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ABSTRACT

Crossmodal knowledge distillation (KD) extends traditional knowledge distillation
to the area of multimodal learning and demonstrates great success in various
applications. To achieve knowledge transfer across modalities, a pretrained network
from one modality is adopted as the teacher to provide supervision signals to
a student network learning from another modality. In contrast to the empirical
success reported in prior works, the working mechanism of crossmodal KD remains
a mystery. In this paper, we present a thorough understanding of crossmodal KD.
We begin with two case studies and demonstrate that KD is not a universal cure
in crossmodal knowledge transfer. We then present the modality Venn diagram
(MVD) to understand modality relationships and the modality focusing hypothesis
(MFH) revealing the decisive factor in the efficacy of crossmodal KD. Experimental
results on 6 multimodal datasets help justify our hypothesis, diagnose failure cases,
and point directions to improve crossmodal knowledge transfer in the future.1

1 INTRODUCTION

Knowledge distillation (KD) is an effective technique to transfer knowledge from one neural network
to another (Wang & Yoon, 2021; Gou et al., 2021). Its core mechanism is a teacher-student learning
framework, where the student network is trained to mimic the teacher through a loss. The loss
function, initially proposed by (Hinton et al., 2015) as the KL divergence between teacher and student
soft labels, has been extended in many ways (Zagoruyko & Komodakis, 2016; Tung & Mori, 2019;
Park et al., 2019; Peng et al., 2019; Tian et al., 2019). KD has been successfully applied to various
fields and demonstrates its high practical value.

The wide applicability of KD stems from its generality: any student can learn from any teacher.
To be more precise, the student and teacher network may differ in several ways. Three common
scenarios are: (1) model capacity difference: Many works (Zagoruyko & Komodakis, 2016; Tung &
Mori, 2019; Park et al., 2019; Peng et al., 2019) on model compression aim to learn a lightweight
student matching the performance of its cumbersome teacher for deployment benefits. (2) architecture
(inductive bias) difference: As an example, recent works (Touvron et al., 2021; Ren et al., 2022;
Xianing et al., 2022) propose to utilize a CNN teacher to distill its inductive bias to a transformer
student for data efficiency. (3) modality difference: KD has been extended to transfer knowledge
across modalities (Gupta et al., 2016; Aytar et al., 2016; Zhao et al., 2018; Garcia et al., 2018; Thoker
& Gall, 2019; Ren et al., 2021; Afouras et al., 2020; Valverde et al., 2021; Xue et al., 2021), where the
teacher and student network come from different modalities. Examples include using an RGB teacher
to provide supervision signals to a student network taking depth images as input, and adopting an
audio teacher to learn a visual student, etc.

Despite the great empirical success reported in prior works, the working mechanism of KD is still
poorly understood (Gou et al., 2021). This puts the efficacy of KD into question: Is KD always
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efficient? If not, what is a good indicator of KD performance? A few works (Cho & Hariharan,
2019; Tang et al., 2020; Ren et al., 2022) are in search for the answer in the context of model
capacity difference and architecture difference. However, the analysis for the third scenario, KD
under modality difference or formally crossmodal KD, remains an open problem. This work aims to
fill this gap and for the first time provides a comprehensive analysis of crossmodal KD. Our major
contributions are the following:

• We evaluate crossmodal KD on a few multimodal tasks and find surprisingly that teacher
performance does not always positively correlate with student performance.

• To explore the cause of performance mismatch in crossmodal KD, we adopt the modality
Venn diagram (MVD) to understand modality relationships and formally define modality-
general decisive features and modality-specific decisive features.

• We present the modality focusing hypothesis (MFH) that provides an explanation of when
crossmodal KD is effective. We hypothesize that modality-general decisive features are the
crucial factor that determines the efficacy of crossmodal KD.

• We conduct experiments on 6 multimodal datasets (i.e., synthetic Gaussian, AV-MNIST,
RAVDESS, VGGSound, NYU Depth V2, and MM-IMDB). The results validate the proposed
MFH and provide insights on how to improve crossmodal KD.

2 RELATED WORK

2.1 UNIMODAL KD

KD represents a general technique that transfers information learned by a teacher network to a student
network, with applications to many vision tasks (Tung & Mori, 2019; Peng et al., 2019; He et al., 2019;
Liu et al., 2019). Despite the development towards better distillation techniques or new application
fields, there is limited literature (Phuong & Lampert, 2019; Cho & Hariharan, 2019; Tang et al.,
2020; Ren et al., 2022; 2023) on understanding the working mechanism of KD. Specifically, Cho &
Hariharan (2019) and Mirzadeh et al. (2020) investigate KD for model compression, i.e., when the
student and teacher differ in model size. They point out that mismatched capacity between student and
teacher network can lead to failure of KD. Ren et al. (2022) analyze KD for vision transformers and
demonstrate that teacher’s inductive bias matters more than its accuracy in improving performance
of the transformer student. These works provide good insight into understanding KD, yet their
discussions are limited to unimodality and have not touched on KD for multimodal learning.

2.2 CROSSMODAL KD

With the accessibility of the Internet and the growing availability of multimodal sensors, multimodal
learning has received increasing research attention (Baltrušaitis et al., 2018). Following this trend,
KD has also been extended to achieve knowledge transfer from multimodal data and enjoys diverse
applications, such as action recognition (Garcia et al., 2018; Luo et al., 2018; Thoker & Gall, 2019),
lip reading (Ren et al., 2021; Afouras et al., 2020), and medical image segmentation (Hu et al., 2020;
Li et al., 2020). Vision models are often adopted as teachers to provide supervision to student models
of other modalities, e.g., sound (Aytar et al., 2016; Xue et al., 2021), depth (Gupta et al., 2016;
Xue et al., 2021), optical flow (Garcia et al., 2018), thermal (Kruthiventi et al., 2017), and wireless
signals (Zhao et al., 2018). Although these works demonstrate potentials of crossmodal KD, they are
often associated with a specific multimodal task. An in-depth analysis of crossmodal KD is notably
lacking, which is the main focus of this paper.

2.3 MULTIMODAL DATA RELATIONS

There is continuous discussion on how to characterize multimodal (or multi-view) data relations.
Many works (Tsai et al., 2020; Lin et al., 2021; 2022) utilize the multi-view assumption (Sridharan &
Kakade, 2008), which states that either view alone is sufficient for the downstream tasks. However, as
suggested in (Tsai et al., 2020), when the two views of input lie in different modalities, the multi-view
assumption is likely to fail.2 In the meantime, a few works on multimodal learning (Wang et al.,

2A detailed comparison of our proposed MVD with the multi-view assumption is presented in Appendix C.
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2016; Zhang et al., 2018; Hazarika et al., 2020; Ma et al., 2020) indicate that multimodal features can
be decomposed as modality-general features and specific features in each modality. Building upon
these ideas, in this work, we present the MVD to formally characterize modality relations.

In addition, the importance of modality-general information has been identified in these works, yet
with different contexts. In multi-view learning, (Lin et al., 2021; 2022) consider shared information
between two views as the key to enforce cross-view consistency. To boost multimodal network
performance and enhance its generalization ability, (Wang et al., 2016; Zhang et al., 2018; Hazarika
et al., 2020; Ma et al., 2020) propose different ways to separate modality-general and modality-
specific information. For semi-supervised multimodal learning, (Sun et al., 2020) aims at maximizing
the mutual information shared by all modalities. To the best of our knowledge, our work is the first to
reveal the importance of modality-general information in crossmodal KD.

3 ON THE EFFICACY OF CROSSMODAL KD

First, we revisit the basics of KD and introduce notations used throughout the paper. Consider a
supervised K-class classification problem. Let fθs(x) ∈ RK and fθt(x) ∈ RK represent the output
(i.e., class probabilities) of the student and teacher networks respectively, where {θs,θt} are learnable
parameters. Without loss of generality, we limit our discussion within input data of two modalities,
denoted by xa and xb for modality a and b, respectively. Assume that we aim to learn a student
network that takes xb as input. In conventional unimodal KD, the teacher network takes input from
the same modality as the student network (i.e., xb). The objective for training the student is:

L = ρLtask + (1− ρ)Lkd (1)

where Ltask represents the cross entropy loss between the ground truth label y ∈ {0, 1, · · · ,K − 1}
and the student prediction fθs

(xb), Lkd represents the KL divergence between the student prediction
fθs

(xb) and the teacher prediction fθt
(xb), and ρ ∈ [0, 1] weighs the importance of two terms Ltask

and Lkd (i.e., driving the student to true labels or teacher’s soft predictions).

Crossmodal KD resorts to a teacher from the other modality (i.e., xa) to transfer knowledge to the
student. Eq. (1) is still valid with a slight correction that the KL divergence term is now calculated
using fθs

(xb) and fθt
(xa). In addition, there is one variant (or special case) of crossmodal KD, where

a multimodal teacher taking input from both modality a and b is adopted for distillation, and Lkd is
now a KL divergence term between fθs

(xb) and fθt
(xa,xb).

We first present a case study on the comparison of crossmodal KD with unimodal KD. Consider
the special case of crossmodal KD where a multimodal teacher is adopted. Intuitively, adopting a
multimodal teacher, which takes both modality a and b as input, can be beneficial for distillation since:
(1) a multimodal network usually enjoys a higher accuracy than its unimodal counterpart (Baltrušaitis
et al., 2018), and a more accurate teacher ought to result in a better student; (2) the complementary
modality-dependent information brought by a multimodal teacher can enrich the student with ad-
ditional knowledge. This idea motivates many research works (Luo et al., 2018; Hu et al., 2020;
Valverde et al., 2021) to replace a unimodal teacher with a multimodal one, in an attempt to improve
student performance. Despite many empirical evidence reported in prior works, in this paper, we
reflect on this assumption and ask the question: Is crossmodal KD always effective?

Table 1: Evaluation of unimodal KD (UM-KD) and crossmodal KD (CM-KD) on AV-MNIST and
NYU Depth V2. ‘Mod.’ is short for modality, ‘mIoU’ denotes mean Intersection over Union, and A,
I, RGB, D represents audio, grayscale images, RGB images and depth images, respectively.

AV-MNIST NYU Depth V2

Teacher Student Teacher Student
Mod. Acc. (%) Mod. Acc. (%) Mod. mIoU (%) Mod. mIoU (%)

No-KD - - A 68.36 - - RGB 46.36
UM-KD A 84.57 A 70.10 RGB 46.36 RGB 48.00
CM-KD I + A 91.61 (↑) A 69.73 (↓) RGB + D 51.00 (↑) RGB 47.78 (↓)

Table 1 provides two counterexamples for the above question on AV-MNIST and NYU Depth V2
data. The goal is to improve an audio student using KD on AV-MNIST and to improve an RGB model

3



Published as a conference paper at ICLR 2023

on NYU Depth V2. From Table 1, we can see that a more accurate multimodal network does not
serve as a better teacher in these two cases. For AV-MNIST, while the audio-visual teacher itself has
a much higher accuracy than the unimodal teacher (i.e., +7.04%), the resulting student is worse (i.e.,
-0.37%) instead. Similarly, the great increase in teacher performance (i.e., +4.64%) does not translate
to student improvement (i.e., -0.22%) for NYU Depth V2. These results cast doubt on the efficacy of
crossmodal KD.3 Even with the great increase in teacher accuracy, crossmodal KD fails to outperform
unimodal KD in some cases. Contradictory to the previous intuition, teacher performance seems not
reflective of student performance. Inspired by this observation, our work targets on exploring the
open problem: What is the fundamental factor deciding the efficacy of crossmodal KD?

4 PROPOSED APPROACH

4.1 THE MODALITY VENN DIAGRAM

To study crossmodal KD, it is critical to first establish an understanding of multimodal data. Before
touching multimodal data, let us fall back and consider unimodal data. Following a causal perspective
(Schölkopf et al., 2012) (i.e., features cause labels), we assume that the label y is determined by a
subset of features in xa (or xb); this subset of features are referred to as decisive features for modality
a (or modality b) throughout the paper. For instance, colors of an image help identify some classes
(e.g., distinguish between a zebra and a horse) and can be considered as decisive features.

When considering multimodal data, input features of the two modalities will have logical relations
such as intersection and union. We describe the modality Venn diagram (MVD) below to characterize
this relationship. Stemming from the common perception that multimodal data possess shared
information and preserve information specific to each modality, MVD states that any multimodal
features are composed of modality-general features and modality-specific features. Decisive features
of the two modalities are thus composed of two parts: (1) modality-general decisive features and (2)
modality-specific decisive features; these two parts of decisive features work together and contribute
to the final label y. Fig. 1 left shows an example of a video-audio data pair, where the camera only
captures one person due to its position angle and the audio is mixed sounds of two instruments.
Fig. 1 right illustrates how we interpret these three features (i.e., modality-general decisive, visual
modality-specific decisive and audio modality-specific decisive) at the input level.

playing
instruments

visual input

visual modality-specific modality-general audio modality-specific

audio input

label y

out of
camera’s
view

Figure 1: An input video-audio pair can be regarded as composed of modality-general features and
modality-specific features in the visual and audio modality. For instance, the man playing violin
on the right is not captured by the camera and hence its sound (marked in red) belongs to audio
modality-specific information.

Next, we propose a formal description of MVD to capture the generating dynamics of multimodal data.
Let X a, X b, and Y be the feature space of modality a, modality b, and the label space, respectively,
and (xa, xb, y) be a pair of data drawn from a unknown distribution P over the space X a ×X b ×Y .
MVD assumes that (xa, xb, y) is generated by a quadruple (zsa, zsb, z0, y) ∈ Zsa×Zsb×Z0×Y ,
following the generation rule:

MVD GENERATION RULE: xa = ga(za), za = [zsa, z0]T ∈ Za = Zsa ×Z0

xb = gb(zb), zb = [zsb, z0]T ∈ Zb = Zsb ×Z0
(2)

where collectively, gu(·) : Zu 7→ X u denotes an unknown generating function, if we adopt the
notation u ∈ {a, b}. To complete the MVD, another linear decision rule should be included.

3Note that we even give preferable treatment to crossmodal KD: we take a multimodal network as teacher,
and this teacher achieves higher accuracy than a teacher typically used in crossmodal KD.
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Specifically, the following equation:

MVD DECISION RULE: ∃Wu, argmax [Softmax(Wuzu)] = argmax [Wuzu] = y (3)

is assumed to hold for any (zsa, zsb, z0, y), where we slightly abuse argmax[·] and here it means
the index of the largest element in the argument. In essence, MVD specifies that xu is generated
based on a modality-specific decisive feature vector zsu and a modality-general decisive feature
vector z0 (generation rule), and that zu is sufficient to linearly determine the label y (decision rule).

We proceed to quantify the correlation of modality-general decisive features and modality-specific
decisive features. Let Zsu ⊆ Rdsu and Z0 ⊆ Rd0 , so that Zu ⊆ Rdu , where du = dsu + d0.
We denote a ratio γ = d0/(d0 + dsa + dsb) ∈ [0, 1], which characterizes the ratio of modality-
general decisive features over all decisive features. Similarly, α = dsa/(d0 + dsa + dsb) and
β = dsb/(d0 + dsa + dsb) denotes the proportion of modality-specific decisive features for modality
a and b over all decisive features, respectively, and we have α+ β + γ = 1.

4.2 THE MODALITY FOCUSING HYPOTHESIS

Based on MVD, we now revisit our observation in Sec. 3 (i.e., teacher accuracy is not a key indicator
of student performance) and provide explanations. First, teacher performance is decided by both
modality-general decisive and modality-specific decisive features in modality a. In terms of student
performance, although modality-specific decisive features in modality a are meaningful for the
teacher, they can not instruct the student since the student only sees modality b. On the other hand,
modality-general decisive features are not specific to modality b and could be transferred to the student.
Coming back to the example in Fig. 1, if an audio teacher provides modality-specific information
(i.e., the sound colored in red), the visual student will get confused as this information (i.e., playing
violin) is not available in the visual modality. On the contrary, modality-general information can be
well transferred across modalities and facilitates distillation as the audio teacher and visual student
can both perceive the information about the left person playing guitar. This motivates the following
modality focusing hypothesis (MFH).

The Modality Focusing Hypothesis (MFH). For crossmodal KD, distillation performance is depen-
dent on the proportion of modality-general decisive features preserved in the teacher network: with
larger γ, the student network is expected to perform better.

The hypothesis states that in crossmodal knowledge transfer, the student learns to “focus on” modality-
general decisive features. Crossmodal KD is thus beneficial for the case where γ is large (i.e.,
multimodal data share many label-relevant information). Moreover, it accounts for our observation
that teacher performance fails to correlate with student performance in some scenarios — When α is
large and γ is small, the teacher network attains high accuracy primarily based on modality-specific
information, which is not beneficial for the student’s learning process.

To have an intuitive and quick understanding of our hypothesis, here we present two experiments
with synthetic Gaussian data. More details can be found in Sec. 5.2. As shown in Fig. 2, we start
from the extreme case where two modalities do not overlap, and gradually increase the proportion
of modality-general decisive features until all decisive features are shared by two modalities. We
observe that crossmodal KD fails to work when xa and xb share few decisive features (i.e., γ is
small) since modality-specific decisive features in modality a are not perceived by the student. As

xa

α = 𝛽 = 1
γ = 0

xb

γ ↑ α = 𝛽 = 0
γ = 1 γ

α
xa xb

γ γxa xb
𝛽 α 𝛽

Figure 2: An illustration of MFH with synthetic Gaussian data. Teacher modality is xa and student
modality is xb. We plot the confidence interval of one standard deviation for student accuracy. With
increasing γ, crossmodal KD becomes more effective.
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α = 𝛽 = 0
γ = 1  

α ↑ α = 0.8, 𝛽 = 0
γ = 0.2 α

xa γ xa xbγ γxa xbxb α
α

Figure 3: With increasing α (i.e., decreasing γ), the teacher improves its prediction accuracy but the
student network fails to benefit from KD. See the caption of Fig. 2 for more explanations.

γ gradually increases, crossmodal KD becomes more effective. For the case where all decisive
features possess in both modalities, the student gains from teacher’s knowledge and outperforms its
baseline by 2.1%. Note that the teacher accuracy does not vary much during this process, yet student
performance differs greatly.

Fig. 3 illustrates the reverse process where modality-specific decisive features in modality a gradually
dominate. With increasing α, the teacher gradually improves since it receives more modality-specific
decisive features for prediction. However, the student network fails to benefit from the improved
teacher and performs slightly worse instead. Clearly, teacher performance is not reflective of student
performance in this case. These two sets of experiments help demonstrate that teacher accuracy does
not faithfully reflect the effectiveness of crossmodal KD and lend support to our proposed hypothesis.

Apart from the two intuitive examples, below we provide a theoretical guarantee of MFH in an
analytically tractable case, linear binary classification. Formally, considering an infinitesimal learning
rate which turns the training into a continuous gradient flow defined on a time parameter t ∈
[0,+∞) (Phuong & Lampert, 2019). If n data are available, which are collectively denoted as
Zu ∈ Rdu×n, we have the following theorem to bound the training distillation loss with γ.

Theorem 1. (Crossmodal KD in linear binary classification). Without loss of generality, we assume
fθt

(·) : X a 7→ Y and fθs
(·) : X b 7→ Y . Suppose max{||ZuZu,T ||, ||(ZuZu,T )−1||} ≤ λ always

holds for both u = a or b, and gu(·) are identity functions. If there exists (ϵ, δ) such that

Pr
[
||Za,TZa − Zb,TZb|| ≤ (1− γ)ϵ

]
≥ 1− δ (4)

Then, with an initialization at t = 0 satisfying Rdis
n (θs(0)) ≤ q, we have, at least probability 1− δ:

Rdis
n (θs(t = +∞)) ≤ n(

ϵ⋆

1− e−ϵ⋆
− 1− ln

ϵ⋆

1− e−ϵ⋆
) (5)

where ϵ⋆ = λ1.5(λ2 + 1)(1 − γ)ϵ and Rdis
n (θs) is the empirical risk defined by KL divergence

(corresponding to Eq. (1) when ρ = 0):

Rdis
n (θs(t)) =

n∑
i=1

−σ(θT
t x

a
i ) · ln

σ(θT
s x

b
i )

σ(θT
t x

a
i )
−
[
1− σ(θT

t x
a
i )
]
· ln 1− σ(θT

s x
b
i )

1− σ(θT
t x

a
i )

(6)

See Appendix A for the omitting proof, several important remarks, and future improvements.

4.3 IMPLICATIONS

We have presented MVD and MFH. Equipped with this new perspective of crossmodal KD, we
discuss their implications and practical applications in this section.

Implication. For crossmodal KD, consider two teachers with identical architectures and similar
performance: Teacher (a) makes predictions primarily based on modality-general decisive features
while teacher (b) relies more on modality-specific decisive features. We expect that the student taught
by teacher (a) yields better performance than that by teacher (b).

The implication above provides us with ways to validate MFH. It also points directions to improve
crossmodal KD — We can train a teacher network that focuses more on modality-general decisive
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features for prediction. Compared with a regularly-trained teacher, the new teacher is more modality-
general (i.e., has a larger γ) and thus tailored for crossmodal knowledge transfer.

Note that: Firstly, identical architectures and performance of the two teachers are stated here for
a fair comparison. Similar performance of the two teachers translate to similar ability to extract
decisive features for prediction, and thus the only difference lies in the amount of modality-general
decisive features. This design excludes other factors and helps justify that the performance difference
stems from γ. In fact, we observe that even with inferior accuracy than teacher (b), teacher (a) still
demonstrates better crossmodal KD performance in experiments. Secondly, the main focus of this
paper is to present the MFH and to validate it with theoretical analysis, synthetic experiments, and
evidence from experiments conducted on real-world multimodal data. Contrary to the common belief,
we detach the influence of teacher performance in crossmodal KD and point out that modality-general
decisive features are the key. Developing methods to separate modality-general/specific decisive
features from real-world multimodal data is beyond the scope of this paper and left as future work.

5 EXPERIMENTAL RESULTS

5.1 EXPERIMENTAL SETUP

To justify our MFH, we conduct experiments on 6 multimodal datasets (synthetic Gaussian, AV-
MNIST, RAVDESS, VGGSound, NYU Depth V2, and MM-IMDB) that cover a diverse combination
of modalities including images, video, audio and text. In essence, we design approaches to obtain
teachers of different γ and perform crossmodal KD to validate the implication presented in Sec. 4.3.

We consider four different ways to derive a teacher network that attends to more or fewer modality-
general decisive features than a regularly-trained teacher: (1) For synthetic Gaussian data, since
the multimodal data generation mechanism is known, we train a modality-general teacher on data
with only modality-general decisive features preserved and other channels removed; (2) For NYU
Depth V2, we notice that RGB images and depth images share inherent similarities and possess
identical dimensions, allowing them to be processed using a single network. Therefore, we design
a modality-general teacher (i.e., has a larger γ than a regularly-trained teacher) by following the
training approach in (Girdhar et al., 2022); (3) For MM-IMDB data, we follow the approach in
(Xue et al., 2021) to obtain a multimodal teacher which is more modality-specific (i.e., has a smaller
γ) than the regularly-trained teacher; (4) For the other datasets, we design an approach based on
feature importance (Breiman, 2001; Wojtas & Chen, 2020) to rank all feature channels according to
the amount of modality-general decisive information. With a sorted list of all features, we train a
modality-general teacher by only keeping feature channels with large salience values and a modality-
specific teacher by keeping features with small values. In summary, a wide range of approaches and
tasks are considered to justify MFH. See Appendix B for detailed setups and some results.

5.2 SYNTHETIC GAUSSIAN

Table 2: Results on synthetic Gaussian data. Compared with a regular teacher, the modality-general
teacher has downgraded performance yet leads to a student with increasing accuracy.

Regular Teacher Modality-general Teacher Student Acc. (%)

γ Acc. (%) γ Acc. (%) No-KD Regular-KD Modality-general-KD

0.25 89.70 1.0 64.84 (↓) 59.29 59.46 61.01 (↑)
0.50 89.62 1.0 73.41 (↓) 67.64 67.86 70.25 (↑)
0.75 89.70 1.0 79.41 (↓) 76.46 76.53 77.70 (↑)

We extend the Gaussian example in (Lopez-Paz et al., 2015) to a multimodal scenario (see Ap-
pendix B.2 for details). To validate MFH, we train two teacher networks: (1) a regular teacher is
trained on data with all input feature channels; (2) a modality-general teacher is trained on data with
modality-general decisive features preserved and other channels removed, thus this teacher has γ = 1.
We experiment with different data generation methods, and the regular teachers have different γ
correspondingly. Crossmodal KD results obtained by these two teachers are presented in Table 2.
We observe considerable performance degradation (larger than -10% accuracy loss) of the modality-
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general teacher than the regular teacher, as it only relies on modality-general decisive features and
discards modality-specific decisive features for prediction. However, the modality-general teacher
still facilitates crossmodal KD and leads to an improved student (∼ +2% accuracy improvement
compared with regular crossmodal KD). The results align well with MFH stating that a teacher with
more emphasis on modality-general decisive features (i.e., has a larger γ) yields a better student.

5.3 NYU DEPTH V2

We revisit the example of NYU Depth V2 in Sec. 3. We adopt a teacher network that takes
depth images as input to transfer knowledge to an RGB student. Both student and teacher network
architectures are implemented as DeepLab V3+ (Chen et al., 2018). As described in Sec. 5.1,
besides training a regular teacher, we follow (Girdhar et al., 2022) and train a teacher that learns
to predict labels for the two modalities with identical parameters. To be specific, a training batch
contains both RGB and depth images, and the teacher network is trained to output predictions given
either RGB or depth images as input. As such, the resulting teacher is assumed to extract more
modality-general features for decision (i.e., has a larger γ than a regular teacher) since it needs to
process both modalities in an identical way during training.

As shown in Table 3, regular crossmodal KD does not bring many advantages: the student achieves
a similar mIoU compared with the No-KD baseline. Therefore, one might easily blame the failure
of crossmodal KD on teacher accuracy and assume that crossmodal KD is not effective because the
depth teacher itself yields poor performance (i.e., has an mIoU of 37.33%). By nature of its training
approach, the modality-general teacher is forced to extract more modality-general decisive features
for prediction rather than rely on depth-specific features as it also takes RGB images as input. While
we do not observe difference in teacher performance, the modality-general teacher turns out to be a
better choice for crossmodal KD: its student mIoU improves from 46.36% to 47.93%. The results
indicate that our MFH has the potential to diagnose crossmodal KD failures and lead to improvement.

Table 3: Results on NYU Depth V2 semantic segmentation. Teacher modality is depth images and
student modality is RGB images. Compared with regular crossmodal KD, using a modality-general
teacher leads to better distillation performance.

Teacher Student
Modality mIoU (%) Modality mIoU (%)

No-KD - - RGB 46.36
Regular-KD D 37.33 RGB 46.89

Modality-general-KD RGB/D 37.47 RGB 47.93 (↑)

Figure 4: The class activation maps of a regular
teacher (middle) and a modality-general teacher
(right) on VGGSound. A regular teacher attends to
all decisive features (i.e., the visual objects) while a
modality-general one focuses on modality-general
decisive features (i.e., the area of vocalization).

Nullified Area

Figure 5: With more feature channels get-
ting nullified, student performance starts to
increase in the beginning and then decrease;
the process aligns well with MVD.

5.4 RAVDESS AND VGGSOUND

Besides the approaches presented above, we design a permutation-based method to sort the features
according to the salience of modality-general decisive features, which allows us to obtain teacher
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networks that possess different amount of γ. See Appendix B.4 for the detailed algorithm flow. We
apply this approach to RAVDESS (Livingstone & Russo, 2018) and VGGSound (Chen et al., 2020a).
RAVDESS is an audio-visual dataset containing 1,440 emotional utterances with 8 different emotion
classes. Teacher modality is audio and student modality is images. The student and teacher network
follow the unimodal network design in (Xue et al., 2021); VGGSound is a large-scale audio-visual
event classification dataset including over 200,000 video and 310 classes. We consider two setups:
(1) adopting an audio teacher and a video student; (2) using a video teacher for distillation to an audio
student. We also experiment with two architectures, ResNet-18 and ResNet-50 (He et al., 2016) to be
the teacher and student network backbone. In our algorithm, we sort feature channels according to

Table 4: Results on RAVDESS Emotion Recognition and VGGSound Event Classification. A, I and V
denotes audio, images and video, respectively. We report student test accuracy (%) for RAVDESS and
mean Average Precision (%) for VGGSound. With identical model architecture, a modality-general
teacher improves regular KD while a modality-specific teacher leads to downgraded performance.

Task T Mod. S Mod. Regular Mod.-specific Random Mod.-general

RAVDESS A I 77.22 42.66 (↓) 64.75 78.28 (↑)
VGGSound (RN-18) A V 30.62 24.98 (↓) 28.99 31.88 (↑)
VGGSound (RN-50) A V 38.78 28.65 (↓) 35.95 39.81 (↑)
VGGSound (RN-50) V A 58.87 31.28 (↓) 56.98 59.46 (↑)

the salience of modality-general decisive features. A modality-general teacher is derived by nullifying
r% feature channels with smallest salience values. Similarly, a modality-specific teacher is obtained
by nullifying the r% feature channels with largest salience values and a random teacher is derived
by randomly nullifying r% channels. The feature nullifying ratio r% is a hyperparameter and we
experiment with different values of r. While the exact value of γ for different teacher networks is
unknown, we know that γ increases in the order of modality-specific, random and modality-general
teacher. As shown in Table 4, crossmodal KD performance aligns well with this order. For RAVDESS
emotion recognition, a modality-specific teacher results in a significantly downgraded student (i.e.,
accuracy drops from 77.22% to 42.66%) while a modality-general teacher improves regular KD by
1.06%. Similarly, for VGGSound event classification, modality-general crossmodal KD improves
the video student performance from 30.62% to 31.88% (for ResNet-18) and from 38.78% to 39.81%
(for ResNet-50). These results demonstrate the critical role of modality-general decisive features in
crossmodal KD.

Moreover, to provide an intuitive understanding of how a modality-general teacher differs from the
regular teacher, we present visualization results on VGGSound data in Fig. 4. We see that a regular
video teacher utilizes all decisive features for classification, and attends to the visual objects (i.e., the
Saxophone and the baby). On the contrary, a modality-general teacher focuses more on information
available in both the visual and audio modality, thus the area of vocalization get most activated.

Finally, we vary feature nullifying ratio r% for VGGSound data and plot the student performance
curve along with r%. From Fig. 5, we observe that there exists a sweet spot for modality-general KD.
As r% increases, the student performance improves in the beginning. The improvement indicates that
non modality-general decisive features in the teacher are gradually discarded, which in turn results in
a better student. Later, after all non modality-general decisive information are discarded, the feature
nullifying process starts to hinder student performance as modality-general decisive features get
nullified as well. The modality Venn diagram corresponding to this process is depicted in the upper
figure. The observed performance curve aligns well with our understanding on MVD.

6 CONCLUSION AND FUTURE WORK

In this work, we present a thorough investigation of crossmodal KD. The proposed MVD and MFH
characterize multimodal data relationships and reveal that modality-general decisive features are the
key in crossmodal KD. We present theoretical analysis and conduct various experiments to justify
MFH. We hope MFH shed light on applications of crossmodal KD and will raise interest for general
understanding of multimodal learning as well. Future work includes: (i) deriving a more profound
theoretical analysis of crossmodal KD, (ii) differentiating modality-general/specific decisive features
for real-world data, and (iii) improving multimodal fusion robustness based on MVD.
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A PROOF OF THEOREM 1

Lemma 1. Consider a function l(b, a):

l(b, a) = −σ(a) [lnσ(b)− lnσ(a)]− (1− σ(a)) [ln(1− σ(b))− ln(1− σ(a))] (7)

where σ(·) represents the sigmoid function. When |a− b| ≤ ϵ,

max l(b, a) =
ϵ

1− e−ϵ
− 1− ln

ϵ

1− e−ϵ
(8)

Proof. We only need to prove the following two things: (i) l(b, a) ≤ l(a± ϵ, a), and (ii) l(a± ϵ, a) ≤
ϵ

1−e−ϵ − 1− ln ϵ
1−e−ϵ . For (i), we imagine a is fixed, and calculate the derivative of l(b, a) w.r.t. b,

yielding:

∂l

∂b
=

eb − ea

(1 + ea)(1 + eb)
= σ(b)− σ(a) (9)

Thus, when varying b in the range [a− ϵ, a+ ϵ], the value of l(b, a) first decreases and then increases.
It implies l(b, a) ≤ l(a± ϵ, a).

To prove (ii), we first consider the function:

l̃+(a) = l(a+ ϵ, a)

= −σ(a) [lnσ(a+ ϵ)− lnσ(a)]− (1− σ(a)) [ln(1− σ(a+ ϵ))− ln(1− σ(a))]

= σ(a)

[
ln

σ(a)

1− σ(a)
− ln

σ(a+ ϵ)

1− σ(a+ ϵ)

]
− ln

1− σ(a+ ϵ)

1− σ(a)

= −σ(a) · ϵ− ln
1− σ(a+ ϵ)

1− σ(a)

= −ϵ 1

1 + e−a
− ln

e−(a+ϵ)

e−a

1 + e−a

1 + e−(a+ϵ)

= −ϵ 1

1 + e−a
+ ϵ− ln

1 + e−a

1 + e−(a+ϵ)

= −ϵ 1

1 + t
+ ϵ− ln

1 + t

1 + te−ϵ

(10)

where in the last line, we denote t = e−a. Now, let us calculate the derivative of l̃+ w.r.t. t:

∂l̃+
∂t

=
ϵ

(1 + t)2
− 1

1 + t
+

e−ϵ

1 + te−ϵ

=
ϵ− 1− t

(1 + t)2
+

1

eϵ + t

=
(1 + t)2 − (t+ eϵ)(t− ϵ+ 1)

(1 + t)2(eϵ + t)

(11)

Obviously, the denominator is always larger than zero. After expanding the numerator, we see that
when t = eϵ(1−ϵ)−1

1+ϵ−eϵ , l̃+ achieves its maximum. Therefore, according to a = − ln t, we conclude

the maximum value of l̃+(a) is ϵ
1−e−ϵ − 1 − ln ϵ

1−e−ϵ , achieved at a = − ln eϵ(1−ϵ)−1
1+ϵ−eϵ . Similarly,

we could define a function l̃−(a) = l(a − ϵ, a) and verify that the maximum value of l̃−(a) is
−ϵ

1−eϵ − 1− ln −ϵ
1−eϵ . Furthermore, after some simplifications, these two expressions, i.e., max l̃+(a)

and max l̃−(a), could be proved identical.

Corollary 1. For two vectors a ∈ Rn and b ∈ Rn, if ||a− b|| ≤ ϵ, then

Ln(b,a) =

n∑
i=1

l(bi, ai) ≤ n(
ϵ

1− e−ϵ
− 1− ln

ϵ

1− e−ϵ
) (12)
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The corollary is straightforward if noticing |ai − bi| ≤ ||a− b|| ≤ ϵ holds for any i = 1, 2, · · · , n.

Lemma 2. If max{||ZuZu,T ||, ||(ZuZu,T )−1||} ≤ λ always holds for both u = a, b, assume
||Za,TZa − Zb,TZb|| ≤ (1− γ)ϵ, then we have:

||Zb,T (ZbZb,T )−1ZbZa,T − Za,T || ≤ λ1.5(λ2 + 1)(1− γ)ϵ (13)

Proof. For conciseness, we temporarily denote A = Za and B = Zb. To begin with, we notice:

(BT (BBT )−1BAT −AT )AAT = (BT (BBT )−1B− I)(ATA−BTB)AT (14)

Then, we have:

||BT (BBT )−1BAT −AT || ≤ ||(AAT )−1|| · ||BT (BBT )−1B− I|| · ||ATA−BTB|| · ||AT ||
≤ λ ·

[
||BT (BBT )−1B||+ 1

]
· (1− γ)ϵ · ||AT ||

≤ λ ·
[
||BBT || · ||(BBT )−1||+ 1

]
· (1− γ)ϵ ·

√
||AAT ||

= λ1.5(λ2 + 1)(1− γ)ϵ
(15)

Now, we are ready to prove Theorem 1. For reader’s convenience, we re-state Theorem 1 in below.

Theorem A.1. (Crossmodal KD in linear binary classification). Without loss of generality, we
assume fθt

(·) : X a 7→ Y and fθs
(·) : X b 7→ Y . Suppose max{||ZuZu,T ||, ||(ZuZu,T )−1||} ≤ λ

always holds for both u = a or b, and gu(·) are identity functions. If there exists (ϵ, δ) such that

Pr
[
||Za,TZa − Zb,TZb|| ≤ (1− γ)ϵ

]
≥ 1− δ (16)

Then, with an initialization at t = 0 satisfying Rdis
n (θs(0)) ≤ q, we have, at least probability 1− δ:

Rdis
n (θs(t = +∞)) ≤ n(

ϵ⋆

1− e−ϵ⋆
− 1− ln

ϵ⋆

1− e−ϵ⋆
) (17)

where ϵ⋆ = λ1.5(λ2 + 1)(1− γ)ϵ and Rdis
n (θs) is the empirical risk defined by KL divergence:

Rdis
n (θs(t)) =

n∑
i=1

−σ(θT
t x

a
i ) · ln

σ(θT
s x

b
i )

σ(θT
t x

a
i )
−
[
1− σ(θT

t x
a
i )
]
· ln 1− σ(θT

s x
b
i )

1− σ(θT
t x

a
i )

(18)

Proof. First, under the given conditions, if we could prove:

||Za,TZa−Zb,TZb|| ≤ (1−γ)ϵ => Rdis
n (θs(t = +∞)) ≤ n(

ϵ⋆

1− e−ϵ⋆
−1− ln

ϵ⋆

1− e−ϵ⋆
) (19)

Then, adding the outer probability bracket doesn’t alter the conclusion, and the theorem is proved.
Therefore, in the following, we will focus on proving Eq. (19). The proof consists of two parts.
In the first part, we will show that there exists an θ⋆

s , such that Rdis
n (θ⋆

s) is bounded. Then, in the
second part, we will prove that if the training process is long enough (i.e., t→ +∞), then the final
distillation risk Rdis

n (θs(t = +∞)) is further bounded by Rdis
n (θ⋆

s).

Without loss of generality, we assume the trained teacher weight ||θt|| = 1 since in linear binary
classification, scaling the weight doesn’t affect the final prediction. Now, let us consider:

θ⋆
s = (ZbZb,T )−1ZbZa,Tθt (20)

Then we have:

||Zb,Tθ⋆
s − Za,Tθt|| = ||Zb,T (ZbZb,T )−1ZbZa,tθt − Za,Tθt||

≤ ||Zb,T (ZbZb,T )−1ZbZa,T − Za,T || · ||θt||
≤ λ1.5(λ2 + 1)(1− γ)ϵ

(21)
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where in the last line, we have used Lemma 2. Then using Corollary 1, we obtain

Rdis
n (θ⋆

s) = Ln(Z
b,Tθ⋆

s ,Z
a,Tθ⋆

t ) ≤ n(
ϵ⋆

1− e−ϵ⋆
− 1− ln

ϵ⋆

1− e−ϵ⋆
) (22)

where ϵ⋆ = λ1.5(λ2 + 1)(1− γ)ϵ. Now, the remaining effort is to prove that if time is sufficiently
long (i.e., t→ +∞), the trained loss Rdis

n (θs(t)) will be smaller than Rdis
n (θ⋆

s).

To begin with, we apply Theorem A.2 and Corollary A.1 from (Phuong & Lampert, 2019): For any
sublevel set Θ = {θs : Rdis

n (θs) ≤ q}, there exists c > 0 such that:

cRdis
n (θs)− cRdis

n (θ⋆
s) ≤

1

2
||∇Rdis

n (θs)||2 (23)

Compared to the original Corollary A.1 of (Phuong & Lampert, 2019), a slight modification is done
for it to suit our case. Proving the existence of c is obvious by noticing that the left-hand side of
Eq. (50) of (Phuong & Lampert, 2019) is relaxed to Rdis

n (θ⋆
s) instead of 0 in our case. Next, noticing

Eq. (8) and (53) of (Phuong & Lampert, 2019), we have:

(Rdis
n )′ =

dRdis
n (θs(t))

dt
= −||∇Rdis

n (θs)||2 ≤ −2cRdis
n (θs) + 2cRdis

n (θ⋆
s) (24)

which could be simplified as (Phuong & Lampert, 2019):[
Rdis

n −Rdis
n (θ⋆

s)
]′ ≤ −2c [Rdis

n −Rdis
n (θ⋆

s)
]

=>
{
ln
[
Rdis

n −Rdis
n (θ⋆

s)
]}′ ≤ −2c

(25)

Integrating over [0, τ ] yields:

Rdis
n (θs(τ)) ≤ Rdis

n (θs(0)) · e−2cτ +Rdis
n (θ⋆

s) (26)

Thus, as τ → +∞, Rdis
n (θs(τ = +∞)) will be upper-bounded by Rdis

n (θ⋆
s). The above equation also

indicates the convergence speed.

Remarks. Firstly, the above theorem implies that the training distillation loss is upper-bounded by
a monotonic function with respect to γ. When γ increases from 0 to 1, the upper bound gradually
decreases. Further combining the above theorem with Rademacher complexity, we could even obtain
a bound on the generalization error. Nevertheless, the key component in the generalization bound is
already shown here. As such, readers should be alerted that our derived theorem is primitive, that our
main contribution in this paper are MVD and MFH, and that a complete theoretical analysis itself
could be a standalone work. Secondly, we emphasize that in proving our theorem, the MVD decision
rule shown in Eq. (3) is not utilized. In the context of our theorem, Eq. (3) states that there exist θs
and θt, which could make the corresponding student and teacher network achieve zero generalization
error 4. However, our focus in the proved theorem is merely the training distillation loss, neither
involving the generalization error, nor the cross entropy loss between the student prediction and the
true label, so this MVD decision rule is not used. However, the decision rule is essential to fully
characterize the MVD model as it states the modality-general and modalty-specfic decisive features
are sufficient to determine the label, and we expect it will be of use when proving the generalization
error. Finally, with the above two remarks on our insufficiency, it would be of great interest to extend
our theorem to the generalization error with a linear (or even non-linear) gu(·) and ρ ̸= 0 in K-class
classification. In a nutshell, we hope our proposed MVD could work as a powerful model being
utilized to theoretically prove generalization error of crossmodal KD.

B EXPERIMENTAL SETUP AND MORE RESULTS

B.1 CASE STUDIES IN SEC. 3

In this section, we describe implementation details and provide more results for the two case studies
in Sec. 3. AV-MNIST (Vielzeuf et al., 2018) is an audio-visual dataset created by pairing audio
and image features. The two modalities are MNIST images with 75% energy removed by principal

4However, such a θs might not able to achieve when doing crossmodal KD by using Eq. (1.
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component analysis and audio spectrograms with random natural noise injected. There are 50,000
pairs for training, 5,000 pairs for validation and 10,000 pairs for testing. Following (Vielzeuf et al.,
2018; Gao et al., 2022), we adopt a 6-layer CNN as the audio teacher network. The audio student
network is implemented as a 3-layer CNN, and the multimodal teacher is a late fusion network. The
multimodal teacher uses LeNet5 (LeCun et al., 1989) as the image backbone and a 5-layer CNN as
the audio backbone; Audio and image features are then concatenated and passed to fully-connected
layers for the final prediction. Recall that ρ in Eq. (1) in the main text controls the relative importance
of the two loss terms when training the student network. We experiment with both ρ = 0 and ρ = 0.5,
and repeat the experiments for 10 times. We have provided the results of ρ = 0.5 in Table 1 in the
main text, and a more detailed version can be found in Table 5 below.

Table 5: Evaluation of unimodal KD (UM-KD) and crossmodal KD (CM-KD) on AV-MNIST.

Teacher Student

Mod. Acc. (%) Mod. Acc. (%)
ρ = 0 ρ = 0.5

No-KD - - A 68.36 ± 0.79 68.36 ± 0.79
UM-KD A 84.57 A 69.86 ± 0.70 70.10 ± 0.50
CM-KD I + A 91.61 A 69.46 ± 1.12 69.73 ± 0.73

From the table, we can see that crossmodal KD does not have advantages over unimodal KD for both
values of ρ. We hypothesize that the proportion of modality-general decisive information is small in
this dataset since a multimodal data pair is assembled by randomly pairing an image with an audio
that belongs to the same class. Thus the two modalities are not naturally correlated and there may be
little modality-general information. MFH provides a plausible explanation for this failure case of
crossmodal KD.

NYU Depth V2 (Nathan Silberman & Fergus, 2012) contains 1,449 aligned RGB and depth images
with 40-class labels, where 795 images are used for training and 654 images are for testing. ρ is set
to 0.5. We implement two model architectures for the multimodal teacher: (1) Channel Exchanging
Networks (CEN) (Wang et al., 2020) and (2) Separation-and-Aggregation Gate (SA-Gate) (Chen
et al., 2020b). The unimodal teacher and student are adopted as the RGB branch of the corresponding
multimodal network. The results are shown in Table 6, part of which corresponds to the right section
of Table 1 in the main text.

Table 6: Evaluation of unimodal KD (UM-KD) and crossmodal KD (CM-KD) on NYU Depth V2.

CEN SA-Gate

Teacher Student Teacher Student
Mod. mIoU Mod. mIoU Mod. mIoU Mod. mIoU

No-KD - - RGB 45.69 - - RGB 46.36
UM-KD RGB 45.69 RGB 46.23 RGB 46.36 RGB 48.00
CM-KD RGB + D 51.14 RGB 46.70 RGB + D 51.00 RGB 47.78

Table 6 demonstrates that crossmodal KD is not effective in both cases. The great advantages in
teacher performance does not enhance student performance. Adopting CEN as the multimodal teacher
seems better than SA-Gate, but the improvement compared with unimodal KD is still marginal (i.e.,
from 46.23% to 46.70%). According to MFH, different teacher networks utilize different amount of
modality-general decisive features for prediction, which results in different distillation performance.
We hypothesize that CEN has a larger γ than SA-Gate due to their model design: CEN shares all
parameters for the RGB and depth input except for Batch Normalization layer while SA-Gate has
separate encoders for the two modalities. This indicates that CEN is more modality-general than
SA-Gate, and this may further account for their performance differences. There may be other factors
lying behind, and one future direction is to develop methods to compare existing model architectures
to find a teacher architecture that best suits crossmodal KD.
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B.2 SYNTHETIC GAUSSIAN

Assume two vectors xa ∈ Rd1 and xb ∈ Rd2 compose one multimodal data pair (xa,xb). We select a
subset of input features as decisive features, denoted by x∗ ∈ Rd. We assume that x∗ exist in both xa

and xb, and denote the corresponding decisive feature index set of xa (xb) as J1 (J2). The separating
hyperplanes are denoted by δ ∈ Rd. Formally, we generate one feature-label pair (xa,xb, y) by:

x∗ ∼ N (0, Id), y ← 1(⟨δ,x∗⟩ > 0)

xa ∼ N (0, Id1
), xa

J1
← x∗

J1

xb ∼ N (0, Id2
), xb

J2
← x∗

J2

(27)

As depicted in MVD, modality-general decisive features are decisive features shared by two modalities
and thus indexed by J1∩J2. J1∪J2 represents the index set of decisive features from both modalities.
Therefore, α = 1 − |J2|

|J1∪J2| , β = 1 − |J1|
|J1∪J2| and γ = |J1∩J2|

|J1∪J2| . By changing J1 and J2, we can
generate multimodal data with different inherent characteristics (i.e., different α, β, and γ). We
consider two settings: (1) varying γ (Fig. 2 in the main paper). Let d1 = 25, d2 = 50 and d = 20,
we gradually increase |J1 ∩ J2| from 0 to 10, with a step size of 2 and perform KD on every step.
Consequently, γ takes the value of [0, 0.11, 0.25, 0.43, 0.67, 1], and α = β = 1−γ

2 . (2) varying α
(Fig. 3 in the main text). Let d1 = d2 = 50 and d = |J1 ∪ J2| increase from 10 to 50, with a step
size of 10. Thus, α takes the value of [0, 0.5, 0.67, 0.75, 0.80, 0.83]. We set β to be 0 through the
process, and γ = 1− α.

Following (Lopez-Paz et al., 2015), the teacher and the student are both implemented as logistic
regression models, and we use 200 samples for training and 1,000 samples for testing. δ is sampled
from the standard normal distribution. ρ in Eq. 1 in the main text is set as 0.5. Results are averaged
over 10 runs.

B.3 MM-IMDB

MM-IMDB (Arevalo et al., 2017) is the largest publicly available multimodal dataset for genre
prediction on movies. It contains 25,959 movie titles and posters that belong to 27 movie genres.
We pick two movie genres (i.e., drama and comedy) for multi-label classification. There are 15,552
data for training, 2,608 for validation, and 7,799 for testing. We adopt the same pre-processing
method as in (Arevalo et al., 2017) to extract image and text features. We consider the special case of
crossmodal KD, where the teacher is a multimodal network that takes both images and text as input
and student is a unimodal text network. The unimodal and multimodal architecture are identical to the
one in (Liang et al., 2021). As described in Sec. 5.1, we experiment with two teacher networks that
have the same architecture but differ in γ: (1) We regularly train a multimodal network with labels;
(2) Following (Xue et al., 2021), we train a multimodal network that receives pseudo labels from
an unimodal image network. The second teacher only has access to pseudo labels from the image
modality and leans towards the image modality when giving predictions. In other words, it is more
modality-specific (i.e., has a smaller γ) than the regular teacher. We randomly split training data with
the ratio 50%:50%, and use the first half to train the unimodal teacher and the general multimodal
teacher. The other part of data is used for training the student network, and we set ρ = 0.

Table 7: Results on MM-IMDB movie genre classification. T and I represent text and images,
respectively. With identical architecture and similar accuracy, a modality-specific teacher leads to
worse crossmodal KD performance than a regular teacher since it utilizes fewer modality-general
decisive features for prediction.

Teacher Student

Mod. micro
F1 (%)

macro
F1 (%) Mod. micro

F1 (%)
macro
F1 (%)

UM-KD T 61.76 61.13 T 61.04 56.44
Modality-specific-KD T+I 62.01 61.08 T 61.77 57.26

Regular-KD T+I 61.01 60.37 T 65.09 63.31 (↑)
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Table 7 shows the teacher and student performance for both unimodal KD and crossmodal KD. We
select three teacher models that have similar performance on test data, and use them for distillation to
detach the influence of teacher performance. Clearly, the three teachers transfer different knowledge
to the student. The unimodal teacher comes from the image modality and the modality-specific
multimodal teacher is also biased towards the image modality due to its training strategy. Finally, the
regular multimodal teacher adopts more modality-general information compared with the previous
two teachers (i.e., has a larger γ). As can be seen from the table, it results in the best unimodal text
student, which helps verify our proposed MFH.

B.4 RAVDESS AND VGGSOUND

We first present a permutation-based approach to rank given multimodal features according to the
amount of modality-general decisive information available in each feature channel. This approach
offers an alternative way to obtain teachers of different γ and helps validate the proposed MFH. As
described in Sec. 5.4, once we have a sorted list for all feature channels, we can derive a modality-
general (or modality-specific) teacher by nullifying the top r% smallest (or largest) channels during
the distillation process.

The major steps of our proposed feature ranking approaches are demonstrated in Algorithm 1. The
input of Algorithm 1 are Xa ∈ Rn×d1 , Xb ∈ Rn×d2 , and Y ∈ Rn, representing n paired features
from modality a and b, and n target labels, respectively. The output is a salience vector p ∈ Rd1 for
modality-specific decisive features in modality a, where its i-th entry pi ∈ [0, 1] reflects the salience
of the i-th feature dimension. A larger salience value indicates a more modality-general decisive
feature channel.

Algorithm 1 Modality-General Decisive Feature Ranking

Input: multimodal features (Xa ∈ Rn×d1 ,Xb ∈ Rn×d2 ,Y ∈ Rn)
Output: salience vector p ∈ Rd1 for features of modality a

1: Jointly train two unimodal networks fθ∗
1

and fθ∗
2

using the following loss:

min
θ1,θ2

L = Dist(fθ1
(Xa), fθ2

(Xb)) + CE(Y, fθ1
(Xa)) + CE(Y, fθ2

(Xb)) (28)

▷ Dist(·, ·) denotes a distance loss (e.g., mean squared error) and CE denotes cross entropy
2: for i = 1 to d1 do ▷ Calculate the salience for the d-th feature dimension
3: pi = 0
4: for m = 1 to M do ▷ Repeat permutation M times for better stability
5: permute the i-th column of Xa yielding X̃a

6: pi = pi +
1
M ×Dist(fθ∗

1
(X̃a), fθ∗

2
(Xb))

7: end for
8: end for
9: Perform normalization: p = p

maxi pi
∈ [0, 1]d1

Since input-level features contain much label-irrelevant noise, our Algorithm 1 is designed following
a trace-back thought starting from the output level. Namely, we drive two unimodal networks to the
state of “feature alignment” at the output level using Eq. (28), and then use permutation to identify
which input feature dimension has a larger impact to the state. Those more influential to the state
(i.e., a large distance in step 6) will be assigned a larger salience value.

Table 8: Test Accuracy (%) on RAVDESS emotion recognition. Teacher modality is audio and
student modality is images. Modality-general crossmodal KD demonstrates best performance for all
feature nullifying dimension ratio r%.

r (%) Regular Modality-specific Random Modality-general

25 77.22 75.26 (↓) 77.24 78.12 (↑)
50 77.22 42.66 (↓) 64.75 78.28 (↑)
75 77.22 12.00 (↓) 63.40 77.82 (↑)

19



Published as a conference paper at ICLR 2023

In step 1, we jointly train two unimodal networks fθ∗
1

and fθ∗
2

that respectively take unimodal data
Xa and Xb as input. The first loss term in Eq. (28) aims to align feature spaces learned by the
two networks, and the remaining loss terms ensure that learned features are essential for a correct
prediction. We believe that this training strategy aligns three sources of decisive features at the output
level. In step 2, we follow the idea of permutation feature importance (Breiman, 2001) to trace back
modality-general decisive features at the input level. For the i-th dimension in Xa, we randomly
permute Xa along this dimension and obtain a permuted X̃a in step 5. Next, we calculate the distance
between fθ∗

1
(X̃a) and fθ∗

2
(Xb) in step 6. A large distance indicates that the i-th dimension largely

influences the state of “feature alignment”. Consequently, we are able to quantify the proportion
of modality-general decisive features in each input feature channel and use the salience vector p to
represent it. We repeat the permutation process for M times and average the distance value for good
stability. Finally, p is normalized to [0, 1]d1 in step 9.

Note that: (1) The focus of this paper is to propose and validate MFH. Algorithm 1 presents
an approach to rank features and allows us to derive teachers of different γ to justify the MFH
implication. Developing methods that can separate modality-general decisive features and modality-
specific decisive features is a challenging problem worth deep investigation and is left as future
work. (2) Algorithm 1 is not limited to feature ranking at the input level. Xa and Xb can be features
extracted from middle layers of the neural network as well. In such case, output p reflects the
salience for each middle-layer feature channel. (3) Algorithm 1 could be equally applied to rank
modality-general decisive features for modality b as long as we permute Xb.

Next, we present results by applying this feature ranking approach to two multimodal applications,
i.e., RAVDESS emotion recognition and VGGSound event classification.

The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) (Livingstone &
Russo, 2018) contains videos and audios of 24 professional actors vocalizing two lexically-matched
statements. For modality a (i.e., teacher modality), we adopt Kaiser best sampling and take mel-
frequency cepstral coefficients (MFCCs) features from corresponding audio. For modality b (i.e.,
student modality), we uniformly sample single-frame images every 0.5 second from each video. We
randomly split image-audio pairs, and have 7,943 data for training, 2,364 data for validation and
1,001 data for testing. Similar to (Xue et al., 2021), the teacher and student architecture are 3-layer
CNNs followed by 3 fully-connected layers. We set ρ in Eq. (1) in the main text as 0 (i.e., only use
Lkd for distillation) to fully observe the teacher’s influence on student performance. We report results
with three feature nullifying ratio r% in Table 8, which is a detailed version of Table 4 in the main
text. Results are averaged over 5 runs.

As shown in the table, with more feature channels getting nullified (i.e., increasing r%), the random
and modality-specific version both suffer from a heavy performance degradation. On the contrary, a
modality-general teacher still attains satisfactory distillation performance and outperforms regular KD
even when the feature nullifying ratio goes to 75%. This demonstrates the efficacy of our proposed
feature ranking method as well as the practical value of MFH.

Table 9: mean Average Precision (%) on VG-
GSound event classification. Teacher modal-
ity is audio and student modality is video.

ρ 0 0.5

Regular 30.62 30.70
Modality-specific 24.98 (↓) 28.14 (↓)
Random 28.99 29.56
Modality-general 31.88 (↑) 31.98 (↑)
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Figure 6: Crossmodal KD peprformance with vary-
ing permutation number M .

VGGSound is a large-scale audio-visual correspondent dataset. We randomly choose 100 class from
its 310 classes and obtain 56,614 audio-video pairs for training and 4,501 audio-video pairs for
testing. Videos clips and audio spectrograms are taken as input features, respectively. The audio
network is implemented as a ResNet-18 / ResNet-50 backbone followed by linear layers and the
video network is the same architecture with 2D convolution replaced by 3D convolution. For Table 4
in the main paper, we set ρ in Eq. (1) to be 0 and experiment with both ResNet-18 and ResNet-50. In
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Table 9, we report results of both ρ = 0 and ρ = 0.5 with the ResNet-18 backbone. The conclusion
is consistent: a modality-general teacher improves student performance while a modality-specific
teacher results in performance degradation. These results help validate our proposed MFH.

In Algorithm 1, we repeat permutation M times for a better estimation of each feature dimension’s
salience value. Fig. 6 provides an analysis on the number of permutation times M . As M increases,
we have a more accurate estimation of p, so modality-general KD gradually improves and finally
reaches a plateau.

C COMPARISON OF MVD WITH THE MULTI-VIEW ASSUMPTION

Below we compare MVD with the multi-view assumption (Sridharan & Kakade, 2008). We adopt
the same notations used in the main text here for the multi-view learning paradigm: assume the input
variable is partitioned into two different views xa and xb, and there is a target variable y of interest.
The multi-view assumption states that either view alone is sufficient to predict the target label y
accurately. As illustrated in Figure 7 (a), all task-relevant information is assumed to lie in the shared
regions between xa and xb.

Despite its wide use in unimodal self-supervised learning, the multi-view assumption is likely to fail
when xa and xb are from different modalities (Tsai et al., 2020). In fact, whether the multi-view
assumption holds is largely dependent on downstream tasks and modalities involved. On one hand,
for tasks such as image classification, either the image itself or its caption is sufficient to derive the
target label. On the other hand, for tasks such as MM-IMDB movie genre classification, using the
movie poster (image modality) alone may not convey which category this movie belongs to. Movie
descriptions (text modality-specific information) are also needed to infer the target label y. Similarly,
using the depth image alone is not sufficient for RGB-D semantic segmentation as there are regions in
the image that have the same depth values but correspond to different semantic labels. The multi-view
assumption thus does not hold for many challenging multimodal tasks.

xa xb
γα 𝛽xa xbγ

(a) multi-view assumption (b) modality Venn diagram

Task-relevant information

Figure 7: Illustration of (a) the multi-view assumption and
(b) our modality Venn diagram.

Our proposed MVD generalizes the
multi-view assumption by taking
modality-specific decisive features
into consideration as well. It states
that task-relevant information is com-
posed of three parts: (1) modality-
general decisive features; (2) decisive
features specific to modality a; and (3)
decisive features specific to modality
b, as illustrated in Figure 7 (b). Con-
sequently, the multi-view assumption
can be considered as a special case of
MVD when α = β = 0 and γ = 1.
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