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ABSTRACT

The multi-objective alignment of Large Language Models (LLMs) is essential
for ensuring foundational models conform to diverse human preferences. Cur-
rent research in this field typically involves either multiple policies or multi-
ple reward models customized for various preferences, or the need to train a
preference-specific supervised fine-tuning (SFT) model. In this work, we intro-
duce a novel multi-objective alignment method, MOSLIM, which utilizes a single
reward model and policy model to address diverse objectives. MOSLIM pro-
vides a flexible way to control these objectives through prompting and does not
require preference training during SFT phase, allowing thousands of off-the-shelf
models to be directly utilized within this training framework. MOSLIM lever-
ages a multi-head reward model that classifies question-answer pairs instead of
scoring them and then optimize policy model with a scalar reward derived from
a mapping function that converts classification results from reward model into re-
ward scores. We demonstrate the efficacy of our proposed method across several
multi-objective benchmarks and conduct ablation studies on various reward model
sizes and policy optimization methods. The MOSLIM method outperforms cur-
rent multi-objective approaches in most results while requiring significantly fewer
GPU computing resources compared with existing policy optimization methods.

1 INTRODUCTION

While large language models (LLMs) have been widely adopted across various domains, generat-
ing text that aligns with human preferences has become a prominent area of research. Stiennon
et al. (2020) introduced the concept of learning from human feedback to better align model be-
havior with human preferences, specifically aiming to produce summaries that are more preferred
by human annotators. Ouyang et al. (2022) proposed the Reinforcement Learning from Human
Feedback (RLHF) approach within InstructGPT framework, employing a combination of super-
vised fine-tuning and reinforcement learning to align models with human-defined preferences, such
as instruction-following and safety. Later that year, Bai et al. (2022) also proposed an alignment
method based on human feedback, focusing on enhancing helpfulness, harmlessness, and honesty.

However, it has become evident that models aligned with mixed general preferences often struggle
to address diverse needs of different application scenarios (Zhang 2023; Lee et al. 2024; Kirk et al.
2024). The preferences required for varying tasks and users can differ significantly. For example, in
certain cases, it may be necessary to prioritize helpfulness over honesty, thereby accepting a degree
of hallucination. Consequently, multi-objective preference alignment has emerged as a significant
area of research. Researchers have begun exploring methods to apply different combinations of
preferences to generate content that better suits specific contextual requirements (Ramé et al. 2023;
Zhou et al. 2023; Jang et al. 2023; Yang et al. 2024; Guo et al. 2024b; Wang et al. 2024a; Li et al.
2024d). Methods such as MORLHF, Rewarded Soups(Ramé et al. 2023), and MODPO(Zhou et al.
2023) have been proposed to address this challenge by training models to align with distinct prefer-
ence combinations. However, techniques like MORLHF and MODPO can only align with a specific
combination of preferences once training is completed, whereas reward soups allows for more flexi-
bility by combining preferences at the inference stage but at the cost of increased computational and
training overheads due to the need to train multiple policies.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

To address these limitations, researchers have explored methods for dynamically adjusting content
generation preferences through the use of prompts. Yang et al. (2024) proposed the RiC method,
which leverages supervised fine-tuning (SFT) to enable models to respond according to different tags
embedded in the prompts. Guo et al. (2024b) introduced the CDPO approach, asserting that most
real-world applications require balancing only a limited set of preferences simultaneously. These
methods rely primarily on SFT phase, with some incorporating additional RLHF training. However,
under the current LLM training paradigm, the SFT stage is mainly responsible for enhancing core
capabilities such as mathematical reasoning, coding, and specialized domain knowledge, while the
RLHF stage is used to integrate human-aligned responseset al (2024); Lu et al. (2024). As a result,
directly incorporating complex preference combinations and intensities during SFT stage is imprac-
tical for real application scenarios. For instance, defining what constitutes a helpful, harmless, or
honest response in a mathematical context is inherently challenging.

In this paper, we propose the MOSLIM method, which enables content generation aligned with
varying combinations of preferences using prompt-based control while significantly improving train-
ing efficiency. MOSLIM eliminates the need to incorporate preference-specific generation capabil-
ities during SFT phase, achieving dynamic preference alignment solely through the RLHF stage.
This allows off-the-shelf models to be directly integrated with MOSLIM without requiring substan-
tial modifications or retraining. MOSLIM employs a multi-head classification reward model and
a policy gradient approach based on a reward mapping function to align with any combination of
preference objectives and intensities using a single reward model and policy model during training.
During inference, a prompt-driven mechanism enables flexible adaptation to varying preference in-
tensity combinations.

We validate our method through experiments using three distinct preference evaluation benchmarks,
demonstrating its effectiveness in achieving controllable preference alignment. Furthermore, we
assess performance across different intensity levels, highlighting significant behavioral variations
as the intensity of preferences changes. To the best of our knowledge, our approach is the first to
achieve dynamic preference alignment using a single reward model and policy while with the ability
of leveraging off-the-shelf models, representing a novel contribution to the field of multi-objective
preference alignment.

2 METHODOLOGY

2.1 PRELIMINARIES

The multi-objective alignment begins by extending RLHF (Reinforcement Learning from Human
Feedback) framework to meet users’ varying combinations of preferences, commonly referred to as
MORLHF. Rather than focusing on a single objective or reward model, this approach trains multiple
reward models, each corresponding to a different preference. During policy optimization phase, the
rewards from these models are combined through a weighted summation, as shown in Eq 1:

R = w1r1 + w2r2 + · · ·+ wnrn (1)

Here, ri represents the reward for the i-th preference, while wi denotes the weight assigned to that
preference for a specific task or user. This weighted sum helps guide the model toward achieving a
balanced alignment of user preferences.

However, MORLHF requires retraining for each combination of preferences. To address this, Re-
warded Soups (Ramé et al. 2023) proposes a novel method for parameter combination. It involves
training separate reward models and policy models for each individual preference. During infer-
ence, policy parameters are combined based on the specific preference requirements of the scenario,
producing tailored results. The formulation is shown in Eq 2:

θλ =

N∑
i=1

λi · θi (2)

where θi represents the policy parameters trained exclusively for the i-th preference and λi is the
weight for i-th preference.
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Figure 1: An overview of MOSLIM(OURS), MORLHF, Rewarded Soups(RSopu) during training
and infer stages.

Both MORLHF and Rewarded Soups focus on multi-objective modeling based solely on preference
dimensions. However, recent works (Yang et al. 2024; Guo et al. 2024b) has extended these ap-
proaches by modeling the intensity of preferences within the same dimension and optimizing for
preference-specific content at varying levels of intensity. The loss function for Conditional Direct
Preference Optimization (CDPO,Guo et al. (2024b)) is shown in Eq 3:

LCDPO = −E(x,c,yw,yl)∼D

[
log σ

(
R̂θ(c, x, yw)− R̂θ(c, x, yl)

)]
, (3)

where R̂θ(c, x, yw) = β log πθ(yw|c,x)
πref(yw|c,x) and R̂θ(c, x, yl) = β log πθ(yl|c,x)

πref(yl|c,x) represent the implicit
rewards in the DPO (Rafailov et al. 2023) algorithm. Here, c refers to the control tag in prompt,
which includes both preference and intensity, such as <helpfulness 5>.

Our method, MOSLIM, combines the training methodologies of multi-objective policy optimization
with multi-dimensional intensity control techniques. MOSLIM optimizes across various dimensions
of user preferences and their corresponding intensities. Notably, we achieve alignment across all
dimensions and intensities using a single reward model and policy model as showed in Figure 1. We
will elaborate on our methodology in the subsequent sections.

2.2 REWARD MODELING

In the context of Large Language Models (LLMs), a reward model is utilized to assess quality of the
outputs generated by these models. The original formulation of reward model modifies final output
layer of LLMs to transform token probability distribution into a single score (Stiennon et al. 2020),
as illustrated in Eq 4.

r = f(x, y) (4)

In this equation, x represents input prompt, while y denotes the corresponding answer.

As research on preference alignment evolved, this training paradigm for reward models is found to
obscure significant preference information by adhering solely to a majority voting principle, thereby
overlooking the nuances between majority and minority groups (Jang et al. 2023). Li et al. (2024a)
introduced a distribution-based reward model that outputs a distribution of preferences, as described
in Eq 5.
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Figure 2: Reward Model Architecture of MOSLIM

PG(x, y) =
[
lGj (x, y)

]d
j=1

=

[∑
ui∈G lui

1 (x, y)

|G|
, . . . ,

∑
ui∈G lui

d (x, y)

|G|

]
(5)

In this formula, G denotes the total number of annotators, and lui

d (x, y) represents the preference of
annotator ui for the dth preference dimension.

Inspired by distribution modeling, we propose a multi-headed reward model that utilizes a single
reward model to capture multiple distinct preference objectives. We modify the output layer of
reward model from a single score to multiple preference heads. We categorize a question-answer
(Q,A) sequence into preferences such as helpfulness, harmlessness, or honesty. Within each head
(e.g., helpful), we classify the intensity of the preference. We then optimize our reward model by
calculating the accuracy of intensity classification for each head. The overall architecture is showed
in 2. We calculate classification accuracy for each head individually, as expressed in Eq 6, where Si

refers to the softmax output of the ith preference head, and Li denotes the label for headi.

LRheadi
= CrossEntropy(Si, Li) (6)

The softmax output Si is defined as follows:

Si = Softmax(zi) =

[
ezi,j∑K
k=1 e

zi,k

]K
j=1

(7)

where zi is the vector of logits corresponding to the ith preference head, K represents the total
number of classes, and j indexes each class.

The label Li for the ith preference head can be represented as a one-hot encoded vector:

Li =

{
1 if class = y

0 otherwise
(8)

where y is the true class.

The Cross-Entropy loss CrossEntropy measures the difference between the true labels and the
predicted probabilities. For the ith preference head, it is defined as:

LRheadi
= CrossEntropy(Si, Li) = −

K∑
j=1

Li,j · log(Si,j) (9)

where Li,j is the jth element of the one-hot encoded label Li, and Si,j is the predicted probability
for class j.

For computational convenience, we aggregate the losses from all heads using the following equation:
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LR = CrossEntropy(S1||S2|| . . . ||Sn, L1||L2|| . . . ||Ln)

= −
K∑
j=1

Lj · log

(
ez1,j + ez2,j + . . .+ ezn,j∑K

k=1(e
z1,k + ez2,k + . . .+ ezn,k)

)
(10)

where S1, S2, . . . , Sn are the softmax outputs from different heads, and L1, L2, . . . , Ln are their
corresponding labels.

2.3 POLICY OPTIMIZATION

In this section, we are aiming to train policy models using the reward model constructed in 2.2.
The required data format in this stage consists of prompt data with specific preference dimensions
and intensities, which should be consistent with the objectives defined in reward model training.
An example of training samples used in this phase is shown in Appendix A. The entire policy
optimization method involves two key components: prompt alignment and reward mapping ,
with a complete policy optimization process depicted in Appendix A.

Prompt Alignment: Since prompts did not include preference labels during reward model training,
we need to remove these labels when obtaining reward scores in the policy optimization stage. This
adjustment ensures that inference data received by reward model remains consistent with the data
format used during its training. The data flow for both the reward model and policy model inputs is
illustrated in Appendix A.

Reward Mapping: Most current policy optimization methods receive a scalar reward signal. There-
fore, we need to apply a reward mapping strategy for multi-head reward model to aggregate prefer-
ence classification results into a unified scalar. The reward mapping process addresses the following
two main challenges:

1. Dimensional Variability: The number of preference dimensions may vary depending on
the specific business scenario, requiring compatibility with any number of preference di-
mensions.

2. Intensity Scaling: Each preference dimension may have different levels of controllability.
For example, the helpfulness dimension might have 5 levels, while the harmless dimension
might only have 2. Consequently, scores across different dimensions need to be scaled to a
consistent metric for comparability.

To address these challenges, we propose a reward mapping function, which can scale both dimen-
sions and intensities of preferences. During the training phase, we record the moving average and
standard deviation of each preference intensity within every preference head. During inference
phase, each preference dimension value is transformed into a sample value from a Gaussian dis-
tribution with zero mean and unit variance, making the intensity scores from different preference
dimensions additive. The specific reward mapping formula is defined as follows:

rscore =
1

k

k∑
i=0

(ptarget
i − pavg

i )

pstd
i

maski (11)

where i denotes the preference dimension, k represents the total number of preference dimensions,
and target represents preference intensity for i-th dimension in the prompt. Notably, if a preference
dimension is not specified in the prompt, maski will be set to 0, other wise, maski equals to 1.

With the resulting reward mapping, we can perform policy optimization. Our framework supports
various policy optimization algorithms, like Proximal Policy Optimization (PPO) [Schulman et al.
2017], Reinforcement Learning from Optimal Outcomes (RLOO) [Ahmadian et al. 2024] , and
Online Direct Preference Optimization (Online DPO) [Guo et al. 2024a]. The following equation
illustrates a Policy Optimization formula used for PPO:

objective(ϕ) = E(x,y)∼D
πRL
ϕ

[
rθ(x, y)− β log

(
πRL
ϕ (y | x)

πSFT(y | x)

)]
(12)
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where πRL
ϕ denotes the learned RL policy, πSFT refers to the supervised fine-tuned model. The KL

divergence coefficient, β controls the strength of the KL penalty.

Through the two stages of reward modeling and policy optimization, we obtain a complete training
framework, which we refer to as MOSLIM. This scheme is capable of training any combination
of preference dimensions and intensities using a single reward model and a single policy model.
Moreover, it enables flexible control during inference.

3 EXPERIMENT

In this section, we are aiming to answer the following questions:

1. Effectiveness of the Reward Model: Does the proposed reward model paradigm effectively
classify tasks and conform to the scaling law?

2. Superiority of MOSLIM-trained Policies: Do policies trained with MOSLIM demonstrate
clear advantages in specific preference dimensions and intensities?

3. Impact of Preferences: How do the number of combined preference dimensions and varying
intensities affect the model’s overall performance?

3.1 REWARD MODEL

We conduct a series of experiments to evaluate the effectiveness of the proposed reward model. First,
we train the reward models with varying parameter sizes and assess their classification accuracy
across three different scales: 7B, 57B, and 72B, corresponding to there SFT models trained with
hh-full-rlhf (Guo et al. 2024c) dateset based on Qwen2-7B-base, Qwen2-57B-base, and Qwen2-
72B-base models, respectively. This experiment aims to varify weather multi-head classification
pattern reward model works and is scaling law still consist when turning into a classification pattern.
Detailed hyperparameters used for training the reward models are provided in Appendix D,Table 7.
Next, we conduct ablation studies on datasets with varying numbers of classification categories. All
three reward models are tested on four datasets with different category distributions. Finally, we
compare accuracy between our trained reward model with GPT-4, which acting as a llm annotator,
demonstrating that our reward model achieves significant performance gains over GPT-4 annotators.
The detailed results compared with GPT-4 is showed in Appendix E,Figure 9.

Figure 3: Construction process of reward model training datasets.

Data Construction: We utilize two open-sourced datasets to train our reward model:UltraFeedback
(Cui et al. 2024) and UltraSafety (Guo et al. 2024c). UltraFeedback dataset contains 64,967 high-
quality preference data points along with corresponding preference score labels. We extract the help-
fulness and honesty preference data from this dataset. UltraSafety dataset includes 3,000 carefully
curated harmful instructions and annotations, providing training data for the harmless preference
dimension. We construct training data for our reward model by mapping dimention scores to pref-
erence intensities. Each sample in our reward datasets primarily consists with input and label. Input
includes a question and its corresponding answer, while label is a multi-hot classification vector,
representing the specific preference dimensions and intensities, as illustrated in Figure 3. Totally
four types of training data (DataType 1-4) are generated based on different score mapping schemes.
The larger value of n (the number of data types) indicates more numbers of classification categories.
Detailed definitions of DataType 1-4 are shown in Appendix B.

Performance Evaluation:We conducted experiments to evaluate the performance of our multi-head
reward model, testing it on three different model sizes as mentioned previously: RM-7B, RM-57B,
and RM-72B. The accuracy results are summarized in Table 1. All preference accuracies exceed

6

https://huggingface.co/datasets/Dahoas/full-hh-rlhf?row=1


324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Model accuracy across different preference categories and intensities for various data types.

Model
DataType 1 DataType 2 DataType 3 DataType 4

Preference Intensity Preference Intensity Preference Intensity Preference Intensity

RM-7B 0.9204 0.9169 0.8898 0.6598 0.8634 0.4734 0.8710 0.2910

RM-57B 0.9421 0.9393 0.8919 0.7066 0.8731 0.5153 0.8876 0.3635

RM-72B 0.9692 0.9649 0.9398 0.7219 0.9134 0.5491 0.8910 0.3824

87%, and the intensity classification results for both Datatype 1 and Datatype 2 are above 65%.
Moreover, as the model size increases, performance improves significantly. For instance, when
comparing RM-7B with RM-72B on the DataType 4 dataset, we observe a notable accuracy im-
provement of nearly 10%. On the simpler DataType 1 dataset, however, the performance gain is
relatively modest, around 5%. These results suggest that the advantages of larger reward models
become more pronounced as the complexity of the dataset increases, thereby significantly enhanc-
ing classification accuracy for more challenging tasks. Figure 4 further confirms this relationship
between model performance and dataset complexity: as the granularity of the DataType increases,
model accuracy declines. For example, with DataType 4, even the RM-72B achieves an accuracy of
only 0.38, which is approximately 58.25% lower than its performance on DataType 1. Nonetheless,
reward models trained on more complex data, such as DataType 4, still demonstrate effectiveness
and contribute to performance gains in RL training scenarios.
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Figure 4: Ablation study on different DataType . The figure illustrates the classification performance
across four DataType .

3.2 POLICY OPTIMIZATION

In this section we conduct our policy optimization experiments with the reward models trained in
3.1. All policy models are initialized from the same 7B SFT model that is used to train the reward
model. We compare our MOSLIM with baseline methods, MORLHF and Rewarded Soups (RSoup),
to demonstrate the effectiveness of our training paradigm. All three policy models are trained using
PPO as policy optimization algorithm. The training hyperparameters used for these methods can be
found in Appendix D, Table 6. Additionally, we conduct ablation studies on different sizes of reward
models: RM-7B, RM-57B, and RM-72B, to investigate the impact of reward model size on training
performance. We further validate the generality and effectiveness of our approach using both RLOO
and Online-DPO as policy optimization methods.

Policy Optimization Data Construction: We first construct a policy optimization training dataset
with 34K prompts sampled from the open-source dataset full-hh-rlhf,excluding the data used for SFT
training.We extract prompts from the full-hh-rlhf dataset and augment them with preference dimen-
sions, which consist of two levels: preference dimensions and preference intensities. The preference
dimensions are assigned randomly from helpfulness, harmlessness, honesty. We randomly select 1-3
preference dimensions. Preference intensities are also randomly assigned. In helpfulness and hon-
esty, it is ranging from 1-5. For harmlessness, it is ranging from 0-1. The whole flow of constructing
the dataset is illustrated in Figure 8. Each sample in dataset consists of two parts: a preference prefix
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and a prompt. The preference prefix is formatted as <preference n>, where <preference
> denotes the desired preference dimension, and n indicates the preference intensity. The prefix ex-
plicitly sets the target of the current task, while the prompt contains the actual task input. The model
is required to generate responses that align with the preference dimensions and intensities specified
by the prefix.

We evaluate our policy models with three benchmarks: MT-Bench (Zheng et al. (2023)), HaluEval
2.0 (Li et al. (2024b)), and Hackaprompt (Schulhoff et al. (2024)). The models are assessed across
three preference dimensions: helpfulness , honesty , and harmless .

Table 2: Comparison of (PPO RSoup MORLHF) across different DataTypes.

Method
DataType 1 DataType 2 DataType 3 DataType 4

Helpful Honesty Harmless Helpful Honesty Harmless Helpful Honesty Harmless Helpful Honesty Harmless

MORLHF 2.22 2.65 0.72 2.22 2.65 0.72 2.22 2.65 0.72 2.22 2.65 0.72

RSopu 2.84 3.01 0.77 2.84 3.01 0.77 2.84 3.01 0.77 2.84 3.01 0.77

MOSLIM 3.54 3.16 0.79 3.36 3.25 0.81 3.36 3.13 0.78 3.14 3.11 0.81

MOSLIM vs. Baselines: We compare the performance of our MOSLIM method with baseline
methods MORLHF and RSoup. All policies are train with 7B sized reward model. As shown in
Table 2, the evaluation is conducted on four datasets of varying difficulties. The results demonstrate
that MOSLIM method achieves superior performance across all preference dimensions Notably, in
the most challenging dataset, DataType 4, MOSLIM outperforms the RSoup method by 24% in
terms of helpfulness scores. These findings confirm the effectiveness of our approach, as even the
smallest MOSLIM model surpasses the baseline methods in performance while being more efficient
in terms of training time. Among the baselines, MORLHF performs the worst, while Rewarded
Soups shows slightly better overall results than MORLHF. We also compare the GPU training time
to show our efficacy. MOSLIM requires significantly less GPU time compared to the baselines, as
listed in Appendix E, Table 8).

Table 3: Comparison of MOSLIM with three types of RMs across different DataTypes.

Method
DataType 1 DataType 2 DataType 3 DataType 4

Helpful Honesty Harmless Helpful Honesty Harmless Helpful Honesty Harmless Helpful Honesty Harmless

PPORM-7B 3.54 3.16 0.79 3.36 3.25 0.81 3.36 3.13 0.78 3.14 3.11 0.81

PPORM-57B 3.59 3.35 0.83 3.42 3.33 0.84 3.35 3.01 0.77 3.22 3.12 0.87

PPORM-72B 3.63 3.40 0.85 3.51 3.41 0.92 3.40 3.11 0.89 3.29 3.14 0.85

Reward Model Size Scaling in MOSLIM: We conduct ablation studies on reward model size on
MOSLIM. We use reward models of three different sizes we trained in 3.1:7B, 57B, and 72B as
the reward and critic models in PPO training. The results, revealed in Table 3, show a positive
correlation between reward model size and performance, like PPORM-72B achieves up to 0.2 points
higher helpfulness scores compared to PPORM-7B, indicating the presence of a reward model scaling
law in policy optimization phase.

Table 4: Comparison of MOSLIM with different algorithms across different DataTypes.

Method
DataType 1 DataType 2 DataType 3 DataType 4

Helpful Honesty Harmless Helpful Honesty Harmless Helpful Honesty Harmless Helpful Honesty Harmless

PPO7B-RM 3.54 3.16 0.79 3.36 3.25 0.81 3.36 3.13 0.78 3.14 3.11 0.81

RLOO7B-RM 3.49 3.37 0.88 3.39 3.35 0.87 3.37 3.10 0.83 3.37 3.21 0.82

Online-DPO7B-RM 3.82 3.51 0.91 3.74 3.52 0.88 3.47 3.14 0.86 3.32 3.25 0.86

Comparison of Different Policy Optimization Methods: In this part, We compares MOSLIM per-
formance with three policy optimization methods: PPO, RLOO, and Online-DPO. All methods are
trained with 7B SFT model and RM-7B. The results, as shown in Table 4, demonstrate significant

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

performance differences among these methods. RLOO outperforms PPO with up to a 7% improve-
ment in helpfulness and also shows better performance in the dimensions of honesty and harmless .
On DataType 3 dataset, RLOO achieves a score of 3.37 in honesty , compared to PPO’s 3.16, repre-
senting an improvement of approximately 6.6%. Online-DPO performs best across most preference
dimensions and data types. On the DataType 3 dataset, Online-DPO achieves 3.82 in helpfulness
, significantly higher than PPO’s 3.54 and RLOO’s 3.49. In the honesty dimension, Online-DPO
scores 3.51, surpassing both PPO’s 3.16 and RLOO’s 3.37, demonstrating its superior performance.
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Figure 5: Controllability experiment results of preference intensity. From left to right, the subfigures
represent preference goals <helpfulness n>, <honesty n>, and <harmless n>, with the
y-axis indicating the preference evaluation scores of the model outputs. As the preference intensity
n increases, the scores exhibit a clear upward trend.

Controllability of Preference Intensity To validate that model outputs are influenced by preference
intensity, we conduct a controllability experiment using Online-DPO model trained on DataType 4
dataset. We set a single preference goal, <preference n>, and then vary the preference intensity
value n. The results are shown in Figure 5, demonstrating the controllability of our method’s inten-
sity. The x-axis represents the set preference intensity values n, and the y-axis shows the preference
evaluation scores for the model outputs. As preference intensity increases, MOSLIM model’s pref-
erence score exhibits a clear upward trend, especially in the helpfulness dimension. As the intensity
value n increases from 1 to 5, the helpfulness score rises from 2.5 to 3.8. Similarly, the honesty
score increases from 2.51 to 3.79, reflecting a difference of 1.28. In the harmless dimension, the
score rises from 0.72 to 0.77. The baseline methods MORLHF and RSoup do not have the ability of
awaring the preference indensities.
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0.4
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<harmless max><helpfulness max>
<harmless max><honesty max>
<helpfulness max><honesty max>

Figure 6: Controllability experiment results across preference dimensions. The scores in each di-
mension show the model’s ability to balance and control performance across different combinations
of preference goals.

Controllability of Preference Dimensions To demonstrate the controllability of our model across
different preference dimensions, we conduct a dual-objective preference experiment. Specifically,
we evaluate the model’s performance by pairing all possible combinations of preference goals and
measuring the preference scores in three dimensions. The results are presented in the radar charts in

9
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Figure 6, using the Online-DPO model trained on the DataType 4 dataset for evaluation. When the
preference prefix is set to <harmless max><helpfulness max>, the model achieves scores
of 0.87 in harmlessness and 3.77 in helpfulness, which are significantly higher than those observed
for other preference prefixes. Similarly, by adjusting the target preferences, we observe that model
consistently performs better on specified preference objectives. This demonstrates the controllability
of MOSLIM approach across different preference dimensions.

4 RELATED WORKS

Multi-objective Alignment: Multi-objective alignment approaches aim to extend RLHF (Ouyang
et al., 2022) by accommodating multiple preference objectives simultaneously. One foundational
method is MORLHF, which trains separate reward models for each preference dimension. Re-
warded Soups (Ramé et al., 2023) expand this framework by training multiple policies and merging
their parameters, enabling flexible preference combinations at inference time. Similarly, Wang et al.
(2024b) leverage parameter merging within a multi-task paradigm to train a conditioned LLM capa-
ble of handling diverse preferences. Park et al. (2024) propose a clustered Direct Policy Optimization
(DPO, Rafailov et al. 2023) approach to model diverse user preferences more effectively. MOLMA
(Zhang, 2023) explores how to balance conflicting multi-objective preferences in language model
alignment through reinforcement learning. Both Jang et al. (2023) and Li et al. (2024c) focus on
personalizing language models to generate content tailored to individual users, extending alignment
objectives from general preferences to personal objectives. These works aim to push the bound-
aries of multi-objective alignment by exploring strategies to align LLMs with the unique needs of
different users.

Prompt-driven Preference Generation: Due to the complexity and overhead associated with train-
ing multiple reward models or policies for multi-objective alignment, there is growing interest in
developing methods that enable preference control using a single model. Yang et al. (2024) pro-
pose Rewards in Context (RiC), a supervised training approach that incorporates preference tags
into prompts, demonstrating superior multi-objective control compared to non-prompt-based meth-
ods like MORLHF and Rewarded Soups. Guo et al. (2024b) introduce a flexible prompt-based
paradigm, arguing that it is unnecessary to seek the Pareto front every time during generation, as
real-world applications rarely require satisfying all preferences simultaneously. Their method priori-
tizes a single preference while disregarding others and further extends preference control to intensity
levels, allowing for more granular customization. Lee et al. (2024) present Janus, a framework that
aligns with various preferences through system prompts, offering a comprehensive set of preference
categories supported by the Janus model.

5 CONCLUSION

In this work, we propose MOSLIM, a novel framework for multi-objective alignment in Large Lan-
guage Models (LLMs) that leverages a single reward model and policy model to efficiently satis-
fies diverse human preferences. MOSLIM significantly reduces training complexity and resource
requirements and eliminats the need for preference-specific supervised fine-tuning (SFT), which en-
ables the use of off-the-shelf models. Experimental results on various multi-objective benchmarks
demonstrate that MOSLIM outperforms existing approaches in terms of preference controllability,
robustness, and computational efficiency. Moreover, our method provides a flexible and scalable so-
lution for aligning LLMs with complex preference combinations, offering fine-grained control over
both dimensions and intensities. This work advances the state-of-the-art in preference-based LLM
alignment and opens new avenues for research into personalized and dynamic preference optimiza-
tion in large language models.
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A INPUT OF REWARD MODEL AND POLICY MODEL

Figure 7: Examples of input for policy and reward model

B DETAILED DATATYPE DEFINITIONS

Definition of DataType Specifically, we define three types of preferences: preference ∈
{helpfulness , honesty , harmless }, resulting in three distinct preference dimensions. For the in-
tensity dimension, the original score distribution in the UltraFeedback dataset ranges from 1 to 5,
while in the UltraSafety dataset, the scores range from 0 to 1. To standardize these scores, we
define different preference intensity ranges and partition the data accordingly. In the Table 5 in Ap-
pendix B, <preference n> represents a preference intensity of n (1 ≤ n < nmax), where a
larger n indicates a higher intensity. Finally, based on different values of nmax, we categorize the
data into four types. In DataType 4, we maintain the highest level of granularity, while in DataType
1, the preference dimension is simplified to two categories, removing the need to predict preference
intensity and focusing solely on preference classification.

Table 5: Overview of category types and levels for each data type used in the experiments.
Data Type Category Description Categories

DataType 1 <helpfulness 1>
<honesty 1>
<harmless 1> to <harmless 2>

4

DataType 2 <helpfulness 1> to <helpfulness 2>
<honesty 1> to <honesty 2>
<harmless 1> to <harmless 2>

8

DataType 3 <helpfulness 1> to <helpfulness 3>
<honesty 1> to <honesty 3>
<harmless 1> to <harmless 2>

18

DataType 4 <helpfulness 1> to <helpfulness 5>
<honesty 1> to <honesty 5>
<harmless 1> to <harmless 2>

50

14
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C CONSTRUCTION OF DATASETS

Figure 8: Construction process of reinforcement learning datasets. Each sample consists of a pref-
erence prefix and a prompt, where the prefix sets the target preference for the task.
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D HYPERPARAMETERS

Table 6: Parameter Settings for RLHF

Method Parameter Value

MORLHF

learning rate 1e-5

num train epochs 3

batch size 16

reward model size 7B

num reward models 3 (one per preference)

optimizer AdamW

RSoup

learning rate 2e-5

num train epochs 4

batch size 32

reward model size 57B

num policies 3 (merged)

optimizer AdamW

MOSLIMPPO

learning rate 1e-6

num train epochs 2

batch size 64

reward model size 7B

clip range 0.2

entropy coefficient 0.01

MOSLIMRLOO

learning rate 1e-5

num train epochs 3

batch size 32

reward model size 7B

optimizer AdamW

evaluation strategy steps

MOSLIMOnline-DPO

learning rate 2e-5

num train epochs 5

batch size 16

reward model size 72B

clip range 0.3

max grad norm 1.0
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Table 7: Hyperparameter Settings for Classifier Training
Parameter Default Value

learning rate 1e-5
num train epochs 1
weight decay 0.01
batch size 32
optimizer AdamW

max grad norm 1.0
scheduler type linear
warmup steps 500

gradient accumulation steps 4
seed 42

logging steps 50
evaluation strategy steps

save steps 1000
fp16 True

17
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E COMPARATIVE EVALUATION WITH GPT-4
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Figure 9: Performance comparison between our reward model and GPT-4.

Comparative Evaluation with GPT-4 We compare our reward model to GPT-4 using modified
evaluation templates derived from standard benchmarks such as MT-Bench Zheng et al. (2023),
HaluEval 2.0 Li et al. (2024b), and Hackaprompt Schulhoff et al. (2024). GPT-4 is employed to
classify test data, with detailed evaluation protocols provided in the appendix. The experiments
are conducted on the DataType 2 dataset, and the results are illustrated in Figure 9. The findings
reveal substantial performance differences between GPT-4 and our specialized reward model, with
a maximum accuracy gap of up to 20% in favor of the RM-72B. Even with the smallest model,
RM-7B, our reward model outperforms GPT-4, achieving up to 15% higher accuracy. These results
underscore the effectiveness of our multi-head, multi-label classification reward model in achieving
competitive performance.

F TRAINING GPU HOURS OF DIFFERENT METHODS

Table 8: Comparison of GPU Hours

Method GPU Hours Model Parameters

MORLHF 196
Policy Model: 7B

Reward Model: 7B

RewardSoup 400
Policy Model: 7B

Reward Model: 7B

MOSLIM 164
Policy Model: 7B

Reward Model: 7B

Value Model: 7B
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