE proxy is high.

Discrete Choice: Discrete choice is defined as the number of reachable states by the user within
horizon 7" from the current state (Franzmeyer et al.,|2022). It is one of three methods for estimating
future state availability introduced in their work. These metrics are simpler than empowerment, as
they do not require calculating the mutual information between the actions and the future states. As
a result, this method’s implicit assumption is that the agent’s influence on the environment is tied
to how many states they will have access to. However, they assume that future available states are
only influenced by the agent’s own actions. While this assumption does not hold in our multi-human
setting, where the bystander can also influence the user’s future states, we include it for completeness
as a goal-agnostic objective for assistance that is distinct from empowerment.

DC(s) = |s' : ' € Reachable(s, T, Ty, m)|s (6)
where Reachable(s, T, 7wy, ... ) is the sampled set of states reachable from s in exactly T steps under
the user’s uniform policy and | - | denotes the number of unique elements.

Entropic Choice: Entropic choice is another method for estimating future state availability, based
on the conditional state entropy H () (Franzmeyer et al.,[2022)). It acts as a lower bound on discrete
choice.

EC(s) = H(ST[S; TUpitom)- M
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Figure 3: Assistant disempowers bystander in the Push/Pull Adjacent environment. Left: An ex-
ample grid where the assistant (robot) must push/pull the boxes (orange dotted) to empower the
user (purple). Center/Right: The bystander (green) is disempowered by the assistant’s actions. The
average empowerment and average reward of the user and bystander across the assistant’s training
in grid from Disempower-Grid shown on the left. Each trace is averaged over five runs. The er-
ror bands show the standard deviation. Empowerment and reward levels are compared against an
assistant with a Random objective (green dotted line). Subsequent figures follow the same format:
example environment (left), empowerment trajectories (center), and reward trajectories (right).

4.2 THE DISEMPOWER-GRID BENCHMARK

To systematically test these research questions, we introduce Disempower-Grid, a suite of grid-
worlds and implementations of the goal-agnostic objectives for training goal-agnostic assistants
(Figure[2). The designs of the environments were inspired by those proposed in [Du et al (2020);
Leike et al.|(2017). However, unlike the environments proposed before, these environments con-
tain an additional bystander agent that is not the target of assistance. Additionally, the environ-
ments are designed for general-sum interactions between agents, which allows for diverse interac-
tions. Disempower-Grid is open source, so that Disempower-Grid will enable researchers to further
study disempowerment in multi-agent settings. Disempower-Grid is built in JaxMARL, allowing
for highly efficient training (Rutherford et al.|[2024).

By varying the action space and embodiment of the assistant (shown in [2] we are able to test our
central hypothesis: that assistants optimizing for empowerment will consistently disempower by-
standers across varying constraints, showing that dissmpowerment in multi-agent assistance is a
fundamental alignment issue.

5 RESULTS

Spatial Bottlenecks (Push/Pull Adjacent) Across all goal-agnostic objectives, the assistant dis-
empowers the bystander through physically blocking its path (shown in Figure 3). The bystander
starts with a higher empowerment and reward when acting with a no-op or random assistant, com-
pared to that of the user. However, as the assistant learns to maximize the user’s empowerment, it
also disempowers the bystander. This shows that an assistant solely focused on empowering a single
user may disempower other agents indirectly. In this particular environment, the assistant pushes
the box immediately to its right, which blocks the bystander (green) from exiting the hallway. It is
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Figure 4: Assistant disempowers bystander in the Push Adjacent environment, despite constrained
capabilities.
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Figure 5: Non-embodied assistant disesmpowers bystander in the Move Any environment.

intriguing that the assistant chooses to push the box because it does not need to do so to empower
the user. It could move out of the path of the user (purple) to unblock it. However, it has no knowl-
edge of the user’s goals. Empowering the user is optimized by pushing the box and the result on the
bystander is not considered. Effects were consistent and significant for all four assistant objectives.

Constrained Assistant Capabilities (Push Adjacent) In this condition, the embodied assistant
can move around and only push the boxes to unblock the user. This means that the assistant is
both more limited in its ability to modify the environment and may also cause irreversible changes
to the environment. Disempowerment occurs even when the assistant’s abilities are constrained in
this way, and when the assistant has the ability to cause permanent side effects. Compared to the
Push/Pull Adjacent environment, the assistant is not able to empower the user as much. However,
even though the assistant does not assist the user as much, it still disesmpowers the bystander to a
similar degree (shown in Figure [). Effects were consistent and significant for all four assistant
objectives. These results support our hypothesis for RQ1 that bystander disempowerment occurs
across different assistant capabilities and environmental constraints.

Non-Embodied Assistance (Move Any) In this condition, the assistant is non-embodied and can
move any box in the grid to an adjacent open position. This distinction creates a fundamental dif-
ference: non-embodied agents do not need to navigate the physical space to exert their influence.
Compared to the previous two conditions, the assistant has a much larger action space since it can
move any box, rather than only adjacent boxes. However, because it is disembodied, the assistant
cannot physically block the agents, so it does not need to strategize its own positioning. Still, we
see strong evidence of bystander disempowerment (Figure [5). Effects were consistent and signifi-
cant for all four assistant objectives. These results support our hypothesis for RQ1 that bystander
disempowerment occurs across different environmental constraints.
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Figure 6: Non-embodied assistant directly freezes when given the opportunity in the Move Any and
Freeze environment, with the usage of the freeze action increasing over training.

Direct Intervention (Move Any and Freeze) In the Move Any and Freeze environment, the non-
embodied agent can freeze the bystander for four timesteps, in addition to moving any box around. In
this environment, the box can also be moved to cover the goal. As seen in Figure[6] the bystander is
disempowered. Moreover, the assistant learns during training to freeze the bystander. The disabling
behavior was learned from optimizing the user empowerment objective alone. There is a positive
relationship between freeze usage, the empowerment of the user, and the disempowerment of the
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Figure 7: Left: 110 procedurally generated variations of the Push/Pull Adjacent environment by
permuting the key and goal positions. Center: When only the user was empowered by the assistant,
the bystander was disempowered 104/110 times. Using joint empowerment, the bystander was
disempowered 51/106 times. Right: Change in empowerment from early training (epochs 1-5) to
late training (epochs 245-250) of the assistant, averaged across 110 layout variations. The assistant
learning with the joint empowerment objective significantly decreases the empowerment gain of the
user while significantly increasing the empowerment of the bystander, compared to that of the user-
only empowerment objective. Standard error shown through error bars.

bystander. In this case, the reward of the user also increases as it’s empowerment increases, and
vice versa for the bystander. Effects were consistent and significant for all four assistant objectives.
These results support our hypothesis for RQ1 that bystander disempowerment occurs across different
assistant capabilities.

Robustness Across Goal Variations To validate the relationship between environmental layout
and the empowerment patterns of the user/bystander by the assistant, we procedurally generated
110 environments of the Push/Pull Adjacent environment. These environments all varied by its key
and goal locations. The positions of walls, blocks, and initial agent positions stayed the same as in

Figure [3).

Only four of the 110 variations result in no dissmpowerment for the bystander when the assistant was
trained with the empowerment objective. These four variations (see Figure [§]in the Appendix) all
had the goal positioned to the right of the box, which prevented the assistant from pushing the box to
the right and blocking the hallway. This shows that the environmental layout and agent interactions
ultimately determine whether the assistant will disesmpower the bystander while assisting the user.
Because the hallway could not have its access cut off by the assistant moving the box, the bystander
was able to move freely. This intuition is also presented by Klyubin et al.| (2005b), who state that
an agent in an open field with no obstacles will have a flat value of empowerment at any position.
Similarly, the assistant in this scenario is unable to influence the environment (by pushing the box to
the right) in a way that could impact the bystander’s empowerment relative to its starting position.

Our results on the procedurally generated environments also show that when the agents had differ-
ent goals (unbeknownst to the assistant) in the environment, the disempowerment persisted. This
supports our hypothesis in RQ2 that the disesmpowerment of the bystander through an assistant op-
timizing goal-agnostic objectives depends on how the spatial constraints could be influenced by the
assistant, as opposed to whether or not empowerment aligns with underlying rewards.

Joint empowerment A naive approach to preventing bystander disempowerment is to include
the bystander’s empowerment in the assistant’s objective, together with the user’s empowerment.
van der Heiden et al.| (2020) originally proposed this approach and showed that it improves multi-
agent coordination in cooperative tasks. Instead of only maximizing the user’s empowerment, the
assistant maximizes the sum of the user’s and bystander’s individual empowerment. We experiment
with this objective to test whether it solves bystander disempowerment. The joint empowerment
calculation is as follows (reference Section F.1]|for detailed variable definitions):

gUJrB(S) = I(Ag; Siq|sv TrUuniform) + I(Ag; STI§|87 ﬂ-Buniform)' ®)
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We show that joint empowerment only partially mitigates bystander disempowerment. Out of the
106 environment layouts in which an empowerment-maximizing assistant disempowered the by-
stander, joint empowerment only avoids disempowering the bystander in around half of them (Fig-

ure 7).

When joint empowerment empowers the user without disempowering the bystander, we find that
the empowerment of the user significantly decreases. Even though the joint empowerment partially
addresses disempowerment, it is significantly worse at assisting the user. We discuss this tension in
the Discussion. This result supports our hypothesis for RQ3: joint empowerment does not solve the
disempowerment problem.

6 DISCUSSION

Here we showed across multiple environments and goal-agnostic assistance objectives that an as-
sistant that aims to empower/increase choices for a user can disempower other agents in that en-
vironment. Our findings reveal a fundamental tension in goal-agnostic Al assistance: even when
assistants avoid the harms of goal misspecification, the objective of empowerment itself (and other
related metrics) can be misspecified in a multi-agent setting. This challenges the assumption that
empowerment-based objectives are inherently safer than goal-directed approaches. This is impor-
tant to consider given the frequency that real-world assistants will need to operate in multi-agent and
multi-human settings.

Implications for AI Safety and Cooperative AI Our experiments show that empowerment max-
imization creates zero-sum dynamics even in general-sum environments where agents’ rewards are
independent. The assistant consistently chose actions that benefited the user at the bystander’s ex-
pense, even when alternative actions could have helped both. Existing Al safety approaches to
avoiding negative externalities do so by trying to limit the agent’s own influence, side effects, or
power over the environment /Amodei et al. (2016). As shown in the Push Adjacent environment,
limiting the assistant’s ability to pull the boxes mainly decreased its ability to assist better than ran-
domly taking actions, compared to the Push/Pull Adjacent environment. Thus, existing approaches
would not work without limiting the assistant’s ability to provide assistance in the first place.

Future Work How do we design safe objectives for assistance that not only assist the user, but
do so in a manner that doesn’t harm others? Our work only considered a general-sum environment
where the agent’s rewards are not dependent on each other. Future work should investigate how
the assistant’s dynamics with empowerment/disempowerment change when agents’ utilities are ex-
plicitly interdependent (i.e., explicitly cooperative or competitive). Future work could quantitatively
theorize when disempowerment happens across multi-agent environments, based on the resource
constraints. This could also extend to nonspatial and/or non-navigation-based environments, and
also continuous environments.

We showed that joint empowerment only partially mitigates the problem of disempowerment. This
points to a promising opportunity for future work. Some possibilities include incorporating a hy-
brid approach to incorporating estimates of the general goals of the agents based on observations,
applying societal norms and “appropriateness” to the assistant’s strategies (Leibo et al.| [2024), or
the assistant being able to have a more accurate estimate of agents’ action spaces and dynamics
in the environment. Another promising direction would be exploring minimax regret approaches
to empowerment optimization (Martinez et al.| [2020), where the assistant minimizes the maximum
empowerment loss across all agents rather than maximizing one agent’s empowerment, potentially
providing stronger fairness guarantees than joint empowerment while maintaining assistance effec-
tiveness.

7 CONCLUSION

We demonstrate how an assistive agent optimizing for its intended goal-agnostic objective (em-
powerment or choice), can cause negative externalities to other agents in the environment. This
challenges a fundamental assumption in Al safety that goal-agnostic objectives reduce alignment
failures.
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8 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we will publish our source code with the final version and write clear
Markdown files that describe how to reproduce the training and experiments.

9 LLM USAGE STATEMENT

LLMs were used to aid in giving feedback and suggestions on the structure of sentences.
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Figure 8: Layouts of the four variations (out of 110 generated) where the assistant does not disem-
power the bystander in the empowerment objective. The environment does not allow the assistant to
move a block into the star.
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